CYCLICALLY SEPARATED GROUPS

Brian Hartley, John C. Lennox
and Akbar H. Rhemtulla

We call a group G cyclically separated if for any given cyclic subgroup B in G and subgroup A of finite index in B, there exists a normal subgroup N of G of finite index such that $N \cap B=A$. This is equivalent to saying that for each element $x \in G$ and integer $n \geq 1$ dividing the order $o(x)$ of x, there exists a normal subgroup N of G of finite index such that $N x$ has order n in G / N. As usual, if x has infinite order then all integers $n \geq 1$ are considered to divide $O(x)$. Cyclically separated groups, which are termed "potent groups" by some authors, form a natural subclass of residually finite groups and finite cyclically separated groups also form an interesting class whose structure we are able to describe reasonably well. Construction of finite soluble cyclically separated groups is given explicitly. In the discussion of infinite soluble cyclically separated groups we meet the interesting class of Fitting isolated groups, which is considered in some detail. A soluble group G of finite rank is Fitting isolated if, whenever $H=K / L \quad(L \triangleleft K \leq G)$ is a torsion-free section of G and $F(H)$ is the Fitting subgroup of H then $H / F(H)$ is torsion-free abelian. Every torsion-free soluble group of finite rank contains a Fitting isolated subgroup of finite index.

Received 22 April 1982. This work was done while Dr Brian Hartley and Dr John C. Lennox were visiting the University of Alberta. Professor Akbar H. Rhemtulla was supported, in part, by a grant from the Natural Sciences and Engineering Research Council of Canada.

1.1. INTRODUCTION

We call a group G cyclically separated (CS-group) if for any given cyclic subgroup $B \leq G$ and subgroup A of finite index in B, there exists a normal subgroup N of G of finite index such that $N \cap B=A$. This is clearly equivalent to saying that for each element x in G and integer $n \geq 1$ dividing the order $O(x)$ of x, there exists a normal subgroup N of G of finite index such that $N x$ has order n. If x is of infinite order, then, as is usual, all integers $n \geq 1$ are considered to be divisors of $o(x)$. We shall more often be using this second version of the definition of cyclically separated groups in this paper. Note that it is sufficient to restrict attention to prime divisors of $O(x)$. Cyclically separated groups form a natural subclass of residually finite groups. They have been investigated by Allenby and Tang in [1] and in some more recent papers to appear and by Poland in [11]. Cyclically separated groups are referred to as "Potent" groups by these authors. The usefulness of this concept was demonstrated in [1] for one relator groups and it is likely to receive more attention in future.

From now on we shall denote cyclically separated groups by CS-groups.
The arrangement of the paper is as follows. The notation used is described in Section 1.2. The basic closure properties of CS-group are given in Section 1.3. Finite CS-groups are discussed in Section 2 and general soluble CS-groups in Section 3. In Section 4 we establish an interesting property of torsion-free soluble groups with finite rank. Basically it states that every such group G has a subgroup H of finite index in which the Fitting subgroup of every torsion-free section of H is isolated. This is needed in the proof of Theorem D of Section 3. Although the result can be established by representing G as a subgroup of $G L(n, Q)$ and then using methods developed by B.A.F. Wehrfritz, we have chosen to give an elementary, though slightly lengthy, proof.

1.2. NOTATION

As stated earlier, a cyclically separated group will be called a CS-group. We shall write CS* to denote the class of CS-groups all of whose subgroups and torsion-free quotients are CS-groups. $\overline{C S}$ will denote the largest subgroup and quotient closed subclass of CS-groups. Thus we
have the chain CS $\supset C S^{*} \supset \overline{C S}$, with all inclusions proper. All standard notation used is from Robinson [12] except that we write Q instead of H for 'quotient' closure operation and $Z(G)$ for $\zeta(G)$ to denote the centre of G. Notation pertaining to finite groups is mainly from Gorenstein [5] if it is not in [12]. If B is a subgroup of a group G then we write ${ }^{G} \sqrt{B}$ to denote the set $\left\{x \in G ; x^{n} \in B\right.$ for some positive integer $\left.n\right\}$. Where we have used this notation, ${ }^{G} \sqrt{B}$ turns out to be a subgroup. Finally we write $P \times H$ to denote the split extension of P by H. Thus $G=P \rtimes H$ if $G=P H \quad, P \cap H=1$ and $P \triangleleft G$.

1.3. CLOSURE PROPERTIES

It follows from the definition that the class of CS-groups is subgroup closed. A quotient of a CS-group need not be potent; however finite CS-groups form a Q-closed class (Proposition 1).

LEMMA 1. The class of CS-groups is closed under (restricted) direct product.

Proof. Clearly it is enough to consider direct products with finitely many factors and hence we only need show that $G=G_{1} \times G_{2}$ is a CS-group if G_{1} and G_{2} are. Let $x=x_{1} x_{2} \in G\left(x_{i} \in G_{i}\right)$. Every divisor n of $o(x)$ may be written in the form $n=n_{1} n_{2}$ where n_{i} divides $o\left(x_{i}\right)$, $i=1,2$ and n_{1} and n_{2} are coprime. We can find subgroups $N_{i} \triangleleft G_{i}$ ($i=1,2$) such that $\left|G / N_{i}\right|<\infty$ and $N_{i} x_{i}$ has order n_{i}. Putting $N=N_{1} \times N_{2}$ we see that $N x$ has order n.

The class of CS-groups is not closed under any of the operations L, R, N_{0}, P and Q. But it is R_{0}-closed by Lemma 1 since it is subgroup closed.

2. Finite CS-groups

In this section we restrict our attention to finite groups. A finite simple CS-group must have all of its elements of prime order and so is either a cyclic group of prime order or A_{5} by a theorem of Suzuki [13]. In fact, we have further the following interesting consequences of that
result.
LEMMA 2. If G is a finite CS-group then every non-abelion composition factor of G is isomorphic to A_{5}, the alternating group of degree five.

Proof. Suppose the result is false. Choose $H \leq G$ minimal subject to the condition that H / K is a non-abelian composition factor of G not isomorphic to A_{5}. Then not all the elements of H / K are of prime order by Suzuki [13] as remarked above. Choose $K x$ in H / K with $O(K x)$ a composite number divisible by a prime p. Since H is a CS-group, there exists $N \triangleleft H$ with x^{P} in N but x not in N. Then $H=K N$ with $N<H$. Thus $N / K \cap N \simeq H / K$. By minimality of $H, N / K \cap N \simeq A_{5}$, a contradiction.

As remarked earlier, the class of finite CS-groups is quotient closed. The proof of this rather surprising result is a little indirect.

LEMMA 3. Let G be a finite group. Then G is a CS-group if and only if
(a) every non-abelian composition factor of G is isomorphic to A_{5};
(b) whenever p is a prime and y is a p^{\prime}-element of G, then y commutes with no non-trivial p-element of $\left\langle y^{G}\right\rangle$.

Proof. First suppose that G is a CS-group. Then, by Lemma 2, G satisfies (a). If y is as given and y commutes with a p-element x of $\left\langle y^{G}\right\rangle$, then since $o(x)$ divides $o(x y)$, we can find a normal subgroup N of G such that $o(N x y)=o(x)$. Then $y \in N$, so $\left(y^{G}\right) \leq N$, whence $x \in N$. Therefore $x=1$.

Now let G satisfy (a) and (b); let $z \in G$ and let p be a prime divisor of $o(z)$. We have to find a normal subgroup N of G such that $o(N z)=p$. Let $z=x y$ where x is a p-element and y is a p^{\prime}-element and $[x, y]=1$. There exists a normal subgroup M of G such that $y \in M$ and $\langle x\rangle \cap M=1$, namely we can take $M=\left\langle y^{G}\right\rangle$. Thus $O(M x)=O(x)$. Now (a) implies that G / M has a series of normal subgroups
in each factor of which every p-element has prime order. Passing up such a series, we will eventually reach a quotient in which the image of x has order p.

