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The evaluation of normalization methods sometimes focuses on the maximization of
vowel-space similarity. This focus can lead to the adoption of methods that erase
legitimate phonetic variation from our data, that is, overnormalization. First, a
production corpus is presented that highlights three types of variation in formant
patterns: uniform scaling, nonuniform scaling, and centralization. Then the results
of two perceptual experiments are presented, both suggesting that listeners tend to
ignore variation according to uniform scaling, while associating nonuniform
scaling and centralization with phonetic differences. Overall, results suggest that
normalization methods that remove variation not according to uniform scaling can
remove legitimate phonetic variation from vowel formant data. As a result,
although these methods can provide more similar vowel spaces, they do so by
erasing phonetic variation from vowel data that may be socially and linguistically
meaningful, including a potential male-female difference in the low vowels in our
corpus.

In recent years, evaluations of normalization methods for vowel formant data have
prioritized the maximization of vowel-space similarity (e.g., Adank, Smits, & Van
Hout, 2004; Flynn & Foulkes, 2011). For example, Fabricius, Watt, and Johnson
evaluated methods in part based on “the degree of intersection of individual
vowel spaces achieved by the algorithms, because an optimal method would
achieve the highest possible degree of overlap” (2009:414). Since the vertices of
vowel-space polygons are defined by tokens of individual vowel categories (e.g.,
=i a u=), in order to make vowel spaces as similar as possible, the vertex vowels
must be as close together as possible in the normalized space (i.e., minimize
within-category variance). However, production data is typically labeled using
broad phonemic, rather than narrow phonetic, labels. As a result, there is no
reason to expect that all tokens labeled in the same way share identical phonetic
properties. For example, Hillenbrand, Getty, Clark, and Wheeler noted of their
own dataset: “It should not be concluded that all utterances that were assigned the
same phonemic label are phonetically equivalent […]. Even a casual listening by
an experienced phonetician shows clearly that there is a range of phonetic
qualities within the vowel categories” (1995:3108).
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P R O B L EM S W I T H D E S I R I N G MA X I M A L S I M I L A R I T Y

Two general problems arise if we take the position that we only care about obtaining
maximally similar normalized data. First, speakers of a single dialect can produce the
same phoneme in phonetically different ways based on social or ideological
differences or based on different rates of participation in sound changes in progress
(Podesva, D’Onofrio, Hofwegen, & Kim, 2015; Tamminga, 2019). This suggests
that we can reasonably expect two speakers in a single household, let alone an
entire city or province, to exhibit interesting phonetic and structural differences in
their vowel systems. Further, even if two speakers can in some situations produce
tokens that are phonetically similar to each other, that does not mean that they
always do so, or that they did so when the data were collected. As a result, the
phonetic homogeneity of tokens in a dataset can never be known a priori and can
only be established empirically after productions are observed. Therefore, the a
priori preference for normalization methods that maximize the similarity of
normalized vowel spaces begs the question of the similarity of the vowel spaces
and may erase important phonetic, within-category variation from our data.

A second problem with preferring maximal similarity is that this desire does not
offer a clear endpoint. In general, adding more parameters to a model will decrease
the residual error and increase the variance explained. Analogously, normalization
methods that feature more operations and parameters will generally lead to greater
reductions in within-category, subphonemic variation. As a result, it is not
surprising that methods with more parameters usually provide the “best”
performance when this is defined primarily in terms of variance reduction.
However, if we truly desire methods that maximize the similarity of normalized
data, it is not clear when we should stop adding more operations to our
normalization methods, removing ever more variation from our data. For
example, in addition to controlling for the mean and range of vowels along a
formant (the first and second moments), perhaps between-speaker variation in
the skewness (the third moment) of vowel distributions could also be controlled
for. If the only goal is maximal similarity, there is no clear basis to rule out
additional operations so long as they “improve” the performance of the
algorithm. The limiting case would be a “saturated model” that completely
erases within-category variation, collapsing all productions of each phoneme
into a single point in the normalized space. Clearly, the output of such a method
would not be useful for most researchers, suggesting that some constraints on
the power of normalization methods are necessary in practice.

P H O N E T I C CO N S T R A I N T S O N NO RMA L I Z AT I O N

Disner (1980:253) suggested caution regarding the desire for maximal vowel-space
similarity:

it is not enough that [a normalization method] reduce the variance while maintaining
the separation in any given data set; caution should be exercised to ensure that the
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trends which remain in the normalized data are truly linguistic trends and not artifacts
of the normalization technique itself. It cannot be overemphasized that the output of
any adequate normalization procedure must be a correct representation of linguistic
fact.

So, rather than wanting all normalized vowel spaces in a sample to be identical,
Disner suggested that normalized vowel spaces should be identical if, and only
if, their constituent vowels are phonetically identical. When this occurs, the
normalized data will reflect the “linguistic facts” represented by the productions.

Labov, Ash, and Boberg justified their use of normalization in the Atlas of North
American English by saying that “men, women, and children have very different
physical realizations of vowels that sound ‘the same’ to a listener. The task of
normalization is to find a mathematical function that does the same work as the
normalizing ear of the listener” (2005:39). This suggests that there should be
perceptual constraints on normalization methods: the ideal method will not remove
all within-category variation but just the variation that is perceptually removed by
listeners. From this perspective, it is possible to “overnormalize” (Barreda &
Nearey, 2018) vowel spaces by removing variation that listeners do not remove in
perception, resulting in the removal of legitimate phonetic variation from a dataset.

Nearey (1983) distinguished two types of variation in formant patterns: phone-
preserving variation and variation that is not phone-preserving. Phone-preserving
variation is removed by the “normalizing ear” of the listener and so does not
affect the phonetic content of a vowel sound. Sounds that differ only in terms of
phone-preserving variation are not “different” from the perspective of the
linguistic system: they will convey the same linguistic and social information
between speakers despite being acoustically different. Barreda and Nearey
(2018) argued that the ideal normalization method removes only linguistically
meaningless, phone-preserving variation, regardless of its source, leaving only
variability associated with differences in the phonetic properties of vowel
sounds. In this view, we should sometimes accept normalization methods that
result in more within-category variance (and more vowel space heterogeneity)
when this variation represents legitimate phonetic variation in a set of productions.

