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CYCLICALLY SEPARATED GROUPS

BRIAN HARTLEY, JOHN C. LENNOX
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We call a group G cyclically separated if for any given cyclic

subgroup B in G and subgroup A of finite index in B , there

exists a normal subgroup N of G of finite index such that

N rt B = A . This is equivalent to saying that for each element

x € G and integer n > 1 dividing the order o(x) of x ,

there exists a normal subgroup N of G of finite index such

that Nx has order n in G/N . As usual, if x has infinite

order then all integers n > 1 are considered to divide o(x) .

Cyclically separated groups, which are termed "potent groups" by

some authors, form a natural subclass of residually finite groups

and finite cyclically separated groups also form an interesting

class whose structure we are able to describe reasonably well.

Construction of finite soluble cyclically separated groups is

given explicitly. In the discussion of infinite soluble

cyclically separated groups we meet the interesting class of

Fitting isolated groups, which is considered in some detail. A

soluble group G of finite rank is Fitting isolated if, whenever

H = K/L {L < K < G) is a torsion-free section of G and F(H)

is the Fitting subgroup of H then H/F(H) is torsion-free

abelian. Every torsion-free soluble group of finite rank

contains a Fitting isolated subgroup of finite index.
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1.

1.1. INTRODUCTION

We call a group G cyclically separated (CS-group) if for any given

cyclic subgroup B 5 G and subgroup A of finite index in B , there

exists a normal subgroup N of G of finite index such that N n B = A .

This is clearly equivalent to saying that for each element x in G and

integer n > 1 dividing the order o(x) of x , there exists a normal

subgroup if of 5 of finite index such that Nx has order n . If x

is of infinite order, then, as is usual, all integers n > 1 are

considered to be divisors of o(x) . We shall more often be using this

second version of the definition of cyclically separated groups in this

paper. Note that i t is sufficient to restrict attention to prime divisors

of o{x) . Cyclically separated groups form a natural subclass of

residually finite groups. They have been investigated by AIlenby and Tang

in [1] and in some more recent papers to appear and by Poland in [If] .

Cyclically separated groups are referred to as "Potent" groups by these

authors. The usefulness of this concept was demonstrated in [11 for one

relator groups and i t is likely to receive more attention in future.

From now on we shall denote cyclically separated groups by CS-groups.

The arrangement of the paper is as follows. The notation used is

described in Section 1.2. The basic closure properties of CS-group are

given in Section 1.3. Finite CS-groups are discussed in Section 2 and

general soluble CS-groups in Section 3. In Section h we establish an

interesting property of torsion-free soluble groups with finite rank.

Basically i t states that every such group G has a subgroup H of finite

index in which the Fitting subgroup of every torsion-free section of H is

isolated. This is needed in the proof of Theorem D of Section 3- Although

the result can be established by representing G as a subgroup of

GL(n, Q) and then using methods developed by B.A.F. Wehrfritz, we have

chosen to give an elementary, though slightly lengthy, proof.

1.2. NOTATION

As stated earlier, a cyclically separated group will be called a

CS-group. We shall write CS* to denote the class of CS-groups all of

whose subgroups and torsion-free quotients are CS-groups. CS will denote

the largest subgroup and quotient closed subclass of CS-groups. Thus we
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have the chain CS 3 CS* 3 CS , with a l l inclusions proper. All standard

notation used i s from Robinson [12] except t ha t we wri te Q instead of H

for ' quo t ien t ' closure operation and Z(G) for Z,{G) t o denote the centre

of G . Notation per ta in ing to f i n i t e groups i s mainly from Gorenstein [5]

i f i t i s not in [12] . I f S i s a subgroup of a group G then we wri te

v5? to denote the se t {x € G; x € B for some pos i t ive in teger n] .

Where we have used t h i s no ta t ion , v5f turns out t o he a subgroup.

Finally we wri te P » H to denote the s p l i t extension of P by H . Thus

G = P * fl i f G = PE , P n H = 1 and P < G .

1.3. CLOSURE PROPERTIES

I t follows from the def ini t ion tha t the c lass of CS-groups i s subgroup

closed. A quotient of a CS-group need not be potent ; however f i n i t e

CS-groups form a ^-closed class (Proposition l ) .

LEMMA 1. The class of CS-groups is closed under (restricted) direct

product.

Proof. Clearly i t is enough to consider direct products with finitely

many factors and hence we only need show that G = G. x (?„ is a CS-group

if G and G are. Let x = x x € G [x. € G.) . Every divisor n of

o{x) may be written in the form n = n »„ where n. divides o[x.) ,

i = 1, 2 and n and n are coprime. We can find subgroups N. < G.1 2 % 1*

( i = 1, 2) such that |G/ff.| < °° and N.x. has order n. . Putting

N = N x ff we see that to has order n .

The class of CS-groups is not closed under any of the operations

L, R, N , P and Q . But i t is i? -closed by Lemma 1 since i t is subgroup

closed.

2. Finite CS-groups

In this section we restrict our attention to finite groups. A finite

simple CS-group must have all of i ts elements of prime order and so is

either a cyclic group of prime order or J4_ by a theorem of Suzuki [13].

In fact, we have further the following interesting consequences of that
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result.

LEMMA 2. If G is a finite CS-group then every non-dbelian

composition factor of G is isomorphic to .4 , the alternating group of

degree five.

Proof. Suppose the result is false. Choose H 5 G minimal subject

to the condition that H/K is a non-abelian composition factor of G not

isomorphic to A . Then not all the elements of H/K are of prime order

by Suzuki [13] as remarked above. Choose Kx in H/K with o(Kx) a

composite number divisible by a prime p . Since H is a CS-group, there

exists N < H with aP in N but x not in N . Then H = KN with

N < H . Thus N/K n N ~ H/K . By minimality of H , N/K n N ~ A , a

contradi ction.

As remarked earlier, the class of finite CS-groups is quotient closed.

The proof of this rather surprising result is a little indirect.

LEMMA 3. Let G be a finite group. Then G is a CS-group if and

only if

(a) every non-abelian composition factor of G is isomorphic to

(b) whenever p is a prime and y is a p'-element of G ,

then y commutes with no non-trivial p-element of < y > .

Proof. First suppose that G is a CS-group. Then, by Lemma 2, G

satisfies (a). If y is as given and y commutes with a p-element x

of < y > , then since o{x) divides o(xy) , we can find a normal subgroup
rt

N of G such that o(Nxy) = o(x) . Then y € N , so < y > < N , whence

x € N . Therefore x = 1 .

