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Abstract. Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Let

J = {j1, . . . , jt} be a subset of {1, . . . , n}, and let mJ ⊂ R denote the ideal

(xj1 , . . . , xjt
). Given subsets J1, . . . , Js of {1, . . . , n} and positive integers

a1, . . . , as, we study ideals of the form I = m
a1

J1
∩ · · · ∩ m

as

Js
. These ideals

arise naturally, for example, in the study of fat points, tetrahedral curves, and

Alexander duality of squarefree monomial ideals. Our main focus is determin-

ing when ideals of this form are componentwise linear. Using polymatroidality,

we prove that I is always componentwise linear when s ≤ 3 or when Ji∪Jj = [n]

for all i 6= j. When s ≥ 4, we give examples to show that I may or may not be

componentwise linear. We apply these results to ideals of small sets of general

fat points in multiprojective space, and we extend work of Fatabbi, Lorenzini,

Valla, and the first author by computing the graded Betti numbers in the s = 2

case. Since componentwise linear ideals satisfy the Multiplicity Conjecture of

Herzog, Huneke, and Srinivasan when char(k) = 0, our work also yields new

cases in which this conjecture holds.

§1. Introduction

Let R = k[x1, . . . , xn] be the polynomial ring in n indeterminates over a

field k, and let [n] := {1, . . . , n}. For a nonempty subset J = {j1, . . . , jt} ⊆

[n], we define mJ := (xj1 , . . . , xjt). The goal of this paper is to understand

when ideals of the form

I = m
a1

J1
∩ m

a2

J2
∩ · · · ∩ m

as

Js
, with Ji ⊆ [n] and ai ∈ Z+,

are componentwise linear. We introduce the following definitions.

Definition 1.1. An ideal of the form m
ai

Ji
for some Ji ⊂ [n] is called a

Veronese ideal [18]. We call an ideal I = m
a1

J1
∩ · · · ∩ m

as

Js
an intersection of

Veronese ideals.
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Let I ⊆ R be a homogeneous ideal, and for a positive integer d, let

(Id) be the ideal generated by all forms in I of degree d. We say that

I is componentwise linear if for each positive integer d, (Id) has a linear

resolution. Componentwise linear ideals were first introduced by Herzog and

Hibi [19] to generalize Eagon and Reiner’s result that the Stanley-Reisner

ideal I∆ of a simplicial complex ∆ has a linear resolution if and only if the

Alexander dual ∆? is Cohen-Macaulay [6]. In particular, Herzog and Hibi

[19] and Herzog, Reiner, and Welker [21] showed that the Stanley-Reisner

ideal I∆ is componentwise linear if and only if ∆? is sequentially Cohen-

Macaulay. On the algebraic side, in characteristic zero, Aramova, Herzog,

and Hibi subsequently proved that I is componentwise linear if and only if it

has the same graded Betti numbers as its graded reverse-lex generic initial

ideal [1]. Römer used this result in [26] to prove that componentwise linear

ideals satisfy the Multiplicity Conjecture of Herzog, Huneke, and Srinivasan

[22] in characteristic zero.

Componentwise linearity also arises naturally in the study of several

types of ideals from algebraic geometry. In [12], the first author showed

that if I is the ideal of at most n + 1 general fat points in Pn, then I is

componentwise linear. Additionally, the first author, Migliore, and Nagel

proved that the ideal of a tetrahedral curve is componentwise linear if and

only if the curve does not reduce to a complete intersection of type (2, 2);

see [25] or [13] for an explanation of the reduction process. One of our goals

in this paper is to identify more results applicable to geometry.

Our motivation to study intersections of Veronese ideals comes from the

observation that in many of the cases in which the componentwise linear

property of a monomial ideal has been studied, the ideal is a special case of

an intersection of Veronese ideals. The defining ideal of s ≤ n fat points in

Pn−1 in generic position, investigated in [12], is an intersection of Veronese

ideals with Ji = {1, . . . , î, . . . , n} for i = 1, . . . , s. Moreover, the ideals of

tetrahedral curves, studied in [25] and [13], have the form

I = (x1, x2)
a1 ∩ (x1, x3)

a2 ∩ (x1, x4)
a3 ∩ (x2, x3)

a4 ∩ (x2, x4)
a5 ∩ (x3, x4)

a6

⊂ k[x1, . . . , x4],

where the ai are nonnegative integers. Additionally, when each ai = 1, the

intersection of Veronese ideals is the Alexander dual of a Stanley-Reisner

ideal; here, the minimal generators of the Stanley-Reisner ideal are the

product of J1 variables, the product of the J2 variables, and so on. Faridi
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showed that if I is the facet ideal of a simplicial tree (so I is a squarefree

monomial ideal), then the Alexander dual I? is componentwise linear [9].

Faridi’s result was partially generalized by the two authors [14]; they showed

that if I is the edge ideal of a chordal graph, then the Alexander dual I ? is

componentwise linear.

We now present the main results of this paper. Our primary tool is

Theorem 3.1. We show that if I is an intersection of Veronese ideals in

k[x1, . . . , xn], and if Ji ∪ Jj = [n] for all i 6= j, then (Id) is a polymatroidal

ideal for all d. We shall discuss polymatroidal ideals in the next section of

preliminaries, but their most important property for us is that they have

linear resolutions. Thus I is componentwise linear in this case since each

(Id) has a linear resolution. As a corollary of Theorem 3.1, we show that

when s = 2, I = m
a
J ∩m

b
K is always componentwise linear. With some care-

ful analysis of the generators of (Id), we prove the same result in the case

s = 3 in Section 4. (When s = 1, i.e., I = m
a
J , then the fact that I is com-

ponentwise linear is simply a corollary of the Eagon-Northcott resolution.)

This shows that the ideals of tetrahedral curves that are not component-

wise linear given in [13] are the simplest possible examples of intersections

of Veronese ideals for which componentwise linearity fails. When s ≥ 4,

we give examples to show that I = m
a1

J1
∩ · · · ∩ m

as

Js
may or may not be

componentwise linear.

In Section 5, we expand upon the s = 2 case by giving explicit formulas

for the graded Betti numbers of m
a
J ∩ m

b
K . Our formulas generalize results

of Fatabbi [10], Valla [28], Fatabbi and Lorenzini [11], and the first author

[12], which give the Betti numbers of ideals of two fat points in Pn.

We conclude in Section 6 with some applications. We extend the first

author’s work in [12] by showing that if I is the ideal of a small number

of general fat points in a multiprojective space Pn1 × · · · × Pnr , then I is

componentwise linear. This also gives a new proof of the result in [12]; our

technique in this paper is more general. Additionally, we use the results of

Section 5 to write down the graded Betti numbers of two general fat points

in multiprojective space. We also note that in each case that we show that

a class of ideals is componentwise linear, the result solves the Multiplicity

Conjecture of Herzog, Huneke, and Srinivasan [22] for that class of ideals

(in characteristic zero).

Acknowledgments. We gratefully acknowledge the computer alge-

bra systems CoCoA [2] and Macaulay 2 [16], which were invaluable in our
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work on this paper. The second author also acknowledges the support pro-

vided by NSERC. We also thank Giulio Caviglia for valuable conversations

on these topics. Finally, we thank the referee for his or her extremely care-

ful reading of our paper and very helpful corrections and suggestions for

improvement.

§2. Preliminaries

In this section, we recall some definitions and results used throughout

the paper. As in the introduction, let R = k[x1, . . . , xn] be a polynomial

ring over the field k, and for any subset J = {j1, . . . , jt} ⊆ [n], we set

mJ := (xj1 , . . . , xjt). Our primary interest in this paper is to determine

when intersections of Veronese ideals in R, or equivalently, ideals of the form

I = m
a1

J1
∩ · · · ∩ m

as

Js
, where the ai are positive integers, are componentwise

linear.

Associated to any homogeneous ideal I of R is a minimal free graded

resolution

0 −→
⊕

j

R(−j)βh,j(I) −→ · · · −→
⊕

j

R(−j)β1,j(I) −→
⊕

j

R(−j)β0,j (I)

−→ I −→ 0

where R(−j) denotes the R-module obtained by shifting the degrees of R by

j. The number βi,j(I) is the ij-th graded Betti number of I and equals the

number of generators of degree j in the i-th syzygy module. The following

property of resolutions will be of interest.

Definition 2.1. Suppose I is a homogeneous ideal of R whose gen-

erators all have degree d. Then I has a linear resolution if for all i ≥ 0,

βi,j(I) = 0 for all j 6= i+ d.

Componentwise linearity is closely related to this property. For a ho-

mogeneous ideal I, we write (Id) to denote the ideal generated by all degree

d elements of I. Note that (Id) is different from Id, which we shall use

to denote the vector space of all degree d elements of I. Herzog and Hibi

introduced the following definition in [19].

Definition 2.2. A homogeneous ideal I is componentwise linear if (Id)

has a linear resolution for all d.
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COMPONENTWISE LINEAR MONOMIAL IDEALS 119

A number of familiar classes of ideals are componentwise linear. For

example, all ideals with linear resolutions are componentwise linear. How-

ever, there are many nontrivial examples as well, including stable ideals,

squarefree strongly stable ideals, and the a-stable ideals studied in [15].

The following examples illustrates cases in which our results in this paper

give new examples of componentwise linear ideals that are not in any of the

classes mentioned above.

Example 2.3. Let R = k[x1, . . . , x5], and let

I = (x1, x2, x3) ∩ (x1, x4, x5) ∩ (x2, x3, x5)

= (x1x2, x1x3, x1x5, x2x4, x2x5, x3x4, x3x5) ⊂ R.

Then I is clearly not stable since no pure power of x1 is among the minimal

generators, and it is neither squarefree stable nor a-stable for any a because,

for example, x1x5 is a minimal generator, but x1x4 6∈ I, though other

minimal generators do involve x4. Our results in Section 4 show that I

is componentwise linear; in fact, I has a linear resolution because it is

componentwise linear and has all its minimal generators in the same degree.

For an example that is not squarefree, let J = (x1, x2)
3∩(x2, x3, x4, x5)

2

⊂ R. Then

J = (x1x
2
2, x

3
2, x

2
1x2x3, x

2
1x2x4, x

2
1x2x5, x

3
1x

2
3, x

3
1x3x4, x

3
1x3x5, x

3
1x

2
4,

x3
1x4x5, x

3
1x

2
5),

which is clearly neither stable nor a-stable. By our Theorem 3.1 and Corol-

lary 3.2, J is componentwise linear.

The graded Betti numbers of componentwise linear ideals have a partic-

ularly good algebraic property. In [1], Aramova, Herzog, and Hibi proved:

Theorem 2.4. Let I ⊂ k[x1, . . . , xn] be a homogeneous ideal, and sup-

pose that char(k) = 0. Let gin(I) be the generic initial ideal of I with respect

to the graded reverse-lex order. Then I is componentwise linear if and only

if I and gin(I) have the same graded Betti numbers.

In general, βi,j(I) ≤ βi,j(gin(I)) for all i and j, but all the inequalities

are equalities exactly when I is componentwise linear. Conca observed in

[3] that Aramova, Herzog, and Hibi actually proved that I is component-

wise linear if and only if I and gin(I) have the same number of minimal
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generators. This observation makes the condition even easier to test com-

putationally.

One way to show that an ideal is componentwise linear is to prove that

it has linear quotients. We recall Herzog and Hibi’s definition from [18]

(which is slightly more restrictive than Herzog and Takayama’s definition

in [23]).

Definition 2.5. Let I be a monomial ideal of R. We say that I has

linear quotients if for some ordering u1, . . . , um of the minimal generators

of I with deg u1 ≤ deg u2 ≤ · · · ≤ deg um and all i > 1, (u1, . . . , ui−1) : ui is

generated by a subset of {x1, . . . , xn}.