PROPOSITION 1. The class of finite CS-groups is Q-closed.
Proof. We prove this by showing that if $N \triangleleft G$ and G satisfies (a) and (b) of Lemma 3, so does G / N. Clearly G / N satisfies (a). So now let $N y$ be a non-trivial p^{\prime}-element of G / N and $N x$ be a p-element of G / N such that $N x$ and $N y$ commute and $N x \in\left((N y)^{G / N}\right\rangle=\left\langle y^{G}\right\rangle N / N$. We may choose y to be a p^{\prime}-element such that $\left|\left\langle y^{G}\right\rangle\right| \leq\left|\left\langle y_{0}^{G}\right\rangle\right|$ for every p^{\prime}-element $y_{0} \in N y$. Let $L=\left(y^{G}\right\rangle$ and $J=\langle x, N\rangle \cap L$. Then $[y, J] \leq J_{0}=N \cap L$. Let P be a Sylow p-subgroup of J. Then by the Frattini argument $N_{L}(J)=J_{0} N_{L}(P)$. Hence there is a p^{\prime}-element $y_{0} \in N_{L}(P)$ such that $y J_{0}=y_{0} J_{0}$. Clearly $\left\langle y_{0}^{G}\right\rangle \leq L=\left\langle y^{G}\right\rangle$, and by the choice of y we must have equality. So we may suppose without loss of generality that $y \in N_{L}(P)$. We have $[y, P] \leq P \cap N$ and since y is a p^{\prime}-element, $P=(P \cap N) C_{P}(y)$. However $C_{P}(y)=1$ since G satisfies (b) of Lerma 3 and $P \leq\left(y^{G}\right)$. Hence $P \leq N$ and $J=P J_{0}=J_{0}$ and $x \in N$. This shows that G / N satisfies (b).

Now recall that a monolithic group is one which has a unique minimal normal subgroup, and that the groups in any class of finite groups that is closed under subgroups, quotients and direct products are precisely the subdirect products of monolithic groups in that class. For this reason we now concentrate our attention on monolithic CS-groups.

LEMMA 4. Let G be a finite monolithic CS-group. If the monolith of G is non-abelian then $G \simeq A_{5}$.

Proof. Let N be the monolith of G. By Lemma 2, $N=N_{1} \times N_{2} \times \ldots \times N_{t}$ where $t \geq 1$ and $N_{i} \simeq A_{5}(1 \leq i \leq t)$. If $t>1$ then choose x in N_{1} of order 3 . Then $N=\left(x^{G}\right)$ since N is the monolith and $\left[x, N_{2}\right]=1$ so that x commutes with 3^{\prime}-elements in
$\left\langle x^{G}\right\rangle$. This violates condition (b) of Lemma 3. Thus $t=1$. Since N is the monolith, $C_{G}(N)=1$ or $C_{G}(N)=N$. But $Z(N)=1$ so that $C_{G}(N)=1$ and $G \simeq A_{5}$ or $G \simeq S_{5}$ since G is a subgroup of Aut N. But S_{5} is not a CS-group. Hence $G \simeq A_{5}$.

LEMMA 5. Let G be a finite monolithic CS-group with abelian monolith W. Then
(i) W is an elementary abelian p-group for some prime p, and the Fitting subgroup of G is a p-group P;
(ii) $C_{G}(W)=P$.

Proof. (i) is clear. In order to show (ii) we first note that $W \leq Z(P)$ (where $Z(P)$ is the centre of P), since W is the monolith of G. Thus $C_{G}(W) \geq P$. If $C_{G}(W)>P$ then $C_{G}(W)$ contains a non-trivial p'-element y. Then $\left[W,\left(y^{G}\right)\right]=1$ and $W \leq\left\langle y^{G}\right\rangle$ again because W is the monolith of G. This contradicts condition (b) of Lemma 2. Thus $C_{G}(W)=P$.

LEMMA 6. Using the notation of Lemma 5, we have $C_{W}(y)=1$ for every non-trivial p '-element $y \in G$.

Proof. Since W is the monolith of G, we have $\left\langle y^{G}\right\rangle \geq W$. Hence $C_{W}(y)=1$ by Lemma 3 .

Because of Lemmas 5 and 6 we now make the following definition.
DEFINITION. $G \in X_{p}$ if and only if G is a CS-group and there is an $F_{p} G$-module W such that $C_{W}(y)=0$ for all non-trivial p^{\prime}-elements $y \in G$.

LEMMA 7. (i) X_{p} is s-closed.
(ii) If G is a cs-group then $G \in X_{p}$ if and only if $G / O_{p}(G) \in X_{p}$.
(iii) If G is a monolithic CS-group whose monolith is an abelian
p-group then $G \in X_{p}$.
Proof. (i) is immediate.
(ii) If G is a CS-group then so is $G / O_{p}(G)$ by Proposition 1. If W is an $F_{p} G$-module on which every non-trivial p^{\prime}-element of G operates fixed point freely, and W_{1} is any composition factor of W, then $O_{p}(G)$ operates trivially on W_{1}, and we see that W_{1} is effectively a $G / O_{p}(G)$ module of the type required to guarantee that $G / O_{p}(G) \in X_{p}$. The converse follows since every $G / O_{p}(G)$-module can be viewed as a G-module on which $O_{p}(G)$ operates trivially.
(iii) This follows from Lemma 6.

We wish to identify the groups which can occur as $G / O_{p}(G)$, where G is a monolithic CS-group whose monolith is a p-group. By Lemma 7 every such group belongs to X_{p} and contains no non-trivial normal p-subgroups. We shall proceed to establish the converse and then characterise the structure of these groups completely.

LEMMA 8. Let $G=P \times H$ be the semidirect product of a normal p-subgroup P by a group H. Then G is a CS-group if and only if H is a CS-group and $\left[p,\left\langle y^{H}\right\rangle\right] \cap C_{P}(y)=1$ for all p^{\prime}-elements $y \in H$.

Proof. That G being a CS-group implies the other conditions follows from Lemma 3 and the subgroup closure of the class of CS-groups. Conversely, assume that these conditions hold. Every element of G is conjugate to an element $x y$ where $[x, y]=1, x$ is a p-element and y is a p^{\prime}-element of H. Let x have order p^{α} and y have order m. We have to find a quotient of G in which the image of $x y$ has order equal to any given prime divisor d of $p^{\alpha} m$. If $d m$ we do this by first passing to the CS-group G / P and noting that m divides the order of Pxy . Otherwise $d=p$. Now clearly

$$
\left\langle y^{G}\right\rangle=\left[P,\left\langle y^{H}\right\rangle\right]\left\langle y^{H}\right\rangle,
$$

so $\left\langle y^{G}\right\rangle \cap P=\left[P,\left\langle y^{H}\right\rangle\right]$. Hence $\langle x\rangle \cap\left\langle y^{G}\right\rangle \cap P \leq\left[P,\left\langle y^{H}\right\rangle\right] \cap C_{p}(y)=1$. Therefore, since x has prime power order, either $\langle x\rangle \cap P=1$ or $\langle x\rangle n\left\langle y^{G}\right\rangle=1$. In the first case we pass to G / P, noting that p divides the order of $P x$, and then obtain the required quotient. In the second case, let $M=\left\langle y^{G}\right\rangle$. Then $M x y=M x$ has order p. Now by Lemma 2, the only non-abelian composition factor of B is A_{5}. Hence H has a series of normal subgroups, in each factor of which every p-element has order l or p; and so G / M has such a series. Passing up it, we eventually reach a quotient in which the image of $M x$ has order p.

LEMMA 9. Let H be a group. Then the following two conditions are equivalent:
(i) $O_{p}(H)=1$ and $H \in X_{p}$;
(ii) there exists a monolithic CS-group G such that the monolith of G is a p-group and $G / O_{p}(G) \simeq H$.

Proof. (ii) \Rightarrow (i). This was remarked before Lerma 8.
$(i) \Rightarrow$ ($i i$. Let W be an $\mathbb{F}_{p} H$-module on which every non-trivial $p^{\prime}-$ element of H operates fixed point freely. Passing to a composition factor of W, we may assume W is irreducible. Let $G=W \rtimes H$. Since H is a CS-group by assumption, Lemma 8 shows that G is a CS-group and since $O_{p}(H)=1, W=O_{p}(G)$. Hence $G / O_{p}(G) \simeq H$.

Now we go on to analyse the structure of X_{p}-groups.
LEMMA 10. Let $H \in X_{p}$. Then
(i) every p^{\prime}-subgroup of H, whose order is the product of two not necessarily distinct primes, is cyclic;
(ii) if $q \neq p$, then the sylow q-subgroups of G are cyclic or generalized quaternion.

Proof. Every p^{\prime}-subgroup of H admits a faithful linear representation in which every non-trivial element operates fixed point freely. The assertions are standard consequences of this (see Gorenstein [5], 5.3.14, 5.4.11).

THEOREM A. Let A be a group such that $o_{p}(H)=1$. Then $H \in X_{p}$ if and only if
(i) $H=S \times T$ where S is soluble and either $T=1$ or $p=2, T \simeq A_{5}$ and $|S|$ is not divisible by 3 or 5 ;
(ii) $S=Q \times R$ is the semidirect product of a cyclic normal $\{p, 2\}$ '-subgroup Q by a nilpotent group R whose Sylow q-subgroups are cyclic or generalized quaternion if $q \neq p$.
Furthermore $(|Q|,|R|)=1$ and every element of prime order not equal to p in R centralizes Q.