Now let G satisfy (a) and (b); let z € G and let p be a prime

divisor of o{z) . We have to find a normal subgroup N of G such that

o(Nz) = p . Let z = xy where x is a p-element and y is a

p'-element and [a;, y] = 1 . There exists a normal subgroup M of G

such that y € M and <a;> n A/ = 1 , namely we can take M = {y > . Thus

o(Mx) = o{x) . Now fa.7 implies that G/M has a series of normal subgroups
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in each factor of which every p-element has prime order. Passing up such

a series, we will eventually reach a quotient in which the image of x has

order p .

PROPOSITION 1. The class of finite CS-groicps is Q-closed.

Proof. We prove this by showing that if N < G and G satisfies (a)

and (b) of Lemma 3, so does G/N . Clearly G/N satisfies (a). So now

let Ny be a non-trivial p '-element of G/N and Nx be a p-element of

G/N such that Nx and Ny commute and Nx € < (Ny) > = < y )N/N . We may

choose y to be a p'-element such that \< y >| < (j/J for

p'-element yQ € Ny . Let L = <y > and J = <x, N) " L . Then

[y, J] < J= N' n L . Let P be a Sylow p-subgroup of J . Then by the

Frattini argument NT(J) = JnNT(P) . Hence there is a p'-element

yQ € NL(P) such that yJQ = yQJQ . Clearly \yQ} 5 L = < y > , and by the

choice of y we must have equality. So we may suppose without loss of

generality that y € NT(P) . We have [y, P] < P n N and since y is a

p'-element, P = (P n N)C (y) . However C (y) = 1 since G satisfies

(b) of Lemma 3 and P 5 < y > . Hence P S N and J = PJ = J and

x € N . This shows that G/N satisfies (b).

Now recall that a monolithic group is one which has a unique minimal

normal subgroup, and that the groups in any class of finite groups that is

closed under subgroups, quotients and direct products are precisely the

subdirect products of monolithic groups in that class. For this reason we

now concentrate our attention on monolithic CS-groups.

LEMMA 4. Let G be a finite monolithic CS-group. If the monolith

of G is non-abelian then G as A .

Proof. Let N be the monolith of G . By Lemma 2,

N = N, x ff x ... x N. where t > 1 and N. ~ 4 (l < £ < * ) . If

SI

t > 1 then choose x in N of order 3 . Then N = < x > since N is

the monolith and [x, ivj = 1 so that ar commutes with 3'-elements in
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<x > . This violates condition (b) of Lemma 3. Thus t = 1 . Since N

i s the monolith, CJN) = 1 or CJN) = N . But Z(tf) = 1 so that

CQ(N) = 1 and G c* A- or G ~ S. since G is a subgroup of Aut N .

But 5 i s not a CS-group. Hence ff ~ 4 .

LEMMA 5. Let G be a finite monolithic CS-group with abelian

monolith W . Then

(i) W ia an elementary abelian p-groicp for some prime p 3

and the Fitting subgroup of G is a p-group P ;

(ii) CG(W) = P .

Proof, (i) is clear. In order to show (ii) we first note that

W 5 Z(P) (where Z(P) is the centre of P ) , since W is the monolith of

G . Thus C~{W) > P . If CAW) > P then CJW) contains a non-trivial
Cr Cr (j

r* /**

p'-element y . Then [_W, <y >] = 1 and !•/ 2 < y > again because W is

the monolith of G . This contradicts condition (b) of Lemma 2. Thus

cG(w) = p .

LEMMA 6. Using the notation of Lemma 5, we have Cy(y) = 1 for

every non-trivial p '-element y (. G .

Proof. Since W i s the monolith of G , we have < y > > W . Hence

Cw(y) = 1 by Lemma 3.

Because of Lemmas 5 and 6 we now make the following definition.

DEFINITION. G € X i f and only i f G is a CS-group and there is an

F ff-module W such that Cu{y) - 0 for a l l non-trivial p'-elements
P "

y € G .

LEMMA 7. (i) X is s-closed.
P

(ii) If G is a CS-group then G € X if and only if

G/Op{G) € Xp .

(Hi) If G is a monolithic CS-group whose monolith is an abelian
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p-group then G € X

Proof, (i) is immediate.

(ii) If G is a CS-group then so is G/0 (<?) by Proposition 1. If

W is an F ff-module on which every non-trivial p'-element of G operates

fixed point freely, and W is any composition factor of W , then 0 (G)

operates tr ivial ly on W , and we see that W is effectively a G/0 (ff)

module of the type required to guarantee that G/0 (G) € X . The converse

follows since every G/0 (G)-module can be viewed as a G-module on which

0 {G) operates t r ivial ly .

(i-ii) This follows from Lemma 6.

We wish to identify the groups which can occur as G/0 (G) , where G

is a monolithic CS-group whose monolith is a p-group. By Lemma 7 every

such group belongs to X and contains no non-trivial normal p-subgroups.

We shall proceed to establish the converse and then characterise the

structure of these groups completely.

LEMMA 8. Let G = P x H be the eemidireot product of a normal

psubgroup P by a group H . Then G is a CS-group if and only if H

ie a CS-group and [p, <y >] n Cp(y) = 1 for all p'-elements y € H .

Proof. That G being a CS-group implies the other conditions follows

from Lemma 3 and the subgroup closure of the class of CS-groups.

Conversely, assume that these conditions hold. Every element of G is

conjugate to an element xy where [x, y] = 1 , x is a p-element and y

is a p '-element of H . Let x have order p and y have order m .

We have to find a quotient of G in which the image of xy has order

equal to any given prime divisor d of p m . If d\m we do this by

first passing to the CS-group G/P and noting that m divides the order

of Pxy . Otherwise d = p . Now clearly
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s o <yG) n P = [P, < / > ] . Hence < x) n(yG) n p < [p , < / > ] n C (y) = 1 .

Therefore, since x has prime power order, either ( x) n p = 1 or

<a?>n<j/> = l . In the f i r s t case we pass to G/P , noting that p

divides the order of Px , and then obtain the required quotient. In the

second case, le t M = < y > . Then Mxy = Mx has order p . Now by Lemma

2, the only non-abelian composition factor of E is A_ . Hence /? has a

series of normal subgroups, in each factor of which every p-element has

order 1 or p ; and so G/M has such a series. Passing up i t , we

eventually reach a quotient in which the image of Mx has order p .

LEMMA 9. Let H be a group. Then the following two conditions are

equivalent:

(i) 0 (H) = 1 and H € X ;
P P

(ii) there exists a monolithic CS-group G such that the mono-

lith of G is a p-group and GlO (G) c~ H .

Proof, (ii) => (i). This was remarked before Lemma 8.

(i) =* (ii). Let W be an IF ff-module on which every non-trivial

p'-element of H operates fixed point freely. Passing to a composition

factor of W , we may assume W is irreducible. Let G = W x H . Since

H i s a CS-group by assumption, Lemma 8 shows that G is a CS-group and

since 0 (H) = 1 , W = 0 (G) . Hence G/0 (G) ~ff .

