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This work presents evidence of the relation between the dynamics of intense events in the
dissipative range of turbulence and the energy cascade. The generalised (Hölder) means
are used to construct signals that track the temporal evolution of intense enstrophy and
dissipation events in direct numerical simulations of isotropic turbulence. These signals
are remarkably time-correlated with the average dissipation signal, and with its large-scale
surrogate, despite describing only a small fraction of the flow domain, and they precede
the dissipation signal with a temporal advancement that grows with their intensity and that
scales in integral time units. Interpreted from a causal perspective, these results point to
the energy cascade as the driver of the intense events in the dissipative range. Moreover,
it is shown that the temporal advancements of the generalised means are consistent with
a local energy cascade, whereby eddies cascade in a time proportional to their turnover
time, causing intense eddies to reach the dissipative scales before weak eddies. These
results shed light on the dynamics of intense and extreme events in small-scale turbulence,
and provide empirical support to the phenomenological foundations of a broad class of
intermittency models based on the turbulence cascade.
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1. Introduction

The small-scale intermittency of turbulent flows was first detected decades ago (Batchelor
& Townsend 1949), but remains one of the most challenging problems in turbulence
theory. In the dissipative scales, the enstrophy (the square of the vorticity vector) and
the square of the rate-of-strain tensor concentrate in regions of the flow where they
become orders of magnitude more intense than the average, the more so the larger the
Reynolds number, apparently without bound (Sreenivasan & Antonia 1997; Buaria et al.
2019). These intense events organise in structures of theoretical and practical relevance
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whose origin and dynamics are not well understood (Jiménez et al. 1993; Yeung, Zhai &
Sreenivasan 2015; Buaria, Pumir & Bodenschatz 2020).

A persuasive explanation of the origin of these intense structures comes from models
supported by the theory of the energy cascade (Frisch 1995; Biferale 2003). A particularly
intuitive and successful class of models consists of those based on multiplicative cascades,
which describe intense small-scale events as generated by the successive uneven breakup
of eddies through the cascade. This uneven breakup is modelled by the product of
multipliers, which leads to the amplification of eddies and to intense events of the
dissipation once these eddies reach the dissipative scales. One of the first multiplicative
cascade models is due to Kolmogorov (1962). In order to account for intermittency, he
proposed a multiplicative random process for the energy transfer and invoked the central
limit theorem to derive a log-normal model of the cascade. Although this model failed to
predict the scaling exponents of the structure functions, the idea of a cascade described by
the product of multipliers proved fruitful. Frisch, Sulem & Nelkin (1978) proposed a model
in which only a fixed fraction of the space is filled by the breakup of eddies, i.e. where some
multipliers are zero, leading to a geometry with a single fractal dimension (Mandelbrot
1974). This model, known as the β-model, was later generalised to random fractions
by Benzi et al. (1984), introducing a much richer geometry, and a non-trivial spectrum
of generalised dimensions, or multifractal spectrum (Parisi & Frisch 1985; Sreenivasan
1991). This model is not able, however, to reproduce appropriately the manifest part of the
multifractal spectrum of the dissipation field (Meneveau & Sreenivasan 1991). Probably
the simplest model that accomplishes this is the p-model by Meneveau & Sreenivasan
(1987), in which eddies break into equal-sized eddies with a fraction p or 1 − p of
the energy flux (in a one-dimensional simplified representation). This simple binomial
process describes very well many aspects of the geometry of the dissipation field, and
reproduces, by fitting p to turbulence data, the multifractal spectrum to experimental
accuracy (Meneveau & Sreenivasan 1991).

The value of these and similar models resides in their simplicity and predictive
power, and in that they provide an intuitive picture of the potential origin of intense
and extreme events in small-scale turbulence. Yet they have limitations. These models
are in essence geometrical, lacking temporal dynamics, and their connection to the
Navier–Stokes equations is unclear. Most importantly, their success does not substantiate
the phenomenological assumptions on which they rest, which must be tested against
empirical evidence.

The connection between the large-scale dynamics of turbulent flows and the
space–time-averaged energy dissipation in the small scales has been known since
Taylor (1935), and constitutes the central guiding principle of the cascade theory
(Kolmogorov 1941). This connection can be derived directly by invoking the conservative
nature of nonlinear interactions in the Navier–Stokes equations. In the inertial range of
scales, the average interscale energy flux is constant, and the energy injected in the large
scales is, on average, equal to the energy dissipated at the small scales. Moreover, the
energy dissipation is known to be independent of the kinematic viscosity at sufficiently
high Reynolds numbers (Sreenivasan 1984; Ishihara, Gotoh & Kaneda 2009; Vassilicos
2015), evidencing that the large scales control the energy dissipation, and thus the velocity
gradients, through the energy cascade.

The above discussion is strictly limited to an average statistical sense, yet ample evidence
shows that a large-to-small coupling also exists locally in scale, space and time. Perhaps
some of the first evidence is due to Meneveau & Lund (1994), who used the time delays
of Lagrangian time correlations of the energy fluxes in isotropic turbulence to show the

937 A13-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.117
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causal connection between the flow at different scales. Their results were consistent with
an approximately scale- and space-local energy cascade in which eddies ‘break’ in a time
proportional to their turnover time. Later, Wan et al. (2010) demonstrated that this causal
influence extends to the dissipative range. Similar works that point in the same direction
are Cardesa et al. (2015), Cardesa, Vela-Martín & Jiménez (2017) and Ballouz, Johnson &
Ouellette (2020). While the space locality of the energy cascade and its causal effect on
the dissipative range seems well supported by the available evidence, it is still unclear to
what extent the most intense events of the dissipation and the enstrophy are produced and
controlled by the energy cascade.