The following proposition is probably known, but we could not find it

recorded explicitly, so we include it for convenience. The case in which I

is generated in a single degree is Lemma 4.1 of [4], and that is the case we

shall use in this paper.

Proposition 2.6. If I is a homogeneous ideal with linear quotients,

then I is componentwise linear.

Proof. Suppose that I ⊂ R has linear quotients with respect to the

ordering u1, u2, . . . , um of its minimal generators, where deg ui−1 ≤ deg ui

for all i. We induct on m, the number of minimal generators of I. When

m = 1, I = (u1) is componentwise linear because it is principal.

Fix some m > 1. Assume that the ideal J = (u1, . . . , um−1) is compo-

nentwise linear, and suppose that deg um = d. Let J ′ = (J, um). Note that

Je = J ′
e for all e < d, so (J ′

e) has a linear resolution for all e < d. We have

a short exact sequence

0 −→ R/(J : um)(−d)
×um−−−→ R/J −→ R/J ′ −→ 0.

Because J : um is generated by linear forms, reg(R/(J : um)) = 0. Since

deg um = d, we have reg(R/J ′) ≥ d − 1. Because R/J is componentwise

linear, and deg um−1 ≤ d, we know that reg(R/J) ≤ d − 1. By [7, Corol-

lary 20.19],

reg(R/J ′) ≤ max{reg(R/(J : un)(−d)) − 1, reg(R/J)}

= max{d− 1, reg(R/J)},
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so reg(R/J ′) = d − 1. Thus (J ′
d) has a linear resolution. The same is true

for all (J ′
e) with e > d. The last statement follows from the fact that for any

ideal M with regularity d and e > d, (Me) has a linear resolution. This fact

follows, for example, from [13, Lemma 2.3] since the graded Betti numbers

βi,j(Me) with j > i+ e must be zero.

One special type of ideal that has linear quotients is a polymatroidal

ideal. For a discussion of this terminology, see [20] and [18].

Definition 2.7. Let I be a monomial ideal generated in a single de-

gree. We say that I is a polymatroidal ideal if the minimal generators of I

satisfy the following exchange property: If u = xa1

1 · · · xan
n and v = xb1

1 · · · xbn
n

are minimal generators of I, for each i with ai > bi, there exists j with

aj < bj such that xju/xi ∈ I.

Herzog and Takayama proved the following result about polymatroidal

ideals in Lemma 1.3 of [23].

Theorem 2.8. Polymatroidal ideals have linear quotients with respect

to the descending reverse-lex order, and hence they have linear resolutions.

We shall use the ascending reverse-lex order at times, so we state the

corresponding result for that case, which follows from the proof of [23,

Lemma 1.3] in Herzog and Takayama’s paper as well as a dual version of

the exchange property for monomial ideals in [18, Lemma 2.1].

Proposition 2.9. Polymatroidal ideals have linear quotients with re-

spect to the ascending reverse-lex order.

Suppose we have a componentwise linear monomial ideal I = (m1, . . . ,

mr) in a polynomial ring R = k[x1, . . . , xn]. In the following sections, we

shall sometimes want to consider the ideal I = (m1, . . . ,mr) as an ideal

in a larger polynomial ring R′. The following lemma shows that I is still

componentwise linear in the larger ring.

Lemma 2.10. Let I = (m1, . . . ,mr) be a componentwise linear mono-

mial ideal in R = k[x1, . . . , xn], and let I ′ = (m1, . . . ,mr)R
′ be the ideal gen-

erated by the same monomials in the larger polynomial ring R′ = k[x1, . . . ,

xn, xn+1, . . . , xp]. Then I ′ is a componentwise linear ideal of R′.
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Proof. Suppose d is the lowest degree in which I has generators. Then

(Id) = (I ′d), so (I ′d) has a linear resolution because (Id) does.

Let t ≥ 0, and let m = (xn+1, . . . , xp). The ideal (I ′d+t) has a decompo-

sition as

(I ′d+t) = (Id+t) + m(Id+t−1) + m
2(Id+t−2) + · · · + m

t(Id);

by (Id+u), we mean the ideal generated by the degree (d + u) elements of

I inside R, so the minimal generators involve only the variables x1, . . . , xn.

We then consider m
v(Id+t−v) as an ideal of R′.

By hypothesis, (Id+t) has a linear resolution in R, and hence, viewed

as an ideal of R′, we will have reg(R′/(Id+t)) = d + t − 1. We order the

rest of the minimal generators of (I ′d+t) in the following way. First, take

all the minimal generators of m(Id+t−1) in descending graded reverse-lex

order (so those monomials divisible by xp would be last). Next, take all the

minimal generators of m
2(Id+t−2) in descending graded reverse-lex order,

and continue in this way. We shall add each of these generators successively

to (Id+t) and show that each resulting ideal has regularity d + t. This will

imply that reg(R′/(I ′d+t)) = d+ t−1 and thus (I ′d+t) has a linear resolution.

As the first step, we compute (Id+t) : xn+1m, where m ∈ Id+t−1. Mul-

tiplying m by any of x1, . . . , xn gives an element divisible by an element of

Id+t, and no multiplication by a monomial involving only xn+1, . . . , xp can

give us an element of (Id+t), so (Id+t) : xn+1m = (x1, . . . , xn). We have a

short exact sequence

0 −→ R′/((Id+t) : xn+1m)(−d− t)
×xn+1m
−−−−−→ R′/(Id+t)

−→ R′/((Id+t), xn+1m) −→ 0.

By [7, Corollary 20.19] and the fact that reg(R′/(x1, . . . , xn)) = 0, we have

reg(R′/((Id+t), xn+1m))

≤ max{reg(R′/((Id+t) : xn+1m)(−d− t)) − 1, reg(R′/(Id+t))}

= max{d+ t− 1, d+ t− 1} = d+ t− 1.

Since ((Id+t), xn+1m) is generated in degree d+t, reg(R′/((Id+t), xn+1m)) =

d+ t− 1.

We proceed by induction. Let

J = (Id+t) + m(Id+t−1) + · · · + m
r−1(Id+t−r+1)

+ initial segment of m
r(Id+t−r).
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Suppose m′ = x
bn+1

n+1 · · · x
bp
p m is the next monomial in m

r(Id+t−r) in de-

scending graded reverse-lex order, where m ∈ Id+t−r. First, we will show

that J : m′ is an ideal generated by a subset of the variables of R′. Mul-

tiplying m by any of x1, . . . , xn gives an element of Id+t−r+1, and thus

(x1, . . . , xn) ⊆ J : m′ since x
bn+1

n+1 · · · x
bp
p ∈ m

r ⊂ m
r−1. Let l be the maxi-

mum index for which bl 6= 0. Then any of xn+1m
′, . . . , xl−1m

′ is in J because

xn+1m
′/xl, . . . , xl−1m

′/xl are all greater thanm′ in graded reverse-lex order.

Now suppose that m̄ is a monomial in only xl, . . . , xp. We will show

that m̄m′ = m̄x
bn+1

n+1 · · · x
bp
p m 6∈ J . Note that m̄m′ ∈ (Id+t−r), the ideal of

R′ generated by the elements of Id+t−r, but it is not in any (Id+t−u) for any

u < r. Hence if m̄m′ ∈ J , we have m̄m′ ∈ m
r(Id+t−r). That implies that

m̄m′ is divisible by some monomial in m
r(Id+t−r) greater than m′ in the

reverse-lex order. Because of the way we have ordered the monomials, and

since l is the maximum index for which bl 6= 0, this is impossible. Hence

J : m′ = (x1, . . . , xn, xn+1, . . . , xl−1),

an ideal generated by a subset of the variables of R′. We now have an exact

sequence

0 −→ R′/(J : m′)(−d− t)
×m′

−−−→ R′/J −→ R′/(J,m′) −→ 0.

By [7, Corollary 20.19], induction, and the fact that reg(R′/(J : m′)) = 0,

we have

reg(R′/(J,m′)) ≤ max{reg(R′/(J : m′)(−d− t)) − 1, reg(R′/J)}

= d+ t− 1.

Since (J,m′) is generated by monomials of degree d + t, we have

reg(R′/(J,m′)) = d+t−1, or equivalently, reg(J,m′) = d+t as required.

Remark 2.11. One can shorten the preceding proof considerably by

showing that gin(I) has the same minimal generators as gin(I ′), where gin

denotes the graded reverse-lex generic initial ideal. However, this approach

would require the hypothesis that char(k) = 0 to use the generic initial ideal

characterization of componentwise linearity. Instead, we prefer to have a

characteristic-free proof.

We begin our investigation of when intersections of Veronese ideals are

componentwise linear with a couple of special cases. Let I = m
a1

J1
∩· · ·∩m

as

Js
.
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We consider the cases in which s = 1 and in which the Ji are pairwise

disjoint.

When s = 1, I = m
a
J is a power of a complete intersection. In this case,

the Eagon-Northcott complex of I is a minimal free resolution [5]. The

graded Betti numbers of I are given below (and could also be computed

from the formulas of [17]).

Lemma 2.12. Let J ⊆ [n], and let a be any positive integer. Then

βi,i+a(m
a
J) =

(

a+ |J | − 1

a+ i

)(

a+ i− 1

i

)

for i = 0, . . . , |J | − 1,

and βi,j(m
a
J) = 0 for all other i, j ≥ 0. In particular, m

a
J has a linear

resolution, and thus is componentwise linear.

We use the above lemma to prove the following result.

Theorem 2.13. Let J1, . . . , Js ⊆ [n] be s pairwise disjoint nonempty

subsets, and let a1, . . . , as be positive integers. Set I = m
a1

J1
m

a2

J2
· · ·mas

Js
and

a = a1 + · · · + as. Then

βi,i+a(I) =
∑

i1+···+is=i

s
∏

j=1

(

aj + |Jj | − 1

aj + ij

)(

aj + ij − 1

ij

)

for all i ≥ 0,

and βi,j(I) = 0 otherwise.

Proof. Let F` denote the graded minimal free resolution of m
a`

J`
for

` = 1, . . . , s. Since I ∼= m
a1

J1
⊗ · · · ⊗ m

as

Js
, the graded minimal free resolution

of I is given by G = F1 ⊗ · · · ⊗ Fs. So Gi, the i-th graded free module in

a minimal graded free resolution of I, is Gi =
⊕

i1+···+is=i Fi1 ⊗ · · · ⊗ Fis .

Thus

βi,j(I) =
∑

i1+···+is=i

dimk(Fi1 ⊗ · · · ⊗ Fis)j

=
∑

i1+···+is=i

∑

j1+···+js=j

βi1,j1(m
a1

J1
) · · · βis,js(m

as

Js
).

But by Lemma 2.12, βi`,j`
(ma`

J`
) 6= 0 only if j` = i` + a`. So βi,j(I) = 0 if

j 6= i+ a, and

βi,i+a(I) =
∑

i1+···+is=i

βi1,i1+a1
(ma1

J1
) · · · βis,is+as(m

as

Js
).

By applying the formula of Lemma 2.12 we get the desired conclusion.
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When the Ji’s are pairwise disjoint nonempty sets as in the above the-

orem, then m
a1

J1
∩ m

a2

J2
∩ · · · ∩ m

as

Js
= m

a1

J1
m

a2

J2
· · ·mas

Js
. Since this ideal has a

linear resolution, we have:

Corollary 2.14. If I = m
a1

J1
∩m

a2

J2
∩· · ·∩m

as

Js
, with the J1, . . . , Js ⊆ [n]

pairwise disjoint nonempty subsets, then I is componentwise linear.

Remark 2.15. It is easy to see that (x1, . . . , xr)
a is polymatroidal for

any positive integers r and a. Results in [20] and [4] prove that the product

of polymatroidal ideals is polymatroidal. Hence the ideals of Theorem 2.13

are polymatroidal and thus have a linear resolution, as is clear from the

graded Betti numbers.

