RATIONAL POINTS ON LINEAR SUBSPACES. REPRESENTATION OF AN INTEGER AS A SUM OF SQUARES WITH ACGESSORY CONDITIONS

T. S. MOTZKIN

1. Introduction. The present study was motivated by an investigation of algebraic conjugates in the complex plane (cf. 4 for one of the results) where some of its concepts are extended and applied.

Let F be a flat (linear subspace) in real affine n-space. The points $z=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ on F for which the least common denominator of the coordinates ζ_{ν} is minimum form a grid G, the main grid of F, studied in $\S 3$. The minimum denominator κ, and a corresponding numerator ι, for a flat given by a system of linear equations with integral coefficients, and for a flat F through given points with rational co-ordinates, are determined in $\S 2$. This section, which contains, in nuce, a geometric theory of systems of linear diophantine equations (with rational solutions), is concluded by a remarkable law of duality.

The volume of the fundamental cell of the main grid G depends on the denominator κ and on the anomaly, that is, the volume of the fundamental cell of the main grid of a parallel flat through an integral point. The anomalies are equal for orthogonal rational flats of m and $n-m$ dimensions. The square ω of the anomaly is a sum of squares without a common divisor, of integers that are minors of a matrix and therefore connected by bilinear relations. For $n \geqslant 5, \omega$ can be any positive integer; for $n \leqslant 4$, there are certain restrictions, which are completely determined in § 4.

2. The numerator and the denominator of a flat

2.1. A flat is multiplied or divided by a number λ by multiplying or dividing by λ every co-ordinate of each of its points.

A flat is integral if it contains a point with integral co-ordinates. An integral flat F is primitive if no F / ι is integral for integral $\iota>1$. Let ι and κ be coprime positive integers, and

$$
F^{\prime}=(\iota / \kappa) F .
$$

The number ι is the numerator, κ the denominator, and F is the primitive of F^{\prime}. For a flat through O we define $\iota=0, \kappa=1$.

If F^{\prime} consists of a single (rational) point r, then κ is the least common denominator, and ι is the greatest common divisor of the numerators, of the co-ordinates of r.

Received January 11, 1962.

The subspace ρF^{\prime} with rational ρ is integral if and only if $\rho=\sigma \kappa / \iota$ with integral σ. The denominator κ is the least positive integer for which κF^{\prime} is integral, and the least among the denominators of points of F^{\prime}.

We have $\kappa=1$ if and only if F^{\prime} is integral, and $\kappa=\iota=1$ if and only if F^{\prime} is primitive.

It is easily seen that a linear transformation $\zeta_{\nu}{ }^{\prime}=\sum c_{\nu \lambda} \zeta_{\lambda}$ with a unimodular matrix $\left(c_{\nu \lambda}\right)$, and no other linear transformation, leaves the numerator and denominator of every flat unchanged.
2.2. The denominator κ of F^{\prime} divides the denominator κ_{1} of an arbitrary point r_{1} of F^{\prime}.

Proof. The subspace F^{\prime} contains a point r of denominator κ. Let

$$
\kappa^{\prime}=\sigma \kappa+\sigma_{1} \kappa_{1}
$$

be the greatest common divisor of κ and κ_{1}. Then

$$
r_{2}=\left(\sigma \kappa r+\sigma_{1} \kappa_{1} r_{1}\right) / \kappa^{\prime}
$$

is a point on the straight line through r and r_{1}. The denominator κ_{2} of r_{2} divides κ^{\prime}, hence also κ. Since $\kappa \leqslant \kappa_{2}$, we have $\kappa_{2}=\kappa$ and $\kappa=\kappa^{\prime}$.
2.3. A rational hyperplane H has an equation

$$
\sum \sigma_{\nu} \zeta_{\nu}=\iota / \kappa
$$

with coprime $\iota \geqslant 0$ and $\kappa \geqslant 1$, where ζ_{ν} are the co-ordinates of a point κ of H and the σ_{ν} are integers with no common divisor.

