THE DISCONTINUITY POINT SETS OF QUASI-CONTINUOUS FUNCTIONS

OLEKSANDR V. MASLYUCHENKO

It is proved that a subset E of a hereditarily normal topological space X is a discontinuity point set of some quasi-continuous function $f: X \to \mathbb{R}$ if and only if E is a countable union of sets $E_n = \overline{A}_n \cap \overline{B}_n$ where $\overline{A}_n \cap B_n = A_n \cap \overline{B}_n = \emptyset$.

1. INTRODUCTION

We deal with an old problem of the construction of a function with a given discontinuity point set. Separately continuous functions with given discontinuity point sets were constructed in [6, 5, 1, 8]. A complete characterisation of discontinuity point sets for separately continuous functions defined on metrisable spaces was obtained in [9]. An exact problem on construction of functions with given oscillations was considered in [7, 2, 4, 10, 11, 12]. Note that the domain space of all functions was assumed to be metrisable or "near" metrisable in all above papers.

In our note we characterise discontinuity point sets of quasi-continuous functions defined on a hereditarily normal space. We prove in Theorem 4.2 that a subset E of a hereditarily normal topological space X is a discontinuity point set of some quasi-continuous function $f: X \to \mathbb{R}$ if and only if E is a σ -junction set (that is, E is a countable union of sets $E_n = \overline{A_n} \cap \overline{B_n}$ where $\overline{A_n} \cap B_n = A_n \cap \overline{B_n} = \emptyset$).

In [12, Theorem 2.11.1] it was proved that a function $\varphi : X \to [0, +\infty]$ is the oscillation of some quasi-continuous function $f : X \to \mathbb{R}$ if and only if the sets $\varphi^{-1}([\varepsilon, +\infty])$ are closed nowhere dense, for each $\varepsilon > 0$. But it is easy to see that for any meager F_{σ} -set $E \subseteq X$ there is a function $\varphi : X \to [0, +\infty]$ such that $E = \varphi^{-1}(\{0\})$ and the sets $\varphi^{-1}([\varepsilon, +\infty])$ are closed nowhere dense, for each $\varepsilon > 0$. So, a subset E of a metrisable space X is a discontinuity point set of some quasi-continuous function $f : X \to \mathbb{R}$ if and only if E is a meager F_{σ} -set.

But this fact may to be implied also from our the main result (Theorem 4.2). Indeed, Theorem 2.4 yields that in the metrisable case the σ -junction set is exactly the meager F_{σ} -set.

Moreover, in Theorem 4.3 we obtain that if X is a perfectly normal hereditary quasiseparable (or simple, hereditary separable) Frechet-Uryson space then a subset E of X

Received 16th October, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

is a discontinuity point set of some quasi-continuous function $f: X \to \mathbb{R}$ if and only if E is a meager F_{σ} -set.

2. JUNCTION SETS

A subset E of a topological space X we call a junction set if there are subsets A and B of X such that $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ and $E = \overline{A} \cap \overline{B}$.

PROPOSITION 2.1. Let E be a junction set of a topological space X. Then E is closed nowhere dense in X.

PROOF: Let A and B be subsets of X such that $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ and $E = \overline{A} \cap \overline{B}$. Then obviously E is closed. Thus for nowhere density of E it is enough to show that int $E = \emptyset$. Since int $\overline{A} \cap B \subseteq \overline{A} \cap B = \emptyset$ then int $\overline{A} \cap \overline{B} = \emptyset$. Hence int $E = \operatorname{int} \overline{A} \cap \operatorname{int} \overline{B} \subseteq \operatorname{int} \overline{A} \cap \overline{B} = \emptyset$.

Under some additional assumptions on X (say, X is metrisable) we shall prove that the junction sets are exactly the closed nowhere dense sets.

Recall some definitions. A family $(A_i)_{i \in I}$ of subsets of a topological space X is said to be discrete (locally finite) if any point of X has a neighbourhood which intersects with at most one (a finite number) of A_i 's. A system $\mathcal{A} \subseteq 2^X$ is calls σ -locally finite if \mathcal{A} is a countable union of locally finite systems. A system \mathcal{A} is said to be a net if for any point $x \in X$ and neighbourhood U of x there is $A \in \mathcal{A}$ with $x \in A \subseteq U$. A subset $S \subseteq X$ we call strongly discrete if there exists an discrete family of open sets U_s , $s \in S$, such that $s \in U_s$ for each $s \in S$. It is easy to see that any closed discrete subset of a paracompact space is strongly discrete. A subset $S \subseteq X$ will be called strongly σ -discrete if S is a countable union of strongly discrete sets. A subset $E \subseteq X$ we shall call strongly $\overline{\sigma}$ -discrete if it contains a dense strongly σ -discrete subset. A topological space X will be called hereditarily quasi-separable if every subset of X is strongly $\overline{\sigma}$ -discrete in X.