The analysis of the Navier–Stokes equations does not clarify this question. The origin
of intense events of the velocity gradients may be traced to the evolution equation of the
velocity gradient tensor, which contains a local nonlinear mechanism that leads naturally
to its self-amplification (Vieillefosse 1984; Cantwell 1992; Li & Meneveau 2005). The
same mechanism is present at large and inertial scales (Lozano-Durán, Holzner & Jiménez
2016; Danish & Meneveau 2018), and has been linked to the energy cascade in terms of
the self-amplification of the rate-of-strain tensor (Carbone & Bragg 2020; Johnson 2020;
Vela-Martín & Jiménez 2021), and to the origin of small-scale intermittency (Biferale
et al. 2007; Johnson & Meneveau 2017). However, this self-amplification is most intense
in the dissipative scales, where the velocity gradients are the highest, suggesting that
intense events may be caused at least partly by the self-amplification of dissipative-range
fluctuations. This idea has been proposed previously for intense vortices, which are
believed to become self-driven once they are intense enough (She 1991; Jiménez et al.
1993; Jiménez 2000). Models based on the self-amplification mechanism of the velocity
gradients predict – in some cases exceptionally well – the probability distribution of the
velocity gradients without invoking explicitly the idea of the energy cascade (Kraichnan
1990; She 1991; Wilczek & Friedrich 2009). Some of these models do not attempt to
explain intermittency, or do not provide as convincing an explanation of it as cascade
models, but they are derived from the Navier–Stokes equations and evidence that many
features of the velocity gradients may be explained without resorting to cascades or
multiscale interactions. Although the above does not directly invalidate the cascade origin
of intense enstrophy and dissipation events conveyed by multiplicative models, it evidences
the need to further substantiate the causal relations between the energy cascade and
these intense events, and to identify the fundamental mechanisms by which inertial scales
control the dissipation.

In this direction, Vela-Martín (2021) recently used synchronisation experiments in
isotropic turbulence to show that the dynamics of scales above the dissipative range
controls the evolution of intense vorticity, discarding that intense vortices emerge
primarily due to small-scale interactions, and stressing the role of vortex stretching as
an interscale mechanism in turbulence (Leung, Swaminathan & Davidson 2012; Goto,
Saito & Kawahara 2017; Doan et al. 2018). Remarkably, intense vorticity appears to be
a conspicuous footprint of inertial-range dynamics in the dissipative scales, while weak
vorticity seems to be comparatively decoupled. This observation suggests that intense
events in the dissipative range may be particularly efficient – or fast – in transmitting
the information of inertial-range fluctuations to the dissipation.

This paper explores further this possibility, and studies the relation between the
energy cascade and intense events in direct numerical simulations of isotropic turbulence.
We have analysed the temporal fluctuations of the intense enstrophy and dissipation,
and related these fluctuations to the fluctuations of the average dissipation, and of its
large-scale surrogate, using temporal correlations. We find that, on average, the dissipation
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signal is time-delayed with respect to the fluctuations of the most intense events, and
that this delay grows with the intensity of the events. We interpret these results from a
causal perspective, considering the strong large-to-small scale coupling revealed by the
synchronisation experiments of Vela-Martín (2021), and argue that the energy cascade is
the driver of intense events. We base this claim on the fact that although correlation does
not in general imply causation, it does so in the case of strongly one-way coupled systems
(Ye et al. 2015).

Furthermore, we leverage here some of the dynamical aspects of multiplicative cascade
models (Frisch et al. 1978) to show that the temporal evolution of intense events can be
described qualitatively using the cascade model of Meneveau & Sreenivasan (1987), under
the sole assumption that the cascade time of eddies is proportional to their turnover time.
These results point to the energy cascade as the cause of intense events of the enstrophy
and the dissipation, which would emerge as intense inertial-range eddies cascade to the
dissipative scales.

This paper is organised as follows. In § 2, the direct numerical simulations of isotropic
turbulence are presented, and the generalised means used to track the dynamics of intense
events are introduced. In § 3 and § 4, we present the main results of this work. Here we
analyse the temporal evolution of the generalised means, and connect their evolution to the
cascade process and to multiplicative cascade models. Finally, conclusions are offered in
§ 5.

2. Numerical methods

2.1. Direct numerical simulations of isotropic turbulence
We analyse the evolution of intense events in the dissipative range of isotropic
turbulence by means of direct numerical simulations. Let us consider the incompressible
Navier–Stokes equations in a triply-periodic cubic domain of volume (2π)3. The equations
are projected on a Fourier basis,

∂tû = N̂ (û)− νk2û + αû, (2.1)

where the caret denotes the Fourier transform, and k is the wavenumber vector, with
magnitude k. Here, N = −u · ∇u − ∇P represents the nonlinear terms, where P is a
kinematic pressure that imposes the incompressibility of the velocity field, k · û = 0.

These equations are integrated in time using a standard pseudo-spectral code, and
linearly forced in the large scales, where α(k, t) is the forcing coefficient. This forcing
acts only on modes with wavenumber magnitude k < 2, and α changes in time so that the
amount of energy injected in the flow at each time is constant and equal to ε0:

α(k, t) = ε0∑
k<2 ûû∗ , if k < 2, (2.2)

and α(k, t) = 0 otherwise, where the asterisk denotes the complex conjugate, and the
summation is taken only over wavenumbers k < 2. Due to the conservative nature of the
nonlinear terms, the energy dissipation is equal on average to the energy injected by the
linear forcing, ε̄ = ε0, where ε(t) = ν

∑
k2ûû∗ is the instantaneous energy dissipation, the

summation is taken over all wavenumbers, and the overline denotes the temporal average.
Further details of the code and the forcing scheme can be found in Cardesa et al. (2017).
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We consider five different Reynolds numbers in the range Reλ = Ūλ/ν = 72–195,
where λ = (15ν/ε̄)1/2Ū is the Taylor microscale, and

U(t) =
√

1
3 〈u2〉 (2.3)

is the instantaneous root-mean-square of the velocity fluctuations, where the brackets
denote average over the flow domain. The Kolmogorov length and time scales are η =
(ν3/ε̄)1/4 and tη = (ν/ε̄)1/2, respectively. The large-scale eddy turnover time is

T = L̄
Ū
, (2.4)

where

L(t) = 3π

4

∑
k−1 E(k, t)∑

E(k, t)
(2.5)

is the instantaneous integral length scale. Here,

E(k, t) = 2πk2〈ûû∗〉k (2.6)

is the instantaneous kinetic energy spectrum, and 〈·〉k denotes the average over
wavenumber shells of radius k and width 0.5. The volume of the computational domain is
approximately (5.2L̄)3 for all Reynolds numbers.

