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Abstract

In this paper we investigate how the ideal structure of the Lie ring of symmetric derivations of a
ring with involution is determined by the ideal structure of the ring.

1980 Mathematics subject classification (Amer. Math. Soc): 16 A 68.

1. Introduction

C. R. Jordan and D. A. Jordan (1978a) showed that the Lie ring of derivations of a
prime (respectively semiprime) 2-torsion-free associative ring is a prime (respectively
semiprime) Lie ring. The aim of this paper is to prove analogous results for the
Lie ring, SD(R), of symmetric derivations of a ring R with involution, a symmetric
derivation being one which commutes with the involution. The cases where R
is commutative and where R is non-commutative will be treated separately. In the
commutative case it will be shown that if i? is *-prime (respectively semiprime)
and 2-torsion-free then SD(R) is prime (respectively semiprime). Certain well-
known examples, which will be described in Section 3, indicate that for such
results to hold in the non-commutative case further conditions on R are required.

In the prime case the best one can hope for is that SD(R) is prime whenever R
is 2-torsion-free, *-prime and does not satisfy the standard identity S8 of 4 x 4
matrices. That this is true will be established using ideas of Lanski (1976, 1977,
1978). In the semiprime case two approaches are possible. One is to impose
conditions on the *-prime factor rings of R, for example that R is 58-free in the
sense of Lanski (1978), then show that SD(R) is semiprime. Alternatively one can
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aim to show that there is a particular ideal of SD(R) which must always be semi-
prime whenever R is semiprime and 2-torsion-free. The latter approach is the one
taken here, the ideal concerned being the set of all symmetric derivations of R
which annihilate all antisymmetric elements of R. The results obtained can then
be applied to show that if R is semiprime, 2-torsion-free and 54-free then SD(R)
is semiprime. The definitions of prime and semiprime Lie ring and ideal are
analogous to those for associative rings and may be found in C. R. Jordan and
D. A. Jordan (1978a).

2. Notation and preliminary remarks

Throughout R will be an associative ring which is 2-torsion-free and * will be
an involution of R. The set of symmetric elements of R and the set of antisymmetric
elements of R will be denoted by S and K respectively. The centre of a ring T will
be denoted by Z(T) and Z will denote Z(R).

DEFINITION. A derivation S of R is said to be symmetric if S(r*) = 8(r)* for
all re/?. A derivation 8 of R is said to be antisymmetric if S(r*) = — 8(r)* for all
reR.

By D(R) we denote the Lie ring of all derivations of R, by SD(R) we denote the
set of all symmetric derivations of R and by KD(R) we denote the set of anti-
symmetric derivations of R.

REMARKS.

(i) SD(R) is a Lie subring of D(R) and KD(R) is an SZ>(/?)-submodule of D{R).
(ii) SD(R) is a ZnS-module in a natural way: if z e Z n S and 8eSD(R) then

z8 maps a typical element r of R to z8(r).
(iii) If %eR then, as SZ)(/?)-modules, D(R) = SD(R)®KD(R). See the note

following Proposition 3 of C. R. Jordan and D. A. Jordan (1978b).
(iv) For r e R let ir denote the inner derivation of R induced by r. Thus

ir(s) = rs — sr for all seR.

IfreS then ireKD(R) and if reK then ireSD(R). If ireSD(R) then (r+r*)eZ
so that, if %eR, then ir = ik where k = \{r—r*)eK.

NOTATION. By I^R) we denote the set {ik: keK}. Thus IK(R) is a Lie subring of
SD(R).
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(v) There is a natural isomorphism of Lie rings:

Ix{R)~K/KnZ.

(vi) An ideal / or R is said to be a *-ideal of R if / * = /. The ring R is said to
be *-prime if for every pair of non-zero *-ideals A, B of R the product AB is non-
zero. If / is a *-ideal then there is an induced involution, also denoted *, on the
ring Rjl. The *-ideal / of R is said to be *-prime if the ring R/I is *-prime. It is
easy to show that a *-prime ring or ideal is semiprime.