Proof. Suppose first that $H \in X_{p}$ and $O_{p}(H)=1$. Let T denote the largest normal subgroup of H which is a direct product of copies of A_{5}. By Lemma $10(i)$, either $T=1$ or $T \simeq A_{5}$. If $T \simeq A_{5}$ and $S=C_{G}(T)$, then G / S is isomorphic to a subgroup of Aut A_{5} containing A_{5}, and hence to A_{5} or S_{5}. We have seen that S_{5} is not a CS-group, and in fact this follows from Lemma 4. So $G=S \times T$. If $T=1$ then the same holds with $S=G$. Clearly S contains no non-trivial normal subgroup which is a direct product of copies of A_{5}. Let F be the Fitting subgroup of S. Then $F \geq C_{S}(F)$ for otherwise we may choose a subnormal subgroup C of $C_{S}(F)$ such that $C>C_{S}(F) \cap F$ and $C / C_{S}(F) \cap F$ is simple. This factor is not cyclic since in that case $C \leq F$. It cannot be non-abelian simple either for otherwise $E(C \cap F)=C$ where E is the last term of the derived series of C. Thus $E / E \cap F$ is simple non-abelian and $E \cap F$ is central in F. If $E \cap F \neq 1$ and $1 \neq x \in E \cap F$ is a q-element for some prime q, then E contains a nontrivial q^{\prime}-element $y \notin F$. We have $(E \cap F)\left(y^{E}\right)=E$ and $[x, y]=1$. So $E /\left(y^{E}\right\rangle$ is abelian and hence $\left\langle y^{E}\right\rangle=E$. Thus E is not a CS-group by Lemma 3. It follows that $E \cap F=1$ so E^{\cdot} is a simple subnormal subgroup of S, a contradiction. Thus $F \geq C_{S}(F)$.

Let $F_{1}=O_{2},(F)$. By Lemma 10 and the fact that $O_{p}(S)=1$, we have that F_{1} is a cyclic group, so $S / C_{S}\left(F_{2}\right)$ is abelian. If $F_{2}=O_{2}(F)$,
then $S / C_{S}\left(F_{2}\right)$ embeds in Aut F_{2}. Now F_{2} is cyclic or generalized quaternion, so Aut F_{2} is a 2-group unless F_{2} is quaternion of order 8 ([5], Chapter 5). Thus either $S / C_{S}\left(F_{2}\right)$ is a 2-group or F_{2} is a quaternion of order 8 and S contains a 3-element y such that $\left[F_{2}, y\right]=F_{2}$ and y centralizes the centre $Z\left(F_{2}\right)$ of F_{2}. This is not possible in a CS-group. So $S / C_{S}\left(F_{2}\right)$ is a 2 -group in all cases, and hence F_{2} is in the hypercentre of S. Also, since $C_{S}(F)=C_{S}\left(F_{1}\right) \cap C_{S}\left(F_{2}\right) \leq F$, we conclude that S / F is nilpotent. Hence S / F_{1} is also nilpotent and the nilpotent residual Q of S is a cyclic $\{p, 2\}^{\prime}$-group and S splits over it as

$$
S=Q \times R
$$

say ([4], Theorem 5.15).
Now if $T \neq 1$ then $p=2$, since not every elementary abelian 2-subgroup of H is cyclic; and $|S|$ is not divisible by 3 or 5 for similar reasons. The remaining assertion about R follows from Lemma 3 and Lemma 10.

Conversely let H have the structure given by (i) and ($i i$) and suppose $O_{p}(H)=1$. Since Q is cyclic, R^{\prime} centralizes Q. From ($i i$) we see that R^{\prime} is cyclic. Thus S is supersoluble and metabelian and hence a CS-group (Theorem E). Let Q_{0} denote the (cyclic) subgroup of S generated by the elements of prime order not equal to p in S. There exists an irreducible $F_{p} Q_{0}$-module U_{0} that is faithful for Q_{0} and hence operated on fixed point freely by every non-trivial element of Q_{0}. Now $A_{5} \simeq \operatorname{SL}(2,4)$ and if V_{2} denotes the 2 -dimensional vector space on which this acts, then the elements of order 3 and 5 operate fixed point freely, and we can think of V_{2} as an $\mathbb{F}_{2} A_{5}$-module. Let $U=U_{0}$ if $T=1$ or $U=U_{0} V_{2}$ if $T \neq 1$, in which case $p=2$. This is to be thought of as an $\mathbb{F}_{2}\left[Q_{0} \times T\right]$-module in the usual way. Now since $\left(\left|Q_{0}\right|, 15\right)=1$, if $T \neq 1$, every non-trivial p^{\prime}-element of $Q_{0} \times T$ has
a non-trivial power in Q_{0} or T and so operates fixed point freely on U. Let $V=U^{H}$ be the induced module. Then $V_{Q_{0} \times T}$ is a direct sum of conjugates of U and so is fixed point free for every non-trivial p^{\prime}-element of $Q_{0} \times T$. But every non-trivial p^{\prime}-element of $H=S \times T$ has a non-trivial power in $Q_{0} \times T$. Hence $C_{V}(y)=0$ if y is a nontrivial p^{\prime}-element of H. Therefore, by definition, $H \in \mathrm{X}_{p}$.

COROLLARY. Let H be a group such that $o_{p}(H)=1$. Then the following conditions are equivalent:
(i) $H \simeq G / O_{p}(G)$ for some monolithic CS-group G whose monolith is a p-group;
(ii) $H \in X_{p}$;
(iii) $H=S \times T$ as in the statement of Theorem A.

This is obtained by combining Lemma 9 and Theorem A.
THEOREM B. Let G be a finite soluble CS-group with Fitting subgroup $F(G)$. Then $G / F(G)$ is metabelian and supersoluble.

Proof. G is a subdirect product of monolithic groups of the same type by Proposition 1. Each of these satisfies the conclusion of the theorem since a soluble X_{p}-group H with $O_{p}(H)=1$ is supersoluble and metabelian. From this the theorem follows.

We can improve Theorem B somewhat by obtaining a fuller description of the monolithic soluble CS-groups. We know that such a group G belongs to some ${ }^{\prime} X_{p}$ and then we know G / P where $P=O_{p}(G)$, so now it is a matter of analysing P.

DEFINITION. A group G is a special X_{p}-group if $G / O_{p}(G) \in X_{p}$ and $G=O_{p}{ }^{\prime}(G)$. Such a group G is a subdirect product of the X_{p}-group $G / O_{p}(G)$ and the p-group $G / O_{p},(G)$. Hence it is a CS-group by Lemma 1 and belongs to X_{p} by Lemma 7. In fact these groups are exactly the subdirect products of an X_{p}-group H with $O_{p}(H)=1$ and a finite p-group
and so may be considered to be well understood.
LEMMA 11. Let G be a finite soluble group. Then $G \in X_{p}$ if and only if $G=P \times H$ where
(i) P is a p-group,
(ii) H is a special X_{p}-group,
(iii) $P=\left[P, o_{p},(H)\right]$, and
(iv) if $y \in O_{p}$ (H) then $\left[P,\left\langle y^{H}\right\rangle\right] \cap C_{P}(y)=I$.

REMARK. These conditions are all satisfied if H is a group of prime order q operating fixed point freely on P, so P can be of arbitrarily large class if q is allowed to be arbitrarily large. Condition (iv) seems rather strong if $O_{p},{ }^{\prime}(H)$ has many prime divisors but even so, P can be quite complicated, as we show by example at the end of this section.