In the following, we will study the temporal evolution of the instantaneous
space-averaged energy dissipation, ε(t), and of the instantaneous surrogate energy
dissipation (Taylor 1935), defined as

εs(t) = U(t)3

L(t)
. (2.7)

Although the surrogate dissipation is a large-scale quantity, it is related to the average
dissipation through the energy cascade so that εs = Csε̄, where Cs is constant of order
unity (Vassilicos 2015).

We use a standard spatial resolution in our simulations, kmaxη = 2, where kmax is the
largest resolved wavenumber in Fourier space. This resolution is adequate for most of the
flow but may affect the magnitude of very intense events by underestimating them (Donzis,
Yeung & Sreenivasan 2008). This affects the magnitude of the high-order moments, but
we have discarded that it affects the results of this paper by also running simulations at
kmaxη = 3 for Reλ = 120 on a 3843 grid. A summary of the details of the simulations is
presented in table 1.

The turbulent flows considered here display an inertial range of scales at least for Reλ >
100. In figure 1(a), we show the time-averaged kinetic energy spectrum at Reλ = 72,
120 and 195 normalised with Kolmogorov units. There is a range of scales for which an
approximate Ē(k) ∼ k−5/3 scaling is present, particularly for the largest Reynolds number.
A diagnostic of this scaling is shown in figure 1(b), where the premultiplied energy
spectrum (kη)−5/3Ē(k) plateaus for kη < 0.2.

Although the inertial-range scaling of the energy spectrum is very weak for Reλ < 100,
self-similarity is known to extend in this case to the dissipative scales (Benzi et al.
1993a). In figure 1(c), we show the second- and third-order moments of the longitudinal
velocity structure function, D2 = 〈|�‖u(r)|2〉 and D3 = 〈|�‖u(r)|3〉, where �‖u(r) is the
longitudinal velocity increment at distance r. We observe a clear self-similar behaviour
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N Reλ kmaxη L/η T/tη Ts/T �t/tη

128 72 2.0 39 9 2130 0.19
192 97 2.0 57 11 2231 0.25
256 120 2.0 75 14 2276 0.31
384 159 2.0 111 17 2322 0.41
512 195 2.0 148 21 2341 0.48

Table 1. Main parameters of the simulations, where N is the number of grid points in each direction,
kmax = √

2/3N is the maximum Fourier wavenumber magnitude resolved in the simulations, Ts is the total time
spanned by each simulation, and �t is the temporal resolution of the signals obtained from each simulation.
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Figure 1. (a,b) Time-averaged kinetic energy spectrum, (a) Ē(k), and premultiplied kinetic energy spectrum,
(b) (kη)5/3Ē(k), normalised with Kolmogorov units for three different Reynolds numbers. In (a), the dashed
line is proportional to k−5/3. (c) Second-order structure function, D2, as a function of the third-order structure
function of absolute increments, D3, for Reλ = 72 and Reλ = 120. The separation lengths are taken in the
range 10η < r < 30η. The dashed line corresponds to D2 ∝ D0.701

3 . (d) Probability density functions of Ω and
Σ normalised with their space–time avarage for Reλ = 120 and 195.

D2 ∼ Dζ3 for r down to r = 10η (kη = 0.3). In fact, for Reλ = 72 and 120, our data agree
quantitatively very well with the exponent ζ = 0.701 reported by Benzi et al. (1993b).

We study the temporal evolution of the strain and the enstrophy, defined as

Ω = ω2 (2.8)

and
Σ = 2S : S, (2.9)
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where ω = ∇ × u and S = (∇u + ∇uT)/2 are the vorticity vector and the rate-of-strain
tensor, respectively. We focus on the evolution of very intense events of these two
quantities. These events appear in times of the order of the integral time scale (Villermaux,
Sixou & Gagne 1995), and gathering a sufficiently large sample requires running for
times much larger than the integral time scale. This is why our simulations span a very
long time, approximately 2000T in all cases (see table 1). In figure 1(d), we show the
probability density functions (p.d.f.s) of Ω and Σ , P(Ω) and P(Σ), for Reλ = 120 and
Reλ = 195. These p.d.f.s have been calculated by taking on-the-fly samples of full flow
fields during the simulations each 0.1T̄ . This accounts for a total of ∼20 000 full enstrophy
and strain fields. The p.d.f.s are smooth for values of more than two orders of magnitude
their average. We will see that this is necessary to converge the high-order moments of the
dissipation and the enstrophy.

2.2. The generalised means of the enstrophy and the strain
To track the dynamics of the most intense events of Σ and Ω , we use their generalised
Hölder means with integer exponent p (hereafter p-means):

Ω( p)(t) = 〈Ωp〉1/p (2.10)

and
Σ( p)(t) = 〈Σp〉1/p. (2.11)

Note that these quantities are instantaneous spatial averages (over the full computational
domain) that fluctuate in time. For p > 1, the p-means give more weight to the intense
events of Σ and Ω , the more so the larger p, as demonstrated by their inequality property,
Ω( p−1) ≤ Ω( p) ≤ Ω( p+1) (similarly forΣ). In particular, when p → ∞, the p-means are
equal to the maximum value of Ω or Σ within the flow domain. For p = 1, we recover
the space-averaged enstrophy and strain. For negative p, the p-means capture the weak
velocity gradients in the turbulent background, the more so the smaller p. In this work, we
will consider −4 ≤ p ≤ 5.

To each p-mean, we assign the characteristic intensity of the events that it represents,
defined as

ω( p) = 〈Ωp+1〉
〈Ωp〉 (2.12)

and

σ ( p) = 〈Σp+1〉
〈Σp〉 . (2.13)

These quantities represent the centre of mass ofΩp P(Ω) andΣp P(Σ), i.e. they measure
the intensity of the typical events that contribute on average to 〈Ωp〉 and 〈Σp〉, and
therefore to Ω( p) and Σ( p). In figure 2, we show the p.d.f.s of Ω and Σ weighted by Ωp

andΣp for Reλ = 120 and Reλ = 195, as functions ofΩ/ω( p) andΣ/σ ( p). The weighted
p.d.f.s have been normalised so that their integral is unity. There is a good collapse of the
weighed p.d.f.s, save for a shift of their maxima towards increasing values of Ω and Σ
with increasing p, particularly for Reλ = 195 and Ω . This collapse indicates that (2.12)
and (2.13) are good descriptors of the weighted p.d.f.s, and thus appropriate quantifiers
of the intensity of the typical events that form the p-means. Figure 2 also shows that the
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Figure 2. Weighted probability density functions of (a,c) Ω and (b,d) Σ , namely Ωp P(Ω) and Σp P(Σ), as
functions ofΩ/ω( p) andΣ/σ ( p), for (a,b) Reλ = 195 and (c,d) Reλ = 120. The weighted p.d.f.s are normalised
so that they integrate to unity. The vertical dashed lines mark Ω = ω( p) and Σ = σ ( p).