Example 2.16. We show that if I = m
a1

J1
∩ · · · ∩ m

as

Js
with s ≥ 4, then

I may or may not be componentwise linear. First, we construct examples

of ideals that are not componentwise linear. We begin with the case that

s = 4. It was observed in [13] that the ideal

I = (x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x4, x1) = (x1x3, x2x4)

is not componentwise linear. To see this fact, note that the ideal I is a

complete intersection ideal of type (2, 2). Since I = (I2), (I2) does not have

a linear resolution.

We can extend this example to any s > 4. In the polynomial ring

R = k[x1, . . . , xs], let

I = (x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x4, x1) ∩ (x5)
a5 ∩ (x6)

a6 ∩ · · · ∩ (xs)
as .

for any positive integers a5, . . . , as. Then I = xa5

5 x
a6

6 · · · xas
s I

′ where I ′ =

(x1x3, x2x4). Because βi,j(I) = βi,j−a5−a6−···−as(I
′), the ideal I cannot

be componentwise linear since I = (I2+a5+···+as) does not have a linear

resolution.

On the other hand, we can create very simple intersections of Veronese

ideals that are componentwise linear for any s. For example, if Ji = {i} for

i = 1, . . . , s, then I is principal and hence has a linear resolution. Alterna-

tively, start with a componentwise linear intersection of Veronese ideals I

in the variables x1, . . . , xr, and intersect I with (xr+1)
ar+1 ∩ · · · ∩ (xs)

as .

In the following sections, we consider the cases in which s = 2 or s = 3

as well as some special cases for general s.
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§3. A family of polymatroidal ideals

In this section, we consider a particular family of intersections of

Veronese ideals. We show that ideals in this family are polymatroidal. Our

main result is the following theorem.

Theorem 3.1. Let J1, . . . , Js be subsets of [n] such that Ji ∪ Jj = [n]

for all i 6= j. Let

I = m
a1

J1
∩ · · · ∩ m

as

Js
⊂ R = k[x1, . . . , xn].

Then (Id) is polymatroidal for all d, and hence I is componentwise linear.

Proof. The condition on Ji∪Jj = [n] means that any r ∈ [n] is missing

from at most one of the Ji; if r 6∈ Ji and r 6∈ Jj , then Ji ∪ Jj 6= [n].

Therefore we may partition the variables x1, . . . , xn in the following way:

Rename the variables xi with the symbols x1,1, . . . , x1,b1 , . . . , xs,1, . . . , xs,bs
,

x∩,1, . . . , x∩,b∩ . The variables xi,j correspond to the integers in [n] missing

from Ji, and the variables x∩,j correspond to the integers in [n] present in

all Ji.

For example, if

I = (x1, x2, x4, x6)
3 ∩ (x1, x3, x5, x6)

4 ∩ (x2, x3, x4, x5, x6)
2 ⊂ k[x1, . . . , x6],

then J1 = {1, 2, 4, 6}, J2 = {1, 3, 5, 6}, and J3 = {2, 3, 4, 5, 6}. We would

rename the variables x3 and x5 as x1,1 and x1,2 since 3 and 5 are missing

from J1. Similarly, x2 and x4 become x2,1 and x2,2, x1 is x3,1, and x6 is

x∩,1. Note that there may be some i with 1 ≤ i ≤ s for which there are no

xi,j variables; that is true if and only if Ji = [n]. That causes no problem in

the proof below; alternatively, one can avoid this case since a component of

(x1, . . . , xn)a simply makes the ideal formed by the intersection of the other

components zero in degrees below a and the same in degrees a and above.

Fix a degree d. Suppose that me 6= mf are two monomials in (Id) with

me = x
e1,1

1,1 · · · x
e1,b1

1,b1
· · · x

es,1

s,1 · · · x
es,bs

s,bs
x

e∩,1

∩,1 · · · x
e∩,b∩

∩,b∩
,

with mf having a similar expression in terms of x
fi,j

i,j . We need to show

that the polymatroidal exchange condition holds for these two monomials.

Namely, if some ei,j > fi,j or some e∩,j > f∩,j, we must show that there

exists eu,v < fu,v (with 1 ≤ u ≤ s or u = ∩) such that xu,vme/xi,j ∈ (Id).
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Note that the fact that me ∈ (Id) means exactly that degme = d and all of

the following inequalities hold:

∑

j

e2,j + · · · +
∑

j

es,j +
∑

j

e∩,j ≥ a1,

∑

j

e1,j +
∑

j

e3,j + · · · +
∑

j

es,j +
∑

j

e∩,j ≥ a2,

...
∑

j

e1,j + · · · +
∑

j

es−1,j +
∑

j

e∩,j ≥ as.

There are two main cases to consider. First, suppose that some e∩,p >

f∩,p. If there exists e∩,j < f∩,j, then x∩,jme/x∩,p ∈ (Id) since none of the

left-hand sides of the inequalities above change, and we are done. Otherwise,

we have e∩,j ≥ f∩,j for all j, and
∑

e∩,j >
∑

f∩,j because e∩,p > f∩,p. Since

me andmf have the same degree, there exists some ei,j < fi,j with 1 ≤ i ≤ s.

Without loss of generality, assume that e1,1 < f1,1. If

∑

j

e2,j + · · · +
∑

j

es,j +
∑

j

e∩,j > a1,

then x1,1me/x∩,p ∈ (Id), for the all the left-hand sides of the inequalities

but the first stay the same, and the first inequality for the new monomial is

∑

j

e2,j + · · · +
∑

j

es,j +
∑

j

e∩,j ≥ a1.

(Note that this property is independent of whether we use x1,1 or some other

x1,v with e1,v < f1,v.)

If
∑

e2,j + · · · +
∑

es,j +
∑

e∩,j 6> a1, then

(3.1)
∑

j

e2,j+· · ·+
∑

j

es,j+
∑

j

e∩,j = a1 ≤
∑

j

f2,j+· · ·+
∑

j

fs,j+
∑

j

f∩,j

since mf ∈ I. If e2,j ≥ f2,j, . . . , es,j ≥ fs,j for all j, since
∑

e∩,j >
∑

f∩,j,

we have contradicted (3.1). Therefore, without loss of generality, we may

assume that some e2,j < f2,j.

We proceed by induction. Suppose that we have either found an ei,j <

fi,j such that xi,jme/x∩,p ∈ (Id) for some i ≤ t− 1, or for r = 1, . . . , t− 1,
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we have

(3.2)

s
∑

i=1
i6=r

bi
∑

j=1

ei,j +

b∩
∑

j=1

e∩,j = ar ≤
s

∑

i=1
i6=r

bi
∑

j=1

fi,j +

b∩
∑

j=1

f∩,j.

(That is, the double sum is the sum of all ei,j with i 6= r.)

As part of the induction hypothesis, we may assume that there exists

et,j < ft,j. If xt,jme/x∩,p ∈ (Id), we are done; otherwise,

(3.3)
s

∑

i=1
i6=t

bi
∑

j=1

ei,j +

b∩
∑

j=1

e∩,j = at ≤
s

∑

i=1
i6=t

bi
∑

j=1

fi,j +

b∩
∑

j=1

f∩,j.

Summing (3.3) and the inequalities (3.2) for all r = 1, . . . , t− 1, we obtain

(t− 1)
t

∑

i=1

∑

j

ei,j + t
s

∑

i=t+1

∑

j

ei,j + t
∑

j

e∩,j(3.4)

≤ (t− 1)
t

∑

i=1

∑

j

fi,j + t
s

∑

i=t+1

∑

j

fi,j + t
∑

j

f∩,j.

Subtracting (t− 1) degme = (t− 1) degmf , we are left with

s
∑

i=t+1

∑

j

ei,j +
∑

j

e∩,j ≤
s

∑

i=t+1

∑

j

fi,j +
∑

j

f∩,j.

If et+1,j ≥ ft+1,j, . . . , es,j ≥ fs,j for all j, then we have a contradiction since
∑

e∩,j >
∑

f∩,j. Hence we may assume without loss of generality that

some et+1,j < ft+1,j.

Therefore either we find some ei,j < fi,j, with 1 ≤ i ≤ s, such that

xi,jme/x∩,p ∈ (Id), or else the exchange property is not true, and (3.2)

holds for all r = 1, . . . , s. In the latter case, summing all s inequalities of

the form in (3.2), we have

(s− 1)
s

∑

i=1

∑

j

ei,j + s
∑

j

e∩,j ≤ (s− 1)
s

∑

i=1

∑

j

fi,j + s
∑

j

f∩,j.

If we subtract (s− 1) degme = (s− 1) degmf from both sides, we have

∑

j

e∩,j ≤
∑

j

f∩,j.
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But this contradicts our assumption that

∑

j

e∩,j >
∑

j

f∩,j.

Hence there exists some ei,j < fi,j such that xi,jme/x∩,p ∈ (Id), and the

exchange condition holds.

The second case to consider is when some ei,j > fi,j for some 1 ≤

i ≤ s. Without loss of generality, assume that e1,1 > f1,1. If there exists

e1,j < f1,j, then x1,jme/x1,1 ∈ (Id). Otherwise, we have e1,j ≥ f1,j for all

j, and
∑

e1,j >
∑

f1,j. Additionally, note that if any e∩,j < f∩,j, then

m′ = x∩,jme/x1,1 ∈ (Id) since the degrees of me and m′ in the J2, . . . , Js

variables are the same, and the degree of m′ in the J1 variables is one higher

than that of me. Therefore we may also assume that e∩,j ≥ f∩,j for all j.

Since degme = degmf , there exists some ei,j < fi,j, and we may assume

that e2,1 < f2,1. If x2,1me/x1,1 ∈ (Id), we are done; otherwise,

∑

j

e1,j +
∑

j

e3,j + · · · +
∑

j

es,j +
∑

j

e∩,j

= a2 ≤
∑

j

f1,j +
∑

j

f3,j + · · · +
∑

j

fs,j +
∑

j

f∩,j.

If e3,j ≥ f3,j, . . . , es,j ≥ fs,j for all j, then we have a contradiction since
∑

e1,j >
∑

f1,j and
∑

e∩,j ≥
∑

f∩,j. Therefore we may assume without

loss of generality that e3,1 < f3,1.

Continuing in this way, we apply an almost identical induction argument

as in the previous case except that now
∑

e1,j >
∑

f1,j and
∑

e∩,j ≥
∑

f∩,j. Either we find some ei,j < fi,j with 2 ≤ i ≤ s − 1 such that

xi,jme/x1,1 ∈ (Id), or (3.2) holds for all r = 2, . . . , s − 1, and there exists

some es,j < fs,j. If xs,jme/x1,1 ∈ (Id), we are done. Otherwise, (3.2) also

holds for r = s, and the exchange property fails. Summing the inequalities

of (3.2) for all r = 2, . . . , s, we obtain

(s− 1)
∑

j

e1,j + (s− 2)

s
∑

i=2

∑

j

ei,j + (s− 1)
∑

j

e∩,j

≤ (s− 1)
∑

j

f1,j + (s− 2)
s

∑

i=2

∑

j

fi,j + (s− 1)
∑

j

f∩,j.
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Now, subtracting (s− 2) degme = (s− 2) degmf , we have

∑

j

e1,j +
∑

j

e∩,j ≤
∑

j

f1,j +
∑

j

f∩,j.

But we are assuming that
∑

e1,j >
∑

f1,j, and
∑

e∩,j ≥
∑

f∩,j, so we have

a contradiction, and thus the exchange property must hold.

As a consequence of Theorem 3.1, the intersection of any two Veronese

ideals must be componentwise linear.

Corollary 3.2. Let J,K ⊆ [n] and let a and b be positive integers.