Proof. Suppose that G is a soluble X_{p}-group and let $P_{1}=O_{p}(G)$. Then G / P_{1} is an X_{p}-group with no non-trivial normal p-subgroup (Lemma 7), so the structure of it is given by Theorem A. In particular $G / P_{1}=O_{p^{\prime} p}\left(G / P_{1}\right)$. Let $O_{p^{\prime}}\left(G / P_{1}\right)=Q_{1} P_{1} / P_{1}$ for some $p^{\prime}-\operatorname{group} Q_{1}$. Then if $H=N_{G}\left(Q_{1}\right)$, the Frattini argument gives $G=P_{1} H$. Now $Q_{1} \triangleleft H$ and H / Q_{1} is a p-group, so $H=O_{p^{\prime} p}(H)$. Also

$$
H / O_{p}(H)=H / P_{1} \cap H \simeq G / P_{1} \in X_{p}
$$

Hence H is a special X_{p}-group.

$$
\text { Now let } P=\left[P_{1}, Q_{1}\right] \text {. Then } P_{1}=P C_{P_{1}}\left(Q_{1}\right)=P\left(P_{1} \cap H\right) \text { so } G=P H \text {. }
$$

We have $\left[P,\left\langle y^{H}\right\rangle\right] \cap C_{P}(y)=1$ for each element $y \in Q_{1}$ from Lemma 3. So it remains only to show that $P \cap H=1$, that is, $C_{P}\left(Q_{1}\right)=1$. For each $y \in Q_{1}$, let $P(y)=\left[P,\left(y^{H}\right)\right]$. We know that y operates fixed point freely on $P(y)$ and hence on any quotient thereof. Also $P=T \prod P(y)$ over all $y \in Q_{1}$. Writing y_{1}, \ldots, y_{n} for the element of Q_{1} and
putting $P(i)=\prod_{j=1}^{i} P\left(y_{j}\right)$, we obtain a series of normal subgroups of G each factor of which is transformed fixed point freely by some element of Q_{1}. It follows that $C_{P}\left(Q_{1}\right)=I$ as required.

The fact that any group satisfying (i)-(iv) is a CS-group follows from Lerma 8. Hence $G \in X_{p}$ by Lemma 7 , since $G / O_{p}(G) \simeq H / O_{p}(H)$.

Since the monolithic soluble CS-groups are exactly the monolithic soluble groups in $U X_{p}, p$ prime (Lemma 7), we have

THEOREM C. Let G be a monolithic soluble group. Then G is a cs-group if and only if G has the structure described in Lemma 11, for some prime p.

This may be viewed as giving a reasonably explicit construction for monolithic soluble CS-groups (apart from the rather mysterious condition (iv) of Lemma 11) and hence for all soluble CS-groups.

It remains to consider insoluble monolithic CS-groups with abelian monolith. These lie in X_{2} by Lemma 7. Our description of these groups is somewhat less satisfactory.

LEMMA 12. Let G be an insoluble X_{2}-group. Then there exists a normal abelion 2-subgroup P of G such that

$$
G / P=S / P \times T / P
$$

where S is a soluble X_{2}-group of order prime to $15, T / P \simeq A_{5}$, and $C_{P}(y)=1$ for all non-trivial elements y of odd order in T.

REMARK. Further conditions about the action of elements of G on $O_{2}(G)$ will be needed for a converse statement. These seem rather clumsy and not worth formulating.

Proof. Most of this is straightforward, with the exception of the statement that P is abelian. Let $P_{1}=O_{2}(G)$. By Lemma 7 and Theorem A, $G / P_{1}=S / P_{1} \times T_{1} / P_{1}$, where S is a soluble X_{2}-group of order prime to 15 and $T_{1} / P_{1} \simeq A_{5}$. Let T be the last term of the derived series
of T_{1}. We have $T \triangleleft G$ and so $P=P_{1} \cap T \triangleleft G$. Since T_{1} / P_{1} is perfect, $T_{1}=P_{1} T$ and so $G=S T$. Also $[S, T] \leq P_{1} \cap T=P$. Hence $G / P=S / P \times T / P$.

Let y be any non-trivial element of odd order in T. Then $T=F\left\langle y^{T}\right\rangle$ and so $T /\left(y^{T}\right\rangle$ is a 2-group. Since T is perfect, $T=\left\langle y^{T}\right\rangle \supseteq P$. Therefore $C_{P}(y)=1$ as T is a CS-group (Lemma 3).

It remains to show that P is abelian. Now any chief factor of T below P may be viewed as an irreducible module for A_{5} over \mathbb{F}_{2} on which the elements of order 3 and 5 operate fixed point freely. This explains the relevance of the next result.

LEMMA 13. Write $A=A_{5}$. There are exactly three isomorphism classes of irreducible \mathbb{F}_{2} A-modules, represented by V_{1}, V_{2} and V_{3} say, of dimension 1, 4, 4. Of these exactly one $\left(\begin{array}{ll}\text { say } & V_{2}\end{array}\right)$ is tronsformed fixed point freely by the elements of odd order in A, and $\operatorname{Hom}_{A}\left(V_{2} \otimes V_{2}, V_{2}\right)=0$.

Proof. The number of isomorphism classes of irreducible $\mathbb{F}_{2} A$-modules is the number of orbits of the 2-regular conjugacy classes under the map on the set of conjugacy classes induced by $x \rightarrow x^{2}$, that is, three (see [3]). We have the trivial module V_{1} of course. We obtain V_{2} by identifying A with $\operatorname{SL}(2,4)$ and letting V_{2} denote the natural module for this group, viewed as an $\mathbb{F}_{2} A$-module. An element of order three operates on V_{2} as a diagonal matrix with eigenvalues λ and λ^{2} (where V_{2} is thought of as an $\mathbb{F}_{4} A$-module) where λ is a primitive cube root of 1 in \mathbb{F}_{4}, and so is fixed point free. Also since 4 is the order of $2 \bmod 5, V_{2}$ is irreducible when restricted to a subgroup of order 5 . Finally if W is a 5 -dimensional vector space and A permutes a basis of W according to its natural permutation representation, then $V_{3}=[W, A]$ is a 4 -dimensional irreducible $\mathbb{F}_{2} A$-module. An element of order 3 in A
has fixed point set of dimension 3 in W and hence dimension 2 in V_{3}.

To study $V_{2} \otimes_{F_{2}} V_{2}$ it is convenient to pass to the algebraic closure k of \mathbb{F}_{2}. The number of isomorphism classes of irreducible kA-modules is equal to the number of 2-regular conjugacy classes of A, that is four. It is easy to see that $W_{3}=V_{3} \otimes_{F_{2}} k$ is irreducible. So is the module W_{1} obtained from the natural $\mathbb{F}_{4}[S L(2,4)]$-module by field extension. We also have the module $W_{2}=W_{1}^{(2)}$ obtained from W_{1} by applying the Frobenius automorphism $\alpha \rightarrow \alpha^{2}$ to the entries of the matrices in SL(2, 4). By considering the eigenvalues of an element of order 5 we see that W_{1} is not isomorphic to W_{2}. So W_{1}, W_{2} and W_{3} represent the three isomorphism types of non-trivial irreducible $k A$-modules. Now an element a of order 3 in A has eigenvalues λ and λ^{2}, each with multiplicity one, in W_{1} and W_{2}, and if b is an element of order 5 in A, then for a suitable primitive 5 th root of 1 , say μ, the eigenvalues of b in W_{1} are μ, μ^{-1} and on W_{2} are μ^{2} and μ^{-2}. On $W_{1} \otimes_{k} W_{2}$, the element a has two eigenvalues equal to l and b has eigenvalues $\mu, \mu^{2}, \mu^{3}, \mu^{4}$. Hence $W_{1} \otimes_{k} W_{2} \simeq W_{3}$. on $W_{1} \otimes W_{1}$, the element a has eigenvalues $1,1, \lambda, \lambda^{2}$ and b has eigenvalues $1,1, \mu$, μ^{2}. With suitably chosen notation

$$
a=\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda^{2}
\end{array}\right) \in \mathrm{SL}(2,4)=A
$$

and the elements

$$
s(\alpha)=\left(\begin{array}{ll}
1 & 0 \\
\alpha & 1
\end{array}\right) \quad\left(\alpha \in \mathbb{F}_{4}\right)
$$

form a Sylow 2-subgroup S of A. If we identify W with column vectors and let $v_{1}=\binom{1}{0}, v_{2}=\binom{0}{1}$ then

$$
\begin{aligned}
a v_{1} & =\lambda v_{1} ; & a v_{2} & =\lambda^{2} v_{2}, \\
s(\alpha) v_{1} & =v_{1}+\alpha v_{2} ; & s(\alpha) v_{2} & =v_{2} .
\end{aligned}
$$

We claim that $W_{1} \otimes W_{1}$ has a unique one-dimensional submodule and no 2-dimensional irreducible submodule. For any one-dimensional irreducible submodule would have to lie in $U=k\left(v_{1} \otimes v_{2}\right) \oplus k\left(v_{2} \otimes v_{1}\right)$, since this is the l-eigenspace of a. Now

$$
(s(\alpha)-1)\left(\theta v_{1} \otimes v_{2}+\theta^{\prime} v_{2} \otimes v_{1}\right)=\alpha\left(\theta+\theta^{\prime}\right) v_{2} \otimes v_{2}
$$

and this is non-zero if $\theta \neq \theta^{\prime}$ and $\alpha \neq 1$. Thus U has a unique minimal S-submodule, namely $k\left(v_{2} \otimes v_{2}\right)$. Also, because of the structure of W_{1} and W_{2}, the only possible 2-dimensional A-submodule of $W_{1} \otimes W_{1}$ is that spanned by $v_{1} \otimes v_{1}$ and $v_{2} \otimes v_{2}$, the λ^{2} - and λ-eigenvectors of a. We easily see, however, that this is not S invariant.