simulations cover a sufficiently long time to sample properly the intense events of Ω and
Σ . The weighted p.d.f.s tend to zero smoothly for increasing values ofΩ andΣ , indicating
that the p-order moments are statistically well converged. More than 95 % of the mass of
the weighted p.d.f.s is contained below Ω < 3ω( p) (similarly for Σ). Only for Reλ = 195
and p = 5 does the tail of Ω5P(Ω) not reach beyond Ω = 3ω(5), suggesting that this
moment may not be fully converged. However, most of the mass of the weighted p.d.f. is
located below 2ω(5), indicating that the deviation from convergence should be small.

The characteristic time scales derived from ω( p) and σ ( p) are

t( p)
ω = 1√

ω( p)
(2.14)

and

t( p)
σ = 1√

σ ( p)
. (2.15)

The p-means are related naturally to the high-order moments of the dissipation and the
enstrophy field, which have been studied previously in the context of the scaling exponents
in turbulence (Schumacher et al. 2014). Following Schumacher, Sreenivasan & Yakhot
(2007), the pth order of Σ should show a power-law scaling of the form

〈Σp〉 ∼ Reξ( p)
λ . (2.16)

This implies that also σ ( p) should follow a power-law scaling of the form ω( p) ∼
Reξ( p+1)−ξ( p)
λ . We corroborate this in figure 3(a), where we show σ ( p) as a function
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Figure 3. Scaling of (a) ω( p) and (b) σ ( p) with Reλ. The dashed lines correspond to the least-squares fits of
the data with a power law of the form Reξλ, and ω( p) and σ ( p) are normalised with the integral eddy turnover
time.

of Reλ. In figure 3(b), we show that ω( p) follows a similar power-law scaling. This
shows that our simulations, although of moderate Reynolds numbers, display intermittency
effects characteristic of fully developed turbulence (Schumacher et al. 2014).

3. The temporal evolution of the generalised means

We study the evolution of the generalised means of the enstrophy and the strain for
−4 ≤ p ≤ 5. In figure 4(a), we show the temporal evolution of Ω(3), of the instantaneous
space-averaged dissipation ε, and of the instantaneous surrogate dissipation εs, in a time
interval of the simulation at Reλ = 195. To compare the three signals, we have subtracted
their temporal mean and divided them by their standard deviation. The dissipation signal
fluctuates around its mean in time scales comparable to the integral time scale, mirroring
the fluctuations of the surrogate dissipation, which occur earlier. This time lag reflects
the large-scale modulation of the small scales, which is a general feature of turbulent
flows and has been observed previously in homogeneous flows (Kuczaj, Geurts & Lohse
2006; Chien, Blum & Voth 2013), wall-bounded flows (Hutchins & Marusic 2007; Mathis,
Hutchins & Marusic 2009; Verschoof et al. 2018), and shear flows (Fiscaletti et al. 2016;
Lalescu & Wilczek 2021). The time advancement of the surrogate dissipation with respect
to the dissipation reflects the propagation of large-scale fluctuations down the energy
cascade. This process takes place in local steps of duration proportional to the local
eddy turnover time (Cardesa et al. 2015), and is observable in a Lagrangian frame of
reference Meneveau & Lund (1994), Wan et al. (2010) and Ballouz et al. (2020). These
cascade times are the same in linearly forced isotropic turbulence and in statistically
steady homogeneous shear turbulence (Cardesa et al. 2015), indicating that the temporal
dynamics of the cascade is independent of the large-scale forcing mechanism. Thus, in our
flow, the linear forcing provides a source of large-scale fluctuations, but should not affect
the propagation of large-scale fluctuations down the cascade. Besides, our forcing scheme
is not completely artificial; linearly forced isotropic turbulence is known to reproduce some
of the dynamics of shear flows (Linkmann & Morozov 2015), and produces fluctuations
of the surrogate dissipation that take place in a quasi-cyclic manner, reminiscent of the
bursting phenomena in shear flows (Flores & Jiménez 2010; Jiménez 2013).

A relevant aspect of figure 4(a) is that Ω(3) is advanced with respect to ε, delayed with
respect to εs, and largely correlated to both signals. The correlation between ε and Ω(3) is
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Figure 4. (a) Temporal evolution of the average energy dissipation ε(t), the surrogate energy dissipation εs(t),
andΩ(3)(t), in the simulation at Reλ = 195. Quantities are plotted without their temporal mean and divided by
their standard deviation. (b) Visualisation of the enstrophy field in a plane of the flow for Reλ = 195. The yellow
structures correspond to the most intense enstrophy that accounts for 90 % of 〈Ω3〉, and occupy approximately
1 % of the total volume. The light blue structures correspond to the most intense enstrophy that accounts
for 90 % of 〈Ω〉, and the dark blue background corresponds to the remaining weak enstrophy that accounts for
10 % of 〈Ω〉. The plane shows the full computational domain, and the magenta line is equal to the instantaneous
integral length scale, L.

remarkable considering that the latter contains information on the evolution of only a very
small fraction of the flow domain, which corresponds to events of intensity ω(3) ≈ 70〈Ω〉.
A conservative measure of the volume covered by these events is given by

υ( p)(Ω) =
∫ ∞

χ

P(Ω) dΩ, (3.1)

where χ is such that ∫ ∞

χ

Ωp P(Ω) dΩ = 0.9〈Ωp〉. (3.2)