Then I = m
a
J ∩ m

b
K ⊂ R = k[x1, . . . , xn] is componentwise linear.

Proof. If J∪K = [n], then we are done by Theorem 3.1. If not, we may

reindex the variables so that J ∪K = [m], and [m] ∪ {m+ 1, . . . , n} = [n].

Then, by Theorem 3.1, I is componentwise linear in k[x1, . . . , xm] and so

Lemma 2.10 gives the result.

Remark 3.3. It is not true that all ideals I = m
a1

J1
∩ m

a2

J2
have (Id)

polymatroidal for all d. For example, let

I = m
a1

J1
∩ m

a2

J2
= (x1, x2, x3)

2 ∩ (x2, x3, x5)
2 ⊂ R = k[x1, . . . , x5].

Note that x4 does not appear in either of the two components. Both me =

x2
3x4 and mf = x1x3x5 are in (I3). The power on x3 is greater in me than

it is in mf , and the powers on x1 and x5 are larger in mf than in me. But

x1(x
2
3x4/x3) = x1x3x4 6∈ (I3), and x5(x

2
3x4/x3) = x3x4x5 6∈ (I3). Therefore

(I3) is not polymatroidal. The proof of Theorem 3.1 breaks down because 4

is missing from both J1 and J2, and hence we cannot partition the variables

the way we did in that argument; the x4 exponents would be double-counted,

causing problems when we subtract a multiple of degme = degmf .

§4. The intersection of three Veronese ideals

We will show that intersection of any three Veronese ideals is always

componentwise linear. Throughout this section, we write G(I) to denote

the set of minimal generators of a monomial ideal I.

We begin with an observation. Suppose J,K ⊆ [n], but J ∪K ( [n].

Let H = [n]\(J∪K), and after relabeling, we can assume H = {r+1, . . . , n}
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and J ∪K = [r]. Let a, b be any positive integers, and let α be the smallest

degree of a nonzero element in (ma
J ∩ m

b
K). If

B′ = (ma
J ∩ m

b
K) ∩ k[xi | i ∈ J ∪K] = (ma

J ∩ m
b
K) ∩ k[x1, . . . , xr],

then the ideal B = ((ma
J ∩ m

b
K)α+d), as an ideal of R = k[x1, . . . , xn], has

the decomposition

B = (B′
α+d) + (B′

α+d−1)mH + (B′
α+d−2)m

2
H + · · · + (B′

α)md
H ,

where (B′
i) denotes the ideal generated by elements of degree i of B ′ but

viewed as an ideal of R.

Order the elements of G(B) as follows: Order the generators of (B ′
α+d)

with respect to the ascending reverse-lex ordering. Then add the generators

of (B′
α+d−1)mH in ascending reverse-lex order. We thus add all the mono-

mials divisible by xn first. Continue by adding the generators (B ′
α+d+2)m

2
H

in ascending reverse-lex order, and so on.

Lemma 4.1. Using the above notation, the ideal

B = (B′
α+d) + (B′

α+d−1)mH + (B′
α+d−2)m

2
H + · · · + (B′

α)md
H

has linear quotients with respect to the order prescribed above.

Proof. Let Mi be the i-th element of G(B), i ≥ 2, with respect to

our ordering. First, suppose that Mi ∈ (B′
α+d). We wish to calculate

(M1, . . . ,Mi−1) : Mi, where (M1, . . . ,Mi−1) is the ideal generated by all

monomials in G(B) smaller than Mi with respect to our ordering. Note that

in this case, each Mj is in (B′
α+d), so each Mj is in S = k[x1, . . . , xr]. As an

ideal of S, the ideal (B ′
α+d) is polymatroidal by Theorem 3.1. So, (B ′

α+d) has

linear quotients with respect to the ascending reverse-lex order by Propo-

sition 2.9. Thus, as an ideal of S, (M1, . . . ,Mi−1) : Mi = (xi1 , . . . , xij ) for

some subset {i1, . . . , ij} ⊆ J ∪K. Because S → R is a flat ring homomor-

phism, by [24, Theorem 7.4(iii)], (M1, . . . ,Mi−1)R : MiR = (xi1 , . . . , xij )R.

(We note that if I is an ideal of S, then we will sometimes abuse notation

and write I to denote an ideal of R, where we really mean IR using the flat

homomorphism S → R.)

So, suppose now that Mi ∈ (B′
α+d−s)m

s
H for some s = 1, . . . , d. Let

I = (B′
α+d) + · · · + (B ′

α+d−s+1)m
s−1
H + (M ∈ G((B ′

α+d−s)m
s
H) |M <Mi),
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where M <Mi with respect to the reverse-lex ordering.

Since Mi ∈ (B′
α+d−s)m

s
H , Mi = Mi1Mi2 with Mi1 ∈ (B′

α+d−s) and

Mi2 ∈ m
s
H . If we multiply Mi by any xl with l ∈ J ∪ K, then xlMi1 ∈

(B′
α+d−s+1). Since Mi2 ∈ m

s
H ⊆ m

s−1
H , we have xlMi ∈ (B′

α+d−s+1)m
s−1
H ⊆

I. Thus mJ∪K ⊆ I : Mi.

Because Mi2 ∈ m
s
H , we have

Mi2 = x
cr+1

r+1 · · · xcn
n with cr+1 + · · · + cn = s.

Let l be the smallest integer in {r + 1, . . . , n} such that cl > 0. Then

xeMi ∈ I for e = l + 1, . . . , n. To see this note that

xeMi = Mi1xeMi2 = Mi1x
cl

l · · · xce+1
e · · · xcn

n

= xlMi1x
cl−1
l · · · xce+1

e · · · xcn
n .

But then Mi1x
cl−1
l · · · xce+1

e · · · xcn
n < Mi since ce + 1 > ce. So

xeMi = xlMi1x
cl−1
l · · · xce+1

e · · · xcn
n

∈ (M ∈ G((B ′
α+d−s)m

s
H) |M <Mi) ⊆ I,

from which we deduce that (xl+1, . . . , xn) ⊆ I : Mi.

Let m now be any monomial not in mJ∪K + (xl+1, . . . , xn) and sup-

pose mMi ∈ I. The monomial m can only be divisible by the variables

xr+1, . . . , xl; suppose degm = z. Since mMi ∈ I, there exists a monomial

Mj ∈ I such that mMi = m′Mj for some monomial m′. Since Mi ∈ m
s
H ,

mMi ∈ m
s+z
H . If Mj ∈ (B′

α+d−i)m
i
H for some i < s, then m′Mj cannot be in

m
s+z
H since in m′Mj , the exponents of xr+1, . . . , xn can add up to at most

i+z. Thus, we must have Mj ∈ (Bα+d−s)m
s
H , and so Mj < Mi with respect

to the reverse-lex ordering.

If we write Mj = Mj1Mj2 with Mj1 ∈ (Bα+d−s) and Mj2 ∈ m
s
H , then

since m is a monomial in the variables xr+1, . . . , xl only, we must have

Mj1 = Mi1 and Mj2 < Mi2. If Mj2 = x
fr+1

r+1 · · · xfn
n , there must be some

e such that fe > ce but fe+1 = ce+1, . . . , fn = cn. Furthermore, since

Mi2 = xcl

l · · · xcn
n , we must have l < e ≤ n. Indeed, if e ≤ l, then

s = fr+1 + · · · + fn ≥ fe + · · · fn > ce + · · · + cn = cl + · · · + cn = s.

Thus, for mMi = m′Mj to be true, both sides must be divisible by xfe
e . But

since Mi is not divisible by xv
e with v > ce, we must have m divisible by xe.
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But this contradicts the fact that m is not in the ideal mJ∪K+(xl+1, . . . , xn).

We then arrive at the conclusion

I : Mi = mJ∪K + (xl+1, . . . , xn).

So, B has linear quotients.

Remark 4.2. Lemma 4.1 gives a second proof that m
a
J ∩m

b
K is compo-

nentwise linear for all J , K, a, and b.

We thank the referee for suggestions that significantly simplified the

proof of the following theorem.

Theorem 4.3. Let J1, J2, J3 ⊆ [n] be three sets, and let a1, a2, a3 be

three positive integers. Then m
a1

J1
∩ m

a2

J2
∩ m

a3

J3
is componentwise linear.

Proof. If Ji = Jj for some i and j, then m
ai

Ji
∩ m

aj

Jj
= m

max{ai,aj}
Ji

, and

thus we are in the case of Corollary 3.2. So, we may assume that all the Ji’s

are distinct. Next we may assume by Lemma 2.10 that J1 ∪ J2 ∪ J3 = [n].

If the hypotheses of Theorem 3.1 are satisfied, we done. So we may further

assume that there exists a pair of sets Ji and Jj such that Ji ∪ Jj ( [n].

For ease of exposition, we shall use J , K, L for J1, J2, J3, we shall use a,

b, c for a1, a2, a3, and we shall assume that J∪K ( [n] and that J , K, and L

are distinct. After relabeling, we can also assume that L = {t, t+1, . . . , n}.
We also set H1 = L∩ (J ∪K) and H2 = L\(J ∪K). After relabeling again,

we may further assume that H1 = {t, . . . , r} and H2 = {r + 1, . . . , n}.
Let α be the smallest degree of a nonzero element in m

a
J ∩m

b
K . Because

(ma
J ∩ m

b
K ∩ m

c
L)e ⊆ (ma

J ∩ m
b
K)e for all e, (ma

J ∩ m
b
K ∩ m

c
L)e = (0) if e < α,

and thus has a linear resolution.

Now fix a d ≥ 0, and set A = ((ma
J ∩ m

b
K ∩ m

c
L)α+d) and B = ((ma

J ∩
m

b
K)α+d). We shall show that A has linear quotients, and hence A has a

linear resolution. It will then follow that m
a
J ∩ m

b
K ∩ m

c
L is componentwise

linear.

Set

B′ = (ma
J ∩ m

b
K) ∩ k[xi | i ∈ J ∪K] = (ma

J ∩ m
b
K) ∩ k[x1, . . . , xr].

Note that the ideal B ′ has the same generators as m
a
J ∩ m

b
K , but we are

now considering B ′ as an ideal in a smaller ring. The ideal B then has the

following decomposition:

B = (B′
α+d) + (B′

α+d−1)mH2
+ (B′

α+d−2)m
2
H2

+ · · · + (B′
α)md

H2
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where by (B ′
i) we mean the ideal generated by the degree i part of B ′ in

k[x1, . . . , xr], but considering the ideal as an ideal of R.

Since A ⊆ B, each generator of A belongs to some (B ′
α+d−i)m

i
H2

for

some i = 0, . . . , d. Set

Ai = {M |M ∈ G(A) and M ∈ (B ′
α+d−i)m

i
H2

} for each i = 0, . . . , d.

So G(A) = A0 ∪A1 ∪ · · · ∪Ad.

Order the elements of G(A) as follows: Begin by adding the elements of

A0 in ascending reverse-lex order. Then, add the elements of A1, after all the

elements in A0, in ascending reverse-lex order. We then add the elements

of A2 in ascending reverse-lex order, and so on. The ordering could also be

described as follows: Write out the generators of B in the same order as in

Lemma 4.1. Then simply remove any element of G(B) that is not in G(A).

We will show that A has linear quotients with respect to this ordering.

Let Mi be the i-th monomial of G(A) with respect to our ordering with

i ≥ 2. Set I = (M1, . . . ,Mi−1), the ideal generated by all the monomials

in G(A) smaller than Mi with respect our ordering. Furthermore, let D =

(M ∈ G(B) | M < Mi) with respect to our ordering. Since I ⊆ D, by

Lemma 4.1 we have

I : Mi ⊆ D : Mi = (xi1 , . . . , xij )

because B has linear quotients with respect to this order.