Let W_{11} denote the unique minimal submodule of $W_{1} \otimes W_{1}$. Then $W_{1} \otimes W_{1} / W_{11}$ cannot contain a I-dimensional submodule, since then W_{1} would have a 2-dimensional submodule with two trivial composition factors and this would be trivial itself. Therefore $W_{1} \otimes W_{1} / W_{11}$ contains a unique irreducible submodule W_{12} / W_{11} which has dimension 2 (and must be isomorphic to W_{2} by consideration of the eigenvalues of b). Thus $W_{1} \otimes W_{1}$ is uniserial, with submodules

$$
0<W_{11}<W_{12}<W_{1} \otimes W_{1}
$$

and $W_{2} \otimes W_{2}$ will be similarly uniserial.
These considerations show that if $l \leq i, j, l \leq 2$ then $\operatorname{Hom}_{k A}\left(W_{i} \otimes W_{j}, W_{z}\right)=0$. Hence

$$
\operatorname{Hom}_{k A}\left(\left(W_{1} \oplus W_{2}\right) \theta_{k}\left(W_{1} \oplus W_{2}\right), W_{1} \oplus W_{2}\right)=0
$$

Now we claim that $V_{2} \otimes_{F_{2}} k \simeq W_{1} \oplus W_{2}$. Since any element of $\operatorname{Hom}_{A}\left(V_{2} \otimes V_{2}, V_{2}\right)$ determines an element of $\mathrm{Hom}_{k A}\left(V_{2} \otimes V_{2} \otimes k, V_{2} \otimes k\right)$,
this will show that $\mathrm{Hom}_{A}\left(V_{2} \otimes V_{2}, V_{2}\right)=0$. Since $V_{2} \otimes k$ is completely reducible (for this property is preserved by separable field extension) and since a operates fixed point freely on it, $V_{2} \otimes k$ must be the direct sum of two 2-dimensional modules. The types of these modules must be a union of Galois conjugacy classes, so $W_{1} \oplus W_{2}$ is the only possibility. We have now proved Lemma 13.

Conclusion of proof of Lemma 12. We have $T / P \simeq A_{5}$ and P is a finite 2 -group on which every non-trivial element of odd order operates fixed point freely. Let $X=P / P^{\prime}$ viewed as a T / P-module by conjugation, and $Y=P^{\prime} /\left[P, P^{\prime}\right]$ viewed similarly. Identifying T / P with A_{5}, we see from Lemma 13 that X has a composition series in which each factor is isomorphic to V_{2}. It follows that Y has a series in which each factor is isomorphic to a homomorphic image of $V_{2} \otimes V_{2}$ (see Robinson [12], p. 56). By Lemma 13, such an image, if non-trivial, must have an image which is not isomorphic to V_{2}. But this is impossible. Hence $Y=0$ so $P^{\prime}=\left[P, P^{\prime}\right]$ and finally $P^{\prime}=1$.

EXAMPLE 1. The following example illustrates the possible complexity of soluble monolithic CS-groups. The construction we wish to use is also described in [8]. A preliminary lema, some parts of it well known, will be useful.

LEMMA 14. Let R be a ring with 1 and let S be a nil subring of R. Then
(i) $1+S=\{1+s ; s \in S\}$ is a group under multiplication: it is nilpotent if S is nilpotent;
(ii) if K is an ideal of S then $1+K \triangleleft 1+S$;
(iii) if $J+K=S$ for some subring J, then $(1+K)(1+J)=1+S ;$
(iv) if also $J \cap K=0$, then $1+S=(1+K) \times(1+J)$.

Proof. (i) If $s \in S$ then $(1+s)^{-1}=1-s+s^{2} \ldots+(-1)^{n_{s}^{n}}$ for suitable n. Also $1+S \geq 1+S^{2} \geq \ldots$ is a central series of $1+S$.
(ii) We have, if $s \in S$ and $k \in K$, then

$$
(1+s)^{-1}(1+k)(1+s)=1+(1+s)^{-1} k(1+s) \in 1+K .
$$

(iii) Let $s \in S$. Then $s=k+j$ for some $k \in K, j \in J$. Hence $1+s=1+k+j$ and

$$
(1+s)(1+j)^{-1}=(1+j)(1+j)^{-1}+k(1+j)^{-1} \in 1+K .
$$

(iv) This follows from (ii) and (iii).

Now let p be a given prime and let $q_{1}, q_{2}, \ldots, q_{n}$ be n distinct primes each congruent to $l \bmod p$. These exist by Dirichlet's Theorem on the primes in an arithmetic progression. Let $H_{i}=\left\langle a_{i}\right\rangle \rtimes\left\langle b_{i}\right\rangle$ be a non abelian group of order $p q_{i}$, where a_{i} has order q_{i} and b_{i} has order p. Then H_{i} has a faithful irreducible module V_{i} over \mathbb{F}_{p}, and $C_{V_{i}}\left(a_{i}\right)=0$. Let S denote the set of $(n+1) \times(n+1)$ matrices $u=\left(u_{i j}\right)$ with rows and columns indexed by $\{1,2, \ldots, n+1\}$ such that

$$
\begin{gathered}
u_{i j}=0 \text { if } i \geq j \\
u_{i j} \in V_{i} \otimes \ldots \otimes V_{j-1} \text { if } i<j \leq n+1
\end{gathered}
$$

Then S is a ring under matrix addition and multiplication if we use "tensor multiplication" (as in the tensor algebra) on the components. Let $H=H_{1} \times \ldots \times H_{n}$. Then each $V_{i} \otimes \ldots \otimes V_{j-1}$ is an H-module on which H_{t} operates trivially if $t<i$ or $t \geq j$, and operates on the V_{t} component of the tensors if $i \leq t \leq j-1$. We can now allow H to operate "componentwise" on S, and we see that H then operates by ring automorphisms. If I_{n+1} denotes the $(n+1) \times(n+1)$ matrix identity, then $\mathbb{F}_{p} I_{n+1} \oplus S$ is also a ring operated on by H. Hence $P=I_{n+1}+S$ is a nilpotent group. Its class is easily seen to be exactly n. Also H operates on P by automorphisms. Now let $N=\{1, \ldots, n+1\}$, and let

$$
\Lambda=\{(i, j) \in N \times N: i<j\}
$$

If $\Gamma_{1}, \Gamma_{2} \subseteq N \times N$ then we can define
$\Gamma_{1} \circ \Gamma_{2}=\left\{(i, j) \in N \times N: \exists k \in N\right.$ such that $(i, k) \in \Gamma_{1}$ and $\left.(k, j) \in \Gamma_{2}\right\}$. For $\Gamma \subseteq \Lambda$, let

$$
S_{\Gamma}=\left\{\left(u_{i j}\right) \in S: u_{i j}=0 \text { if }(i, j) \notin \Gamma\right\}
$$

Then it is clear from the definition of the matrix multiplication that S_{Γ} is an ideal of S if $(\Lambda \circ \Gamma) \cup(\Gamma \circ \Lambda) \subseteq \Gamma$, and S_{Γ} is a subring if $\Gamma \circ \Gamma \subseteq \Gamma$.

In particular let $I=\left\{i_{1}, \ldots, i_{r}\right\}$ be a subset of N with $i_{1}<i_{2}<\ldots<i_{r}$, and define

$$
\Gamma(I)=\left\{(i, j) \in \Lambda: i \leq i_{t} \leq j \text { for some } t \text { with } 1 \leq t \leq r\right\}
$$

and $\Gamma(I)^{*}=\Lambda \backslash \Gamma(I)$. Clearly $(\Lambda \circ \Gamma(I)) \cup(\Gamma(I) \circ \Lambda) \subseteq \Gamma(I)$ and $\Gamma(I) * \circ \Gamma(I) * \subseteq \Gamma(I) *$. So, writing S_{I} for $S_{\Gamma(I)}$ and S_{I}^{*} for $S_{\Gamma(I) *}$, we have that S_{I} is an ideal of S and S_{I}^{*} is a subring. Clearly $S=S_{I} \oplus S_{I}^{*}$ and so from Lemma 14, $P=P_{I} \rtimes P_{I}^{*}$ where $P_{I}=I_{n+1}+S_{I}$ and $P_{I}^{*}=I_{n+1}+S_{I}^{*}$.