Now we go on to analyse the structure of X -groups.

LEMMA 10. Let H € X . Then

(i) every p'-subgroup of H , whose order is the product of

two not necessarily distinct primes, is cyclic;

(ii) if q + p , then the Sylow q-subgroups of G are cyclic

or generalized quaternion.

Proof. Every p'-subgroup of H admits a faithful linear

representation in which every non-trivial element operates fixed point

freely. The assertions are standard consequences of this (see Gorenstein

[5 ] , 5-3.ll*, 5.U.11).
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THEOREM A. Let H be a group such that 0 (H) = 1 . Then H € X

if and only if

(i) H = S x T where S is soluble and either T = 1 or

p = 2 , f c ^ i and \s\ is not divisible by 3 or 5 ;

fii^ S = Q x R is the semtdirect product of a cyclic normal

ip, 2}'-subgroup Q by a nilpotent group R whose Sylow

q-subgroups are cyclic or generalized quaternion if q + p .

Furthermore ( \Q\ , |i?|) = 1 and every element of prime order not equal to

p in R centralizes Q .

Proof. Suppose f irs t that H € X and 0 (H) = 1 . Let T denote

the largest normal subgroup of H which is a direct product of copies of

A . By Lemma 10 (i), either T = 1 or T ~ A . If T ~ A and

S = CJ.T) , then G/S is isomorphic to a subgroup of Aut A containing

A , and hence to A or S . We have seen that 5_ is not a CS-group,

and in fact this follows from Lemma k. So G = 5 * T . If T = 1 then

the same holds with S = G . Clearly S contains no non-trivial normal

subgroup which is a direct product of copies of 4 • Let F be the

Fitting subgroup of S . Then F > ^c^) f ° r otherwise we may choose a

subnormal subgroup C of CS(F) such that C > CS(F) r> F and

C/C,~(F) n F i s simple. This factor is not cyclic since in that case

C < F . I t cannot be non-abelian simple either for otherwise E(C ft F) = C

where E is the las t term of the derived series of C . Thus E/E r> F is

simple non-abelian and E n F is central in F . If £ ft F ? 1 and

1 ± x t. E ft F is a <7-element for some prime q , then £ contains a non-

t r iv ia l q'-element y \ F . We have {E n F)<y ) = E and [a;, y] = 1 .
IP i?

So £/< !/ > i s abelian and hence < y > = E . Thus E i s not a CS-group \>y

Lemma 3- I t follows tha t E ft F = 1 so F i s a simple subnormal subgroup

of 5 , a contradic t ion . Thus F > CC{F) .

Let F = 0 ,(F) . By Lemma 10 and the fact t ha t 0 (S) = 1 , we have

that F is a cyclic group, so S/C-ft^ is abelian. If F = OA
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then S/Cn{F^ embeds in Aut F . Now F^ is cyclic or generalized

quaternion, so Aut F is a 2-group unless 2? is quaternion of order 8

([5], Chapter 5). Thus either SICS{F^\ is a 2-group or F is a

quaternion of order 8 and S contains a 3-element y such that

&"p» ^ ~ ^2 an(^ y centralizes the centre Z(F_) of F^ • This is not

possible in a CS-group. So S/CAF^\ is a 2-group in all cases, and

hence Fp is in the hypercentre of S . Also, since

CS(F) = CS[FA n CS[F^ < F , we conclude that S/F is nilpotent. Hence

S/F is also nilpotent and the nilpotent residual Q of S is a cyclic

{p, 2}'-group and 5 splits over it as

S = Q x R

say ([4], Theorem 5-15)•

Now if T # 1 then p = 2 , since not every elementary abelian

2-subgroup of H is cyclic; and \s\ is not divisible by 3 or 5 for

similar reasons. The remaining assertion about R follows from Lemma 3

and Lemma 10.

Conversely let H have the structure given by (i) and (ii) and

suppose 0 (H) = 1 . Since Q is cyclic, R' centralizes Q . From (ii)

we see that R' is cyclic. Thus 5 is supersoluble and metabelian and

hence a CS-group (Theorem E). Let QQ denote the (cyclic) subgroup of S

generated by the elements of prime order not equal to p in S . There

exists an irreducible F Q.-module U~ that is faithful for Q. and hence
p 0 0 0

operated on fixed point freely by every non-trivial element of Q^ . Now

A ^ SL(2, k) and if V denotes the 2-dimensional vector space on which

this acts, then the elements of order 3 and 5 operate fixed point

freely, and we can think of y_ as an F_/l_-module. Let U = UQ if

T = 1 or U = U gL. V if T * 1 , in which case p = 2 . This is to be

thought of as an F_(J30 x y]-module in the usual way. Now since

-|, 15) = 1 , if T * 1 , every non-trivial p'-element of QQ x y has
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a non-trivial power in QQ or T and so operates fixed point freely on

U . Let V = IT be the induced module. Then VQ is a direct sum of

conjugates of U and so is fixed point free for every non-trivial
p'-element of Q x T . But every non-trivial p'-element of H = S x T

has a non-trivial power in £L * T . Hence CAy) = 0 if y is a non-

t r iv ia l p'-element of H . Therefore, by definition, H € X .

COROLLARY. Let H be a group such that 0 (H) = 1 . 27ien tfie

following conditions are equivalent:

(i) H c- G/0 (G) /or some monolithic CS-group G whose mono-

lith i s a p-group;

(ii) H € X ;

(iii) H = S * T as in the statement of Theorem A.

This i s obtained by combining Lemma 9 and Theorem A.

THEOREM B. Let G be a finite soluble CS-group with Fitting sub-

group F(G) . Then G/F{G) is metabelian and supersoluble.

Proof. 5 is a subdirect product of monolithic groups of the same

type by Proposition 1. Each of these satisfies the conclusion of the

theorem since a soluble X -group H with 0 (H) = 1 is supersoluble and

metabelian. From this the theorem follows.

We can improve Theorem B somewhat by obtaining a fuller description of

the monolithic soluble CS-groups. We know that such a group G belongs to

some 'X and then we know G/P where P = 0 (G) , so now i t is a matter

of analysing P .

DEFINITION. A group G is a special X -group i f G/0 (G) € X and

G = 0 , (G) . Such a group G is a subdirect product of the X -group

G/0 (G) and the p-group G/0 ,{G) . Hence i t is a CS-group by Lemma 1

and belongs to X by Lemma 7- In fact these groups are exactly the sub-

direct products of an X -group H with 0 (H) = 1 and a finite p-group
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and so may be considered to be well understood.