If Mi ∈ A0, then we will show that I : Mi = D : Mi. Take any

xe ∈ {xi1 , . . . , xij}. Then xeMi = xfMj for some Mj ∈ D. We wish to

show that Mj is in I. Suppose Mj 6∈ I, i.e., Mj 6∈ A. Then

Mj = xd1

1 · · · xdt
t · · · xdn

n with dt + · · · + dn < c.

On the other hand, Mi ∈ A, so

Mi = xc1
1 · · · xct

t · · · xcn
n with ct + · · · + cn ≥ c.

Since Mi ∈ A0 ⊆ (B′
α+d), we have Mj ∈ (B′

α+d) as well, and Mj < Mi

with respect to reverse-lex order. Hence there must exist some l such that

dl > cl, but dl+1 = cl+1, . . . , dn = cn. Moreover, l ∈ {t, . . . , n}, for if l < t,

then

c > dt + · · · + dn = ct + · · · + cn ≥ c.
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Thus, for xeMi = xfMj to be true, xe = xl, since the exponent of xl is

higher in Mj than in Mi. So the exponents of xt, . . . , xn in xeMi must add

up at least c+ 1. However, the exponents of xt, . . . , xn in xfMj can add up

to at most c, a contradiction. So Mj must be in A and thus is in I.

Suppose now that Mi ∈ As with s ∈ {1, . . . , d}. So Mi ∈ (B′
α+d−s)m

s
H2

.

Write Mi as Mi = Mi1Mi2 with Mi1 ∈ (B′
α+d−s) and Mi2 ∈ m

s
H2

. Then

Mi2 = x
cr+1

r+1 · · · xcn
n with cr+1 + · · · + cn = s.

Let l be the smallest integer in the set {r + 1, . . . , n} such that cl > 0. As

shown in the proof of Lemma 4.1,

D : Mi = mJ∪K + (xl+1, . . . , xn).

Since I : Mi ⊆ D : Mi, the above fact implies that no monomial of the form

x
cr+1

r+1 · · · xcl

l can belong to I : Mi.

Next, we show that (xl+1, . . . , xn) ⊆ I : Mi. Let xe ∈ {xl+1, . . . , xn}.
Then

xeMi = Mi1x
cl

l · · · xce+1
e · · · xcn

n = xlMi1x
cl−1
l · · · xce+1

e · · · xcn
n ,

and Mi1x
cl−1
l · · · xce+1

e · · · xcn
n ∈ (B′

α+d−s)m
s
H2

. Also, it is clear that

Mi1x
cl−1
l · · · xce+1

e · · · xcn
n ∈ As

since the exponents of xt, . . . , xn still add up to at least c. Now

Mj = Mi1x
cl−1
l · · · xce+1

e · · · xcn
n < Mi

with respect to the reverse-lex order, so Mj ∈ I, and hence xe ∈ I : Mi.

Now suppose that xe ∈ {x1, . . . , xr} = {xi | i ∈ J ∪K}. Since xe ∈ D :

Mi, we have that xeMi is divisible by some monomial M ∈ D with M less

than Mi with respect to our ordering. The monomial M may or may not

be in I. We thus partition J ∪K into the following two sets:

P1 = {e ∈ J ∪K | xeMi is divisible by some M ∈ D with M ∈ I}

P2 = {e ∈ J ∪K | for every M ∈ D such that M |xeMi, M 6∈ I}.

It follows immediately that if e ∈ P1, then xe ∈ I : Mi, so mP1
⊆ I : Mi.

We will now show (through many steps) that if m is any monomial in

the variables {xe | e ∈ P2}, then m 6∈ I : Mi. It then follows that

I : Mi = mP1
+ (xl+1, . . . , xn)
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so that I has linear quotients.

Suppose that e ∈ P2. Then xeMi = xfMj for some Mj ∈ D, and also

Mj 6∈ I. Furthermore, let

Mi = xc1
1 · · · xcn

n and Mj = xd1

1 · · · xdn
n .

We begin with some facts that must be true about xe, xf ,Mi and Mj

in this case. First, since Mj 6∈ I, dt + · · · + dn < c, but Mi ∈ I means that

ct + · · · + cn ≥ c. Since xfMj = xeMi, this implies that xf ∈ {xt, . . . , xn}

and xe ∈ {x1, . . . , xt−1}. We also observe that this must imply that

dt + · · · + dn = c− 1 and ct + · · · + cn = c.

Second, the monomial Mj 6∈ (B′
α+d−s)m

s
H2

. Observe that if Mj ∈
(B′

α+d−s)m
s
H2

, then Mj < Mi with respect to the reverse-lex order. So there

exists some index p such that dp > cp but dp+1 = cp+1, . . . , dn = cn. Now

because xeMi = xfMj , we must have xe = xp. But since xp ∈ {x1, . . . , xt−1}
we would have

c > dt + · · · + dn = ct + · · · + cn ≥ c,

which is a contradiction. Note that this argument applies to any monomial

M ∈ D with the property that M |xeMi but M 6∈ I.

Now, let m be any monomial in the variables {xe | e ∈ P2}, and suppose

that mMi ∈ I; that is, m ∈ I : Mi. Then there exists a monomial m′ ∈ R

andM ∈ G(I) such thatmMi = m′M . IfM = xb1
1 · · · xbn

n , then bt+· · ·+bn ≥

c since M ∈ I. Since m is not divisible by any element of {xt, . . . , xn} (this

follows since any variable in {xe | e ∈ P2} must be in {x1, . . . , xt−1}), the

exponents of xt, . . . , xn in mMi are the same as those of Mi, and thus, the

exponents of xt, . . . , xn in mMi add up to c since ct + · · · + cn = c. Thus,

any variable that divides m′ must also be in {x1, . . . , xt−1}; otherwise, the

exponents of xt, . . . , xn in m′M add up to a number greater than c.

Since m and m′ are only divisible by the variables x1, . . . , xt−1, we must

therefore have bt = ct, . . . , bn = cn. In particular, br+1 = cr+1, . . . , bn = cn.

Thus, if we let M ? = x
br+1

r+1 · · · xbn
n , then Mi = M ′

iM
? and M = M ′M?.

Because M ? ∈ m
s
H2

, we have M,Mi ∈ (B′
α+d−s)m

s
H2

. It follows that

M ′
i ,M

′ ∈ (B′
α+d−s). Since M is in I, we have M < Mi with respect to

the reverse-lex ordering. This implies that M ′ < M ′
i with respect to the

reverse-lex ordering.

Let D′ be the ideal of S = k[x1, . . . , xr] generated by all generators of

(B′
α+d−s) less than M ′

i with respect to the reverse-lex order. Since (B ′
α+d−s)
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is polymatroidal in this ring by Theorem 3.1, it has linear quotients with

respect to the ascending reverse-lex ordering (by Proposition 2.9). So

D′ : M ′
i = (xi1 , . . . , xig ).

Now mMi = m′M implies that mM ′
i = mM ′. Since m, m′ can be viewed

as elements of S, we have m ∈ D′ : M ′
i since M ′ ∈ D′. So there exists some

xe ∈ {xi1 , . . . , xig} such that xe|m. Note that e ∈ P2. We thus must have

some M ′′ ∈ D′ ⊆ (B′
α+d−s) with M ′′ < M ′

i such that xeM
′
i = xfM

′′ for

some xf . But then

xeMi = xeM
′
iM

? = xfM
′′M?.

Now M ′′M? ∈ D since M ′′M? < M ′
iM

? = Mi. We must have that

M ′′M? 6∈ I, because if M ′′M? ∈ I, this would imply that xe ∈ P1 since

M ′′M?|xeMi. But we also have that M ′′M? ∈ (B′
α+d−s)m

s
H2

, contradicting

the fact that every M ∈ D with the property M |xeMi but M 6∈ I cannot

be in (B′
α+d−s)m

s
H2

.

Thus m 6∈ I : Mi, and the conclusion follows.

Remark 4.4. Combining Corollary 3.2 and Theorem 4.3, we conclude

that

I = (x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x1, x4)

is the simplest intersection of Veronese ideals that is not componentwise lin-

ear. It is the ideal of a tetrahedral curve; see [25] and [13] for studies of these

ideals and their resolutions, including a characterization of which curves are

componentwise linear. Note that to form an intersection of Veronese ide-

als that is not componentwise linear, by our earlier results, we must have

s ≥ 4. By analyzing the possible cases for three variables, it is not hard to

see that we must also work in a ring with at least four variables: The pres-

ence of any ideal (x1, x2, x3)
a ⊂ k[x1, x2, x3] in the intersection is irrelevant

to componentwise linearity, and hence one needs only show that

(x1)
a1 ∩ (x2)

a2 ∩ (x3)
a3 ∩ (x1, x2)

a4 ∩ (x1, x3)
a5 ∩ (x2, x3)

a6 ,

where the ai ≥ 0, can be expressed as

(xa1

1 x
a2

2 x
a3

3 )
(

(x1, x2)
max{a4−(a1+a2),0} ∩ (x1, x3)

max{a5−(a1+a3),0}

∩ (x2, x3)
max{a6−(a2+a3),0}

)

.

Theorem 4.3 tells us that this ideal is componentwise linear.
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The proof of Theorem 4.3 gives some insight into why there are ideals

with s = 4 that fail to be componentwise linear. The ideals

B′ = (ma
J ∩ m

b
K) ∩ k[xi | i ∈ J ∪K] = (ma

J ∩ m
b
K) ∩ k[x1, . . . , xr]

play a prominent role in the proof. We use the fact that the ideals (B ′
α+d−s)

are polymatroidal in k[x1, . . . , xr] by Theorem 3.1, which shows that they

have linear quotients with respect to ascending reverse-lex order. If, in

trying to prove the s = 4 case, we defined the B ′ as the intersection of

three ideals m
a
J , m

b
K , and m

c
L, intersected with the appropriate ring, this

step would fail without extra hypotheses on J , K, and L.

§5. Resolutions of m
a
J ∩ m

b
K

In this section we provide a thorough analysis of the graded Betti num-

bers of ideals of the form I = m
a
J ∩m

b
K with a ≥ b ≥ 1. We derive formulas

for the Betti numbers of these intersections of Veronese ideals that enable

us in the next section to recapture the formulas of Valla [28], Fatabbi and

Lorenzini [11], and the first author [12] for the graded Betti numbers of two

fat points in Pn. In fact, we can extend their results to compute the N-graded

Betti numbers of two fat points in the multiprojective space Pn1 ×· · ·×Pnr .

To compute the graded Betti numbers of I = m
a
J ∩ m

b
K , we generalize

the approach given by the first author in [12]. Our proof hinges on the fact

that I is an example of a splittable monomial ideal. As in the previous

section, for a monomial ideal I we let G(I) denote the unique set of minimal

generators of I.

Definition 5.1. (see [8]) A monomial ideal I is splittable if I is the

sum of two nonzero monomial ideals J and K, that is, I = J+K, such that

(1) G(I) is the disjoint union of G(J) and G(K).

(2) there is a splitting function

G(J ∩K) −→ G(J) × G(K)

w 7−→ (φ(w), ψ(w))

satisfying

(a) for all w ∈ G(J ∩K), w = lcm(φ(w), ψ(w)).

(b) for every subset S ⊂ G(J ∩K), both lcm(φ(S)) and lcm(ψ(S))

strictly divide lcm(S).
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If J and K satisfy the above properties, then we shall say I = J +K is a

splitting of I.

When I = J + K is a splitting of a monomial ideal I, then there is a

relation between βi,j(I) and the graded Betti numbers of the smaller ideals.

Theorem 5.2. (Eliahou-Kervaire [8], Fatabbi [10]) Suppose I is a split-

table monomial ideal with splitting I = J +K. Then for all i, j ≥ 0,

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K).