3. The non-commutative case

Throughout this section R, in addition to being 2-torsion-free, will be assumed
to be non-commutative. The involution * will be said to be of the first kind if Z s S.
Otherwise * is of the second kind. Following Lanski (1978) we shall say that a
prime ring satisfies S2n if it is an order in a simple algebra of dimension at most «2

over its centre. A semiprime ring will be said to satisfy S2n if it is a subdirect product
of prime rings, each of which satisfy S2n-

Before passing to the general theory we describe some well-known examples
which indicate that some further conditions on R may be required if positive
results are to be obtained.

(i) Let R = k2 be the ring of 2 x 2 matrices over a prime field k of characteristic
not 2. By Lemma 1 of Kawada (1952) every derivation of R is inner so, by remarks
(iv) and (v) of Section 2, SD(R)~K, which, in this case, is an abelian Lie ring.
Thus SD(R) cannot be prime or semiprime although R is prime.

(ii) Let R = kt be the ring of 4 x 4 matrices over a prime field k of characteristic
not 2. As in Example (i) SD(R)~K. In this case K has a pair of non-zero ideals
/ and / such that K= I®J. Thus K cannot be prime although R is prime. Note,
however, that K is semiprime.

We now consider the case where R is *-prime, the aim being to show that
SD(R) is a prime Lie ring. The above examples indicate that we should avoid
the case where R satisfies S8.

THEOREM 1. Let R be *-prime, not satisfying Ss. Then KnZ is a prime ideal of K.
Equivalently IK(R) is a prime Lie ring.

PROOF. This is a special case of Theorem 7 of Lanski (1978).

LEMMA 1. Let R be *-prime andO¥=8eSD(R). Then

https://doi.org/10.1017/S1446788700021169 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021169


156 D. A. Jordan [4]

PROOF. We adapt an argument used in the proof of Theorem 7 of Lanski (1977).
Suppose that 8{K)^Z. Then 8([K,K]) = 0. For keK and te[K,K], ktkeK so
that 8{ktk)eZ, that is, since 8(0 = 0 and 8(k)eZ, (kt + tk)8(k)eZ. Suppose that
8(k)^0. Since 8eSD(R), 8{K)^K so that 8{k)eKnZ. But R is *-prime so it
follows that 8(k) is a non-zero-divisor and, hence, that kt+tkeZ. Applying 8,
28{k)teZ whence teZ. Thus o\K)^0 implies that [K,K]^Z. Suppose now that
8(K) = 0. Then 8(K2) = 0 and, since K2 is a Lie ideal of R (see Lanski (1976),
p. 735), it follows that 8([K2, R]) = 0 whence K28(R) = 0. But 8(R) + 8(R) R is
a non-zero *-ideal of R and hence K2 — 0. In particular, [K,K] = 0. So we can
certainly assume that [K,K]cZ. But then, by Theorem 1, ATsZ. But ATsZ
implies that [2R,2R]c[s+K,S+K]^[S,S]^K^Z. By Lemma 1 of Herstein
(1970) it follows, since R is *-prime and hence semiprime, that R is commutative,
a contradiction.

THEOREM 2. If R is *-prime not satisfying 58 then SD{R) is a prime Lie ring.

PROOF. By Theorem 1 it suffices to show that for any non-zero ideal A of SD(R),
AnIK{R)^0. Let 0^ Se^l. By Lemma 1 there exists fcetfsuch that 8(k)$Z.Then
0^i3ik) = [8,ik]eA. The result follows.

'We now pass to the case where R is semiprime. We intend to avoid imposing
further conditions on R, such as '/? does not satisfy 54', as long as possible.

NOTATION. Let C{K2) = {reR: [K2,r] = 0}. As in the proof of Lemma 1, A:2 is
a Lie ideal of R. Hence C(K2) is a Lie ideal of R.

LEMMA 2. If R is semiprime then K2nC(K2)cZ.

PROOF. This is immediate from Lemma 1 of Herstein (1970).