P H O N E - P R E S E RV I N G VA R I AT I O N I N FO RMA N T PAT T E R N S

There are several theories of vowel perception suggesting that uniform scaling of
formant patterns is phone-preserving, and substantial experimental evidence that
this type of variation in formant patterns tends to preserve phonetic structure
(Barreda, 2020; Nearey, 1978; Smith & Patterson, 2005). When formant patterns
vary according to uniform scaling, all formants increase in equal proportion, on
average, between speakers. This sort of acoustic variation is expected when
speakers vary strictly in terms of vocal tract length, and is often interpreted by
listeners as indicating a difference in speaker size rather than a difference in the
phonetic content of the signal (Smith & Patterson, 2005). To my knowledge,
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there is no theory of speech perception that suggests that uniform scaling is not
generally phone-preserving. In fact, it is typically deviations from uniform
scaling that are used to convey linguistic and social meaning between speakers
(see Barreda [2020] for an elaboration of this idea).

We may compare this to two other sorts of manipulations of formant patterns:
nonuniform scaling and dispersion=centralization. Scaling formant frequencies
using a different factor for each formant (i.e., nonuniform scaling) is generally
not considered to be phone-preserving. Listeners are quite sensitive to the
independent manipulation of formant frequencies, often associating relatively
small changes in individual formants with large changes in vowel quality.
Further, differences in the position of individual phonemes in the F1 × F2 plane
due to dialectal differences (or any other factor) will necessarily feature
nonuniform scaling differences between speakers. For example, if average
productions of =u= in two dialects have approximately the same height but differ
in frontness, this implies an average difference in F2 (but not F1) in the
productions of =u= between the dialects. As a result, both synchronic variation
and diachronic changes in vowel systems may manifest as nonuniform
differences in individual formants, and potential differences in vowel-space shapes.

Finally, we consider the changes in formant patterns associated with variation in
the dispersion=centralization of vowel spaces between speakers. Differences in the
centralization of vowels can be quantified using the distance of constituent
phonemes to some internal reference point (e.g., the vowel-space centroid), and
results in the expansion=contraction of a fixed vowel-space shape. To my
knowledge, there is no theory of vowel perception that suggests that vowel-space
dispersion cannot or generally does not affect phonetic content. In fact, vowel-
space dispersion relates to the “clarity” of speech (Ferguson & Kewley-Port,
2007), can be affected by phonological and lexical factors (Munson, 2007), and
potentially conveys linguistic and social meaning between speakers and listeners
(e.g., D’Onofrio, Pratt, & Van Hofwegen, 2019).

N O RMA L I Z AT I O N O P E R AT I O N S A N D P H O N E - P R E S E RV I N G

VA R I AT I O N

If we are interested in determining which normalization methods tend to remove
only phone-preserving variation, we must consider two questions. First, which
kinds of variation are likely to be phone-preserving? Second, which kinds of
variation are erased by different normalization methods? To investigate these
questions, we will outline the behavior of three classes of normalization
methods, to be described below: (1) single parameter scaling methods; (2)
formantwise scaling methods; and (3) formantwise standardization methods.

The test corpus

The behavior of normalization methods will be highlighted using a corpus
of production data collected from thirty speakers of California English
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(fourteen males and sixteen females), ranging in age from eighteen to twenty-
five (mean = 20.3, standard deviation = 1.7). All speakers lived in California
since at least five years of age and reported English as their strongest
language. This data comprises fifteen repetitions of eleven English vowel
phonemes (=ɪ i ʊ u e ɪ ɛ ʌ æ ɑ o ɝ=) in an =hVd= context. Words were
collected in a sound attenuated booth, in a single thirty-minute session.
Productions were collected in isolation, using single-word prompts presented
on a computer monitor in a random order but blocked by repetition. The first
three formant frequencies were measured for each token by averaging
measurements from 20–40% of the vowel duration, sampled every three ms.
The high number of repetitions of each token and the phonologically and
acoustically controlled conditions were intended to provide information
about the idiosyncratic, but consistent, between-speaker variation present in
the sample.

Single parameter scaling methods

The simplest normalization methods we will consider involve the division of all
formant frequencies by a single, speaker-specific scaling parameter (Labov et al.,
2005; Nearey, 1978). Division by a single parameter means these methods can
only erase differences in vowel-space expansion or contraction that is uniform
across all formants. This constraint imposes two important limitations on the
sort of vowel-space variation these methods can erase from data. First, uniform
scaling cannot affect the basic “shape” of vowel spaces as defined by polygons
in the F1 × F2 space. This means that, for example, these methods cannot
equate a vowel space in the shape of an equilateral triangle and a vowel space
in the shape of an isosceles triangle. Second, uniform scaling can only equate
differences in vowel-space dispersion (area) that are predictable from
differences in average formant frequency. For example, a speaker who
produces formants that are 15% higher also produces vowel phonemes that are
15% further apart in the formant space (since all distances have increased by
15%), leading to a predictable increase in vowel-space area. All of the methods
we will consider here can remove variation according to uniform scaling,
providing roughly equivalent outputs when vowel spaces differ mostly in this
manner (see Figure 1).

A representative of this class of methods is the single-parameter log-mean
normalization method first proposed by Nearey (1978), henceforth LM. This
method finds the mean log-transformed formant frequency for each speaker (s)
across all V vowels and J formants (Equation 1). This single value is then
subtracted from the logarithm of each observed formant frequency (Equation 2).
This method is mathematically equivalent to calculating the geometric mean
formant frequency and then dividing formant frequencies by this value (Labov
et al., 2005), as shown in Equation 3. The estimated parameter is represented by
σ to underscore the fact that this is a scaling parameter: it affects normalized data
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only by affecting the scaling of formant patterns in a multiplicative manner.

ss ¼
XV
v¼1

XJ
j¼1

ln (Fvjs)=(V�J) ð1Þ

Nvjs ¼ ln (Fvjs)� ss ð2Þ

exp (Nvjs) ¼ Fvjs=exp (ss) ð3Þ

Formantwise scaling methods

Rather than using a single parameter for all formants, formantwise scaling methods
use an independent scaling parameter to normalize each formant (Nearey, 1978;
Watt & Fabricius, 2002). The method proposed by Watt and Fabricius (2002),
henceforth WF, will be used to represent this class of methods. The WF method
calculates a scaling parameter for each speaker (s) for each formant ( j), as in
Equation 4. Formant frequencies are then divided by the formant-specific scaling
parameters (σjs), as in Equation 5. Note that, unlike in Equation 2, the scaling
parameters feature a formant-specific subscript so that values of σjs will differ
across the J formants.

s js ¼ (F=i=
js þ F=a=

js þ F=u=
js )=3 ð4Þ

Nvjs ¼ Fvjs=sjs ð5Þ

Although formantwise scaling methods differ in how they define their scaling
parameters (σjs), the use of an independent scaling parameter for each formant
means that these methods will erase “nonuniform” shape variation in vowel
spaces. As a result, these methods can relate a vowel space that looks like an

FIGURE 1. Vowel spaces of one male and one female speaker who differ primarily according
to uniform scaling, presented in Hertz and normalized using the log-mean (LM), Watt and
Fabricius (WF) and Lobanov (LB) methods.
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equilateral triangle and one that looks like an isosceles triangle, potentially making
them identical after normalization. For example, although the female speaker in
Figure 2 has a larger F1 and F2 range than the male speaker, her F1 is larger
than expected given her F2 range, resulting in differences in vowel-space shape
between the speakers. As seen in Figure 2, these differences can be reduced by
formantwise scaling methods such as WF, but not by single parameter scaling
methods such as LM.