The following lemma (for a proof see [23, Lemma 1.5] or [12, Lem-

ma 2.3]) will allows us to determine when a resolution built via a mapping

cone construction is in fact minimal.

Lemma 5.3. Let I ⊆ R = k[x1, . . . , xn] be a homogeneous ideal with

the regularity of R/I at most d−1. Let m be a monomial of degree d not in

I such that I : m = mJ for some J ⊆ [n]. Then the mapping cone resolution

of R/(I,m) is minimal.

With these tools we can now turn to the graded Betti numbers of I =

m
a
J ∩ m

b
K . The resolution depends upon how the two subsets J,K ⊆ [n]

intersect. There are four possible cases, as listed below, and we shall deal

with each case separately.

Case 1: J ∩K = ∅.

If J ∩K = ∅, then I = m
a
J ∩ m

b
K = m

a
Jm

b
K . The resolution of I is then

a corollary of Theorem 2.13. For completeness we record the formula here:

βi,i+a+b(I) =
∑

i1+i2=i

(

|J | + a− 1

a+ i1

)(

a+ i1 − 1

i1

)(

|K| + b− 1

b+ i2

)(

b+ i2 − 1

i2

)

and βi,j(I) = 0 for all other i, j ≥ 0.

Case 2: J\K = ∅ (i.e., J ⊆ K).

In this case I = m
a
J ∩ m

b
K = m

a
J . By Lemma 2.12, the resolution of I is

then given by

βi,i+a(I) =

(

|J | + a− 1

a+ i

)(

a+ i− 1

i

)

and βi,j(I) = 0 otherwise.
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Case 3: K\J = ∅ (i.e., K ⊆ J).

Set A = J\K, and let mA denote the corresponding ideal. In this

situation I = m
a
J ∩m

b
K = m

a
K +mAm

a−1
K + · · ·+ m

a−b
A m

b
K . We will postpone

describing βi,j(I) in this case since these numbers will be a byproduct of

our work in the final case.

Case 4: J ∩K,J\K,K\J 6= ∅.
Set A = J\K, B = K\J and C = J ∩K. Let mA, mB and mC be the

corresponding monomial ideals.

Notation 5.4. Since the generators of mA, mB and mC are disjoint

subsets of indeterminates of R, for ease of exposition we write mA =

〈x1, . . . , xt1〉, mB = 〈y1, . . . , yt2〉, and mC = 〈z1, . . . , zt3〉.

With this notation, we set

U = m
a
C + mAm

a−1
C + · · · + m

a−b
A m

b
C

V = mBm
a−b+1
A m

b−1
C + m

2
Bm

a−b+2
A m

b−2
C + · · · + m

b
Bm

a
A.

To find the graded Betti numbers of I, we will exploit the fact that U and

V form a splitting of I (as we prove below).

Theorem 5.5. Suppose that J , K are subsets of [n] that belong to

Case 4, and let U and V be as above. Then I = m
a
J ∩ m

b
K is a splittable

ideal with splitting I = U + V .

Proof. It is easy to check that I = U +V . The containment U +V ⊆ I

follows directly from the definitions of U and V , and the other containment

is a consequence of the fact that mA, mB, and mC are generated by disjoint

monomials.

The definition of U and V gives G(U)∩G(V ) = ∅. To show that U and

V is a splitting, we first make the observation that

U ∩ V = mBm
a−b+1
A m

b
C ,

and hence

G(U ∩ V ) = {yim1m2 | yi ∈ G(mB), m1 ∈ G(ma−b+1
A ), m2 ∈ G(mb

C)}.

We define our splitting function as follows:

G(U ∩ V ) −→ G(U) × G(V )

m = yim1m2 7−→ (φ(m), ψ(m)) = ((m1/xmax(m1))m2, yim1(m2/zmax(m2)))
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where max(m1) = max{i | xi|m1} and max(m2) = max{i | zi|m2}. It is

immediate that lcm(φ(m), ψ(m)) = m, so our splitting function satisfies the

first condition.

To verify the second condition, let S ⊆ G(U ∩ V ). It is straightfor-

ward to check that both lcm(φ(S)) and lcm(ψ(S)) divide lcm(S). More-

over, lcm(φ(S)) strictly divides lcm(S) since lcm(S) is divisible by some

y`, but lcm(φ(S)) is not. To see that lcm(ψ(S)) strictly divides lcm(S),

let m = yim1m2 ∈ S be the monomial with largest max(m2), and among

all monomials m′ ∈ S divisible by zmax(m2), the power of zmax(m2) in m,

say d, is the largest. Hence zd
max(m2)| lcm(S), but zd

max(m2) does not divide

lcm(ψ(S)). This implies that lcm(ψ(S)) strictly divides lcm(S).

So, I = U + V is a splitting of I.

Since U and V is a splitting of I, by Theorem 5.2 we only need to

compute the graded Betti numbers of U , V , and U ∩ V . As noted within

the previous proof

U ∩ V = mBm
a−b+1
A m

b
C .

The graded Betti numbers of U ∩ V can be computed using Theorem 2.13.

We now generalize the proof in [12] to compute the graded Betti num-

bers of U and V .

Theorem 5.6. With the notation as above, for all i ≥ 0,

βi,i+a(U) =

(

|C| + a− 1

a+ i

)(

a+ i− 1

i

)

+

a−b
∑

j=1

|A|−1
∑

k=0

(

k + j − 1

j − 1

)(

|C| + a− j − 1

a− j

)(

|C| + k

i

)

and βi,j(U) = 0 for all other i, j ≥ 0.

Proof. To compute the graded Betti numbers of U , first note that we

know the graded Betti numbers of m
a
C by Lemma 2.12. We shall add the re-

maining generators of U to m
a
C , one at a time, and at each intermediate step,

compute the graded Betti numbers of the resulting ideal using Lemma 5.3.

After adding the last generator, we will arrive at the desired formula.

We add the remaining generators of U to m
a
C in the following order:

First, we add the generators of mAm
a−1
C , then those of m

2
Am

a−2
C , and so

on. When adding the generators of m
t
Am

a−t
C , we shall add the generators
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in descending lexicographic order with respect to the ordering x1 > · · · >
xt1 > z1 > · · · > zt3 . Let m` denote the `-th monomial added to m

a
C , and

set U` = m
a
C + (m1, . . . ,m`).

For each m = xa1

1 · · · x
at1
t1
zc1
1 · · · z

ct3
t3

∈ m
t
Am

a−t
C , we associate to m the

following number:

kx(m) := max{k | xk+1 divides xa1

1 · · · x
at1
t1

}.

For example kx(x4
1z

c1
1 · · · z

ct3
t3

) = 0 since x1 divides x4
1, while kx(x2

1x2x3z
c1
1 · · ·

z
ct3
t3

) = 2 because x3 divides x2
1x2x3. This notation is needed to prove:

Claim. If m`, the `-th monomial to be added m
a
C , belongs to m` ∈

m
t
Am

a−t
C and k = kx(m`) then

U`−1 : m` = mC + (x1, . . . , xk).

Proof. By construction,

U`−1 = m
a
C + mAm

a−1
C + · · · + m

t−1
A m

a−t+1
C + (m ∈ G(mt

Am
a−t
C ) | m > m`).

Since multiplying m` by any zi gives zim` ∈ m
t
Am

a−t+1
C ⊆ m

t−1
A m

a−t+1
C , it

immediately follows that mC ⊆ U`−1 : m`.

If k = 0, then m` = xt
1z

c1
1 · · · z

ct3
t3

. Multiplying m` by any monomial

m ∈ R not divisible by zi does not land you in m
a−i
C for i = 0, . . . , t − 1.

So, if mm` ∈ U`−1, then mm` ∈ m
t
Am

a−t
C . That is mm` must be divisible

by a monomial in m
t
Am

a−t
C greater than m`. But the only elements greater

than m` must have the form xt
1z

d1

1 · · · z
dt3
t3

with zd1

1 · · · z
dt3
t3

> zc1
1 · · · z

ct3
t3

. No

element of this form can divide mm`. So, if k = 0, U`−1 : m` = mC .

If k > 0, to show that x1, . . . , xk ∈ U`−1 : m`, we note that m` =

xa1

1 · · · x
ak+1

k+1 z
c1
1 · · · z

ct3
t3

. Then for each i = 1, . . . , k,

xim` = (xix
a1

1 · · · x
ak+1−1
k+1 zc1

1 · · · z
ct3
t3

)xk+1 = m′xk+1.

Now m′ > m` with respect to our ordering, so xim` ∈ U`−1. So mC +

(x1, . . . , xk) ⊆ U`−1 : m`.

To prove the reverse inclusion, let m be any monomial of R not divisible

by either the zis or x1, . . . , xk. If mm` ∈ U`−1, then mm` must be in

m
t
Am

a−t
C since mm` 6∈ m

i
Am

a−i
C for i = 0, . . . , t − 1. For mm` to be both in

U`−1 and m
t
Am

a−t
C , it must be divisible by some monomial m′ ∈ m

t
Am

a−t
C

with m′ > m`. For m′ to be larger than m` = xa1

1 · · · x
ak+1

k+1 z
c1
1 · · · z

ct3
t3

, the
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exponent of one of x1, . . . , xk+1, z1, . . . , zt3 must be larger in m′. Let g be

the first index where the exponent of some x or z variable is bigger in m′

than in m`.

We claim that g 6= k + 1. Since m′ ∈ G(mt
Am

a−t
C ), we can write m′ as

m′ = xb1
1 · · · x

bt1
t1
zd1

1 · · · z
dt3
t3
,

where b1 + · · · + bt1 = a. If g = k + 1, then bk+1 > ak+1. By the definition

of g, ai = bi for i = 1, . . . , k. But then we have

a = a1 + · · · + ak+1 < b1 + · · · + bk+1 ≤ b1 + · · · + bt1 = a,

a contradiction.

Hence m′ is divisible either by some zi or one of x1, . . . , xk, and thus,

m would also have this property, providing us with a contradiction. So the

only monomials in U`−1 : m` are those in mC + (x1, . . . , xk).

We now compute the graded Betti numbers of U` for each `. When

` = 0, U0 = m
a
C , and the graded Betti numbers are given by Lemma 2.12:

βi,i+a(U0) =

(

|C| + a− 1

a+ i

)(

a+ i− 1

i

)

and βi,j(U0) = 0 for all other i, j ≥ 0. Observe that this formula implies

that the regularity of R/U0 is a− 1.

Suppose now that ` > 0, and that m` is the `-th monomial. Further-

more, suppose that m` ∈ m
t
Am

a−t
C with k = kx(m`). Applying the claim, we

have a short exact sequence

0 −→ R/(U`−1 : m`)(−a) = R/(mC + (x1, . . . , xk))(−a)
×m`−−−→ R/U`−1

−→ R/U` −→ 0.

By Lemma 5.3, the mapping construction gives a minimal graded resolution

of R/U`. Thus

βi,i+a(U`) = βi,i+a(U`−1) +

(

|C| + k

i

)

.

and βi,j(U`) = 0 for all other i, j ≥ 0. So, each new generator m that we

add to U0 contributes
(|C|+kx(m)

i

)

to βi,i+a(U).
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For each t = 1, . . . , a − b, there are
(|C|+a−t−1

a−t

)

generators of m
t
Am

a−t
C

with kx(m) = 0. These are the elements of xt
1m

a−t
C . Also, for each t =

1, . . . , a− b, there are

(

k + t− 1

t− 1

)(

|C| + a− t− 1

a− t

)

generators of m
t
Am

a−t
C with kx(m) = k as 1 ≤ k ≤ |A| − 1. To see this, we

first need to count the number of elements of m
t
A of the form xa1

1 · · · x
ak+1

k+1

with ak+1 ≥ 1. This is equivalent to counting the number of nonnegative

integer solutions to

a1 + · · · + ak+1 = t with ak+1 > 0.