The numbers ι and κ are the numerator and the denominator of H.
Proof. The case $\iota=0$ is trivial. For $\iota \neq 0$, note that the hyperplane $\sum \sigma_{\nu} \zeta_{\nu}=1$ is integral and hence obviously primitive.
2.4. A rational flat R is given by a system of l equations

$$
\sum \sigma_{\lambda \nu} \zeta_{\nu}=\sigma_{\lambda}, \quad \lambda=1, \ldots, l
$$

with integral $\sigma_{\lambda \nu}$ and σ_{λ}. Let a_{μ} be the greatest common divisor of the minors of order μ of the matrix ($\sigma_{\lambda_{\nu}}$), and c_{μ} the greatest common divisor of all minors of order μ of the matrix $\left(\sigma_{\lambda \nu}, \sigma_{\nu}\right)$ that are not minors of the matrix $\left(\sigma_{\lambda \nu}\right)$. Then R is integral if and only if a_{μ} divides c_{μ} for every $\mu=1, \ldots, n-m$, where m is the number of dimensions of R (also, by a theorem of Frobenius, if and only if a_{n-m} divides c_{n-n}; cf. 2, p. 84).
2.5. For every rational R we have:

The numerator and denominator of R are the numerator and denominator of the point $r=\left(c_{1} / a_{1}, \ldots, c_{n-m} / a_{n-m}\right)$ of $(n-m)$-space.

Proof. If we multiply R by a prime p, then $\sigma_{\lambda}, \sigma_{\lambda \nu}, c_{\mu}, a_{\mu}, r$ become in turn $\sigma_{\lambda} p, \sigma_{\lambda \nu}, c_{\mu} p, a_{\mu}, r p$. If we divide R by p, they become $\sigma_{\lambda}, \sigma_{\lambda \nu} p, c_{\mu} p^{\mu-1}, a_{\mu} p^{\mu}$, r / p. Since the condition for integral R and r is the same, it follows that R and r have the same numerator and denominator.

If the flat R is given by another system of equations, the point r may change (the numerator and denominator remain, of course, unchanged). For example, for the system $\zeta_{1}=3,3 \zeta_{2}=3$, we have $r=(3,1)$, while for $3 \zeta_{1}=9$, $3 \zeta_{2}=3$, we have $r=(1,1)$.
2.6. For the smallest flat R through l given points

$$
\left(\sigma_{\lambda_{1}} / \sigma_{\lambda}, \ldots, \sigma_{\lambda_{n}} / \sigma_{\lambda}\right), \quad \lambda=1, \ldots, l,
$$

with integral $\sigma_{\lambda \nu}$ and σ_{λ}, again let a_{ν} be the greatest common divisor of the minors of order μ of the matrix ($\sigma_{\lambda_{\nu}}$), and c_{μ} the greatest common divisor of all other minors of order μ of the matrix $\left(\sigma_{\nu}, \sigma_{\lambda}\right)$. The point $r=\left(c_{1} / a_{1}, \ldots\right.$, c_{m+1} / a_{m+1}) of ($m+1$)-space (m being again the number of dimensions of R) may have its last co-ordinate equal to ∞; in this case we define $\iota(r)=1$, $\kappa(r)=0$. Then we have:

The fat R is integral if and only if $\iota(r)=1$.
Proof. The four kinds of elementary transformations (change of sign of a row or column, addition of a row or column to another) that are sufficient to bring the matrix $\left(\sigma_{\nu \nu}\right)$ into its normal form, together with the corresponding changes of the σ_{λ}, affect neither the supposition nor the assertion. We may therefore assume $\sigma_{\mu \mu}=a_{\mu} / a_{\mu-1}$ (with $a_{0}=1$), $\mu=1, \ldots, m+1$, and all other $\sigma_{k \nu}=0$. If $a_{m+1}=0, c_{m+1} \neq 0$, then R contains O. Otherwise, the equations of R are

$$
\sum \sigma_{\mu} \zeta_{\mu} / \sigma_{\mu \mu}=1, \quad \zeta_{m+2}=\ldots=\zeta_{n}=0 .
$$