The same definition holds for Σ , denoted υ( p)(Σ). This quantity measures the average
volume fraction occupied by the most intense events of Ω and Σ that account for 90 %
of 〈Ωp〉 and 〈Σp〉. In figure 4(b), we show the isocontours that enclose υ(3)(Ω) in a flow
field at Reλ = 195. These isocontours correspond to the core of the most intense vortices,
which occupy a volume fraction of 1 % of the flow domain (υ(3)(Ω) ≈ 0.01), and appear
distributed across the domain and separated by distances of the order of the integral scale
(Jiménez et al. 1993). For comparison, we also show isocontours that enclose 90 % of
the average enstrophy, which occupy 50 % of the domain (υ(1)(Ω) ≈ 0.5). These strong
differences suggest that ε and Ω(3) cannot be related directly. A plausible explanation
for their temporal correlation comes from εs, which appears to be a precursor of both
signals; large-scale fluctuations seem to modulate intense events in the same way that they
modulate the average dissipation.
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The cascade as the origin of intense events in turbulence

3.1. Temporal correlations of the generalised means
We study systematically the modulation of the p-means and show that it is a persistent
signature of the dynamics. We define the temporal cross-correlation coefficient of two test
signals ψ and φ as

ρ(τ ;ψ, φ) = 1
Ta

∫
ψ ′(t) φ′(t + τ) dt, (3.3)

where τ is a time shift, and the prime denotes quantities without temporal average, and
normalised by their standard deviation. The integral is taken over an averaging time
window of width Ta, which corresponds to the total signal length, Ts, except where t + τ

is outside the signal boundaries. We denote the time shift at which the correlation is
maximum as τmax(ψ, φ), and the maximum value of the correlation as ρmax(ψ, φ) =
ρ(τmax;ψ, φ).

We focus now on the values of the maximum correlation coefficient. In figures 5(a,b),
we show the joint p.d.f.s of ε′ andΩ( p)′, and ε′ andΣ( p)′, for p = 3 and p = 5, and Reλ =
195. Here, ε′ has been time-shifted by τmax(Ω

( p), ε) and τmax(Σ
( p), ε), respectively. The

correlation observed in figure 4(a) is verified here for the full time series. For p = 3, the
p.d.f.s are very similar for Ω(3) and Σ(3), and they are centred around the line of best
least-squares fit, whose slope is equal to ρmax. The maximum correlation coefficients are
approximately 0.85 for bothΩ(3) andΣ(3). For p = 5, the correlation coefficients decrease
to approximately 0.6 for bothΩ(5) andΣ(5). In figures 5(c,d), we show the same p.d.f.s as
in figures 5(a,b), but comparing with the surrogate energy dissipation. The values of the
correlation maxima are similar to those calculated with the dissipation, although slightly
lower. They are around 0.7 for p = 3, and 0.5 for p = 5, for both Ω( p) and Σ( p). This
similarity is not surprising if we consider that εs and ε are highly correlated (with a time
shift): ρmax(ε, εs) ≈ 0.95 for all Reλ.

In view of these results, we analyse now the maximum correlation coefficient between
the generalised means and the dissipation signal. This analysis yields qualitatively similar
results when applied to the surrogate dissipation. In figure 5(e), we show the maximum
value of the correlation ρmax(Ω

( p), ε) and ρmax(Σ
( p), ε) for different values of p and Reλ.

The maxima are similar forΩ( p) andΣ( p), and decay for increasing p. That the correlation
is of the order of 0.5 for p = 5 is significant considering the small support in physical space
of Ω(5) and Σ(5). For Reλ = 195, υ(5)(Ω) ≈ 10−4, i.e. the events represented by Ω(5)

occupy approximately 0.01 % of the total flow domain (Σ(5) yields comparable results).
Yet the evolution of these very intense events – ω(5) ≈ 400〈Ω〉 and σ (5) ≈ 100〈Σ〉 – is
correlated to the dissipation signal. In figure 5(e), we have also included the maximum
correlation coefficient for p < 0 to show that the weak turbulent background is less
correlated to the average dissipation than the intense events. These results are in agreement
with Vela-Martín (2021), who showed that weak vorticity is less tuned to inertial-range
fluctuations than intense vorticity. This also suggests that the non-vanishing correlations
for large p are not a statistical artefact, and reflects the control exerted by inertial scales on
the intense events of the dissipation and the enstrophy. Finally, in figure 5( f ), we show
that ρmax(Σ

(5), ε) increases with Reλ, and that ρmax(Ω
(5), ε) plateaus for Reλ > 120,

suggesting that the correlations analysed here should persist at higher Reλ, and that they
are not a finite-Reynolds-number effect.
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Figure 5. (a,b) Joint p.d.f. of ε′(t + τmax) and Ω( p)′(t), and ε′(t + τmax) and Σ( p)′(t), for (a) p = 3 and (b)
p = 5 at Reλ = 195. These quantities are normalised by subtracting their temporal mean, and dividing by
their standard deviation, and τmax is the time shift for which the correlation between ε and Ω( p) or Σ( p) is
maximum. The lines corresponds to the linear least-squares fits of the data for (solid)Ω( p), and (dashed)Σ( p).
(c,d) Similar to (a,b), but for the surrogate energy dissipation, εs. (e) Maximum temporal correlation coefficient
of (empty symbols) φ = Ω( p) and (solid symbols) φ = Σ( p) with ε as a function of p for different Reynolds
numbers. Empty symbols correspond to ψ = Ω( p), and solid symbols to ψ = Σ( p). ( f ) Maximum temporal
correlation coefficient of Ω( p) and Σ( p) for p = 5 as a function of Reλ. Symbols as in (e).

3.2. Time lags between the generalised means and the dissipation
We now focus on the time lags that yield the maximum correlation, and show that the
temporal advancement of Ω(3) with respect to the dissipation observed in figure 4(a) is a
persistent feature, which is captured by the temporal correlations.