LEMMA 11. Let G be a finite soluble group. Then G € X if and

only if G = P -A E where

(i) P ie a p-group,

(ii) H is a special X -group,

(Hi) P = [p, 0 AH)] , and

(iv) if y € 0 ,(H) then [p, <j/S>] n cp(y) = 1 .

REMARK. These conditions are all satisfied if 5 is a group of prime

order q operating fixed point freely on P , so P can be of arbitrarily

large class if q is alloved to be arbitrarily large. Condition (iv)

seems rather strong if 0 ,(fl) has many prime divisors but even so, P

can be quite complicated, as we show by example at the end of this section.

Proof. Suppose that G is a soluble X -group and let P = 0 (G) .

Then G/P is an X -group with no non-trivial normal p-subgroup (Lemma

T), so the structure of it is given by Theorem A. In particular

G/Px = 0 , [G/P^ . Let 0 ,{G/P^ = S ^ / ^ for some p'-group ^ .

Then if H = HIJQ^) , the Frattini argument gives G = P^H . Now S, < H
Crv 1- 1 1

and H/Q i s a p-group, so H = 0 , (H) . Also

E/0 (H) = ff/P, n H ~
p 1 J. ^

Hence B is a special X -group.

Now let P = [P , Q ] . Then P = PC (§,) = P(P, n H) SO G = PH .

We have [P, < z/ >] n CAy) = 1 for each element y € S, from Lemma 3- So

it remains only to show that P <i H - 1 , that is, C_(S_) = 1 . For each

y € Q , let P(y) = [P, < t/ >] . We know that y operates fixed point

freely on P(.y) and hence on any quotient thereof. Also P = ~| [~ P(y)

over all £ / € & . . Writing j/ , ... , j/ for the element of Q and
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i
putting P(i) = 1 T P[y •} > w e obtain a series of normal subgroups of G

J=l °'
each factor of which is transformed fixed point freely by some element of
Q . I t follows that Cp{Q ) = 1 as required.

The fact that any group satisfying (i)-(iv) is a CS-group follows from
Lemma 8. Hence G € X by Lemma 7, since G/0 (G) ~R/0 (fl) .

Since the monolithic soluble CS-groups are exactly the monolithic
soluble groups in U X , p prime (Lemma 7), we have

THEOREM C. Let G be a monolithic soluble group. Then G is a
CS-group if and only if G has the structure described in Lemma 11, for
some prime p .

This may be viewed as giving a reasonably explicit construction for
monolithic soluble CS-groups (apart from the rather mysterious condition
(iv) of Lemma 11) and hence for a l l soluble CS-groups.

I t remains to consider insoluble monolithic CS-groups with abelian

monolith. These l i e in Xp by Lemma 7. Our description of these groups

is somewhat less satisfactory.

LEMMA 12. Let G be an insoluble X -group. Then there exists a

normal abelian 2-subgroup P of G such that

G/P = S/P x T/P

where S is a soluble X -group of order prime to 15 , T/P ~ ji_ , and

Cp(j/) = 1 fox> aH non-trivial elements y of odd order in T .

REMARK. Further conditions about the action of elements of G on
OAG) will be needed for a converse statement. These seem rather clumsy

and not worth formulating.

Proof. Most of this is straightforward, with the exception of the

statement that P i s abelian. Let P = OAG) . By Lemma 7 and Theorem

A, G/P = 5 ^ x T/P , where S i s a soluble X -group of order prime

to 15 and 3" /P c~ A . Let T be the las t term of the derived series
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of T± . We have T < G and so P = P n T < G . Since 2"-,/?, i s

p e r f e c t , 2^ = P T and so G = ST . Also [5 , 21] 5 P n T = P . Hence

G/P = S/P

Let y be any non-trivial element of odd order in T . Then
T T

T = F(y > and so T/( y > i s a 2-group. Since T is perfect,
m

T = <y > 2 P - Therefore CJ,y) = 1 as 21 is a CS-group (Lemma 3).

I t remains to show that P is abelian. Now any chief factor of T
below P may be viewed as an irreducible module for A- over IF on

which the elements of order 3 and 5 operate fixed point freely. This

explains the relevance of the next resul t .

LEMMA 13. Write A = A~ • There are exactly three isomorphism

classes of irreducible F^A-modules, represented by V,, V^ and V~ say,

of dimension 1, U, U . Of these exactly one [say V^ ) is transformed

fixed point freely by the elements of odd order in A , and
HomJ^® V2, V2) = 0 .

Proof. The number of isomorphism classes of irreducible IFpi4-modules

is the number of orbits of the 2-regular conjugacy classes under the map

on the set of conjugacy classes induced by x -»• x , that i s , three (see
[3]) . We have the t r i v i a l module V of course. We obtain V by

identifying A with SL(2, U) and le t t ing V denote the natural module

for this group, viewed as an Fpi4-module. An element of order three

operates on V^ as a diagonal matrix with eigenvalues X and X (where

VQ i s thought of as an F[7l-module) where X is a primitive cube root of

1 in IF. , and so is fixed point free. Also since k is the order of

2 mod 5 , Fg is irreducible when restr ic ted to a subgroup of order 5 •

Finally i f W i s a 5-dimensional vector space and A permutes a basis of
W according to i t s natural permutation representation, then f_ = [W, A]

is a U-dimensional irreducible IF2A-module. An element of order 3 in ^
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has fixed point set of dimension 3 in W and hence dimension 2 in

V
To study 7p ®p F_ i t i s convenient t o pass to the algebraic closure

fe of F . . The number of isomorphism classes of i r reducib le fed-modules

i s equal t o the number of 2-regular conjugacy classes of A , t ha t i s

four. I t i s easy to see tha t W = V_ ®F fe i s i r r educ ib le . So i s the

module W obtained from the natura l ¥, [SL(2, U)]-module by f i e ld

(2)extension. We also have the module W = W obtained from W by

2
applying the Frobenius automorphism a •+• a t o the en t r i es of the matrices

in SL(2, k) . By considering the eigenvalues of an element of order 5 we

see tha t W i s not isomorphic to W . So W, W and W represent

the three isomorphism types of n o n - t r i v i a l i r reduc ib le fed-modules. Now an
2

element a of order 3 in A has eigenvalues A and A , each with

mul t ip l i c i ty one, in (/. and W , and i f i i s an element of order 5

in A , then for a su i tab le primit ive 5th root of 1 , say y , the

—1 2 —2
eigenvalues of b in W are y, y and on W are y and y . On

^t ®t, ̂ r> > t*ie element a has two eigenvalues equal t o 1 and b has
J. K. c.