Integral solutions ζ_{μ} exist if and only if the numerator of $\left(\sigma_{1} / \sigma_{11}, \ldots\right.$, $\sigma_{m+1} / \sigma_{m+1, m+1}$) is 1 . But a prime p is contained in every σ_{μ} to a higher power than in the corresponding $\sigma_{\mu \mu}$, if and only if the same is true for the numbers c_{μ} and a_{μ}. This completes the proof.
2.7. For every rational R we obtain (defining r as in 2.6):

$$
\iota(R)=\kappa(r), \quad \kappa(R)=\imath(r) .
$$

Proof. This follows from the preceding theorem by observing that if R is multiplied by a prime p (or $1 / p$), then $\sigma_{\lambda}, \sigma_{\lambda}, c_{\mu}, a_{\mu}, r$ become $\sigma_{\lambda}, \sigma_{\lambda} p, c_{\mu} p^{\mu-1}$, $a_{\mu} p^{\mu}, r / p$ (or respectively $\sigma_{\lambda} p, \sigma_{\lambda v}, c_{\mu} p, a_{\mu}, r / p$).

2.8. By 2.5 and 2.7 we have:

The duality in which the point $\rho_{1}, \ldots, \rho_{n}$ corresponds to the hyperplane $\sum_{\rho} \zeta_{\nu}=1$ has the effect of interchanging the numerator and denominator of rational fats.

Corresponding flats are thus also arithmetrically "reciprocal."
Using the last remark of 2.1 it is seen that the same duality law holds for every correlation $\sum \rho_{\nu} c_{\nu \lambda} \delta_{\lambda}=1$ with a unimodular matrix ($c_{\nu \lambda}$), and for no other correlation.
2.9. The rational part F_{r} of a flat F is the smallest flat of F_{r} that contains the rational points of F; it is the largest rational flat in F.

The rational points of F are dense in F_{r}.
Proof. Let $z=r_{0}+\sum \zeta_{\mu} r_{\mu}$ with rational r_{0}, r_{μ} be a general point of F_{r}. In every neighbourhood of z there are points $r_{0}+\sum \rho_{\mu} r_{\mu}$ with rational ρ_{μ}.

The numerator and denominator are defined for every flat F through a rational point.

Proof. They are the same as for F_{r}.

3. The main grid

3.1. The main grid of F is the set of the points of F with minimum denominator κ.

The main grid of F has the same dimension as F_{r}.
Proof. Let $s_{0} / \kappa+\sum \rho_{\mu} s_{\mu}$ with integral s_{0} and s_{μ} and rational ρ_{μ} be a general rational point of F. Then there exist points $s_{0} / \kappa+\sigma \sum \rho_{\mu} s_{\mu}, \sigma \neq 0$, of denominator κ : choose σ so that the $\sigma \rho_{\mu}$ are integers.
3.2 The relative co-ordinates λ_{μ} of a point z of F_{τ} are defined with regard to a basis $r_{0}+r_{\mu}$ of the main grid of F, as the coefficients in the representation

$$
z=r_{0}+\sum \lambda_{\mu} r_{\mu} .
$$

Rational points $r=r_{0}+\sum \rho_{\mu} r_{\mu}$ have rational relative co-ordinates ρ_{μ}.
The denominator κ_{1} of a rational point r of F equals $\kappa \kappa^{\prime}$, where к is the denominator of F and κ^{\prime} is the common denominator of the ρ_{μ}.

Proof. By 2.2, κ divides κ_{1}. Put $\kappa_{1}=\kappa_{2}$ with integral κ_{2}. The point

$$
\kappa \kappa{ }_{2} r=\kappa \kappa{ }_{2} r_{0}+\sum \kappa_{2} \rho_{\mu} \cdot \kappa r_{\mu}
$$

is integral only when the $\kappa_{2} \rho_{\mu}$ are integers. Hence $\kappa_{2}=\kappa^{\prime}$.
3.3. A system of m integral points z_{μ} forms a basis of the main grid of a flat through 0 if and only if the $\binom{n}{m}$ minors $d\left(\nu_{1}, \ldots, \nu_{m}\right)$, formed by the $\nu_{1} t h, \ldots$, ν_{m} th column, $1 \leqslant \nu_{1}<\ldots<\nu_{m} \leqslant n$, of the matrix $\left(\begin{array}{c}z_{1} \\ \ldots \\ z_{m}\end{array}\right)$, have no common divisor (2, p. 84, Frobenius).