PROPOSITION 2.2. Let X be a paracompact space with a σ -locally finite net A. Then X is hereditary quasi-separable.

PROOF: Suppose $E \subseteq X$. We set $\mathcal{A}_E = \{A \in \mathcal{A} : A \cap E = \emptyset\}$ and for each $A \in \mathcal{A}_E$ choose an $s_A \in A \cap E$. Since \mathcal{A} is a net then the set $S = \{s_A : A \in \mathcal{A}_E\}$ is dense in E. By σ -locally finiteness of \mathcal{A} we obtain that S is a countable union of closed discrete sets. Hence S is strongly σ -discrete, because X is paracompact. Thus, E is strongly $\overline{\sigma}$ -discrete.

Recall that a topological space X is said to be a *Frechet-Uryson space* if for any $A \subseteq X$ and $x \in \overline{A}$ there exists a sequence of points $x_n \in A$ such that $x_n \to x$. An $E \subseteq X$ is called a \overline{G}_{δ} -set if there is a sequence of open sets $G_n \supseteq E$ with $E = \bigcap_{n=1}^{\infty} \overline{G}_n$

THEOREM 2.3. Let X be a Frechet-Uryson space and E be a closed nowhere dense strongly $\overline{\sigma}$ -discrete \overline{G}_{δ} -subset of X. Then E is a junction set in X.

PROOF: Let S be a dense strongly σ -discrete subset of E and S_n be strongly discrete sets with $S = \bigcup_{n=1}^{\infty} S_n$. Without lost of generality we may assume that S_n are disjoint. Fix a decreasing sequence of open subsets $G_n \supseteq E$ with $E = \bigcap_{n=1}^{\infty} \overline{G}_n$. For arbitrary $n \in \mathbb{N}$ pick an open discrete family $(U(s) : s \in S)$ so that $s \in U(s) \subseteq G_n$ for $s \in S_n$. We construct a family $(t_k(s) : k \in \mathbb{N}, s \in S)$ so that for arbitrary $k, k', k'' \in \mathbb{N}$ and $s, s', s'' \in S$ we have

- (1) $t_k(s) \in U \setminus E;$
- (2) $t_{k'}(s') \neq t_{k''}(s'')$ if $(k', s') \neq (k'', s'')$;
- (3) $t_k(s) \to s \text{ as } k \to \infty$.

Suppose that $t_k(s)$ are already constructed for some $m \in \mathbb{N}$ and each $s \in \bigcup_{n < m} S_n$ and $k \in \mathbb{N}$ so that (1)-(3) hold. Let us construct $t_k(s)$ for $s \in S_m$ and $k \in \mathbb{N}$. Put $T_n = \{t_k(s) : k \in \mathbb{N}, s \in S_n\}$ for n < m. Since the family $(U(s) : s \in S_n)$ is discrete and $S_n \cap S_m = \emptyset$ for n < m then (1) and (3) imply that $S_m \cap \overline{T}_n = \emptyset$ for n < m. Now fix $s \in S_m$. Since X is a Frechet-Uryson space and

$$s \in \overline{U(s) \setminus \left(E \cup \bigcup_{n < m} T_n\right)}$$

then there is a sequence $t_k(s) \in U(s) \setminus (E \cup \bigcup_{n < m} T_n)$ such that $t_k(s) \to s$. Obviously, (1)-(3) are valid.

Now set

$$A_n = \{t_{2k-1}(s) : k \in \mathbb{N}, s \in S_n\},\$$

$$B_n = \{t_{2k}(s) : k \in \mathbb{N}, s \in S_n\},\$$

$$A = \bigcup_{n=1}^{\infty} A_n \text{ and}\$$

$$B = \bigcup_{n=1}^{\infty} B_n.$$

Since $(U(s) : s \in S_n)$ are discrete then $\overline{A}_n = A_n \cap S_n$ and $\overline{B}_n = B_n \cap S_n$. Taking into account that $U(s) \subseteq G_n$ for $s \in S_n$ we obtain that $A_n, B_n \subseteq G_n$. Then for each $m \in \mathbb{N}$ one has

$$\overline{A} = \bigcup_{n > m} \overline{A}_n \cup \bigcup_{n \ge m} \overline{A}_n \subseteq \bigcup_{n < m} (A_n \cup S_n) \cup \overline{G}_m \subseteq A \cup \overline{G}_n.$$