2 3 keigenvalues y, y , y , y . Hence W ®, W ^ W . On W ® W , the
J. K £- j XX

2
element a has eigenvalues 1, 1, A, A and b has eigenvalues 1, 1, y,
2

y . With suitably chosen notation

a =
A Oj

OA2
€ SL(2, U) = A

and the elements

form a Sylow 2-subgroup S of A . I f we ident i fy V with column

vectors and l e t U = (_) , Up = (V) then
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aV2 =

We claim that W ® W has a unique one-dimensional submodule and no

2-dimensional irreducible submodule. For any one-dimensional irreducible

submodule would have to l i e in U = k{v ® J O © k[v2 ® v,) , since this is

the 1-eigenspace of a . Now

(s(a)-l) ( 9 ^ ® v2 + B'v2 ® v±) = a(e+6')u2 ® v2 .

and this is non-zero i f 6 + 6 ' and a ^ 1 . Thus U has a unique

minimal S-submodule, namely k{v? ® u_) . Also, because of the structure

of W and (/_ , the only possible 2-dimensional j4-submodule of I/. ® W^
2

is that spanned by V ® V and «„ ® yg , the A - and X-eigenvectors

of a . We easily see, however, that this is not 5 invariant.

Let W denote the unique minimal submodule of W, ® W . Then

W ® W./W^ cannot contain a 1-dimensional submodule, since then W.

would have a 2-dimensional submodule with two t r iv ia l composition factors

and this would be t r iv i a l i tself . Therefore W ® W /W contains a

unique irreducible submodule 1/ /I/ which has dimension 2 (and must be

isomorphic to W by consideration of the eigenvalues of b ) . Thus

W-. ® W-. is uniserial , with submodules

and l/p ® l/p will be similarly uniserial.

These considerations show that if 1 < t, j , I < 2 then

• H e n c e

l ® W2^ ®k &1 ® W2^ ' Wl ® W2^ = ° *

Now we claim that V' <&. k ~ W-. @ W . Since any element of

Hom4(72 ® V2, V2) determines an element of Homfe^(l'2 ® V2 ® k, 7g ® k) ,
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this v i l l show that Hom^Pg ® J^, V^ = 0 . Since V2 ® k is completely

reducible (for this property is preserved by separable field extension) and

since a operates fixed point freely on i t , V^ ® k must be the direct

sum of two 2-dimensional modules. The types of these modules must be a

union of Galois conjugacy classes, so W @ W^ is the only possibil i ty.

We have now proved Lemma 13-

Conclusion of proof of Lemma 12. We have T/P ~ A~ and P i s a

finite 2-group on which every non-trivial element of odd order operates

fixed point freely. Let X = P/P' viewed as a T/P-module by conjugation,

and Y = P'/[P, P'] viewed similarly. Identifying T/P with A , we see

from Lemma 13 that X has a composition series in which each factor is

isomorphic to 7 . I t follows that Y has a series in which each factor

is isomorphic to a homomorphic image of V~ ® V~ (see Robinson [12],

p. 56). By Lemma 13, such an image, i f non-trivial , must have an image

which is not isomorphic to 7_ . But this is impossible. Hence Y = 0 so

P' = [P, P'] and finally P' = 1 .

EXAMPLE 1. The following example i l lus t ra tes the possible complexity

of soluble monolithic CS-groups. The construction we wish to use is also

described in [8]. A preliminary lemma, some parts of i t well known, will

be useful.

LEMMA 14. Let R be a ring with 1 and let S be a nil subring of

R . Then

(i) 1 + S = (l+s; 8 Z S} ia a group under multiplication: it

is nilpotent if S is nilpotent;

(ii) if K is an ideal of S then l + X < l + 5 ;

(Hi) if J + K = S for some subring J , then

(1+K)(1+J) = 1 + 5 ;

(iv) if also J n K = 0 , then 1 + 5 = (1+X) X (1+J) .

Proof, (i) I f s € S then ( l + s ) " 1 = 1 - s + s2 . . . + ( - l ) W s n for

2
s u i t a b l e n . Also 1 + S > 1 + 5 > . . . i s a c e n t r a l s e r i e s of 1 + 5 .
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(ii) We have, i f 8 € S and k € K , then

€ 1 + K .

(iii) Let 8 € S . Then 8 = k + j for some fc € X , j (. J .

Hence l + e = l + / c + j and

( l + s K l + j ) " 1 = ( l + j K l + j ) " 1 + fcd+j)"1 € 1 + K .

( iy j This follows from CiiJ and (Hi) .

Now l e t p be a given prime and l e t q , q , . . . , q be n d i s t i n c t

primes each congruent t o 1 mod p . These ex i s t by D i r i c h l e t ' s Theorem on

the primes in an a r i thmet ic progression. Let H. =<a .>x<2>.> be a non
If 1r If

abelian group of order pq. , where a. has order q. and b. has order

p . Then H. has a faithful irreducible module V. over F , and
1, 7, p

Cy (a^) = 0 . Let S denote the set of (n+l) x (n+l) matrices
'Z*

u = [u. .) with rows and columns indexed by {l, 2, . .. , n+l} such that

u^ = 0 if i > o ,

u. . € V. ® ... ® V. , if i < i 5 n+l .
t̂7 -z- ,7-1

Then 5 is a ring under matrix addition and multiplication if we use

"tensor multiplication" (as in the tensor algebra) on the components. Let

H = H.. x ... x H . Then each V. ® ... ® V. is an ff-module on which
1 vi 1* J~l

H, operates trivially if t < i or t > j , and operates on the V

component of the tensors if i 5 t 2 j-1 . We can now allow H to operate

"componentwise" on S , and we see that H then operates by ring auto-

morphisms. If I denotes the (n+l) x (n+l) matrix identity, then

F J , © S is also a ring operated on by H . Hence P = J,.. + S is a
p n+l n+±

nilpotent group. Its class is easily seen to be exactly n . Also H

operates on P by automorphisms. Now let N = {l, ..., n+l} , and let

A = id, 3) € N x N : i < J> .

If r , r c N x fl then we can define
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F l ° T2 = ^ i ' ^ t N * N : 3k i N such, tha t ( i , k) € 1^ and (fe, j ) € I"2} .

For r c A , l e t

sr = t(«ijO €5 : %• = ° if <*» J) * rJ •

Then it is clear from the definition of the matrix multiplication that S_

is an ideal of 5 if (A o r) u (T o A) c r , and S~ is a subring if

r o r c r .

In particular let I = {i , ..., i } be a subset of N with

i < i? < ... < i , and define

T(J) = {(i, j) € A : i < it < 3 for some t with 1 < t < r]

and T d ) * = A\r(I) . Clearly (A O r(J)) u (r(j) o A) C r(j) and

o r(l)«cr(l)« . So, writing Sj. for 5 r ( j ) and S* for

,, , we have that S is an ideal of S and S* is a subring.