In figure 6(a), we show ρ(τ ;Ω( p), ε) divided by its maximum as a function of τ for
different values of p. The time shift at which the correlation peaks, τmax, is positive for
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Figure 6. (a) Correlation coefficient of Ω( p) with ε as a function of the time shift, τ , divided by its
maximum value, ρmax(Ω

( p), ε), for different p. The Reynolds number is Reλ = 195. The solid lines with
markers correspond to: magenta squares, p = −1; red circles, p = 3; blue diamonds, p = 5. The dashed
line corresponds to the temporal autocorrelation of ε, namely ρ(τ ; ε, ε). (b) Same as in (a) but with the
surrogate dissipation. Here the dashed line corresponds to the cross-correlation ρ(τ ; ε, εs). (c) Advancement
of the generalised means with respect to the dissipation, (solid symbols) τmax(Ω

( p), ε) and (empty symbols)
τmax(Σ

( p), ε) as functions of the inverse of the characteristic turnover time, t( p)
ω and t( p)

σ , for different Reynolds
numbers. The colours correspond to: black, p = 2; red, p = 3; magenta, p = 4; blue, p = 5. The error bars mark
the standard deviation of the data obtained by dividing the temporal signal in four subsets. (d) Advancement
of the generalised means with respect to the dissipation measured from the surrogate dissipation, τ+

max (colour
symbols) for C+ = 0.61 (see (3.4)). The styles and colours of the symbols are similar to those in (c), and only
data from Reλ = 195 and 120 have been plotted for ease of comparison. The symbols in grey correspond to the
data in (c).

p > 1, indicating that the fluctuations of intense events precede, on average, the dissipation
signal. This temporal advancement grows with increasing p. On the other hand, for p =
−1, the p-means are delayed with respect to the average dissipation.

In figure 6(b), we show the same time lags but with respect to εs. Here, τmax is negative,
meaning that the generalised means are delayed with respect to the surrogate dissipation.
This delay now decreases for increasing p, in agreement with the results in figure 6(a);
the higher the advancement of the generalised means with respect to the dissipation, the
shorter the time delay with respect to the surrogate dissipation. For p = 0, we recover
the temporal cross-correlation between ε and εs, which peaks at around one integral eddy
turnover time. This is consistent with the cascade time of the large-scale eddies in the
classical picture of the energy cascade.

We calculate τmax carefully by fitting each correlation around its maximum with a
third-order polynomial, and taking τmax as the time where the polynomial is maximum.
In figure 6(c), we plot τmax(Ω

( p), ε) and τmax(Σ
( p), ε) for p > 1 against the inverses of
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t( p)
ω and t( p)

σ (see (2.14)), and normalise all quantities by the integral eddy turnover time.
The advancements ofΩ( p) andΣ( p) with respect to the dissipation collapse well with this
normalisation, and τmax seems to grow quasi-logarithmically with the inverses of t( p)

σ and
t( p)
ω . Only the data for p = 2 and large Reynolds numbers deviate from the mean scaling.

We will give a possible explanation for this in the next section. In summary, the data reveal
that the more intense the events tracked by the p-means, the shorter their characteristic
turnover time, and the more advanced their signals are with respect to the dissipation.

We repeat this analysis with respect to the surrogate dissipation, and obtain a similar
scaling. It is reasonable to assume that the time shifts of the maximum correlations
are additive, τmax(ψ, ε) = τmax(ψ, εs)+ τmax(εs, ε), but this is not the case. Instead, the
relation that holds is one of proportionality, τmax(ψ, ε) ≈ C+(τmax(ψ, εs)+ τmax(εs, ε)).
We define the time advancement of the generalised means with respect to ε measured from
the large scales as

τ+
max(ψ, ε) = C+(τmax(ψ, εs)+ τmax(εs, ε)), (3.4)

where C+ = 0.61 corresponds to the best fit of τ+
max(ψ, ε) to τmax(ψ, ε) with our data.

In figure 6(d), we have plotted τ+
max(ψ, ε) over τmax(ψ, ε) to show that both quantities

collapse fairly well for different values of p.
The meaning of the proportionality constant is not obvious, but suggests that the

estimate in the time lags between signals provided by the cross-correlations is only
approximate, and, in any case, an average measure. The time lags are surely sensitive to the
degree of correlation, and the slightly lower values of ρmax(Ω

( p), εs) and ρmax(Σ
( p), εs)

with respect to ρmax(Ω
( p), ε) and ρmax(Σ

( p), ε) may be the source of this discrepancy
(see § 3.1). Yet let us note that C+ introduces a correction to τmax(ψ, εs)+ τmax(εs, ε)
of between 5% and 30% of T . This is not large compared to τmax(ε, εs), which is of the
order of T . In any case, the scaling of τmax(ψ, εs)+ τmax(εs, ε) with the intensity of the
generalised means is similar to that of τmax(ψ, ε) (save for the proportionality constant,
C+), suggesting that the time lags are a robust feature of the flow that can be measured
from either the large scales or the dissipative range.

4. Cascade times in a multiplicative model

In this section, we elaborate on a possible explanation for the results presented in the
previous sections. We will show that the time advancement of the generalised means is
consistent with a local energy cascade, in which eddies cascade in a time proportional
to their turnover time, causing intense eddies to reach the dissipative scales before the
average energy dissipation. We will argue that the logarithmic scaling of τmax with the
turnover time of intense eddies is a consequence of an accumulative process taking place
through the cascade.

Let us consider the binomial model of Meneveau & Sreenivasan (1987), which describes
a cascade with average energy flux E in a one-dimensional domain of size L . The
one-dimensional domain is valid for the purpose of this analysis, and we consider it
here for simplicity. The process starts with the largest eddy of size L0 = L and energy
flux E0 = E . Here the energy flux can be regarded as a measure of the intensity of the
eddy. At the nth step of the cascade, each eddy is divided into two eddies of similar size,
Ln+1 = Ln/2, and its intensity, En, is distributed conservatively between the two eddies
with a fraction of eitherΠ = 0.7 or 1 −Π = 0.3 (Meneveau & Sreenivasan 1987). These
fractions are assigned randomly. The intensities of the new eddies are En+1,2m = 2ΠEn,m
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and En+1,2m+1 = 2(1 −Π)En,m. Here, the second subindex denotes the position of the
eddy in a one-dimensional grid with m = 0, . . . , 2n − 1 points. At each level, there are 2n

eddies. Thus at the nth step of the cascade, the intensity of an eddy is the product of n
random multipliers (either 0.3 or 0.7),

En,m = 2nΠn−l(Π − 1)lE, (4.1)

where l is a random integer such that 0 ≤ l ≤ n. The cascade continues down to the
Kolmogorov scale, η/L ∼ (1/2)q, where q is the total number of steps of the cascade. This
simple multiplicative cascade process reproduces accurately the intermittent structure of
the dissipation field, yielding a spectrum of generalised dimensions that is very well in
agreement with experimental and numerical data (Meneveau & Sreenivasan 1987, 1991).