These subgroups are clearly H-invariant. Now if $a_{I}=a_{i_{l}} \ldots a_{i_{r}}$, then since $\left\langle a_{I}\right\rangle=\left\langle a_{i_{I}}, \ldots, a_{i_{r}}\right\rangle$ we see that a_{I} operates trivially on $V_{i} \otimes \ldots \otimes V_{j}$ if $(i, j) \in \Gamma(I)^{*}$, and operates fixed point freely if $(i, j) \in \Gamma(I)$. This is because if $i \leq t \leq j$ then $V_{i} \otimes \ldots \otimes V_{j}$, as〈 $\left.a_{t}\right\rangle$-module, is a direct sum of copies of V_{t}. Thus it is clear that a_{I} fixes every element of P_{I}^{*} and fixes no non trivial element of P_{I} since it changes every off diagonal entry of such a matrix. Thus $C_{P_{I}}\left(a_{I}\right)=0$ and it follows that $C_{P}\left(a_{I}\right)=P_{I}^{*}$. Hence at last $\left[P_{I}^{*}, a_{I}\right] \cap C_{P}\left(a_{I}\right)=1$. Now H is a CS-group, either obviously or because it is supersoluble and metabelian; also $\left\langle a_{I}\right\rangle \triangleleft H$ and every p^{\prime}-subgroup of H has the form $\left\langle a_{I}\right\rangle$. It follows from Lemma 7 that $G=P \rtimes H$ is a CS-group.

3. Infinite soluble CS-groups

We saw in Section 2 that the class of finite CS-groups is quotient closed. This is obviously not the case for infinite soluble groups; for all such groups are quotients of free soluble groups which, by virtue of being residually finite p-groups for all prime p, are CS-groups. We are thus led to define two subclasses of CS-groups. We call G a CS*-group if all subgroups of G and their torsion-free quotients are CS-groups. G is called a $\overline{C S}$-group if all quotients of all subgroups of G are CS-groups. F.C. Tang has raised the question whether torsion-free polycyclic groups are CS-groups. Example 2 at the end of this section shows this is not so. On the positive side we have the following results.

PROPOSITION 2. Every poly-infinite-cyclic group is a CS-group.
In fact the class of poly-infinite-cyclic groups can be replaced by a larger class, which also figures in the next theorem. We define a class y of abelian groups by:
$A \in Y \Leftrightarrow A$ contains a free abelian subgroup B of finite rank such that A / B is a periodic group with finite primary components.

Let y_{0} be the class of torsion-free y-groups.
PROPOSITION 2'. Every P_{0}-group is a CS-group.
Proposition 2 obviously follows from this.
THEOREM D. A torsion free soluble group G has a CS*-group of finite index if and only if G is a $P Y$-group of finite rank.

THEOREM E. Every abelian-by-nilpotent supersoluble group is a $\overline{\mathrm{CS}}-$ group.

Since every polycyclic group has a torsion-free subgroup of finite index, it follows from Theorem D that every polycyclic group has a CS*subgroup of finite index.

At the end of this section we give several examples to show
(i) not every poly-infinite-cyclic group is a CS*-group,
(ii) there exists a metabelian CS-group G with a subgroup A such that every torsion-free quotient of G is a CS-group but A has a torsion-free quotient that is not a CS-group.
'The proofs of Proposition 2' and Theorem D require a little preparation. The following elementary facts about Y-groups can be established by routine arguments.

LEMMA 15. (i) $Y=Q S Y$.
(ii) PY is PQS-closed.
(iii) Every abelian $P Y$-group belongs to Y.

If G is any group, let G^{*} denote the smallest normal subgroup of G such that G / G^{*} is torsion-free abelian. Clearly, if G has a finite series with torsion free abelian factors, then the series $G=G_{0} \geq G_{1} \geq G_{2} \ldots$, defined by $G_{i+1}=G_{i}^{*}$ for $i \geq 0$, is a series of characteristic subgroups of G reaching the identity after finitely many steps. If furthermore $G \in P Y$, then Lemma 15 shows that the factors of this series will be y_{0}-groups. Hence we have

LEMMA 16. A group G belongs to P_{0} if and only if G has a finite series of characteristic subgroups with y_{0}-factors.

We note in passing, though it will not affect our arguments, that every y_{0}-group has finite rank and so has a finite series with torsionfree factors of rank one; also an additive subgroup A of the rationals belongs to y_{0} if and only if, for each prime p, there exists an integer $k(p)$ such that A contains no rational of the form $a / p^{k(p)}$ where a is a non-zero integer prime to p.

We also require
LEMMA 17. Every PY-group is residually finite.
This follows from [12], Theorem 9.31.
Proof of Proposition 2'. Let G be a $P Y_{0}$-group. By Lemma 16, G has a finite characteristic series with y_{0}-factors. We use induction on the length of such a series, and so we may assume that G has a characteristic Y_{0}-subgroup A such that G / A is a CS-group. It suffices to show that if $1 \neq x \in A$ and p is any prime, then there exists a normal subgroup B of G such that $|G: B|<\infty$ and $B x$ has order p.

By Lemma 17, there exists a subgroup A_{1} of A such that $\left|A: A_{1}\right|<\infty$, $x \vDash A$ and $x^{p} \in A_{1}$. If $t=\left|A: A_{1}\right|$, then A / A^{t} is of finite rank and finite exponent and so is finite. Therefore, replacing A_{1} by A^{t}, we may assume that A_{1} is characteristic in A. Taking A_{1} maximal subject to being a characteristic subgroup of finite index in A containing x^{p} but not containing x, we find that $A_{1} x$ has order p exactly. By Lemmas 15 and 16 , B / A_{1} is residually finite, so there exists a normal subgroup B of G such that $|G: B|<\infty$ and $B \cap A=A_{1}$. Clearly $B x$ has order P, as required.

Proof of Theorem D. Let G be a torsion free soluble group containing a CS*-subgroup of finite index. Since the additive group of rationals is not a CS-group, but is a homomorphic image of a free abelian group of countably infinite rank, G cannot contain a free abelian subgroup of infinite rank. Hence every abelian subgroup of G has finite rank. By a theorem of Kargapolov [9], G has finite rank. Theorem F now shows that (see §4), G has a subgroup H of finite index such that $H / F(H)$ is torsion free abelian. Since G has a CS*-subgroup of finite index, we may assume H is a CS*-group. Now H has a finite series with torsion-free abelian factors. This can be refined to a similar series in which the factors have rank 1 . Since H is a CS*-group, these factors are CS-groups, and so cannot contain non trivial elements of infinite p-height for any prime p. It is easy to see that a torsion free abelian group of rank one with no elements of infinite p-height for any p belongs to Y_{0}. Therefore G is a finite extension of a $P Y_{0}$-group and belongs to PY.

Conversely, suppose $G \in P^{Y}$ and G has finite rank. As above, but using the full force of Theorem F, we see that G has a subgroup H of finite index all of whose torsion free quotients belong to $P_{0} y_{0}$. By Proposition 2', H is a CS*-group.

Proof of Theorem E. Let G be an abelian-by-nilpotent supersoluble group. Since such groups satisfy the maximal condition on subgroups it suffices to obtain a contradiction from the assumption that B is not a CS-group while all its proper quotients are. Then $G \neq 1$ so G contains
a non-trivial cyclic normal subgroup N. By Lemma 1 , if $l \neq M \triangleleft G$ then $M \cap N \neq 1$.

Case 1. N is infinite. Let $1 \neq x \in G$ and p divide $o(x)$. If $\langle x\rangle \cap N=1$ then $O(N x)=O(x)$ and since G / N is a CS-group we can find a finite quotient of G / N in which the image of $N x$ has order p. Otherwise $\langle x\rangle$ is infinite cyclic and if $N=\langle y\rangle$ and t is the order of $x \bmod N$, which is necessarily finite, then $x^{t}=y^{m}$ for some $m \geq 1$.

Let $L=\left\langle y^{m P}\right\rangle \Delta G$. Then $L x$ has order $t p$ in G / L which is a CS-group. Thus G / L has a finite quotient in which the image of x has order p.