As noted above, nonuniform differences between speakers can potentially
convey important linguistic information. For example, the male speakers in
Figure 2 produce approximately the same F2 values but differ in average F1
across all tokens. It is possible that these differences represent anatomic variation
that should be erased by a useful normalization method. However, it is also
possible that these represent legitimate phonetic, dialectal variation that should
be maintained in our data. Unfortunately, formantwise scaling methods do not
make any such distinction and erase such variation indiscriminately.

Formantwise standardization methods

The most complex class of methods we will consider control for dispersion and
central location independently for each formant (Gerstman, 1968; Hindle, 1978;
Lobanov, 1971). This last class of methods features two operations per formant:
division and subtraction. Formantwise standardization methods will be
represented by the method proposed in Lobanov (1971). To use the Lobanov
(henceforth LB) method, researchers calculate the mean (Equation 6) and

FIGURE 2. The vowel spaces of one male and one female speaker (top row), and two male
speakers (bottom row) who differ in nonuniform scaling. Vowel spaces are presented in
Hertz and normalized using the log-mean (LM), Watt and Fabricius (WF) and Lobanov
(LB) methods.
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standard deviation (Equation 7) independently for each of J formants, across all the
V vowels produced by a speaker. Formant frequencies are then standardized by
subtracting the formantwise mean for that formant and dividing by the standard
deviation for that formant (Equation 8).

m js ¼
XV
v¼1

Fvjs = V ð6Þ

sjs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XV
v¼1

(Fvjs � mjs)
2= V

vuut ð7Þ

Nvjs ¼ (Fvjs � m js)=s js ð8Þ

Since formantwise standardization methods independently control for both the
mean and range of each formant, these methods will erase differences in formant
dispersion (hyper-=hypoarticulation or centralization) between speakers. For
example, in Figure 3 we see two pairs of speakers who differ in vowel-space
dispersion above and beyond their difference in average formants. As noted
above, there is evidence to suggest that these differences may be phonetically
salient and linguistically meaningful to listeners. In both cases, the differences
are erased by the LB method but maintained by the WF and LM methods.

Clopper, Pisoni, and de Jong (2005) reported that the LB method resulted in
“artifacts” in their data consistent with overnormalization: “the back-vowel
fronting that is found in the speech of Southern talkers led to a higher mean F2
and a smaller F2 standard deviation. The [Lobanov] z-score transformation then
produced artificially backed low back vowels as a result of the larger numerator
and smaller denominator” (1674). In this case, the normalized data produced by
the LB method placed back vowels from different dialects in the same location
in the normalized space despite differences in their phonetic properties (i.e.,
overnormalization). Clopper et al. went on to state that, “in cases where vowel
systems are being compared that differ in their overall shape, the z-score
transform should be used with caution” (2005:1674). However, this advice is
problematic for the LB method as there may always be differences in vowel-
space shapes in a sample, and normalization may be desirable precisely to
establish the existence of such differences.

N O RMA L I Z E D S PAC E S A S P H O N E T I C MA P S

Lobanov normalization (LB) was intended to maximize the accurate statistical
classification of speech sounds, a task for which it is demonstrably well suited
(Adank et al., 2004). The Watt and Fabricius (WF) method was designed to aid
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the visual comparison of vowel spaces of speakers of the same dialect (Watt &
Fabricius, 2002:169), explicitly in cases where vowel spaces of roughly the same
shapes are expected. Generally speaking, methods are neither good nor bad but
are instead suitable for specific purposes. Neither the LB nor the WF method
was meant to preserve or relate information regarding the perceived vowel
qualities (i.e., the phonetic properties) of a set of vowel sounds in a broad range
of circumstances.

Plots of normalized vowels (and the data used to generate them) are often treated
as if they provided “phonetic maps,” broadly analogous to geographic maps.
Geographic maps can often be interpreted as metric spaces where the Euclidean
“straight line” distance in the map reflects the geographic distance between real-
world locations. If a user of the map sees that points A and B lie closer together
than points A and C, they may infer that A and B are closer together in real life.
The consistent relationships between distances on the map and the geographic
distances of real-world locations makes the map useful, as this allows the user to
make reliable inferences based on the map.

When researchers use normalized vowel spaces as phonetic maps, the Euclidean
distance (or some other distance metric) between two points is used to quantify the
phonetic differentness of two tokens. A researcher may infer that vowels that cluster
together in one location of a normalized space have similar phonetic properties,
because the distances between them are small, and that vowels in distant locations
have different phonetic properties, because the distances between them are large.
Such inferential practices rely on there being consistent relationships between
distance in the normalized space and the phonetic “distance” of speech sounds.
Thus, researchers engaging in these practices will benefit from selecting methods
that provide reliable phonetic organizations (“phonetic maps”) for their data.

FIGURE 3. The vowel spaces of two male speakers (top row), and one male and one female
speaker (bottom row) who differ in centralization. Vowel spaces are presented in Hertz and
normalized using the log-mean (LM), Watt and Fabricius (WF) and Lobanov (LB) methods.

P E R C E P T U A L VA L I D AT I O N O F N O RMA L I Z AT I O N M E T H O D S 35

https://doi.org/10.1017/S0954394521000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0954394521000016


Overnormalization and the reliability of phonetic maps

An example of how overnormalization can harm the reliability of “phonetic maps”
is presented here. Suppose we are interested in whether the men and women in our
sample of California speakers have “the same” vowel spaces or not. The men and
women in our sample exhibit a nonuniform difference in their formant patterns.
While the female speakers have an F1 mean for =i æ u= that is 37% higher than
the male speakers, their F2 mean is only 21% higher, meaning their F1
frequencies have increased 13% more than expected, according to uniform
scaling. This scaling difference results in variation in the shape of the male and
female vowel spaces, with the female vowel space being relatively more
elongated along F1 (seen in Figure 4a). The question is, is this difference
phonetically, linguistically, or socially meaningful? Or is it simply meaningless
between-speaker variation that we should erase from our data?