Although this model is geometrical and provides only a frozen picture of turbulence,
it contains some dynamical aspects that can be leveraged to explain the main results of
this paper. More specifically, we assume that the cascade time of eddies is proportional to
their turnover time. This relation is one of the cornerstones of the classical theory of the
cascade, and is known to hold locally in turbulent flows (Meneveau & Lund 1994; Wan
et al. 2010; Ballouz et al. 2020). In the nth cascade step, the cascade time of an eddy of
intensity En,j is

tn,j = CT

( L2
n

En,j

)1/3

, (4.2)

where CT is a proportionality constant. The cascade time of a single eddy to step s is

Ts,j =
s−1∑
n=0

tn,j = CT

s−1∑
n=0

( L2
n

En,j

)1/3

, (4.3)

and the average cascade time to scale s is

{T }s = 1
2s

2s−1∑
j=0

Ts,j. (4.4)

Introducing cascade times does not change the geometrical essence of the model, but leads
naturally to fluctuations in the time it takes for eddies to reach the dissipative scales. This
is so because, as shown by (4.2), the more intense an eddy, the shorter its cascade time
and the faster it reaches the dissipative scales with respect to the average. We will see that
this simple approach provides a dynamical framework that explains the results presented
in the previous sections.

We have simulated a random cascade process with q = 12, which corresponds to Reλ ≈
200 (Meneveau & Sreenivasan 1987), and that produces a total of 212 = 4096 different
eddies. In figure 7(a), we show two typical realisations of this random process, where
the effect of multiplicative amplification is evident in the large spikes of Eq,j. Figure 7(b)
shows the cascade times to scale q, Tq,j, of each eddy for the same two realisations. We
have chosen CT = 0.4 (this will be justified later). There is a noticeable deviation of the
cascade times with respect to the mean cascade time. We have marked the maxima of Eq,j
in figure 7(a), and their corresponding cascade times in figure 7(b), to show that the most
intense eddies cascade the fastest.

Since the intensities of the eddies are a product of random multipliers with fixed
values (0.3 or 0.7), and these multipliers commute, many of these eddies have the

937 A13-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.117


A. Vela-Martín

(d )(c)

(b)(a)

T/tω
( p), T/tσ

( p)

hi
st

.

T /T

τ m
ax

 /T
T q

, 
j/

T

E q,
 j 

/E

0 0.2 0.4 0.6 0.80 0.2 0.4

4.4E
0.8E
0.06E 97

120

159

195

Model

Reλ = 720.02E

0.6 0.8 1.0 1.0

xj / Lxj / L

20

40

60

0.8

1.0

1.2

1.4

1.6

0.8 1.0 1.2 1.4
0

50

100

150

101 102 103
0

0.1

0.2

0.3

Figure 7. (a) Two realisations of the binomial cascade model for q = 12 (Reλ ≈ 200), where xj denotes the
positions of Eq,j. The maxima of Eq,j in each realisation are marked with circles. (b) Cascade times Tq,j of
each eddy for the same realisations of the cascade model as in (a). The circles correspond to the maxima of
Eq,j in (a). (c) Histogram of the cascade times Tq,j of eddies of equal intensities E{r}. Here, T = (L2/E)1/3
is the integral eddy turnover time of the model. The total number of eddies is 212 = 4096. In (b) and (c), the
proportionality constant of the cascade time is set to CT = 0.4. (d) As in figure 6(c), where the solid black line
corresponds to τ{r}/T as a function of T/t{r} derived from a binomial cascade model.

same intensities. In fact, at the last stage there are only q + 1 = 13 distinct intensities,
which we denote by E{r}, where r = 0, . . . , 12. Thus we group the eddies with equal
intensities in 13 sets, and estimate the total cascade time associated with each intensity
as the average of Tq,j in the set, denoted by

T{r} = 1
N (r)

∑
Eq,j=E{r}

Tq,j, (4.5)

where the summation is taken over eddies that have an intensity at the final level, Eq,j,
similar to E{r}, and N (r) is the number of eddies that have intensity E{r}. We perform this
average because the cascade times, unlike the intensities, depend on the order in which the
multipliers are applied. Thus eddies with the same intensity may have different cascade
times. In figure 7(c), we show the histograms of the cascade times for four different sets
of eddies. For each value of E{r}, there exists a wide range of cascade times. As E{r}
increases, the cascade time becomes predominantly shorter than the average cascade time.
Conversely, low values of E{r} lead in general to slower eddies that reach the dissipative
scales later.
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In order to compare the cascade times of this model with the results of the direct
numerical simulations, we define the advancement of eddies of intensity E{r} with respect
to the average cascade time as

τ{r} = {T }q − T{r}. (4.6)

We associate the intensity of each set of eddies, E{r}, with σ ( p), and define the
characteristic turnover time of each set as

t{r} =
√
νq

E{r}
, (4.7)

where νq is a prescribed kinematic viscosity of the model. These quantities are the
equivalent in our model of τmax(Σ

( p), ε) and t( p)
σ in the direct numerical simulations.

In figure 7(d), we have plotted τ{r}/T as a function of T/t{r} on top of τmax(Σ
( p), ε)/T ,

and T/t( p)
σ . We define the integral turnover time of the model as T = (L2/E)1/3. With

CT = 0.4 and νqT/L2 = 1.3 × 10−3, the cascade model yields results that are in good
qualitative agreement with the data obtained from the direct numerical simulations. We
do not make any claim here on the quantitative agreement because CT has to be slightly
modified to produce a similarly good fit when the Reynolds number of the model (q)
is changed. Nevertheless, the value of CT is not completely arbitrary but yields an
average cascade time {T }q = 1.15T . This is very close to the values obtained in the direct
numerical simulations for τmax(εs, ε), which may be interpreted as the average cascade
time. Here, νq has to be tuned so that E{r} is similar to σ ( p). Note that in the direct
numerical simulations at Reλ = 195, νT/L̄2 = 4 × 10−4, which is reasonably close to
νqT/L2 = 1.3 × 10−3. These discrepancies are not surprising given our crude approach.
Yet these results are remarkable considering that we have added to the model only the
assumption that eddies cascade in a time proportional to their eddy turnover time.