Case 2. N is finite. Then we may suppose $|N|=p$, a prime. Since $M \cap N \neq 1$ if $1 \neq M \triangleleft G, M \geq N$ for all $1 \neq M \triangleleft G$. Thus N is the monolith of G. Let F denote the Fitting subgroup of G. Then $Z=Z(F)$ must be a finite p-group since N is contained in every characteristic subgroup of Z. Thus F is a finite p-group and hence G is finite. Let A be the nilpotent residual of G. If $A=1$ then G is a finite p-group and a moment's thought shows that G is a CS-group, a contradiction. Hence $A \neq 1$. By hypothesis A is abelian. Also $N \leq A$ so that A is a finite p-group. Thus ([4], Theorem 5.15) G splits over A as $G=A \times B$ say, where $C_{B}(A)=1$ since $C_{B}(A) \triangleleft G$ and $N \neq C_{B}(A)$. Hence $C_{G}(A)=A$. Let $B=P \times Q$ where P is a p-group and Q a p^{\prime}-group. Since G is supersoluble, $Q^{\prime} \leq F$ and clearly $F=A P$. Thus $Q^{\prime}=1$, and Q is abelian. If $1 \neq x \in Q$ then $A=C_{A}(x) \times[A, x]$ and since Q is abelian and $[P, x]=1$, both factors are normal in G. Since N is the monolith of G, one of these factors must be trivial, and since $x \notin A=C_{G}(A)$, we have $C_{A}(x)=1$. Hence $C_{G}(x)=B$.

Now let $y \in G$ and n be a divisor of $o(y)$. If y is a p-element then we can find a quotient of G in which the image of y has order n since G has a normal series with factors of prime exponent. Otherwise y is conjugate to an element $z x$ where z is a p-element, $l \neq x \in Q$ and $[x, z]=1$. Hence by the previous paragraph, $y \in B$. So $O(y)=O(A y)$. Since all proper quotients of G are CS-groups, we can find a quotient of G / A in which the image of y has order n. We have thus reached a final contradiction and so established the result.

We now give the examples promised earlier.
EXAMPLE 2. Let
$G=\left\{a, b, c, t ; a^{t}=b, b^{t}=a^{-1} b^{-1},[a, b]=c\right.$,

$$
\left.[a, c]=[b, c]=1, t^{9}=c\right\rangle
$$

This group is torsion free (see [2]). It is not a CS-group because there is no normal subgroup K of G such that $K t$ has order two in G / K. For if $t^{2} \in K$ then $\left[t^{2}, b, a\right]=[b, a]=c^{-1} \in K$. Thus $c=t^{9} \in K$ and hence $t \in K$. Observe that G is a quotient of the group

$$
J=\left\langle a, b, c, t ; a^{t}=b, b^{t}=a^{-1} b^{-1},[a, b]=c,[a, c]=[b, c]=1\right\rangle
$$

which is poly-infinite-cyclic and hence a CS-group by Proposition 2. Thus poly-infinite cyclic groups are CS but not CS*-groups.

EXAMPLE 3. Start with an infinite cyclic group $\langle x\rangle$ and form the module

$$
A=\mathbb{Z}\langle x\rangle /(f(x))
$$

where $f(x)=2 x^{2}+x+7$. Then A is a finitely generated $\mathbb{Z}(x)$-module and it is not p-divisible for any prime p since $f(x)$ does not reduce to a unit mod p for any prime p. It is easy to verify that $G=A \times\langle x\rangle$ is a metabelian minimax CS-group; every torsion free quotient of G is a CS-group but the subgroup A of G has a torsion free quotient that is not a CS-group. The only torsion free quotients of G are $G, G / A$ and 1 .

EXAMPLE 4. The group $G=\left(a, b, ; a^{b}=a^{2}\right)$ is a finitely generated torsion free soluble group with finite rank that has no CS-subgroups of finite index.

EXAMPLE 5. The group $\left(u, v ;\left(u^{2}\right)^{v}=u^{-2},\left(v^{2}\right)^{u}=v^{-2}\right)$ is metabelian and supersoluble. Thus by Theorem E it is a CS-group. It is torsion free but not poly-infinite-cyclic. Thus a torsion free polycyclic group does not have to be poly-infinite-cyclic to be a CS-group.

4.

needed in the proof of Theorem D.
DEFINITION. Let G be a soluble group with finite rank. We say G is FI (Fitting isolated) if whenever $B=K / L \quad(L \triangleleft K \leq G)$ is a torsion free section of G, then $H / F(H)$ is torsion free abelian, where $F(H)$ denotes the Fitting subgroup of H. The class of FI-groups is clearly Q and S closed.

THEOREM F. If G is any torsion free soluble group with finite ronk, then G contains an FI-subgroup of finite index.

Proof. We may assume that $G / F(G)$ is abelian. Let $1=Z_{0}<Z_{1}<\ldots<Z_{c}=F(G)$ be the upper central series of $F(G)=F$, and $c_{i}=C_{G}\left(Z_{i} / Z_{i-1}\right), i=1, \ldots, c$. Then $F=\bigcap_{i=1}^{c} c_{i}$, and each of the groups G / C_{i} can be thought of as an abelian group of matrices over Q. The torsion subgroup of each G / C_{i} is finite ([12], 9.33), and it follows that the torsion subgroup T / F of G / F is finite. Hence G / F splits over T / F, and there exists a subgroup G_{1} of finite index in G, such that G_{1} / F is torsion free. Since $F=F\left(G_{1}\right)$, we may even assume that $G / F(G)$ is torsion free abelian.

The proof now falls into two parts.
(1) There exists a subgroup G_{0} of G such that $G_{0} \geq F(G)$, $\left|G: G_{0}\right|<\infty$ and $H / F(H)$ is torsion free, for every $H \leq G_{0}$.
(2) G_{0} is FI.

We prove (1) by induction on $h(G)$ the Hirsch number of G. If $h(G)=0$ there is nothing to do, so assume $h(G)>0$. Let B be an abelian normal subgroup of minimal rank of G contained in the centre $Z(F(G))$ of $F(G)$, and let $A=G \sqrt{B}$. Then $A \leq F(G)$ since $G / F(G)$ is torsion free, and hence, by the theory of isolators in nilpotent groups, [6], A is a subgroup of $Z(F(G))$. By induction, there is a subgroup G_{1} / A of G / A, containing $F(G / A)$ and hence $F(G) A / A$, such that $\left|G: G_{1}\right|<\infty$ and G_{1} / A satisfies (1).

Let $C=C_{G}(A)$. Then $C \geq F(G)$, and we have seen above that the torsion subgroup of G / C is finite, so that G / C contains a torsion free subgroup G_{2} / C of finite index. Let $G_{0}=G_{1} \cap G_{2}$. Then $\left|G: G_{0}\right|<\infty$ and $\quad G_{0} \geq F(G)$.

Now let $H \leq G_{0}$. If $H \cap A=1$, then $H \simeq H A / A$, and the fact that $H / F(H)$ is torsion free follows from the properties of G_{1} / A. Suppose that $H \cap A \neq 1$, and let h be an element of H such that $h^{n} \in F(H)$, for some $n \geq 1$. Since $H \cap A \leq F(H)$, we have
$\left[H \cap A, h^{n}, \ldots, h^{n}\right]=1$, and hence $C_{H \cap A}\left(h^{n}\right) \neq 1$. Hence $C_{A}\left(h^{n}\right)$ is a non trivial isolated subgroup of A, and is normal in G since G / C is abelian. Therefore $h^{n} \in C$. But $G_{0} /\left(G_{0} \cap C\right)$ is torsion free. Hence $h \in C$. If $F / A \cap H=F(H /(A \cap H))$, we also know by induction that $h \in F$. Hence $h \in \mathcal{C}_{F}(A \cap H)$, a nilpotent normal subgroup of H. Therefore $f \in F(H)$, as required.

Next we will prove (2). We have to show that if G is a torsion free solvable group with finite rank and

$$
\begin{equation*}
H / F(H) \text { is torsion-free abelian for every } H \leq G \text {, } \tag{*}
\end{equation*}
$$

then G / N has the property (*) whenever $N \triangleleft G$ and G / N is torsion free. Suppose this is false, and let r be the smallest integer for which there exists a counterexample G with $h(G)=r$. Among all pairs (G, N) which furnish a counterexample with $h(G)=r$, choose one with $h(N)$ minimal. Then G / N contains a subgroup H / N such that $(H / N) / F(H / N)$ is not torsion free. We may clearly assume that $H=G$.

Let $F / N=F(G / N)$, and choose an element $t \in G \backslash F$ such that $t^{m} \in F$ for some $m>0$. Let $G_{1}=F(G)(t), N_{1}=N \cap G_{1}, F_{1}=F \cap G_{1}$. Then $G_{1} / N_{1} \simeq G_{1} N / N$, and under this isomorphism, F_{1} / N_{1} corresponds to $\left(F \cap G_{1}\right) N / N=F / N \cap G_{1} N / N=F\left(G_{1} N / N\right)$, as $G_{1} N / N \triangleleft G / N$. We have $t \in G_{1}$, $t \notin F_{1}, t^{m} \in F_{1}$. Thus $\left(G_{1}, N_{1}\right)$ is a counterexample, so we may assume that $G=G_{1}$, that is $G=F(G)\langle t\rangle$.