Clearly S = S @ S* and so from Lemma 1**, P = P x P* where

P I = Jn+1 + S J ^ d PX " Jn+1 + 5 1 •

T h e s e s u b g r o u p s a r e c l e a r l y / / - i n v a r i a n t . Now i f aT= a. . . . a. ,
1 \ %r

then since <a_> = <a. , ..., a. > we see that a_ operates trivially on
1 v\ *r

7. ® ... ® F. if (i, j) € r(I)* , and operates fixed point freely if
t 0

(i, «/) € r(I) . This is because if i 5 t < j then V. ® ... ® 7. , as

<a,>-module, is a direct sum of copies of V. . Thus it is clear that a^

fixes every element of P* and fixes no non trivial element of P_ since

it changes every off diagonal entry of such a matrix. Thus Cp (ar) = 0

I'
and i t follows that c

p[
a^ = Pj • Hence at las t [P*, a ] n C(a) = 1 .

Now H is a CS-group, either obviously or because i t is supersoluble and

metabelian; also <a_> ^ H and every p'-subgroup of H has the form

(ar> . I t follows from Lemma 7 that G = P * H is a CS-group.
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3. Infinite soluble CS-groups

We saw in Section 2 that the class of finite CS-groups is quotient

closed. This is obviously not the case for infinite soluble groups; for

a l l such groups are quotients of free soluble groups which, by virtue of

being residually finite p-groups for all prime p , are CS-groups. We are

thus led to define two subclasses of CS-groups. We call G a CS*-group if

a l l subgroups of G and their torsion-free quotients are CS-groups. G is

called a CS-group if all quotients of all subgroups of G are CS-groups.

F.C. Tang has raised the question whether torsion-free polycyclic groups

are CS-groups. Example 2 at the end of this section shows this is not so.

On the positive side we have the following results.

PROPOSITION 2. Every poly-infinite-cyclic group is a CS-group.

In fact the class of poly-infinite-cyclic groups can be replaced by a

larger class, which also figures in the next theorem. We define a class V

of abelian groups by:

A € y *=* A contains a free abelian subgroup B of finite rank

such that A/B is a periodic group with finite primary components.

Let y. be the class of torsion-free /-groups.

PROPOSITION 2 \ Every PVQ-group is a CS-group.

Proposition 2 obviously follows from this.

THEOREM D. A torsion free soluble group G has a CS*-group of

finite index if and only if G is a py~group of finite rank.

THEOREM E. Every abelian-by-nilpotent supersoluble group is a CS-

group.

Since every polycyclic group has a torsion-free subgroup of finite

index, i t follows from Theorem D that every polycyclic group has a CS*-

subgroup of finite index.

At the end of this section we give several examples to show

(i) not every poly-infinite-cyclic group is a CS*-group,

( i i ) there exists a metabelian CS-group G with a subgroup A

such that every torsion-free quotient of G is a CS-group

but A has a torsion-free quotient that is not a CS-group.

https://doi.org/10.1017/S0004972700005840 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005840


CycIicaI Iy' separated groups 375

The proofs of Proposition 2' and Theorem D require a l i t t l e

preparation. The following elementary facts about /-groups can be

established by routine arguments.

LEMMA 15. (i) V =

(ii) py ia PQS-clo8ed.

(Hi) Every dbeliccn PV-gvoup belonga to V .

If G is any group, let G* denote the smallest normal subgroup of

G such that ff/G* is torsion-free abelian. Clearly, if G has a finite

series with torsion free abelian factors, then the series

(!= 5 n > 5 >ff, . . . , defined by G. n = G*. for i > 0 , is a series of0 1 2 'I+l 7

characteristic subgroups of G reaching the identity after finitely many

steps. If furthermore G € PS , then Lemma 15 shows that the factors of

this series will be ^-groups. Hence we have

LEMMA 16. A group G belonga to P/Q if and only if G haa a

finite aeriea of characteristic aubgroupa with V-factor8.

We note in passing, though i t will not affect our arguments, that

every V -group has finite rank and so has a finite series with torsion-

free factors of rank one; also an additive subgroup A of the rationals

belongs to / - if and only if, for each prime p , there exists an integer

k{p) such that A contains no rational of the form alp " where a is

a non-zero integer prime to p .

We also require

LEMMA 17. Every PV'-group ia reaidually finite.

This follows from [72], Theorem 9.31.

Proof of Proposition 2 ' . Let G be a PV -group. By Lemma 16, G

has a finite characteristic series with VQ-factors. We use induction on

the length of such a ser ies , and so we may assume that G has a

characteristic ^-subgroup A such that G/A is a CS-group. I t suffices

to show that if 1 # x € A and p is any prime, then there exists a

normal subgroup B of G such that \G : B\ < °° and Bx has order p .
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By Lemma 17» there exists a subgroup A of A such that \A : A | < °° ,

x £ A and 3? € A . If t = \A : A \ , then A/A is of finite rank and

finite exponent and so is finite. Therefore, replacing A. hy A , we may

assume that A is characteristic in A . Taking A maximal subject to being

a characteristic subgroup of finite index in A containing ar but not

containing a; , we find that Ax has order p exactly. By Lemmas 15 and 16,

B/A is residually finite, so there exists a normal subgroup B of G such

that \G : B\ < °° and B n A = A • Clearly Bx has order p , as required.

Proof of Theorem D. Let G be a torsion free soluble group

containing a CS*-subgroup of finite index. Since the additive group of

rationals is not a CS-group, but is a homomorphic image of a free abelian

group of countably infinite rank, G cannot contain a free abelian

subgroup of infinite rank. Hence every abelian subgroup of G has finite

rank. By a theorem of Kargapolov [9], G has finite rank. Theorem F now

shows that (see §U) , G has a subgroup H of finite index such that

H/F{H) is torsion free abelian. Since G has a CS*-subgroup of finite

index, we may assume H is a CS*-group. Now H has a finite series with

torsion-free abelian factors. This can be refined to a similar series in

which the factors have rank 1 . Since H is a CS*-group, these factors

are CS-groups, and so cannot contain non tr ivial elements of infinite

p-height for any prime p . I t is easy to see that a torsion free abelian

group of rank one with no elements of infinite p-height for any p

belongs to V . Therefore G is a finite extension of a PV -group and

belongs to PV .

Conversely, suppose G € PV and G has finite rank. As above, but

using the full force of Theorem F, we see that G has a subgroup H of

finite index a l l of whose torsion free quotients belong to P/o . By

Proposition 2 ' , H is a CS*-group.