Recall that $\bigcap_{m=1}^{\infty} \overline{G}_m = E$. Hence $\overline{A} \subseteq A \cup E$. Besides,

$$E = \overline{S} = \bigcup_{n=1}^{\infty} S_n \subseteq \bigcup_{n=1}^{\infty} \overline{A}_n = \overline{A}.$$

[4]

Hence $\overline{A} = A \cup E$. Analogously, $\overline{B} = B \cup E$. Thus, $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ and $E = \overline{A} \cap \overline{B}$. Therefore E is a junction set.

By the above results we deduce the following.

THEOREM 2.4. Suppose that for a Frechet-Uryson space X at least, one of the following conditions holds

- (i) X is a hereditarily separable perfectly normal;
- (ii) X is a hereditarily quasi-separable perfectly normal;
- (iii) X is a regular space with a countable net;
- (iv) X is a paracompact with a σ -locally finite net;
- (v) X is metrisable.

Then a subset E of X is a junction set in X if and only if E is closed nowhere dense.

Remark that the assumption X be a Frechet-Uryson space is essential in the above two theorems. Indeed, consider the subspace $X = \mathbb{N} \cup \{\varphi\}$ of the Čech-Stone compactification $\beta\mathbb{N}$ of the countable discrete space N where $\varphi \in \beta\mathbb{N} \setminus \mathbb{N}$. Then X has conditions (i)-(iv) of Theorem 2.4. But nevertheless, $E = \{\varphi\}$ is a closed nowhere dense set in X which is not junction.

3. A proof that the discontinuity point set of a quasi-continuous function is a σ -junction set

We recall that a function $f : X \to Y$ is called quasi-continuous if $f^{-1}(G) \subseteq \overline{\operatorname{int} f^{-1}(G)}$ for each open $G \subseteq Y$. A subset E of a topological space X we call a σ -junction set if there is a sequence of junction sets E_n with $E = \bigcup_{n=1}^{\infty} E_n$.

THEOREM 3.1. Let X be a topological space, Y be a separable metrisable space and $f: X \to Y$ be a quasi-continuous function. Then the discontinuity point set D(f)of the function f is σ -junction set.

PROOF: Let \mathcal{V} be a countable base of Y. Consider a countable system

$$\{(V,W)\in\mathcal{V}\times\mathcal{V}:\overline{V}\subseteq W\}=\{(V_n,W_n):n\in\mathbb{N}\}.$$

Set $A_n = \inf f^{-1}(V_n)$ and $B_n = \inf f^{-1}(Y \setminus \overline{W}_n)$. Since $f(A_n) \subseteq V_n$ and $f(B_n) \subseteq Y \setminus W_n \subseteq Y \setminus V_n$ then $A_n \cap B_n = \emptyset$. Taking into account that A_n and B_n are open one obtains $\overline{A}_n \cap B_n = A_n \cap \overline{B}_n = \emptyset$. Thus, $E_n = \overline{A}_n \cap \overline{B}_n$ are junction sets. Besides, $\overline{f(A_n)} \cap \overline{f(B_n)} = \emptyset$ since $\overline{V}_n \subseteq W_n$. Therefore $E_n \subseteq D(f)$. It is left to prove that $D(f) \subseteq \bigcup_{n=1}^{\infty} E_n$.

Given $x_0 \in D(f)$, then there exists a neighbourhood V of $f(x_0)$ with $x_0 \in \overline{f^{-1}(Y \setminus V)}$. Since \mathcal{V} is a base of Y then there is $n \in \mathbb{N}$ such that $f(x_0) \in V_n$ and

 $\overline{W}_n \subseteq V$. But f is quasi-continuous. Then $f^{-1}(V_n) \subseteq \overline{A}_n$ and

$$f^{-1}(Y \setminus V) \subseteq f^{-1}(Y \setminus W_n) \subseteq \overline{A}_n.$$

Thus,

$$x_0 \in f^{-1}(V_n) \cap \overline{f^{-1}(Y \setminus V)} \subseteq \overline{A}_n \cap \overline{B}_n = E_n$$

and we obtain $D(f) \subseteq \bigcup_{n=1}^{\infty} E_n$.