For convenience we quote Lemma 1 of Lanski (1976).

LEMMA 3. Let Rbe a semiprime ring. IfxeKand xKx = 0 then x = 0.

LEMMA 4. Let R have a prime ideal P such that PnP* = 0. Let A be an ideal of
Ksuch that [A,A]^Z. Then [A,K] = 0.

PROOF. Consider first the case where * is of the first kind, Z c S. In this case the
result holds under the weaker hypothesis that R is semiprime. The proof is based
loosely on that of Lemma 9 of Lanski (1976). Since Z c S it follows that KnZ = 0
and hence that [A, A] = 0. For all xeA and keK, [x,k]eA so that [x, [x,k]] = 0
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that is

(1) x2k + kx2-2xkx = 0 for all xeA, IceK.

Let aeA, keK and 8 = ia be the inner derivation induced by a. Then
and 82(K) = 0. But k8{k)keK so that 8\k8(k)k) = 0, that is 8(kf = 0. But
8(fc) G ̂  so that, by (1), 2S(/t)2 K8(k)2 = 0. Let j = 8(k) so that j e A and / # / = 0.
Let ze A. Then, because [/4, ,4] = 0, yz = zy so that y2 z = zy2 and>>2 z/sTj'2 z = 0. But
yiz = yzyeK so that / z = 0 by Lemma 3. Thus y2 A = 0 whence y*[A,K] = 0
so that fKA = 0. It follows that

(2)

Let jeK. Then kj8(k)+'8(k)jk-k8(j)keK and, since S2(tf) = 0,

8(kj8(k) + 8(k)jk-k8(j)k) = 28(k)j8(k) = 2jy>.

Thus 2j^yc 8(^)c^ . Let welyKy. Then ive/4 and, by (2), w2 = 0 so that, by (1)
and Lemma 3, w = 0. Another application of Lemma 3 gives that y = 0, that is
[a,k] = 0. This holds for all aeA, keK and the result follows, in the case where
* is of the first kind.

Suppose now that * is of the second kind. We adapt the proof of Theorem 2 of
Lanski (1977). Since R is *-prime the non-zero elements of ZnS are regular. By
a standard argument there is no loss of generality in assuming that R has been local-
ized at Z n S \ {0} so that the non-zero elements of ZnS are units. For 0 ̂  k e Z n K,
0j=k2eZnS so that the non-zero elements of ZnK are units also. Choose
zeZ such that (z-z*)#0. Then (z-z*) is a unit and, for reR, (z-z*)reK+z*K
because

{z-z*)r = (zr-z*r*) + z*(r*-r).

Consequently R = K+z*K. Let I={ieR: [A,i]zZ}. Then, since R = K+z*K,
I is a Lie ideal of R. Let J = {jeR: [/,y]sZ} so that / is a Lie ideal of R and
A^J. By Lemma 1 of Herstein(1970), InJ^Z. But A^JandAci since [A,A]^z.
Thus A<=LZ. This completes the proof of Lemma 4.

If R is semiprime then R is a subdirect product of a family {/?J of rings with
involution induced by * and each satisfying the hypothesis of Lemma 4. The
images in Rt of elements of AT are antisymmetric so that an immediate consequence
of Lemma 4 is the following.

LEMMA 5. If R is semiprime and A is an ideal of K such that [A,A]<=Z then
[A,K] = 0.

NOTATION. Let <?(A") = {keK: [AT,A:] = O}. Lemma 5 now says that [A,A]^
implies that Azf(K). Note that <f(K) is an ideal of K.
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THEOREM 3. If R is semiprime then £(K) is a semiprime ideal of K.

PROOF. Let A be an ideal of AT such that \A,A\^t{K). Then [[A,A],K*\ = 0 so
that [A,A]cK2nC(K2)^Z by Lemma 2. By Lemma 5 it follows that A<^t(K).
Thus t(K) is a semiprime ideal of K.