If relying on the organization provided in Figure 4b, the researcher would likely
infer from the distance between the tokens that productions of =æ= differ in height
between the male and female speakers, meaning these vowels would be able to
convey social and linguistic differences. For example, if representative tokens
were played for a room full of linguists (e.g., at a conference), the audience
would be expected to “hear” a difference in height between the vowels and react
accordingly. On the other hand, based on the proximity between the tokens, the
researcher would conclude that =u= does not differ in height between men and
women. When played for the same room full of linguists, this researcher would
expect the audience to think that these vowels did not differ substantially in
openness. Now, suppose that the organization presented in Figure 4b represented
the true linguistic facts in the data (i.e., =æ= differs but =u= does not). In this
case, a researcher could not make reliable inferences about phonetic
characteristics using the representation in Figure 4d, because distance in the
normalized space would not be a reliable metric for phonetic difference. In some
cases, a lack of distance would represent phonetic similarity (=u=), while in
others it would not (=æ=).

If a researcher is interested in using distances in normalized data to make
inferences about the phonetic similarity of tokens, they must ensure that distance
in the normalized space functions as a reliable metric for phonetic difference.
The only way to ensure this is to favor normalization methods whose outputs
accurately reflect the phonetic information in vowel sounds. Such methods will
cluster sounds that are phonetically similar and separate sounds that are
phonetically different, even if this results in relatively more within-category
variation in normalized data.

P E R C E P T U A L VA L I D AT I O N O F N O RMA L I Z AT I O N M E T H O D S

There are not many published evaluations of normalization methods that directly
consider how well these maintain the phonetic properties of speech sounds. Both
Hindle (1978) and Labov (1994) found that Sankoff (1978) normalization
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(a formantwise standardization method) reduced more within-category variation in
formant patterns than the LM method. However, it also removed some of the
socially conditioned variation in vowel quality between speakers (i.e.,
overnormalization). Kohn and Farrington (2012) found a slight advantage for
WF over LB normalization in the maintenance of perceptually salient
sociolinguistic differences, though the structure of their statistical models makes
their results somewhat difficult to interpret for our purposes. Kohn and
Farrington did not test the LM method, because it was found to perform poorly
by Adank et al. (2004). However, the poor performance of the LM method in
Adank et al. is likely due to an error in the implementation of the method, which
included f0 in the calculation of the formant-scaling parameter (2004:3103, Eq. 8).
This would have caused large deviations in speakers’ formant-scaling estimates
that were not reflective of changes in vocal-tract length and could be extremely
deleterious to the performance of the algorithm. More recently, Rankinen and de
Jong (2020) reported a comparison of the LB and LM methods, finding that the
LM method better preserves the vowel-space differences associated with ethnic
heritage in their sample.

Although there has not been much direct perceptual validation of normalized
outputs, the operations employed by the normalization methods have different
levels of support as “phone preserving” in the literature on speech perception.
As noted in the introduction, there is general agreement that uniform scaling
tends to be phone-preserving. What is less certain is which additional sorts of
between-speaker variation can be phone-preserving, and under what conditions.
Here, we seek evidence that the additional operations employed by more
complex normalization methods (e.g., formantwise scaling, formantwise
standardization) are supported by listener judgments.

We wish to investigate gradient changes in the subphonemic, phonetic
properties of vowel sounds. One way to do this is by considering the varying
classification rates of ambiguous vowel tokens into two or more phonemic
categories (Nearey, 1998). For example, consider a continuum spanning between
two vowels varying primarily in height (e.g., from =i= to =ɪ=). Imagine we begin
with a good exemplar of =i= that we expect to be classified as =i= nearly 100%

FIGURE 4. Mean productions of a subset of vowels produced by thirty male (dashed line) and
female (solid line) speakers of California English, presented in Hertz and normalized using
three methods. Ellipses enclose two standard deviations.
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of the time. As F1 increases, the phonetic “height” of the vowel will decrease,
together with the probability that it will be identified as =i=. Thus, the increasing
probability of an =ɪ= response reflects gradual changes in the phonetic properties
of the vowel, providing insight into gradient variation in the phonetic properties
of vowel sounds: acoustically different vowels with similar classifications are
likely to share phonetic properties.

Classification rates will be used to investigate which sorts of transformations to
formant patterns are “phone-preserving,” meaning they can be removed from our
data without erasing phonetic information. Rather than preferring normalization
methods that provide maximal normalized similarity, we will prefer methods that
cluster vowel sounds that are classified in the same ways and separate vowel
sounds that are classified in different ways. If a normalization method clusters
vowels that are classified in substantially different ways, this will be suggestive
of overnormalization, the artificial grouping of phonetically dissimilar vowels
due to the removal of legitimate phonetic variation from vowel data.

Simulating between-speaker differences

The experiments described below feature vowels produced by six artificial
speakers. These speakers share dialectal information but feature systematic
between-speaker variation in the realization of their tokens. Each speaker was
represented by two types of tokens: training stimuli and testing stimuli. Training
stimuli consisted of the vowels =i u æ ɑ o=. These vowels were intended to
provide information about speaker vowel spaces, and listeners were not asked to
classify these vowels. The testing stimuli were a seven-step continuum from the
average F1, F2, and F3, of =i= to =ɪ= in six equal steps (Figure 5a), for each
unique voice (Figure 5d). Formant frequencies for each phoneme were based on
average values calculated from our sample of California speakers, a subset of
which was presented in Figure 4.

Between-speaker variation existed along two dimensions: vowel-space type
(standard, high F1, and centralized), and size (large, medium, and small). Size
differences were implemented by modifying all formant frequencies in equal
proportions (uniform scaling, see Figure 5b), and by changing the fundamental
frequency (f0) of the vowels. Mean F1, F2, and F3 frequencies across all male
and female speakers were decreased by 15% to create the formant values for the
large standard speaker. Large speakers had F4 values of 3500 Hz, F5 values of
4500 Hz for all vowels, and f0s that decreased linearly from 120 to 110 Hz
during the vowel. Medium voices were created by increasing all large formant
frequencies (F1 to F5) by 14%, and by increasing f0 so that it went from 170 Hz
to 156 Hz, an increase of a half-octave over the large condition. Small voices
were created by increasing all medium formant frequencies (F1 to F5) by a
further 14% (30% relative to the large condition), and by increasing f0 so that it
began at 240 Hz and decreased to 220 Hz over the course of the vowel. This is
an increase of a half-octave over the medium condition and an octave over the
large condition.
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Type differences were implemented by varying voices in ways that deviated
from uniform scaling within each size level (Figure 5c). The high-F1 speaker
was created by increasing the standard speaker’s F1 frequencies by 11.5%
relative to the standard speaker, but not modifying any other formant
frequencies. This resulted in a nonuniform scaling difference with respect to the
standard speaker. The centralized speaker was created by centering formant
frequencies about their mean values, multiplying centered values by 0.85, and
then adding the mean values back again. This resulted in a vowel space with the
same centroid as the standard speaker but with reduced vowel space dispersion
(i.e., centralization). Formant values for the large speaker are provided in
Table 1, and all testing vowels for all voices are compared in Figure 5d. All
vowels were 250 ms in duration with steady-state formants and were synthesized
using a Klatt-style parametric synthesizer (Klatt, 1980).