Next we notice that, if $Z=Z(F(G))$, then

$$
\begin{equation*}
C_{2}(t)=1 \tag{1}
\end{equation*}
$$

Clearly $C_{Z}(t)=Z(G)$. Let Y denote this subgroup, which is isolated in G since Z is. By the minimality of $h(N)$, there is no normal subgroup M of G such that $1<M<N$ and G / M is torsion-free. Clearly $N \cap F(G) \neq 1$, and so $N \cap Z \neq 1$. Since Z is isolated in $F(G)$, [6], and $G / F(G)$ is torsion free Z is isolated in G, so $N \leq 2$. Hence $Y N \leq 2$, and the isolator $G \sqrt{Y N}$ of $Y N$ in G is an abelian normal subgroup of G. Also $\sqrt{Y N} / N=V$ is a torsion free abelian normal subgroup of G / N, and $V / C_{V}(G)$ is periodic, since $C_{V}(G) \geq Y N / N$. Hence $[V, G]=1$, that is $\sqrt{Y N} / N \leq Z(G / N)$.

Now trivial arguments show that G / Y has the property (*). If $Y \neq 1$, then the minimality of $h(G)$ shows that $G / \sqrt{Y N}$ has the property (*). Hence G / F is torsion free, a contradiction. This proves (1).

Clearly $Z / N \leq F / N$, and since $t^{m} \in F$, we have

$$
\left[z, t^{m}, \ldots, t^{m}\right] \leq N
$$

In particular, if $Z>N$, then $C_{Z / N}\left(t^{m}\right)=K / N \neq 1$. Now commutation with t^{m} induces an endomorphism ζ of K whose image lies in N and so has smaller rank than K. Hence ker $\zeta=C_{K}\left(t^{m}\right) \neq 1$. Let $L=C_{K}\left(t^{m}\right)$.

Then $t^{m} \in F(L(t))$, and by (*), $t \in F(L(t))$, that is $\left.L K t\right\rangle$ is nilpotent. Therefore $[L, t, \ldots, t]=1$, and $C_{L}(t) \neq 1$. This contradicts (1). We deduce that $Z=N$.

It clearly follows that $F(G)^{\prime} \neq 1$. Let $U / F(G)^{\prime}$ be the torsion subgroup of $F(G) / F(G)^{\prime}$. Then $N \leq U$, as $N \cap F(G)^{\prime} \neq 1$. Since $F(G) \leq F$, we deduce that

$$
\left[F(G), t^{m}, \ldots, t^{m}\right] \leq U
$$

Let c be the nilpotency class of $F(G)$. Then

$$
1 \neq \gamma_{c}(F(G)) \leq N,
$$

where $\left\{\gamma_{i}(X)\right\}$ is the lower central series of a group X.
If $x_{1}, \ldots, x_{c} \in F(G)$, then since $\gamma_{c}(F(G))$ is torsion free, the value of $\left[x_{1}, \ldots, x_{c}\right]$ only depends on the value of x_{1}, \ldots, x_{c} modulo U. We obtain a well-defined $\langle t\rangle$-module epimorphism of $F(G) / U \otimes \ldots \otimes F(G) / U$ (with c factors) onto $\gamma_{c}(F(G))$, namely

$$
x_{1} U \otimes \ldots \otimes x_{c} U \rightarrow\left[x_{1}, \ldots, x_{c}\right]
$$

(cf. [12], Part l, p. 55). The tensor product is to be viewed as a 〈t〉module via the diagonal action, the action on the individual factors being by conjugation. Since $F(G) / U$ has a finite series with t^{m}-trivial factors, so does the tensor product, and hence also $\gamma_{c}(F(G))$ (cf. [12], Part 1, p. 56). Hence $C_{N}\left(t^{m}\right) \neq 1$. Arguing as in the previous paragraph, we deduce that $C_{N}(t) \neq 1$, and obtain a contradiction to (1). This concludes the proof.

We note the following useful properties of FI-groups, which are extensions of facts well known for torsion free nilpotent groups.

LEMMA 16. Let G be a FI-group, $N \triangleleft H \leq G$, and suppose that H / N is torsion free. Let $x, y \in H / N$. Then
(i) if $x^{r}=y^{s}(x, s \neq 0)$, then (x, y) is cyclic;
(ii) if $x^{r}=y^{r} \quad(x \neq 0)$ then $x=y$;
(iii) if $\left[x^{r}, y^{s}\right]=1(r, s \neq 0)$ then $[x, y]=1$.

Proof. We may clearly suppose that $G=(x, y)$.
(i) Clearly $x^{r}=y^{8} \in Z(G) \leq F(G)$. Since G is an FI-group it follows that $Z(G)$ is isolated in G; so $x, y \in Z(G)$ and G is torsion free abelian. Hence G is cyclic.
(ii) follows from (i).
(iii) Let $z=x^{r}$. Then $y^{s}=\left(y^{s}\right)^{z}=\left(y^{z}\right)^{s}$. From (ii) we obtain $y=y^{z}$, that is $\left[x^{r}, y\right]=1$. Repeating the argument we get
$[x, y]=1$.
We make a final note before ending the paper. Recall the definition of a CS-group G. For any given cyclic group B and subgroup $A \leq B$ with B / A finite, there exists $N \triangleleft G$ with G / N finite and $N \cap B=A$. If we were to drop the condition that N be of finite index in G, then we get a larger class, which, for convenience, we shall denote by X. Then it can be shown that every group G in $X \cap L$ is a CS-group where L is any quotient closed subclass of residually finite groups. Also the examples constructed in ([7], Theorem 1) show that a finitely generated centre-by-metabelian X-group that is residually finite p for all but one specified prime p does not need to be a CS-group. If every element of a group G is of prime order then obviously G is an X-group. If in addition G is residually finite, then G is a CS-group. Thus groups in the Burnside variety B_{p}, p a prime, are X-groups and groups in the variety generated by A_{5} are CS-groups, since they are residually finite as shown in ([9], Theorem 1).

References

[1] R.B.J.T. Allenby and C.Y. Tang, "The residual finiteness of some onerelator groups", J. Algebra 71 (1981), 132-140.
[2] G. Baumslag, A. Karrass and D. Solitar, "Torsion-free groups and amalgamated products", Proc. Amer. Math. Soc. 24 (1970), 688-690.
[3] С.Д. Верман [S.D. Berman], "Число негриводимых представлений конечиой группы над произволъным полем" [The number of irreducible representations of a finite group over an arbitrary field], Dokl. Akad. Nauk SSSR 106 (1956), 767-769.
[4] Roger Carter and Trevor Hawkes, "The F-normalizers of a finite soluble group", J. Algebra 5 (1967), 175-202.
[5] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston and London, 1968).
[6] Philip Hall, Nilpotent groups (Canadian Mathematical Congress Summer Seminar, University of Alberta, 1957). Reprinted: The Edmonton notes on nilpotent groups (Mathematical Notes, Queen Mary College, London, 1969).
[7] B. Hartley, "On residually finite p-group", Symposia Mathematica, Vol. XVII, 225-234 (Convegno Sui Gruppi Infinite, INDAM, Roma, 1973. Academic Press, New York and London, 1976).
[8] Trevor Hawkes, "On metanilpotent Fitting classes", J. Algebra 63 (1980), 459-483.
[9] М.И. Каргаполов [м.1. Kargapolov], "О разрашимхх группах конечного ранга" [On solvable groups of finite rank], Algebra i Logika Sem. 1 (1962), no. 5, 37-44.
[10] A.Ю. Олншанский [A.Ju. Ol'sanskiy], "Многообразмя финитно аппроксимруемхх групп", Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 915-927. English Translation: "Varieties of finitely approximable groups", Math. USSR Izv. 3 (1969), 867-877.
[11] John Poland, "Finite potent groups", Bull. Austral. Math. Soc. 23 (1981), 111-120.
[12] Derek J.S. Robinson, Finiteness conditions and generalized soluble groups, Parts 1 and 2 (Ergebnisse der Mathematik und ihrer Grenzgebie, 62, 63. Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[13] M. Suzuki, "Finite groups with nilpotent centralizers", Trans. Amer. Math. Soc. 99 (1961), 425-470.

Department of Mathematics,
The University, Manchester MI 3 9PL, England;
Department of Pure Mathematics, University College, Cardiff, Cardiff CFI IXL, United Kingdom;

Department of Mathematics, University of Alberta,
Edmonton, Canada T6G 2 GI.