Proof of Theorem E. Let G be an abelian-by-nilpotent supersoluble

group. Since such groups satisfy the maximal condition on subgroups i t

suffices to obtain a contradiction from the assumption that B is not a

CS-group while a l l i t s proper quotients are. Then G ± 1 so G contains
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a non-trivial cyclic normal subgroup N . By Lemma 1, if 1 t M < G then

M n N * 1 .

Case 1. N is infinite. Let 1 * x € G and p divide o(x) . If

<x> n N = 1 then o(ife) = C>(x) and since <?/# is a CS-group we can find

a finite quotient of G/N in which the image of Nx has order p .

Otherwise <x> is infinite cyclic and if N = (y) and t is the order of

a; mod N , which is necessarily finite, then x = y for some m > 1 .

Let L = (y > < G . Then La: has order tp in G/L which is a

CS-group. Thus G/L has a finite quotient in which the image of a; has

order p .

Case 2. N is finite. Then we may suppose \N\ = p , a prime. Since

M n N + 1 if 1 ± M <aG , M > N for all 1 t M < G . Thus N is the

monolith of G . Let F denote the Fitting subgroup of G . Then

Z = Z(F) must be a finite p-group since N is contained in every

characteristic subgroup of Z . Thus F is a finite p-group and hence G

is finite. Let A be the nilpotent residual of G . If A = 1 then (7

is a finite p-group and a moment's thought shows that G is a CS-group, a

contradiction. Hence A # 1 . By hypothesis i4 is abelian. Also N — A

so that 4 is a finite p-group. Thus ([4], Theorem 5-15) G splits over

A as G = A * B say, where Cg(i4) = 1 since <?g(i4) "̂  G and iV ̂  C
B(^) •

Hence CJ4) = A . Let B = P x g where P is a p-group and Q a

p'-group. Since G is supersoluble, Q' < F and clearly F = AP . Thus

S' = 1 , and Q is abelian. If 1 # x € § then .4 = £.(#) x [A, x] and

since <2 is abelian and [P, x] = 1 , both factors are normal in G .

Since N is the monolith of G , one of these factors must be trivial, and

since x t A = Cr{A) , we have CAx) = l . Hence CAx) = £ .

Now let y € G and n be a divisor of <?(t/) . If y is a

p-element then we can find a quotient of G in which the image of y has

order n since G has a normal series with factors of prime exponent.

Otherwise y is conjugate to an element zx where z is a p-element,

1 t x € Q and [x, z] = 1 . Hence by the previous paragraph, y £ S . So

o(y) = o(i4i/) . Since all proper quotients of G are CS-groups, we can

find a quotient of G/A in which the image of y has order n . We have

thus reached a final contradiction and so established the result.
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We now give the examples promised e a r l i e r .

EXAMPLE 2. Let

G = <a, b, a, t; a* = b, b* = o f V 1 , [a, b] = c,

[a, a] = [b, a] = 1, t9 = a) .

This group i s torsion free (see [2]). I t is not a CS-group because there

is no normal, subgroup K of G such that Kt has order two in G/K .

For i f t2 € K then [t2, b, a ] = [b, a] = a'1 € K . Thus c = t9 € K

and hence t € K . Observe that G is a quotient of the group

J = <a, b, a, t; a* = b, b* = a ~ V \ [a, fc] = a, [a, a] = [fc, a] = i> ,

which is poly-infinite-cyclic and hence a CS-group by Proposition 2. Thus

poly-infinite cyclic groups are CS but not CS*-groups.

EXAMPLE 3. Start with an infinite cyclic group <ar> and form the

module

A =7Z.(x)/[f(x)) ,

where f(x) = 2.x + x + 7 . Then A is a finitely generated Z<a:>-module

and it is not p-divisible for any prime p since f(x) does not reduce

to a unit mod p for any prime p . It is easy to verify that

G = A >J <x> is a metabelian minimax CS-group; every torsion free quotient

of G is a CS-group but the subgroup A of G has a torsion free

quotient that is not a CS-group. The only torsion free quotients of G

are G , G/A and 1 .

EXAMPLE 4. The group G = (a, b, ; ab = a2) is a finitely

generated torsion free soluble group with finite rank that has no CS-sub-

groups of finite index.

EXAMPLE 5. The group < u, v; [u2)V = u~2, (u2)" = u"2> is

metabelian and supersoluble. Thus by Theorem E it is a CS-group. It is

torsion free but not poly-infinite-cyclic. Thus a torsion free polycyclic

group does not have to be poly-infinite-cyclic to be a CS-group.

4.

The main purpose of this section is to establish Theorem F which was
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needed in the proof of Theorem D.

DEFINITION. Let G be a soluble group with finite rank. We say G

is FI (Fitting isolated) if whenever H = K/L {L < K < (?) is a torsion

free section of G , then H/F{H) is torsion free abelian, where F{H)

denotes the Fitting subgroup of H . The class of Fl-groups is clearly Q

and S closed.

THEOREM F. If G ie any torsion free soluble group with finite

rank, then G contains an Fl-subgroup of finite index.

Proof. We may assume that G/F(G) is abelian. Let

1 = Z_< Z < ... < Z = F(ff) be the upper central series of F(G) = F ,
U X O

a
and C. = C [Z./Z. ) , i = 1, ..., a . Then F= D C. , and each of

the groups G/C. can "be thought of as an abelian group of matrices over%

Q . The torsion subgroup of each G/C. is finite ([12], 9-33), and it

follows that the torsion subgroup T/F of G/F is finite. Hence G/F

splits over T/F , and there exists a subgroup ff of finite index in G ,

such that G/F is torsion free. Since F = F[G) , we may even assume

that G/F(G) is torsion free abelian.

The proof now falls into two parts.

(1) There exists a subgroup G of G such that GQ > F{G) ,

\G : GQ\ < °° and H/F(H) is torsion free, for every H £ G. .

(2) GQ is FI.

We prove (l) by induction on h{G) the Hirsch number of G . If

h(G) = 0 there is nothing to do, so assume h(G) > 0 . Let B be an

abelian normal subgroup of minimal rank of G contained in the centre

Z{HG)) of F{G) , and let A = GVB . Then A < F(G) since G/F(G) is

torsion free, and hence, by the theory of isolators in nilpotent groups,

[6], A is a subgroup of Z{F(G)) . By induction, there is a subgroup

G /A of G/A , containing F{G/A) and hence F{G)A/A , such that

\G : GA < °° and G/A satisfies (l).

https://doi.org/10.1017/S0004972700005840 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005840


380 Brian Hartley, John C. Lennox and Akbar H. Rhemtulla

Let C = CAA) . Then C > F(G) , and we have seen above tha t the

t o r s i o n subgroup of G/C i s f i n i t e , so tha t G/C contains a tors ion free

subgroup G/C of f i n i t e index. Let G = G n C . Then \G : G \ < °°

and GQ > F(G) .