Differential predictions made by normalization methods

Consider a researcher who is interested in the phonetic properties of the =i=-=ɪ=
continuum as produced by our artificial speakers. We may ask a very basic
question: which, if any, of the tokens in Figure 6a share phonetic properties?
Since the speakers differ substantially in their acoustics, the researcher cannot
compare tokens directly by using formant frequencies measured in Hertz (i.e.,
their positions in 6a). A typical approach would be to normalize the continuum
steps for each speaker and then compare the normalized data. Figure 6 presents
the organization of the continuum steps produced by the six voices in
normalized spaces. In each case, normalization was carried out using statistics
calculated from the peripheral vowels (=i u æ ɑ o=) for each voice, since these
provide information about vowel space shape and size.

FIGURE 5. (a) Locations of training and testing stimuli for the standard voice. Points indicate
the steps along the =i=-=ɪ= continuum. (b) Comparison of testing stimuli for the large (L),
medium (M), and small (S) standard speaker. Smaller speakers produce higher formant-
frequencies. Polygons outline vowel spaces implied by training vowels. (c) Comparison
of testing stimuli for the large voices by voice type. (d) Comparison of all testing stimuli
for standard (circle), high-F1 (triangle), and centralized (square) voice types across large,
medium, and small speakers.

P E R C E P T U A L VA L I D AT I O N O F N O RMA L I Z AT I O N M E T H O D S 39

https://doi.org/10.1017/S0954394521000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0954394521000016


TABLE 1. Formant frequencies for large-speaker stimuli. Tokens whose vowel labels are numbers are steps along the /i/-/ɪ/ continua for the voices, with
/i/ being the first step

Standard High F1 Centralized

F1 F2 F3 Vowel F1 F2 F3 Vowel F1 F2 F3 Vowel

751 1454 2268 æ 838 1454 2268 æ 700 1454 2267 æ
698 1015 2272 ɑ 779 1015 2272 ɑ 659 1117 2270 ɑ
527 1089 2202 o 588 1089 2202 o 527 1174 2216 o
367 1198 2129 u 410 1198 2129 u 404 1257 2160 u
277 2147 2648 1 277 2147 2648 1 277 2147 2648 1
309 2087 2613 2 309 2087 2613 2 309 2087 2613 2
341 2027 2577 3 341 2027 2577 3 341 2027 2577 3
373 1967 2542 4 373 1967 2542 4 373 1967 2542 4
405 1908 2507 5 405 1908 2507 5 405 1908 2507 5
437 1848 2471 6 437 1848 2471 6 437 1848 2471 6
468 1788 2436 7 468 1788 2436 7 468 1788 2436 7

40
S
A
N
T
IA

G
O

B
A
R
R
E
D
A

https://doi.org/10.1017/S0954394521000016 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0954394521000016


As noted above, normalized spaces are often treated as metric spaces where
Euclidean distance is expected to relate to phonetic differentness. Therefore, by
proposing different organizations for the vowel sounds produced by our artificial
speakers, the normalization methods effectively suggest different phonetic
properties for the vowels. The LM method erases variation according to uniform
scaling, so it will erase differences in formant patterns associated with the size
manipulation. However, all differences in type (standard, high-F1, centralized)
are predicted to result in phonetic differences (Figure 6b). The WF method can
erase variation according to nonuniform scaling, and, thus, it will equate the
vowel spaces (and vowels) of the standard and high-F1 speakers, in addition to
removing size differences (Figure 6c). As a result, this approach suggests that the
differences in F1 range used by the standard and high-F1 speakers will not be
“heard” by listeners and will not result in phonetic differences. Finally, the LB
method will erase all differences in size and type, equating the vowels produced
by all six speakers under consideration (Figure 6d). Although this method results
in the tightest clustering for each continuum step (i.e., the least “within-
category” variance), it also predicts a complete lack of between-speaker phonetic
variation in the productions of the artificial speakers.

E X P E R I M E N T 1

In Experiment 1, listeners were presented with vowels from the =i=-=ɪ= continuum
as produced by the synthetic speakers described above, in isolation and randomized
by speaker. Since listeners were asked to classify isolated vowels, they did not have
information about the speaker’s vowel-space dispersion along F1 or F2 when
classifying tokens. As a result, it is not expected that listeners could perform
perceptual operations analogous to those required by WF and LB normalization
in this listening situation. Thus, this experiment is meant to verify that, in the
absence of knowledge about a speaker’s vowel system, listeners will: (1)
associate vowels relatable by uniform scaling (size differences) with similar
phonetic properties; and (2) will “hear” differences that deviate from uniform
scaling, associating these with phonetic differences.

FIGURE 6. (a) Testing vowels plotted according to F1 and F2 values in Hertz. The same
vowels are presented when normalized according to different normalization methods (b-d).
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Listeners

Listeners were thirty-two native speakers of California English (eight men, twenty-
four women). All listeners lived in California since at least two years of age and
indicated that English is their strongest language. Listeners ranged in age from
eighteen to thirty-five years, with a mean of twenty and a standard deviation of
three years. All listeners were students at the University of California, Davis,
who participated in thirty-minute experimental sessions in exchange for partial
course credit.

Stimuli

Stimuli consisted of the seven-step testing =i=-=ɪ= continuum as produced by the
standard, high-F1, and centralized voices for large and small speakers. The
experiment consisted of forty-two unique vowel sounds (three voice types × two
sizes × six vowels per voice). A description of the stimuli is provided in Figure 5
and Table 1.

Procedure

Listeners were presented with stimuli over headphones in a sound-attenuated
booth. Stimuli were presented one at a time, randomized across all stimulus
dimensions but blocked by repetition. Listeners responded on a graphical user
interface with three buttons that read “Heed,” “Hid,” “Head.” Listeners were
asked to click on the word “containing the vowel that ‘sounds’ most like the
sound you hear.” Listeners were presented with each stimulus up to six times for
a total maximum of 252 responses per participant. All but three subjects
completed the full experiment, with the fewest responses per subject being 204.