4. A CONSTRUCTION OF A QUASI-CONTINUOUS FUNCTION WITH A GIVEN DISCONTINUITY POINT SET

Recall that a function $f: X \to \overline{\mathbb{R}} = [-\infty, +\infty]$ is said to be upper (lower) semicontinuous if the set $f^{-1}([-\infty, y))$ (respectively, $f^{-1}((y, +\infty))$) is open for each $y \in \mathbb{R}$. By an upper (lower) Baire function of f we understand the function f^* (respectively, f_*) defined by

 $f^*(x) = \inf_{x \in \operatorname{int} U} \sup f(U)$ and $f_*(x) = \sup_{x \in \operatorname{int} U} \inf f(U)$ for $x \in X$.

An upper (lower) Baire function is upper (lower) semi-continuous.

PROPOSITION 4.1. Let X be a topological spaces and $f: X \to \overline{\mathbb{R}}$ be an lower (upper) semi-continuous function. Then f^* (respectively, f_*) is quasi-continuous.

PROOF: Let f be, say, lower semi-continuous. Since f^* is upper semi-continuous then it remains to prove that f^* is lower quasi-continuous (that is, for given $x_0 \in X$, $y_0 < f^*(x_0)$ and a neighbourhood U_0 of x_0 there is an open nonempty set $U \subseteq U_0$ such that $f^*(x) > y_0$ when $x \in U$). Suppose $x_0 \in X$, $y_0 < f^*(x_0)$ and let U_0 be an open neighbourhood of x_0 . Since $y_0 < f^*(x_0) \leq \sup f(U_0)$ then there is an $x_1 \in U_0$ with $f(x_1) > y_0$. But f is lower semi-continuous. Then there exists an open neighbourhood $U \subseteq U_0$ of x_1 such that $f(x) > y_0$ on U. Finally, $f^*(x) \ge f(x) > y_0$ on U.

THEOREM 4.2. Let X be a hereditarily normal space and $E \subseteq X$. Then E is a discontinuity point set of some quasi-continuous function $f : X \to \mathbb{R}$ if and only if E is a σ -junction set.

PROOF: Let E_n be junction sets such that $E = \bigcup_{n=1}^{\infty} E_n$. Choose sets A_n and B_n such that $\overline{A}_n \cap B_n = A_n \cap \overline{B}_n = \emptyset$ and $E_n = \overline{A}_n \cap \overline{B}_n$. Fix $n \in \mathbb{N}$. Since $X \setminus E_n$ is normal, $A_n \cap E_n = B_n \cap E_n = \emptyset$ and $(\overline{A}_n \cap \overline{B}_n) \setminus E_n = \emptyset$ then by the Uryson lemma [3] there exists a continuous function $\tilde{f}_n : X \setminus E_n \to [0, 1]$ such that $\tilde{f}_n(x) = 0$ on A_n and $\tilde{f}_n(x) = 1$ on B_n . Define $f_n(x) = 0$ for $x \in E_n$ and $f_n(x) = \tilde{f}_n(x)$ for $x \in X \setminus E_n$. Since $\overline{f(A_n)} \cap \overline{f(B_n)} = \emptyset$ and $E_n = \overline{A}_n \cap \overline{B}_n$ then $E_n \subseteq D(f_n)$. But $f|_{X \setminus E_n}$ is continuous. Thus $E_n = D(f_n)$. Besides, the points $x \in E_n = D(f_n)$ are the minimum points of f_n . Therefore f_n is lower semi-continuous.

0

O.V. Maslyuchenko

Define $g = \sum_{n=1}^{\infty} (1/4^n) f_n$ and $f = g^*$. Since g is lower semi-continuous then f is quasicontinuous by Proposition 4.1. Let us prove that D(f) = E. First, if all f_n are continuous at a given point $x_0 \in X$ then so is g, and hence f. Thus, $E = \bigcup_{n=1}^{\infty} D(f_n) \supseteq D(f)$.

Given $x_0 \in E$, we show that $x_0 \in D(f)$. Let *n* be the least integer such that $x_0 \in E_n$. We set $\varepsilon = 1/4^n$, $u = \sum_{k < n} (1/4^k) f_k$ and $v = \sum_{k > n} (1/4^k) f_k$. Since $x_0 \notin E_k = D(f_k)$ for k < n then *u* is continuous at x_0 . Therefore there is an open neighbourhood *U* of x_0 such that $|u(x) - u(x_0)| < \varepsilon/9$ on for $x \in U$. Put $G = U \cap \inf f_n^{-1}([0, 1/9))$ and $H = U \cap \inf f_n^{-1}((8/9, 1])$. Since f_n is continuous on $X \setminus E_n \supseteq A_n$, B_n and $f_n(x) = 0$ on A_n and $f_n(x) = 1$ on B_n then $A_n \cap U \subseteq G$ and $B_n \cap U \subseteq H$. Hence $x_0 \in \overline{G} \cap \overline{H}$. Besides,