NOTATION. Let i?(SD(R)) = {8eSD(R): 8(K) = 0}. Then /(SD(/?)) is an ideal
of/?.

THEOREM 4. If R is semiprime then f(SD(R)) is a semiprime ideal of SD(R).

PROOF. Let .4 be an ideal of SD(R) such that [A,A]<^t{SD(R)). Let 8e/4,
z e Z n S . Then zSeSD(R) so that [S,zS]e^, that is 8(z)8eA. It follows that
8*(z)8 = [8,8(z)8]e[A,A] so that S2(z) 8(K) = 0. Replacing z by z2 gives
2S(z) S(z) 8(K) = 0 so that S(z) S(^T)i?S(z) S(̂ T) = 0 since 8(z)eZ. But /? is semi-
prime so that

(1) S(z)S(AT) = O for all z e Z n S .

Let J = {jeK: ijeA}. Then / is an ideal of K and [[J,J],K] = 0 so that, by
Theorem 3, [J,K] = 0. But for 8eA and keK, is(k) = [S . /^JG^ SO that
for all S e ^ . Thus

(2) [8(K),K] = 0 for all 5e A.

It follows that [8(K),K2] = 0 and, hence, that [8(K) 8(K), K2] = 0. Thus

by Lemma 2. Let A:G/S:. Then 8(k) 8{k)eZnS so that, by (1), 8(8(Jt) 8(/t)) 8(^) = 0
and, in particular, 8(8(k) 8(k)) 8(k) = 0. It follows from (2) that

(3) 8(k)8\k)8(k) = 0.

Also by (2),

(4) 8(k)8\k)K^K.

Together (2) and (3) give that

(8(k) 8%k) K) K(8(k) 8\k) K) = 0

so that by Lemma 3 and (4) 8(k) 8\k)K=0. In particular u = 8{k) 8\k) 8\k) = 0
and v = 8{k) 8\k) 8\k) = 0. It follows, using (2), that
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Thus S2(A:)3 = 0 so that, by (2),

(8\k)K8\k))K(82(k)K82(k)) = 0.

Two applications of Lemma 3 now give that Sz(/c) = 0 for all k e K. But then
8\k8(k)k) = 0, that is, 28(kf = 0 whence 8(kf = 0. Repeating the argument used
above for 82(fc) it follows that 8(k) = 0. Thus Ac

Example (i) at the beginning of Section 3 indicates that if SD(R) is to be semi-
prime then further conditions on R are required. The condition which we shall
impose is the following. Suppose that R is semiprime and let £P denote the set of
*-prime ideals of R of the form PnP* where P is prime and 2R^P. Let
X = n {Q e 0>: R/Q does not satisfy S4} and Y = n {Q e 0>: R/Q does satisfy 54}.
We shall say that R is independent ofSt if, all reR, r is central modulo X implies
that/-e Z.

Lanski (1978) defines the term 'S8-free'. Replacing 8 by 2« throughout Lanski's
definition one obtains the notion of an Sr

2ra-free semiprime ring. It is straightforward
to check that if R is semiprime and 54-free then R is independent of S4 in the above
sense.

LEMMA 6. If R is semiprime and independent of St and if reR is such that
[K\r] = QthenreZ.

PROOF. Let P be any prime ideal of R such that 2R^P. Denote images in R = R/P
using ~. Then [Xa,r] = 0 so by Lemma 8 of Lanski and Montgomery (1972)
either K2^Z(R) or re Z(R). Suppose that K2cZ(R). Then [K\ R]^p and it follows
immediatelythat[#2,^]£.Prii>*. Let Q = PnP* and R = R/Q. Denote images in R
using "\ Then [£2, R] = 6. But * induces an involution, also denoted *, on R. Let K
denote the set of antisymmetric elements of R under the induced involution. Let
y = [y+Q]eK. Then [y+Q] = [-y* + Q] so that [2y+Q] = [y-y* + Q]. Thus
2KQ L But [R2, R] = 0 and it follows, since 2Rcp, that [£2, R] = 0. In particular
[K2, K2] = 0 and, by Lemma 2 of Lanski (1976) every 2-torsion-free prime factor
ring of R satisfies St so that R satisfies S4. Thus FeZ(R) or R/Q satisfies St.
Applying this to P* rather than P we obtain that reZ(R) or R/Q satisfies 54.
It follows from the definition of independence of 54 that reZ.