A relevant aspect of the approach followed here is that it provides a plausible explanation
for the logarithmic growth of τmax. In figure 8(a), we show four different paths followed by
eddies in the flux-scale phase space, where each circle corresponds to an admissible state
En, and we have dropped the position index j for simplicity. The evolution of each eddy
may be regarded as a random walk in this space, in which, due to the multiplicative nature
of the model, the accessible states are equispaced in a logarithmic mesh. This means that
En may grow exponentially with n (or linearly with the inverse of Ln = L/2n), as in the
case of the most amplified eddy in a realisation, En = 1.4nE . On the other hand, the time
advancements are a sum of time increments, and can grow at most linearly, but for only a
few steps of the cascade. In figure 8(b), we show the time advancement due to each step
of the cascade,

τn = {T }n − Tn, (4.8)

where we have dropped the position index. The lines in figure 8(b) correspond to the same
individual paths as in figure 8(a). The growth of the time advancements is predominantly
sub-linear, and occurs mostly in the first steps of the cascade. Taking the most amplified
eddy as a reference, its intensity grows exponentially with n, but its advancement with
respect to the average cascade time grows linearly only until n = 5, and then sub-linearly.
For these first steps, τn ∼ n, En ∼ 1.4n and τn ∼ log En. This expression explains partly
the good fit of the model in figure 8(d), and provides a good account for the scaling of
τmax. For low values of Eq, the growth of τn will be markedly sub-linear (see the magenta
line in figures 8a,b). This may explain why τmax for p = 2 (which targets not-so-intense
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Figure 8. (a) Four different amplification paths of En in scale space. Each line corresponds to a different eddy
in the same realisation of the binomial cascade model. The circles correspond to the accessible states that allow
for Eq > E . The black solid line corresponds to the most amplified eddy in the realisation. (b) Advancement of
the cascade time with respect to the average cascade time τn at each step n of the cascade, for the same paths
as in (a).

events) in figure 6(c) deviates from the scaling at large p. A possible fit for the magenta
line is τn ∼ log n or τn ∼ nγ , where γ < 1, and thus τn ∼ log log En or τn ∼ logγ En.

Let us remark that this model predicts that the time advancements should saturate
progressively for higher Reynolds numbers (q → ∞), where the maximum value of the
advancement is τn ≈ 0.25T for the most intense eddy. This is something that we do not
observe clearly in our simulations, probably due to the moderate Reynolds numbers, but
that should be examined with new simulations at higher Reynolds numbers.

5. Conclusion

We have studied the dynamics of intense events using the generalised means of the
enstrophy and the strain in direct numerical simulations of isotropic turbulence. We have
shown that the evolution of these signals, which track the intense events, is correlated
to large-scale fluctuations, and that, on average, the fluctuations of the intense events
occur before the fluctuations of the average dissipation. Correlation does not, in general,
imply causation, except in the case of strongly unidirectionally coupled systems (Ye et al.
2015). Recent synchronisation experiments have shown that this is the case in isotropic
turbulence (Vela-Martín 2021), in which inertial-range dynamics controls intense events in
the dissipative scales in a master–slave scenario. In this light, we state that the correlations
reported here reflect the causal influence of the large scales on the intense events of the
enstrophy and the dissipation through the energy cascade.

This claim is supported on two observations. First, the temporal correlation between
the average dissipation signal – and its large-scale surrogate – and the most intense events
is hard to explain without the cascade. That a few small-scale structures separated by
distances of the order of the integral scale (see figure 4b) follow an organised temporal
evolution is conceivable only if they emerge from the same large-scale event, which
reaches the dissipative scales through the cascade. Second, the temporal advancement of
the generalised means suggests that intense events are caused by fluctuations that precede
the average dissipation signal, namely fluctuations at inertial scales (Cardesa et al. 2015).

We have shown that the growth of the time advancement with the intensity of the
generalised means is consistent with a multiplicative cascade, and can be reproduced
qualitatively using the multifractal cascade model of Meneveau & Sreenivasan (1987),
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under the assumption that eddies cascade in a time proportional to their turnover time. The
more amplified an eddy, the faster it cascades to smaller scales, thus advancing the average
dissipation. We have shown that this effect is accumulated through the cascade, explaining
the logarithmic scaling of the time advancements with the intensity of the events. By the
same token, this model also predicts that eddies that are weaker than the average energy
flux (dissipation) take longer to reach the dissipative scales. This is in agreement with
the data in figure 6(b), which show that the generalised means for p < 1 are delayed with
respect to the average dissipation.

These results connect the dynamics of intense and extreme events in small-scale
turbulence to the energy cascade, and evidence that the phenomenological picture
conveyed by multiplicative cascade models is plausible, i.e. that of an energy cascade
in which eddies are amplified as they ‘break’, leading to intense events of the dissipation
and the enstrophy once these eddies reach the Kolmogorov scale. These results open the
possibility to improve multiplicative models by including temporal dynamics that can
reproduce the observations presented here in a consistent way.

Multiplicative cascade models provide a very coarse-grained account of the physics of
turbulence, yet they are constructed in terms of objects – scales, eddies and energy fluxes
– that create a simple, intuitive and powerful picture. This is, besides their predictive
value, one of their strengths. Turbulent flows can be probed in search of approximate
representations of these objects based on measurable quantities. Elucidating the dynamics
of these objects is beyond the scope of multiplicative models, since it is clear that their
coarse-grained nature allows for different possible underlying dynamics. In this sense, here
we have presented evidence that the evolution of intense events in the dissipative range may
be explained by a cascade process with a multiplicative footprint. The exact details of this
process, i.e. the mechanisms of interscale energy transfer, are not fully understood, and
their study is part of the ongoing research by the turbulence community.

A possible extension of this work is to track intense events through the cascade in the
spirit of Lozano-Durán & Jiménez (2014) and Cardesa et al. (2017). This poses many
challenges; perhaps the most problematic is defining the quantities that can describe
properly the dynamics of the inertial range in a local manner. The filtered velocity
gradients are definitely not good candidates, since their squares are not conserved through
the cascade. The local interscale energy fluxes may be a good choice, but they are
subject to local gauge ambiguities (Jimenez 2017), which should be resolved from physical
grounds. This endeavour seems necessary to clarify fully the dynamical processes behind
intermittency, and intense and extreme events, in small-scale turbulence.
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