Results and discussion

Figure 7a presents the results of experiment 1. The comparisons presented in
Figure 7b suggest that size differences barely affect classification functions,
while voice-type differences have a large effect. To investigate this, the
following bootstrap analysis was carried out. For each bootstrap sample (10,000
total samples), the following process was carried out. Data were selected from
thirty-two subjects with repetition at the subject level. Classification rates for
each stimulus into each of the response categories was then calculated. The
coefficient of determination (squared correlation, R2) between classification rates
(for all categories) across panels in Figure 7a was then found and recorded. This
value allows us to quantify the similarity of classifications (and phonetic
properties) across different formant-pattern manipulations. For example, the
correlation between the functions in the top and bottom row of the leftmost
column in Figure 7a reveal the similarity of classifications across size
manipulations for the standard voice. In addition, R2 was calculated for the
classification functions of each stimulus across successive random samples in
order to get an estimate of the sampling error for the classification functions.
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Figure 8a presents the distribution of estimated R2 values for all fifteen unique
voice comparisons, and the estimate of the sampling error. In general, size variation
tends to result in small changes in classification functions that are not much larger
than the sampling error, while type variation can result in very large differences in
classification rates. Figure 8b highlights the discrepancy that can exist between the
acoustic and phonetic properties of vowel sounds. For example, the average R2

between the large and small standard voices was 0.93, while the R2 between the
standard and high-F1 small voices was 0.54. This means that an increase of
11.5% to F1, with all other formants and f0 held constant, caused a substantially
greater phonetic change than a 30% shift to all formant frequencies, combined
with an octave difference in f0.

Results indicate that, when little is known about the speaker (e.g., in mixed-
speaker listening conditions, when playing an isolated example at a conference),
data normalized using a single parameter scaling method (e.g., LM) is most
likely to reflect the phonetic organization of vowel sounds. In these situations,
normalization methods that perform formantwise scaling or standardization (e.g.,
WF and LB) can overnormalize vowels, erasing perceptible phonetic variation
from vowel formant data.

E X P E R I M E N T 2

Listeners may exhibit behaviors that justify the use of formantwise scaling and
standardization methods in situations where they have more information about a
speaker’s vowel system. In the second experiment, vowels produced by different
synthetic voices are presented in blocked conditions, after familiarization with a
speaker’s vowel space.

FIGURE 7. (a) Proportion of classifications into response categories for each continuum step,
by voice type and size. (b) The top row contrasts classifications across size for each voice
type (small voices in broken lines). The bottom row contrasts average classification rates
for standard (Std), high-F1 (HF1), and centralized (Cent) voices, averaged across sizes.
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Participants

Listeners were forty-nine native speakers of California English (twenty-nine men,
twenty women). All listeners lived in California from at least six years of age and
indicate that English is their strongest language. Listeners ranged in age from
eighteen to twenty-two years, with a mean of nineteen and a standard deviation
of 1.2 years. All listeners were students at the University of California, Davis,
who participated in thirty-minute experimental sessions in exchange for partial
course credit.

Stimuli

Stimuli consisted of the vowels =i u æ ɑ o=, and the seven step =i=-=ɪ= continuum
produced by the large standard voice, and the medium and small high-F1 and
centralized voices. Stimulus information is presented in Table 1 and in Figure 5.
The vowels =i u æ ɑ o= served as training stimuli, which were meant to provide
listeners with information about the location and dispersion of the speaker’s
vowel space. The seven step =i=-=ɪ= continuum were the testing stimuli, the
vowel sounds that listeners would be asked to classify during the experiment.

Procedure

Each listener heard vowels produced by three speakers: a single speaker for each
voice type, each paired with a different voice size. All listeners heard the
standard voice paired with the large size. Half of listeners heard a medium high-
F1 voice and a small centralized voice, and the other half heard the opposite
combination: the medium centralized voice and the small high-F1 voice. So,

FIGURE 8. (a) Distribution of squared correlation (R2) between classification functions for
pairs of voices in the bootstrap analysis. Lines indicate 95% highest-density intervals,
points indicate means. Numbers indicate corresponding lines in the right panel. (b)
Testing continua used in this experiment. Lines indicate specific differences highlighted
in the left panel. For example, although line (1) indicates a small acoustic difference, the
members of these continua are phonetically dissimilar. In contrast, line (3) compares
continua that are acoustically dissimilar yet phonetically similar.
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each listener heard three different speakers, and these speakers differed in their
voice size and in their voice type.

The experiment consisted of five rounds. Round 1 was an initial mixed-speaker
condition where listeners were presented with testing stimuli (7-step =i=-=ɪ=
continuum) for each of the three voices five times each, blocked by repetition.
Listeners were not given information about how many voices they would be
hearing, when any given speaker was speaking, or what any of these speakers
sounded like. In all rounds, classification was carried out using the same
instructions and general procedure as in Experiment 1.

Rounds 2–4 were blocked-speaker rounds. First, listeners were informed that
they would listen to some vowels produced by a single speaker and that they
would then be asked to classify vowels produced by that same speaker. Listeners
heard the training vowels (=i u æ ɑ o=) repeated five times each, blocked by
repetition, with five hundred ms of silence in between each vowel (twenty-five
total sounds). After this, listeners were asked to classify the testing stimuli (=i=-
=ɪ= continuum), four times each blocked by repetition (twenty-eight
classifications per round). During these rounds, a large label displayed the
speaker number (e.g., “Speaker 1”) using labels 1, 2, and 3 for the speakers in
rounds 2, 3, and 4 respectively. The second round always featured the large
standard voice. Half of participants heard the medium voice in round 3 and the
small voice in round 4, and the other half heard the small voice in round 3 and
the medium voice in round 4.

Round 5 was a final mixed-speaker round, after familiarization with the talkers.
As in round 1, listeners were presented with testing stimuli for three voices five
times each, blocked by repetition. However, in this round, a label told listeners
which speaker was producing each token (as in rounds 2–4). Listeners were also
instructed before beginning the round that these labels would tell them which
speaker produced the vowel, and that these speakers would be the same ones
they just heard in the previous rounds.

Results and Discussion

Classification differences between blocks. We are primarily interested in the
blocked-voice rounds, as these represent situations where listeners had the most
information about vowel-space characteristics. However, we were also interested
in comparing listener behavior across different presentation types. It may be the
case that listeners are operating in a sort of LM-compatible listening mode in the
initial mixed-voice round (as in Experiment 1). In blocked-voice rounds after
familiarization, listeners may shift to a listening mode more in line with the
outputs of the WF and LB normalization methods. In the final mixed-voice
round, listeners could revert to an LM listening mode or they may “remember”
the voice of speakers in the final round, behaving in a similar manner to
blocked-voice rounds.