$$u(x) \leq \sum_{k>n} \frac{1}{4^k} = \frac{1/4^{n+1}}{1-(1/4)} = \frac{1}{3\cdot 4^n} = \frac{\varepsilon}{3}$$

for $x \in X$. Thus for $x \in G$ one has

$$g(x) = u(x) + \varepsilon f_n(x) + v(x) < u(x_0) + \frac{\varepsilon}{9} + \frac{\varepsilon}{9} + \frac{\varepsilon}{3} = u(x_0) + \frac{5\varepsilon}{9}$$

For $y \in H$ we obtain the converse inequality

$$g(y) \ge u(y) + \varepsilon f_n(y) > u(x_0) - \frac{\varepsilon}{9} + \frac{8\varepsilon}{9} = u(x_0) + \frac{7\varepsilon}{9}.$$

But since $f = g^*$ and the sets G and H are open then for any $x \in G$ and $y \in H$

$$f(x) \leq u(x_0) + \frac{5\varepsilon}{9} < u(x_0) + \frac{7\varepsilon}{9} \leq f(y)$$

From $x_0 \in \overline{G} \cap \overline{H}$ we finally obtain that f is discontinuous at x_0 .

Theorems 2.4 and 4.2 together imply the following.

THEOREM 4.3. Let for a Frechet-Uryson space X at least, one of the following conditions holds

- (i) X is a hereditarily separable perfectly normal;
- (ii) X is a hereditarily quasi-separable perfectly normal;
- (iii) X is a regular space with a countable net;
- (iv) X is a paracompact with a σ -locally finite net;
- (v) X is metrisable.

Then a subset E of X is the discontinuity point sets of some quasi-continuous function $f: X \to \mathbb{R}$ if and only if E is a meager F_{σ} -set.

۵

[6]

References

- J.C. Breckenridge and T. Nishiura, 'Partial continuity, quasi-continuity and Baire spaces', Bull. Inst. Math. Acad. Sinica. 4 (1976), 191-203.
- [2] Z. Duszynski, Z. Grande, and S. Ponomarev, 'On the ω-primitives', Math. Slovaca 51 (2001), 469-476.
- [3] R. Engelking, General topology, (Russian) (Mir, Moscow, 1986).
- [4] J. Ewert and S. Ponomarev, 'Oscillation and ω -primitives', Real Anal. Exchange 26 (2001), 687-702.
- [5] Z. Grande, 'Une caractérisation des ensembles des point de discontinuité des fonctions linéairement-continues', Proc. Amer. Math. Soc. 52 (1975), 257-262.
- [6] R. Kershner, 'The continuity of functions of many variables', Trans. Amer. Math. Soc. 53 (1943), 83-100.
- [7] P. Kostyrko, 'Some properties of oscillation', Math. Slovaca. 30 (1980), 157-162.
- [8] V.K. Maslyuchenko and V.V. Mykhaylyuk, 'On separately continuous functions defined on products of metrizable spaces', (Ukrainian), *Dopovidi Akad. Nauk. Ukrajini* (1993), 28-31.
- [9] V.K. Maslyuchenko and V.V. Mykhaylyuk, 'Charecterization of sets of discontinuity point of separately continuous functions of several variables on products of metrizable spaces', (Ukrainian), Ukrainian Math. Zh. 52 (2000), 740-747.
- [10] V.K. Maslyuchenko and O.V. Maslyuchenko, 'Construction of a separately continuous function a with given oscillation', (Ukrainian), Ukrainian Math. J. 50 (1998), 948-959.
- [11] V.K. Maslyuchenko, O.V. Maslyuchenko, V.V. Mykhaylyuk and O.V. Sobchuk, 'Paracompactness and separately continuous mappings', in *General Topology in Banach Spañes*, (T. Banakh and A. Plichko, Editors) (Nova Sci. Publ., Huntington, New York, 2001), pp. 147-169.
- [12] O.V. Maslyuchenko, The oscillation of separately continuous functions and topological games (Ukrainian), (Dissertation) (Chernivtsi, 2002).

Department of Mathematic Jurij Fed'kovych Chernivtsi National University vul Kotsyubyns'kolio 2 Cherniutsi 58012 Ukraine e-mail: mathan@chnu.cv.ua