Proof. The flat R through O and the points z_{μ} has the dimension m if the minors $d\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ are not all 0 . The points z_{μ} form a basis of the main grid of R if and only if the coefficients σ_{μ} are integers whenever $\sum \sigma_{\mu} z_{\mu}$ is
integral. If the integral points z_{μ} are not a basis, then there exists an integral point $s=\sum \sigma_{\mu} z_{\mu}$ such that the coefficients σ_{μ} are not all integers, that is, that $\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ has a denominator $\kappa>1$, and $\kappa s=\sum\left(\kappa \sigma_{\mu}\right) z_{\mu}$ shows that the linear congruences $0 \equiv \sum \tau_{\mu} z_{\mu}$ modulo a prime p dividing κ have a solution τ_{μ} such that not all $\tau_{\mu} \equiv 0$; hence all the $\binom{n}{m}$ minors are $\equiv 0$ and have, therefore, the common divisor p. Conversely, if the minors are $\equiv 0$ modulo a prime p, then the congruences $0 \equiv \sum \tau_{\mu} z_{\mu}$ have a solution τ_{μ} such that not all $\tau_{\mu} \equiv 0$, and $\sum\left(\tau_{\mu} / p\right) z_{\mu}$ is integral while not all τ_{μ} / p are integers.
3.4. The $\binom{n}{m}$ minors $d\left(\nu_{1}, \ldots, \nu_{m}\right)$ fulfil the bilinear relations

$$
\begin{aligned}
& d\left(\nu_{1}, \ldots, \nu_{m}\right) d\left(\nu_{1}^{\prime}, \ldots, \nu_{m}^{\prime}\right) \\
& \quad=\sum_{\mu} d\left(\nu_{1}, \ldots, \nu_{m-1}, \nu_{\mu}^{\prime}\right) d\left(\nu_{1}^{\prime}, \ldots, \nu_{\mu-1}^{\prime}, \nu_{m}, \nu_{\mu+1}^{\prime}, \ldots, \nu_{m}^{\prime}\right)
\end{aligned}
$$

($d\left(\nu_{2}, \nu_{1}, \ldots\right)$ being defined as $-d\left(\nu_{1}, \nu_{2}, \ldots\right)$, etc.), $\binom{n}{m}-m(n-m)-1$ of which are independent, and every $\binom{n}{m}$ mumbers fulfilling these relations are minors of a matrix with rational elements (for example, $\mathbf{5}, \mathrm{p} .22$).

Every $\binom{n}{m}$ integers that have no common divisor and fulfil these bilinear relations are minors of a matrix with integral elements.

Proof. The given integers are minors of a matrix $\left(\begin{array}{c}y_{1} \\ \cdots \\ y_{m}\end{array}\right)$ with rational elements. Let R be the rational flat of dimension m through O and the points y_{1}, \ldots, y_{m}, and let z_{1}, \ldots, z_{m} be a basis of the main grid of R. Then $y_{\mu}=\sum c_{\nu \rho} z_{\rho}$, and the minors of the two matrices $\left(\begin{array}{c}y_{1} \\ \ldots \\ y_{m}\end{array}\right)$ and $\left(\begin{array}{c}z_{1} \\ \ldots \\ z_{m}\end{array}\right)$ differ by the constant factor

$$
c=\left|\begin{array}{cccc}
c_{11} & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & c_{m m}
\end{array}\right|
$$

The minors of either matrix being integers with no common divisor, we have $c= \pm 1$. For $c=-1$ replace z_{1} by $-z_{1}$.

4. Values of the anomaly

4.1. The cell size of a flat F through a rational point is the volume of the fundamental cell of the main grid of F. If F contains only one rational point, the cell size is defined as 1 .

The anomaly of a flat F is the cell size of a parallel flat F_{0} through O. Its square ω is the sum of the squares of the minors $d\left(\nu_{1}, \ldots, \nu_{m}\right)$ of a basis of the main grid of F_{0}; hence ω is an integer.

The cell size of a flat of denominator κ with a rational part of m^{\prime} dimensions is the square root of a rational number $\omega \kappa^{-2 m^{\prime}}$ and is greater than or equal to $\kappa^{-m^{\prime}}$.