If listeners were changing their behavior across presentation type, we would see
differences in the classification functions of voices across rounds. The three speaker
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types would be differentiated in the initial mixed-voice round (as in experiment 1)
then look more similar (or identical) in the blocked-voice round, with unclear
expectations for the final mixed-voice round. As seen in Figure 9, listeners are
not exhibiting substantially different behavior across the presentation types.
Classification functions differ across voice types in all presentation conditions,
indicating that listeners are not perceptually “erasing” the variation in formant
patterns that distinguishes these voice types, even when given more information
about the idiosyncratic differences between speakers. A more complete analysis
of the results in the blocked rounds is provided in the following section.

Blocked-Speaker Rounds

In blocked speaker rounds (2–4), listeners are asked to classify continuum vowels
after being presented with examples of a speaker’s peripheral vowels (=i u æ ɑ o=).
In these rounds, listeners could potentially use the familiarization vowels to adapt to
the speaker and classify the continuum vowels relative to knowledge of the
speaker’s vowel space. In other words, in these rounds it is clear that listeners
could exhibit perceptual behavior in line with WF and LB normalization if they
were so inclined, as they have all the information required by these
normalization methods.

To investigate support for phone-preserving variation in line with WF and LB
normalization in blocked-speaker rounds, the testing vowels were normalized
using the three methods (LM, WF, and LB) based on vowel-space statistics
calculated using the training stimuli, as in Figure 6. An ordinal logistic
multilevel regression model was fit to listener classification data for the blocked-
speaker rounds (2–4), for each normalization method. Each model had a single
predictor (position in the normalized space) with random slopes and intercepts
for listener. Since variation in the testing continuum was almost entirely
unidimensional (99–100% of variance along the first principal component), the
position of each token was specified along the axis of the first principal
component of stimulus variation for each normalized space (corresponding
primarily to F1).

The above models were used to predict classification rates along the different
normalized spaces. The classification rates predicted by each model represent
our best estimates of the phonetic properties associated with each location in the
normalized space, given our data. For example, we could say that a token at
coordinate ,x, y. in the LB normalized space is 78% likely to be classified as
=i=, 13% likely to be classified as =ɪ=, and 9% likely to be classified as =ɛ=.
Ideally, a normalization method will offer a tight clustering of tokens along
predicted classification rates, so that, for example, all stimuli near ,x, y. in the
LB space are more likely to be classified as =i= than =ɪ=. When this does not
occur, tokens in one location of the normalized space will have diverse phonetic
properties, meaning that distance in the normalized space will not be a reliable
metric for phonetic differences. Figure 10a compares predicted classification
functions (solid lines) to the observed classification rates of testing vowels
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(points) in blocked-speaker conditions. Each row presents the same data, with
differing alignments between predicted and observed classifications arising from
the differing arrangement of tokens in the normalized space (seen in Figure 6).

In Figure 10a, we see that the decreased similarity of normalized vowel spaces
provided by the LMmethod directly leads to a greater degree of clustering of tokens
in the LM-normalized space. The LMmethod groups the first step of the centralized
continuum, the second step of the high-F1 continuum, and the third step of the
standard continuum, because these are all being classified as =i= roughly 70% of
the time. In contrast, the increased vowel-space similarity afforded by the LB
and (to a lesser extent) the WF methods is obtained by grouping phonetically
dissimilar vowels and leads to less certainty regarding the vowel quality
associated with any given sound. For example, as seen in the right column of
Figure 10a, the third continuum step is classified as =i= for the standard voice
(circles) and as =ɪ= for the high-F1 and centralized voices (triangle, square),
despite being placed in the same location in the LB-normalized space. Thus, we
see that the LB method is placing tokens that correspond to different vowel
phonemes in a single location in the normalized space.

The following bootstrap analysis was carried out to investigate the reliability of
the differences seen in Figure 10a. For each of 10,000 iterations, pooled
classification rates were found for each stimulus for data from forty-nine
listeners, resampled with replacement at the listener level. Then, the square of
the correlation (R2) between the predicted and observed classification rates was
calculated and recorded, independently for each normalized space. When the

FIGURE 9. Proportion of classifications into =i= (left distribution), =ɪ= (middle distribution),
and =ε= (right distribution) by continuum step, presented across voice and presentation type.
The final row compares the classification functions of the panels in each column. The final
column compares the classification functions for the panels in that row.
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classification of tokens is highly predictable from their position in the normalized
space, R2 will be high. As a result, a high R2 indicates that distance is a good metric
for phonetic differences in a given normalized space. In contrast, a lower R2

indicates that there is more variation around any given location, meaning there
can be less certainty regarding the phonetic properties of any given vowel. The
correlation between all tokens across successive samples was also recorded in
order to get an idea of the amount of random error expected across samples.

The distribution of recorded R2 values for each normalization method is
presented in Figure 10b, as are distributions of differences in R2 between the
methods. Results indicate a slight advantage in R2 for LM normalization over
the WF method, while both the LM and WF methods show a large advantage
over the LB method. It is important to note that, although the differences
between the LM and WF methods were small, they were very consistent, with
the LM method showing an advantage in 99.2% of samples. Further, the
acoustic differences between the standard and high F1 voices were not large: an
11.5% difference to a single formant frequency. If the acoustic difference had
been doubled, it is reasonable to think that listeners would have heard a larger
phonetic difference between the standard and high-F1 voices, leading to a larger
advantage for the LM method. However, in such a situation the WF (and LB)
methods would have erased this variation just the same.

G E N E R A L D I S C U S S I O N

The goal of the experiments outlined above was to investigate which sorts of
normalization operations are perceptually justified, meaning they tend to remove
only phone-preserving variation from formant patterns. Experiment 1 showed
that, in situations with no information about speakers, large differences in
uniform scaling were mostly ignored, while relatively smaller differences that

FIGURE 10. (a) Points indicate classification rates for all testing stimuli into different
categories, organized along each of the different normalized spaces. Continuum steps
increase left to right. Point types indicate standard (circles), high-F1 (triangle), and
centralized (square) speakers. Lines indicate predicted classification rates at each location.
(b) Distribution of R2 for each normalization method and the differences in R2 between
each method resulting from the bootstrap analysis.
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deviate from uniform scaling resulted in large shifts in classification functions,
suggesting differences in perceived vowel quality. In experiment 2, we saw that
this tendency is maintained even when listeners have information regarding the
geometry of the speaker’s vowel space, allowing them an opportunity to
perceptually “erase” systematic deviations from uniform scaling of formant
patterns. Overall, results indicate that variation in formant patterns according to
uniform scaling tends to be phone-preserving, while deviations from uniform
scaling tend to be “heard” by listeners, resulting in variation in the phonetic
properties of vowel sounds.