Standard techniques in combinatorics imply that this equals
(

k+t−1
t−1

)

. For

each monomial m ∈ m
t
A of this form, every monomial m′′ ∈ mm

a−t
C has

kx(m′′) = k. So we get
(

k+t−1
t−1

)(|C|+a−t−1
a−t

)

generators with kx(m) = k. By

the discussion in the previous paragraph, each generator contributes
(

|C|+k
i

)

to βi,i+a(U). The formula in the statement of the theorem then comes by

summing over all t and k.

Note that when K ⊆ J as in Case 3, C = K ∩ J = K and A = J\K.

So I = U when K ⊆ J . The above theorem provides the following formula

for I in Case 3.

Corollary 5.7. Suppose J,K ⊆ [n] with K ⊆ J . If I = m
a
J ∩ m

b
K,

then

βi,i+a(I) =

(

|K| + a− 1

a+ i

)(

a+ i− 1

i

)

+
a−b
∑

j=1

|J\K|−1
∑

k=0

(

k + j − 1

j − 1

)(

|K| + a− j − 1

a− j

)(

|K| + k

i

)

and βi,j(I) = 0 for all other i, j ≥ 0.

The formula for the graded Betti numbers of V is proved similarly.
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Theorem 5.8. With the notation as above, for i ≥ 0 and 2 ≤ j ≤ b,

βi,i+a+1(V ) =
∑

i1+i2+i3=i

(

|B|

1 + i1

)(

|A| + a− b

a− b+ 1 + i2

)(

a− b+ i2
i2

)

×

(

|C| + b− 2

b− 1 + i3

)(

b+ i3 − 2

i3

)

βi,i+a+j(V ) =

|A|−1
∑

k1=0

|B|−1
∑

k2=0

(

|C| + b− j − 1

b− j

)(

k1 + a− b+ j − 1

a− b+ j − 1

)

×

(

k2 + j − 1

j − 1

)(

|C| + k1 + k2

i

)

.

Proof. Set V0 = mBm
a−b+1
A m

b−1
C . We add the remaining generators of

V to V0, one at a time, and after adding a new generator, we compute the

graded Betti numbers of the resulting ideal.

We shall add the remaining generators of V in the following order: First,

we add the generators of m
2
Bm

a−b+2
A m

b−2
C , then those of m

3
Bm

a−b+3
A m

b−3
C , and

so on. When adding the generators of m
t
Bm

a−b+t
A m

b−t
C , we will add them in

descending lexicographic order with respect to y1 > · · · > yt2 > x1 > · · · >
xt1 > z1 > · · · > zt3 . We let m` denote the `-th monomial added to V0, and

define V` := V0 + (m1, . . . ,m`).

To each monomial m= yb1
1 · · · y

bt2
t2
xa1

1 · · · x
at1
t1
zc1
1 · · · z

ct3
t3

∈m
t
Bm

a−b+t
A m

b−t
C

we associate the following two numbers:

kx(m) := max{k | xk+1 divides xa1

1 · · · x
at1
t1

}.

ky(m) := max{k | yk+1 divides yb1
1 · · · y

bt2
t2

}.

Using this notation, we shall prove:

Claim. Suppose that m` is the `-th monomial added to V0, and that

m` ∈ m
t
Bm

a−b+t
A m

b−t
C with ky = ky(m`) and kx = kx(m`). Then

V`−1 : m` = mC + (x1, . . . , xkx
, y1, . . . , yky

).

Proof. By definition

V`−1 = mBm
a−b+1
A m

b−1
C + · · · + m

t−1
B m

a−b+t−1
A m

b−t+1
C

+ (m ∈ G(mt
Bm

a−b+t
A m

b−t
C ) | m > m`).
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It is straightforward to check that mC ⊆ V`−1 : m`.

If kx = ky = 0, then m` = yt
1x

a−b+t
1 m′ where m′ ∈ m

b−t
C . Multiplying

m` by any monomial m ∈ R not divisible by zi does not land you in m
b−i
C

for i = 1, . . . , t − 1. So, if mm` ∈ U`−1, then mm` ∈ m
t
Bm

a−b+t
A m

b−t
C . That

is, mm` must be divisible by a monomial in m
t
Bm

a−b+t
A m

b−t
C greater than

m`. But the only elements greater than m` must have the form yt
1x

a−b+t
1 m′′

with m′′ > m′. No element of this form can divide mm`. So, if kx = ky = 0,

V`−1 : m` = mC .

If ky > 0, then m` = yb1
1 · · · y

bky+1

ky+1 x
a1

1 · · · x
at1
t1
zc1
1 · · · z

ct3
t3

. Then for each

i = 1, . . . , ky,

yim` =
(

yiy
b1
1 · · · y

bky+1−1

ky+1 xa1

1 · · · x
at1
t1
zc1
1 · · · z

ct3
t3

)

yky+1 = m′yky+1

But m′ > m`, so m′ ∈ V`−1, thus yi ∈ V`−1 : m`. If kx > 0, a similar argu-

ment implies that x1, . . . , xkx
∈ V`−1 : m`. Hence mC + (x1, . . . , xkx

, y1, . . . ,

yky
) ⊆ V`−1 : m`.

The opposite containment follows from an argument similar to the one

in Theorem 5.6.

We now compute the graded Betti numbers of V` for each `. When ` = 0,

V0 = mBm
a−b+1
A m

b−1
C . The graded Betti numbers follow from Theorem 2.13:

βi,i+a+1(V0) =
∑

i1+i2+i3=i

(

|B|

1 + i1

)(

|A| + a− b

a− b+ 1 + i2

)(

a− b+ i2
i2

)

×

(

|C| + b− 2

b− 1 + i3

)(

b+ i3 − 2

i3

)

and βi,j(V0) = 0 otherwise.

Suppose that ` > 0 and let m` be the `-th monomial with m` ∈
m

t
Bm

a−b+t
A m

b−t
C . We have the short exact sequence

0 −→ R/(V`−1 : m`)(−a− t)
×m`−−−→ R/V`−1 −→ R/V` −→ 0.

Note that reg(R/V0) = a, and inductively, for ` − 1 ≥ 0, reg(R/V`−1) =

a+ t− 1 since V`−1 : m` is generated by a subset of the variables. Therefore

by Lemma 5.3, the mapping cone construction gives a minimal graded free

resolution of R/V`. If kx = kx(m`) and ky = ky(m`), then the claim implies

R/(V`−1 : m`) = R/(mC + (x1, . . . , xkx
, y1, . . . , yky

)). So, each generator

m ∈ m
t
Bm

a−b+t
A m

b−t
C contributes

(|C|+kx(m)+ky(m)
i

)

to βi,i+a+t(V ).

Counting as in Theorem 5.6 and summing over all possible t, kx, and

ky, we obtain the final formulas; we leave the details to the reader.
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Theorem 5.9. Suppose J,K ⊆ [n] are such that J∩K,J\K,K\J 6= ∅.

If I = m
a
J ∩ m

b
K, then

βi,i+a(I) = βi,i+a(U)

βi,i+a+1(I) = βi,i+a+1(V ) + βi−1,i+a+1(mBm
a−b+1
A m

b
C)

βi,i+a+j(I) = βi,i+a+j(V ) for j = 2, . . . , b.

where U and V are as defined above.

Proof. Since I = U+V is a splitting, the formulas are a consequence of

Theorem 5.2 and the fact that βi−1,i+a+1(U∩V )=βi−1,i+a+1(mBm
a−b+1
A m

b
C).

§6. Applications: multiplicity, combinatorics, and fat points in

multiprojective space

In our final section, we present some applications of our results in the

earlier sections. First, we discuss some cases of the Multiplicity Conjecture

of Herzog, Huneke, and Srinivasan. In addition, we use our component-

wise linearity results and Alexander duality to prove a corollary about the

sequential Cohen-Macaulayness of some simplicial complexes. Finally, we

apply our earlier results to investigate the resolutions of some sets of fat

points in multiprojective space. The main result of [12] is that ideals of

small sets of general fat points in Pn are componentwise linear; we gener-

alize this theorem to multiprojective space. Furthermore, we extend work

from [10], [28], [11], [12] to describe the graded Betti numbers of ideals of

small sets of fat points in linear general position in multiprojective space.

6.1. Multiplicity Conjecture

The Multiplicity Conjecture of Herzog, Huneke, and Srinivasan (see,

e.g., [22]) proposes bounds for the multiplicity of an ideal in terms of the

shifts in its graded free resolution. The explicit statement is given below.

Conjecture 6.1. Let R/I be a homogeneous k-algebra with resolution

of the form

0 −→
br

⊕

j=1

R(−drj) −→ · · · −→
b1

⊕

j=1

R(−d1j) −→ R −→ R/I −→ 0.
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Set mi = min{dij | j = 1, . . . , bi} and Mi = max{dij | j = 1, . . . , bi}. If

codim(I) = c and e(R/I) denotes the multiplicity of R/I, then

e(R/I) ≤

∏c
i=1Mi

c!
.

Furthermore, if R/I is Cohen-Macaulay, then

∏c
i=1mi

c!
≤ e(R/I).

In [26], Römer proved that when the characteristic of k is zero, com-

ponentwise linear ideals satisfy the above Multiplicity Conjecture. As a

consequence of Theorem 3.1, Corollary 3.2, Theorem 4.3, and Römer’s re-

sult, we have:

Corollary 6.2. Suppose char(k) = 0. Let I = m
a1

J1
∩ · · · ∩ m

as

Js
, and

suppose either that s ≤ 3, or Ji ∪ Jj = [n] for all i 6= j. Then I satisfies the

upper bound of the Multiplicity Conjecture.

Note that we only know that the upper bound is true since in general,

R/I may not be Cohen-Macaulay. If it is, then the lower bound holds as well.

(Römer states his result only for the upper bound, but his proof is based on

the fact that if I is componentwise linear, then I and the reverse-lex generic

initial ideal gin(I) have the same graded Betti numbers in characteristic

zero. Both bounds of the conjecture hold for all Cohen-Macaulay generic

initial ideals in characteristic zero since the bounds are true for all Cohen-

Macaulay strongly stable ideals. Since the reverse-lex gin preserves depth

and dimension, if R/I is Cohen-Macaulay, R/ gin(I) is as well, so the lower

bound holds in that case.)

6.2. The sequentially Cohen-Macaulay property

The notion of componentwise linearity is intimately related to the con-

cept of sequential Cohen-Macaulayness.

Definition 6.3. Let R = k[x1, . . . , xn]. A graded R-module M is

called sequentially Cohen-Macaulay if there exists a finite filtration of M by

graded R-modules

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M
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such that each Mi/Mi−1 is Cohen-Macaulay, and the Krull dimensions of

the quotients are increasing:

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

We say that a simplicial complex ∆ is sequentially Cohen-Macaulay if

R/I∆ is sequentially Cohen-Macaulay, where I∆ is the Stanley-Reisner ideal

of ∆.

Stanley introduced sequential Cohen-Macaulayness in connection with

developments in the theory of shellability; see, e.g., [27] for a definition of

shellable. A shellable pure simplicial complex (that is, a shellable simpli-

cial complex whose maximal faces all have the same dimension) is Cohen-

Macaulay, but if one extends the definition of shellability to allow nonpure

simplicial complexes, one obtains simplicial complexes that are not Cohen-

Macaulay. However, they are sequentially Cohen-Macaulay.

The theorem connecting sequentially Cohen-Macaulayness to compo-

nentwise linearity is based on the idea of Alexander duality. We define

Alexander duality for squarefree monomial ideals and then state the fun-

damental result of Herzog and Hibi [19] and Herzog, Reiner, and Welker

[21].