Proof. The number $\sqrt{ } \omega$ is the cell size of κF and equal to $\kappa^{m^{\prime}}$ times the cell size of F, and $\sqrt{ } \omega \geqslant 1$.
4.2. The anomalies of any two orthogonal rational flats of m and $n-m$ dimensions are equal.

Proof. Suppose $0<m<n$. Let z_{1}, \ldots, z_{m} be a basis of the main grid of a rational flat R through O. There exist z_{m+1}, \ldots, z_{n} such that z_{1}, \ldots, z_{n} is a basis of the main grid of n-space.* Let the matrix $\left(y_{1}, \ldots, y_{n}\right)$ be the transpose of the inverse of the matrix $\left(z_{1}, \ldots, z_{n}\right)$; then y_{v} is one of the two primitive points of the line through O orthogonal to the flat through O and all z_{ρ} with $\rho \neq \nu$. Now every minor of either matrix equals the complementary minor of the other (for example, 1, p. 31). The flat through O determined by y_{m+1}, \ldots, y_{n}, which is orthogonal to R, has therefore the same anomaly as R.

In case $m=1$, the proposition can also easily be verified as follows. The fundamental cell of the main grid of the hyperplane $\sum \sigma_{\nu} \zeta_{\nu}=0$ (where the coefficients σ_{ν} are integers without a common divisor) is a side of a fundamental cell C of the grid of all integral points. The opposite side is on $\sum \sigma_{\nu} \zeta_{\nu}=1$ (or -1), so that the distance between these sides is $\left(\sum \sigma_{\nu}{ }^{2}\right)^{-\frac{1}{2}}$. The volume of C being 1 , the volume of the side equals $\left(\sum_{\sigma_{\nu}}{ }^{2}\right)^{\frac{1}{2}}$, which is the anomaly of the straight line, orthogonal to the hyperplane, through O and ($\sigma_{1}, \ldots, \sigma_{n}$).
4.3. The square ω of the anomaly of a rational flat of a given number m of dimensions in n-space can be any positive integer for $n \geqslant 5$. For $n \leqslant 4$ there are the following exceptions:
\(\left.\begin{array}{ccc}m \& n-m \& Impossible values:

(or n-m \& m) \& integers of the form\end{array}\right]\)| 1 | 1 | $4 k$ or $(4 l+3) k$ |
| :---: | :---: | :--- |
| 1 | 2 | $4 k$ or $8 k+7$ |
| 1 | 3 | $8 k$ |
| 2 | 2 | $16 k$ or $16 k+12$ or $8 k+7$ |

By 3.4 this is equivalent to saying that every positive integer, with exceptions as stated, is the sum of $\binom{n}{m}$ squares of integers without a common divisor and connected by the bilinear relations indicated in 3.4.

By 4.2, the range of ω remains the same if m and $n-m$ are interchanged. Since the anomaly of a flat of m dimensions in n-space is also the anomaly

[^0]of the same flat in $(n+1)$-space, the range of ω cannot decrease for constant m and increasing $n-m$, hence the same is true for constant $n-m$ and increasing m. Our assertions need therefore only be proved for the given combinations ($m, n-m$) , and (the absence of exceptions) for $(1,4)$ and $(2,3)$, that is, in 5 -space.
4.4. Proof for $m=1$. There are no bilinear relations. The representation of an integer as a sum of n squares without a common divisor has been frequently treated. For $n=3$, the numbers without a representation were given by Legendre (2, p. 261, footnote 5). For $n=5$ one of the squares can be assumed to be 1 ; for $n=4$, if a representation exists, it can be assumed to be 0 or 1 .