We may return to the possible differences in the low vowels produced by the
male and female speakers in our corpus (Figure 4), presented in more detail in
Figure 11. Often, a researcher wishes to use distance in the normalized space in
order to quantify some linguistic difference between productions (e.g., Clopper
et al., 2005; Podesva et al., 2015). As an example of this, we will investigate the
normalized productions of the California speakers described above. It is
expected that differences in normalized F1 should relate to variation in phonetic
height and differences in normalized F2 should relate to variation in phonetic
frontness. A series of two-sample t-tests were carried out comparing average
productions of each phoneme by male and female speakers. Differences were
tested along F1 and F2 independently, for each normalization method
(summarized in Figure 11).

A reliance on significance testing to infer “real” phonetic differences between
the men and women in our sample suggests different patterns of results based on
the normalization method chosen, making the choice of method of high practical
importance. The different results presented in Figure 11 primarily arise from the
nonuniform scaling differences between the male and female speakers seen in
the original data (see Figure 4). This variation is directly analogous to the
difference between the large standard voice and the small high-F1 voice. The
results of the experiments above indicate that listeners are likely to “hear” these
nonuniform differences in formant scaling, suggesting likely differences in the
phonetic properties of the low vowels produced by these speakers. Based on
this, the organization presented by the LM method is most likely to reflect the
phonetic properties, and the linguistic facts, of the data in question.

As noted in Barreda and Nearey (2018:Appendix), there is good evidence that
speakers vary in production in ways that can only be captured by formantwise
standardization methods. So, it is a fact that speakers differ from each other in
the range and location of each formant (somewhat) independently, in a manner
consistent with the complexity of Lobanov normalization (as seen in Figures 2
and 3). However, there is no evidence that listeners exhibit this level of
complexity in their perceptual normalization. Basically, it appears as though we
are not Lobanov speakers but log-mean listeners: our variation in production is
as complex as the Lobanov model, but our adaptation to this variation in
perception is only as complex as the log-mean model. As a result, the many
subtle, idiosyncratic between-speaker differences in production that cannot be
captured by single parameter scaling methods may result in perceivable phonetic
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differences that potentially transmit linguistic and social information between
speakers (Barreda, 2020). Thus, a focus on finding a normalization method that
“does the same work as the normalizing ear of the listener,” as Labov and
colleagues put it, will focus on modeling the judgments of human listeners in
response to between-speaker variation in production, rather than on modeling the
variation in production itself.

Limitations and future directions

Although we did not observe any perceptual behavior consistent with WF and LB
normalization, it is possible that the design of the experiment (the stimuli, the
training, etc.) was such that we did not “trigger” whatever perceptual processes
are necessary to result in outputs like those of WF and LB normalization. It is
difficult to prove that perceptual processes consistent with WF and LB
normalization never occur. Instead, we looked for positive support for the use of
these methods in different listening conditions and failed to find any. Further
work is needed to investigate whether formantwise scaling and formantwise
standardization methods are perhaps appropriate in other listening situations.
However, there is reason to be somewhat skeptical of this possibility. As noted
earlier, formantwise scaling and standardization methods do not conform to any
well-known theory of vowel perception, nor do they have any empirical support
in the literature on speech perception. Further, it bears noting that, if listeners
only perceive speech in modes consistent with WF and LB in a very restricted
set of conditions, then the output of these normalization methods will also only
be valid in those conditions.

FIGURE 11. In the top row, productions of thirty male (dashed line) and female (solid line)
California speakers are compared for low and mid vowels. Ellipses enclose two standard
deviations. In the bottom row, lines indicate values of t-statistics comparing means for
each vowel along F1 (circles) and F2 (squares). The horizontal dotted lines indicate the
level at which values reach significance, and filled points indicate significant comparisons.
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Although uniform-scaling methods were the best testing in our comparison,
there is room for improvement. For example, as seen in Figure 7, there is
systematic variation across sizes within voice types that cannot be explained by
single parameter scaling methods. This suggests the possibility of a more
complicated relationship between the lower formants (F1 and F2), the higher
formants (F3 and above), and the fundamental frequency of vowel sounds. A
perception-centric perspective on normalization suggests that we should adapt
these methods as required so that they reflect listener judgments of the phonetic
properties of vowel sounds. Thus, a better understanding of the nature of
“phone-preserving” variation in speech perception can only benefit empirical
research investigating variation and change in vowel systems across speakers.

Finally, it bears noting that the search for the “perfect” normalization method
from a perception-centric perspective is complicated by the fact that vowel-
quality judgments are inherently “fuzzy,” varying probabilistically within-
listener and systematically between listeners. Listeners of the same dialect, and
even trained phoneticians, can have differences of opinion regarding the vowel
quality associated with a given sound. Further, the development of the “perfect”
normalization method is limited by our knowledge of human speech perception,
which is as yet incomplete. As a result, the outputs of normalization methods
should perhaps be thought of as estimates of the judgments of some “average”
listener, to within some degree of certainty. Of course, employing a
normalization method that focuses primarily on maximizing vowel-space
similarity does not make any of this uncertainty go away and potentially
obscures the truth further. Thus, if researchers intend to use normalized data to
make inferences about the vowel quality of a set of tokens, they will benefit
from employing methods whose outputs more closely reflect the perceptual
organization of those tokens. However, it is useful to always keep in mind the
limitations inherent in representing complex perceptual events such as vowel
sounds using points in a low-dimensional space.

C O N C L U S I O N

Instead of desiring maximally similar normalized data, researchers may benefit by
focusing on obtaining normalized data that reflects the phonetic properties of a set
of vowel sounds. When this is the case, normalized tokens will lie together if they
“sound” similar and lie apart if they “sound” dissimilar. Speakers with vowel
systems whose tokens largely lie together in the normalized space will tend to
sound “the same” to listeners, therefore likely constituting speakers of the same
dialect. So, by attempting to obtain data that reflects the perceptual and phonetic
structure of speech sounds, we can allow for a “bottom-up” approach to
investigating the homogeneity of groups of speakers rather than imposing
homogeneity through the selection of our methods.

The results of two perceptual experiments suggest that single parameter scaling
methods (e.g., log-mean normalization) most faithfully reflect the phonetic
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structure of vowel sounds and that formantwise scaling or standardization methods
(e.g., Watt and Fabricius, Lobanov) can both remove legitimate phonetic variation
from vowel formant data. As a result, the log-mean method is likely preferable in
cases where researchers wish to use distances in the normalized space to infer the
phonetic properties of a set of vowel sounds. However, although the log-mean
method performed best of the methods we tested, there is room for
improvement, and it is crucial to continue to investigate and refine the
normalization methods so often relied upon in quantitative variationist research.
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