Now let H < G . If H r> A = 1 , then H ~ ft4/4 , and the fact that

H/F(H) is torsion free follows from the properties of G./A . Suppose

that H n A ± 1 , and let h be an element of H such that h* € F(#) ,

for some n > 1 . Since ff « 4 < F(fi) , we have

[H Q A, h", . .. , hn] = 1 , and hence Cflal(fr") ̂  1 • Hence CA{h
n) is a

non trivial isolated subgroup of A , and is normal in G since G/C is

abelian. Therefore h € C . But G / (<? n c) is torsion free. Hence

fr € C . If F/A r> H = F[H/(A n H)) , we also know by induction that

h € F . Hence h € Cp(A n ff) , a nilpotent normal subgroup of H . There-

fore f € F(H) , as required.

Next we will prove (2). We have to show that if G is a torsion free

solvable group with finite rank and

(*) H/F(H) is torsion-free abelian for every H S G ,

then G/N has the property (*) whenever N < G and G/N is torsion free.

Suppose this is false, and let r be the smallest integer for which there

exists a counterexample G with h(G) = r . Among all pairs [G, N)

which furnish a counterexample with h(G) = r , choose one with h(N)

minimal. Then G/N contains a subgroup H/N such that (H/N)/F(H/N) is

not torsion free. We may clearly assume that H = G .

Let F/N = F(G/N) , and choose an element t € G\F such that t™ Z F

for some m > 0 . Let G = F(G)< t> , N = N « G± , F = F r, G± . Then

G /N ~ G N/N , and under this isomorphism, F /W corresponds to

r> GAN/N = F/tf n G ff/tf = F{G^/N) , as ff ff/AT < G/ff . We have t € G ,
X 1 1 ' 1 1

^ F , t € F . Thus (G , N ) i s a counterexample, so we may assume

that G = Gx , that is G = F(G)< t) .
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Next we notice that, if Z = z(F(G)) , then

(1) Cz{t) = 1 .

Clearly CAt) = Z{G) . Let Y denote t h i s subgroup, which i s i so la t ed in

G since Z i s . By the minimality of h(N) , there i s no normal subgroup

M of G such tha t 1 < M < N and G/M i s to r s ion - f r ee . Clearly

N n F(G) * 1 , and so N n Z t 1 . Since Z i s i so la ted in F(G) , [ 6 ] ,

and G/F(G) i s tors ion free Z i s i so l a t ed in G , so N 5 Z . Hence

YN < Z , and the i s o l a t o r v5ff of JW in G i s an abelian normal sub-

group of G . Also VYN/N = 7 i s a tors ion free abelian normal subgroup

of G/N , and V/C^G) i s pe r iod ic , since Cy{G) > Jff/ff . Hence

[V, G] = 1 , tha t i s VJW/ff < Z(G/N) .

Now t r i v i a l arguments show tha t G/Y has the property (*) . I f

Y # 1 , then the minimality of fc(G) shows tha t G/V5F has the property

(*) . Hence G/F i s tors ion f ree , a contradic t ion. This proves ( l ) .

Clearly Z/N S F/N , and since tm i F , ve have

[Z, *m, . . . . 1*]SN .

In p a r t i c u l a r , i f Z > N , then Cz,N[tm] = X/ff * 1 . Now commutation with

t induces an endomorphism C of K whose image l i e s in N and so has

smaller rank than K . Hence ker t, = C^t"*) # 1 . Let L = C ^

Then t7" € F{L(t)) , and by (*) , t € F(L<*>) , tha t i s K t > i s n i l -

potent . Therefore [L, t, . . . , t] = 1 , and C r ( t ) ̂  1 . This contradicts
L

(1). We deduce that Z = N .

It clearly follows that F(G)' t 1 . Let U/F(G)' be the torsion

subgroup of F(G)IHG)' . Then III S (/ , as ff n F(O ' * 1 . Since

F(G) < F , we deduce that

, tm, ..., tmj <y .

Let c be the nilpotency class of F{G) . Then

1 t yo{F(G)) < N ,
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where {Y.-(*)} is the lower central series of a group X .
is

If x , . . . , xc € F(G) , then since ya(F(G)} is torsion free, the

value of [a;.. , . . . , x "] only depends on the value of x , . . . , x modulo

U . We obtain a well-defined < t>-module epimorphism of

F(G)/U® . . . ®F{G)/U (with o factors) onto y [Fie)) , namelyy
c

(of. [12], Part 1, p . 55). The tensor product is to be viewed as a <t)-

module via the diagonal action, the action on the individual factors being

by conjugation. Since F(G)/U has a finite series with t - t r iv i a l

factors, so does the tensor product, and hence also y [F{G)) (of. [J2],

Part 1, p. 56). Hence C^[v] + 1 . Arguing as in the previous paragraph,

we deduce that C«T(*) 5S 1 > and obtain a contradiction to ( l ) . This

concludes the proof.

We note the following useful properties of Fl-groups, which are

extensions of facts well known for torsion free nilpotent groups.

LEMMA 16. Let G be a 71-group, N< H < G , and suppose that H/N

is torsion free. Let x, y € H/N . Then

(i) if xr = y8 (r, s f 0), then <x, y) is ayolic;

(ii) if xr = yr (r # 0) then x = y ;

(Hi) if \xr, y8] = 1 (r , s # 0) then [x, y] = 1 .

Proof. We may clearly suppose that G = <sr, y) .

(i) Clearly xr = y8 € Z(G) 5 F{G) . Since G is an Fl-group i t

follows that Z{G) is isolated in G ; so x, y € Z(G) and G is

torsion free abelian. Hence G is cyclic.

(ii) follows from (i).

(Hi) Let z = x . Then y = (j/8)2 = {y ) 8 . From ( i i ) we obtain

y = y , that is [a: , j/J = 1 . Repeating the argument we get
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[*, if] =

We make a final note before ending the paper. Recall the definition

of a CS-group G . For any given cyclic group B and subgroup A 5 B

with B/A finite, there exists N < G with G/N' finite and N n B = A .

If we were to drop the condition that N be of finite index in G , then

we get a larger class, which, for convenience, we shall denote by X .

Then it can be shown that every group G in X. n L is a CS-group where L

is any quotient closed subclass of residually finite groups. Also the

examples constructed in ([7], Theorem 1) show that a finitely generated

centre-by-metabelian X-group that is residually finite p for all but one

specified prime p does not need to be a CS-group. If every element of a

group G is of prime order then obviously G is an X-group. If in

addition G is residually finite, then G is a CS-group. Thus groups in

the Burnside variety B , p a prime, are X-groups and groups in the

variety generated by A,, are CS-groups, since they are residually finite

as shown in ([9], Theorem l).
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