Definition 6.4. If I = (x1,1x1,2 · · · x1,t1 , . . . , xs,1xs,2 · · · xs,ts) is a

squarefree monomial ideal, then the Alexander dual of I, denoted I ?, is

the monomial ideal

I? = (x1,1, . . . , x1,t1) ∩ · · · ∩ (xs,1, . . . , xs,ts).

If ∆ is a simplicial complex and I = I∆ its Stanley-Reisner ideal, then the

simplicial complex ∆? with I∆? = I?
∆ is the Alexander dual of ∆.

Theorem 6.5. Let ∆ be a simplicial complex with Stanley-Reisner

ideal I∆. Let ∆? be the Alexander dual of ∆. Then R/I∆ is sequentially

Cohen-Macaulay if and only if I?
∆ = I∆? is componentwise linear.

Our results in this paper yield the following corollary.

Corollary 6.6. Let ∆ be a simplicial complex on n vertices, and let

I∆ be its Stanley-Reisner ideal, minimally generated by squarefree monomi-

als m1, . . . ,ms. If s ≤ 3, so that ∆ has at most three minimal nonfaces, or

if Supp(mi)∪ Supp(mj) = {x1, . . . , xn} for all i 6= j, then ∆ is sequentially

Cohen-Macaulay.
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Proof. I∆ is a squarefree monomial ideal; suppose it is minimally gen-

erated by monomials {x1,1 · · · x1,t1 , . . . , xs,1 · · · xs,ts}. Then

I?
∆ = I∆? = (x1,1, . . . , x1,t1) ∩ · · · ∩ (xs,1, . . . , xs,ts).

By Theorem 3.1, Corollary 3.2, or Theorem 4.3, I ?
∆ is componentwise linear,

and so Theorem 6.5 gives the result.

Example 6.7. Let ∆ be a simplicial complex on six vertices. Suppose

the minimal nonfaces of ∆ are {145, 126, 135}. Then

I∆? = (x1, x4, x5) ∩ (x1, x2, x6) ∩ (x1, x3, x5) ⊂ R = k[x1, . . . , x6]

is componentwise linear by Theorem 4.3, and thus ∆ is sequentially Cohen-

Macaulay. Note that ∆ is not Cohen-Macaulay since codim I∆ = 1, while

the projective dimension of R/I∆ is two.

6.3. Fat points in multiprojective space

We begin by recalling some of the relevant definitions for points in

multiprojective space (for more on this topic see [29], [30], [31]). The co-

ordinate ring of Pn1 × · · · × Pnr is the Nr-graded polynomial ring R =

k[x1,0, . . . , x1,n1
, . . . , xr,0, . . . , xr,nr ] with deg xi,j = ei, the i-th basis vector

of Nr. The defining ideal of a point P = P1 × · · · × Pr ∈ Pn1 × · · · × Pnr is

the prime ideal IP = (L1,1, . . . , L1,n1
, . . . , Lr,1, . . . , Lr,nr) with degLi,j = ei.

The forms Li,1, . . . , Li,ni
are the generators of the defining ideal of Pi ∈ Pni .

Definition 6.8. A set of points X ⊆ Pn is said to be in linear general

position if no more than two points lie on a line, no more than three points

line in a plane, . . . , no more than n points lie in an (n− 1)-plane.

Observe that the above definition is equivalent to the fact that if Ld is

any linear subspace of Pn of dimension d with d = 0, . . . , n − 1, then the

intersection of Ld and X contains at most d+ 1 points of X. When d = 0,

Ld is a point, so this simply says that the intersection of a point and X is at

most one point. To extend this to a multigraded context, we say that L is

(d1, . . . , dr)-linear subspace of Pn1 × · · · × Pnk if L = Ld1
× · · · ×Ldr

, where

each Ldi
is a linear subspace of Pni of dimension di with di = 0, . . . , ni (so

Lni
= Pni is allowed) and there exists at least one j ∈ [r] such that dj < nj.
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Definition 6.9. A set of points X ⊆ Pn1×· · ·×Pnr is in linear general

position if for every (d1, . . . , dr)-linear subspace L, the intersection of L and

X contains at most d+ 1 points of X where d = min{d1, . . . , dr}.

We point out that if L is (d1, . . . , dr)-linear subspace with d = di = 0,

then Ldi
is a point. So if X is in linear general position, this means that

at most one point of X can intersect L, which, in turn, implies that at

most one point of X can have i-th coordinate equal to Ldi
. It follows from

this observation that for any two points P,Q ∈ X with X in linear general

position in Pn1 × · · · × Pnr , we must have Pi 6= Qi for i = 1, . . . , r. In other

words if πi : Pn1 × · · · × Pnr → Pni denotes the projection morphism for

i = 1, . . . , r, and if {Q1, . . . , Qt} ∈ Pn1×· · ·×Pnr is in linear general position,

then the sets of the projections {πi(Q1), . . . , πi(Qt)} are in linear general

position in Pni for each i. In particular, we require that πi(Qj) 6= πi(Ql)

for all i and all j 6= l; see Remark 6.12 for what can go wrong without this

condition.

Definition 6.10. Let {P1, . . . , Ps} ⊆ Pn1 ×· · ·×Pnr be a set of points

with the defining ideal of Pi denoted IPi
and let a1, . . . , as be positive inte-

gers. The scheme Z ⊆ Pn1 × · · · × Pnr defined by

IZ = Ia1

P1
∩ · · · ∩ Ias

Ps

is scheme of fat points, and is sometimes denoted Z = {(P1, a1), . . . , (Ps, as)}.
We call ai the multiplicity of the point Pi. The points {P1, . . . , Ps} are

referred to as the support of Z.

By a small set of linear general fat points in Pn, we mean that the

support has at most n+1 points in linear general position. This restriction

allows us to make a change of coordinates to move all the points to the

coordinate vertices, and we can take the ideal corresponding to the set of

fat points to be an intersection of monomial ideals

I = (x1, . . . , xn)a0 ∩ (x0, x2, . . . , xn)a1 ∩ · · · ∩ (x0, . . . , xs−1, xs+1, xn)as .

If we are working in Pn1 ×· · ·×Pnr , we would like to change coordinates

to work with a set of fat points at the coordinate vertices so that the corre-

sponding ideals are monomial ideals. Therefore, a small set of fat points can

consist of no more than 1 + min{n1, . . . , nr} points. The set of fat points is

general if the points in the support are in linear general position.
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Suppose that I is the ideal of a small set of general fat points in

Pn1 × · · · × Pnr . As a consequence of Theorem 3.1, we can generalize the

componentwise linearity result for the r = 1 case from [12] (and obtain a

different proof for that case).

Theorem 6.11. Let I be the ideal of s+ 1 general fat points in Pn1 ×
· · · × Pnr , where s ≤ min{n1, . . . , nr}. Then for all d, (Id) is polymatroidal,

and I is componentwise linear.

Proof. Because I is the ideal of a small set of general fat points in

multiprojective space, we may assume that I has the form

I = (x1,1, . . . , x1,n1
, x2,1, . . . , x2,n2

, . . . , xr,1, . . . , xr,nr)
a0 ∩ · · · ∩

(x1,0, . . . , ˆx1,s, . . . , x1,n1
, x2,0, . . . , ˆx2,s, . . . , x2,n2

, . . . ,

xr,0, . . . , ˆxr,s, . . . , xr,nr)
as ⊂ R,

where x̂i,s denotes that xi,s is left out. Note that the union of the variables

appearing in any two of the components is all the variables of R. Hence the

result follows immediately from Theorem 3.1.

As in Corollary 6.2, when the char(k) = 0, Theorem 6.11 implies that

ideals of small sets of general fat points in multiprojective space satisfy the

Multiplicity Conjecture of Herzog, Huneke, and Srinivasan. Note that if

r > 1, the ideal will not be Cohen-Macaulay (for example, see [29], [30]), so

we may only conclude that the conjectured upper bound is true.

We conclude this discussion with a remark about how we defined the

notion of a “general” set of fat points.

Remark 6.12. In our definition of what it means for a set of fat points

Q1, . . . , Qs in multiprojective space to be general, we required that for all

i and all j 6= l, the projections πi(Qj) 6= πi(Ql). If that condition is not

satisfied, the corresponding ideal may not be componentwise linear.

Consider the points [1 : 0] × [1 : 0], [1 : 0] × [0 : 1], [0 : 1] × [1 : 0], and

[0 : 1]× [0 : 1] in P1 × P1, and suppose each point has multiplicity one. The

ideal corresponding to the set of four points in R = k[x0, x1, y0, y1] is

I = (x1, y1) ∩ (x1, y0) ∩ (x0, y1) ∩ (x0, y0) = (x0x1, y0y1).

This ideal is a complete intersection of degree two polynomials, and hence

it is not componentwise linear; in particular, I = (I2) does not have a linear
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resolution. The problem is that the union of the variables appearing in, for

example, the first two components, is not all of {x0, x1, y0, y1}.

We turn now to the graded Betti numbers of two general fat points in

multiprojective space. As an application of Theorem 5.9 we can compute

the N-graded Betti numbers of the defining ideal of two fat points in Pn1 ×

· · · × Pnr in linear general position.

Corollary 6.13. Let Z = {(P, a), (Q, b)} be two fat points in Pn1 ×

· · · × Pnr with a ≥ b. Set N = n1 + · · · + nr, and let IZ denote the defining

ideal of Z. If P and Q are in linear general position, then

βi,i+a(IZ) =

(

N − r + a− 1

a+ i

)(

a+ i− 1

i

)

+

a−b
∑

j=1

r−1
∑

k=0

(

k + j − 1

j − 1

)(

N − r + a− j − 1

a− j

)(

N − r + k

i

)

βi,i+a+1(IZ) =
∑

i1+i2+i3=i

(

r

1 + i1

)(

r + a− b

a− b+ 1 + i2

)(

a− b+ i2
i2

)

×

(

N − r + b− 2

b− 1 + i3

)(

b+ i3 − 2

i3

)

+
∑

i1+i2+i3=i−1

(

r

1 + i1

)(

r + a− b

a− b+ 1 + i2

)(

a− b+ i2
i2

)

×

(

N − r + b− 1

b+ i3

)(

b+ i3 − 1

i3

)

βi,i+a+j(IZ) =

r−1
∑

k1=0

r−1
∑

k2=0

(

N − r + b− j − 1

b− j

)(

k1 + a− b+ j − 1

a− b+ j − 1

)

×

(

k2 + j − 1

j − 1

)(

N − r + k1 + k2

i

)

for j = 2, . . . , b.

and βi,j(IZ) = 0 for all other i, j ≥ 0.

Proof. Since P and Q are in linear general position, we may assume

(after a change of coordinates) that P = [1 : 0 : · · · : 0]× · · · × [1 : 0 : · · · : 0]

and Q = [0 : 1 : 0 : · · · : 0] × · · · × [0 : 1 : 0 · · · : 0]. So, the defining ideal of
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IZ has the form

IZ = (x1,1, . . . , x1,n1
, . . . , xr,1, . . . , xr,nr)

a

∩ (x1,0, x1,2, . . . , x1,n1
, . . . , xr,0, xr,2, . . . , xr,nr)

b

The graded Betti numbers of IZ are then a consequence of Theorem 5.9

with |C| = N − r and |A| = |B| = r.

Remark 6.14. When r = 1 in the previous corollary, we recover the

formulas of Valla [28] and first author [12] for two fat points in Pn. When

r > 1, then IZ also has a multigraded resolution of the form

0 −→
⊕

j∈Nr

R(−j)βh,j(IZ) −→ · · · −→
⊕

j∈Nr

R(−j)β0,j(IZ) −→ IZ −→ 0.

Corollary 6.13 gives us some information on the multigraded Betti numbers

βi,j(IZ) because of the identity βi,j(IZ) =
∑

|j|=j βi,j(IZ).
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