THEOREM S.IfR is semiprime and independent of St then
(i) KnZ is a semiprime ideal of K;
(ii) SD(R) is a semiprime Lie ring.
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PROOF, (i) By Theorem 3, £{K) is a semiprime ideal of K. Let k e t{K) so that
[k,K] = 0. Then [k,K2] = 0 and, by Lemma 6, keZ. Thus l(K) = KnZ and the
result follows.

(ii) Suppose that 0^=A is an ideal of SD(R) such that [A,A] = 0. Then, by
Theorem 4, 8(K) = 0 for all 8EA. Let 0^ 8eA. Then 8(K2) = 0 so that, since K2

is a Lie ideal of R, [K2, 8{R)] = 0. By Lemma 6 8(R)c:Z. Since 8(#) = 0 it follows
that 8(R)^S so that 8(/?)sZnS. Let zeZnS. Then z8eSD(R) so that
[8, [8, z8]] e [/, / ] = 0, that is S2(z) 8 = 0. In particular 82(zf = 0 so that 8\z) = 0
since R is semiprime and 82(z) is central. Replacing z by z2 we obtain 28(z)2 = 0
and hence, S(z) = 0. Since 8(R)^ZnS it follows that 82(R) = 0. For reR, 8(r)eZ
so one can replace z by r in the above argument to obtain that 8(r) = 0 for all
reR, contradicting the choice of 8. The result follows.

REMARKS, (i) Lanski (1978) has shown that if R is semiprime and 58-free then
KnZ is a. semiprime ideal of K. Theorem 5(i) shows that 8 may be reduced to 4.

(ii) An advantage of the approach given here is that the examples satisfying
54 which are excluded in Theorem 5 remain part of the general theory through
Theorems 3 and 4.

4. The commutative case

Throughout this section it will be assumed that R is commutative and 2-torsion-
free.

LEMMA 7. If R has an identity element and is *-prime and if0^=8eSD(R) then
the Lie subring S8 = {s8: seS} ofSD(R) is a prime Lie ring.

PROOF. See C. R. Jordan and D. A. Jordan (1978b), Theorem 7.

The proof of the next theorem is based on that of Theorem 9 of the same paper.

THEOREM 6. If R is *-prime then SD(R) is a prime Lie ring.

PROOF. There is no loss of generality in assuming that R has an identity element.
Suppose that there exist non-zero ideals A,B of SD(R) such that [A,B] = 0.
Choose O^8ev4, 0#yei? and seS such that y(s)^0. The choice of s is justified
by Proposition 6 (vii) of C. R. Jordan and D. A. Jordan (1978b). Since 8eAnS8
it follows from Lemma 7 that BnS8 = 0. But [s8,y]eB and, since [8,y] = 0,
[s8, y] = y(s) S # 0, giving a contradiction. The result follows.
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THEOREM 7. If R is semiprime then SD{R) is a semiprime Lie ring.

PROOF. Suppose that A is an ideal of SD{R) such that [A,A] = 0. Let 8GA,

seS. Then 82(s) 8 = [8, [8,s8]] = 0 so that 82(s)2 = 0. As in the proof of Theorem
5(ii), it follows that S(S) = 0. Let keK. Then k2eS so that 8(k2) = 0, that is
2k8(k) = 0, whence k8(k) = 0. Since 8 is symmetric 8(k)eK so that 8(k) 82(k) = 0.
It follows that 0 = 8(k8(k) 8(k)) = 8(k)3 and, hence since R is semiprime, that
8(k) = 0. Thus S(A") = 0 and, because 8(S) = 0, it follows that 8(R) = 0. The
result follows.
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