Since $1 / 4(1 / 8)$ of the representations of a positive integer ω as a sum of 2 (4) squares of integers (given, for example, in 3, pp. 103-4 (113)) is a multiplicative function $f(\omega)$, the same is true for the function $g(\omega)$ whose value is $1 / 4(1 / 8)$ of the number of primitive representations of ω. This f cllows easily from the formula

$$
g(\omega)=f(\omega)-\sum f\left(\omega / p^{2}\right)+\sum f\left(\omega /\left(p^{2} q^{2}\right)\right)-+\ldots,
$$

where p, q, \ldots are the different primes whose squares divide ω. Therefore we have, for $\omega=\Pi p^{\alpha}$,

$$
g(\omega)=\Pi\left(f\left(p^{\alpha}\right)-f\left(p^{\alpha-2}\right)\right),
$$

with $f(1)=1, f\left(p^{-1}\right)=0$. This gives immediately the value (2, pp. 241, $242,288,303$) of $g(\omega)$ for every ω, and the above cases of $g(\omega)=0$.
4.5. Proof for $m=2$. For $n-m=2$, let $s=\left(\sigma_{1}, \ldots, \sigma_{4}\right), s^{\prime}=\left(\sigma_{1}{ }^{\prime}, \ldots\right.$, $\sigma_{4}{ }^{\prime}$) be a basis of the main grid of a rational flat through O. The six minors of order 2 are connected by a single bilinear relation. The number ω is a sum of six squares

$$
\sum a_{i}{ }^{2}+\sum b_{i}{ }^{2}, \quad i=1,2,3,
$$

with no common divisor and connected by the relation

$$
\sum a_{i} b_{i}=0
$$

whence $\omega=\sum\left(a_{i}+b_{i}\right)^{2}$. This is impossible for $\omega=8 k+7$. For $\omega=4 k$, two squares belonging to the same i, say $i=1$, are even, the others odd. Then $a_{i}{ }^{2}+b_{i}{ }^{2}, i=2,3$, is 2 or $10(\bmod 16)$, according as $a_{i} b_{i}$ is ± 1 or $\pm 3(\bmod 8)$. Hence if $a_{1}{ }^{2}+b_{1}{ }^{2}$ is 0,4 , or $8(\bmod 16)$, with $a_{1} b_{1}$ respectively 0 , 0 , or 4 $(\bmod 8)$, then ω is 4,8 , or 4 , and never 0 or $12(\bmod 16)$.

To represent $\omega \neq 4 k, 8 k+7$, put all $b_{i}=0$ (choosing $\sigma_{4}=\sigma_{4}^{\prime}=0$). For $\omega=16 k+4$ and $\omega=16 k+8$, express $\omega / 4$ as a sum $\sum c_{i}{ }^{2}$ of three squares with no common divisor; supposing, as we may, c_{2} even and c_{3} odd, put $a_{1}=2 c_{1}, \quad a_{2}=a_{3}=c_{2}+c_{3}, \quad b_{1}=0, \quad b_{2}=-b_{3}=c_{2}-c_{3} \quad\left(\sigma_{3}=\sigma_{4}, \sigma_{3}{ }^{\prime}=\sigma_{4}{ }^{\prime}\right)$. By 3.4 , for every solution a_{i}, b_{i} there exists a matrix s, s^{\prime}.

For $(m, n-m)=(2,3), \omega$ can be any positive integer. Indeed, the numbers excepted both for $(1,3)$ and for $(2,2)$ are those divisible by 16 . But $s_{1}=(1,1,0,0,0), s_{2}=\left(2,0, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ yields $\omega=2 \sum \sigma_{i}{ }^{2}+4$; and every number $8 k+6$ is a sum $\sum \sigma_{i}{ }^{2}$ with not all σ_{i} even.

References

1. M. Bôcher, Higher algebra (New York, 1907, 1947).
2. L. E. Dickson, History of the theory of numbers, Vol. II (Washington, 1920, 1934).
3. E. Landau, Zahlentheorie, Vol. I (Leipzig, 1927).
4. T. S. Motzkin, Sur l'équation irréductible $z_{n}+a_{1} z^{n-1}+\ldots+a_{n}=0, n>1$, à coefficients complexes entiers, dont toutes les racines sont sur une droite. Les 11 classes de droites admissibles. C. R. Acad. Sci. Paris, 222 (1945), 221-223.
5. B. L. van der Waerden, Algebraische Geometrie (Berlin, 1939).

University of California, Los Angeles

[^0]: *A special case of this long-known result was reviewed as new in Math. Reviews, 7 (1946), 242 (the fourth paper).

