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Abstract

In this paper we introduce conditionally independent increment point processes, that is,
processes that are conditionally independent inside and outside a bounded set A given
N(A), the number of points inA. We show that these point processes can be characterized
by means of the avoidance function of a multinomial ‘support process’, the solution of
a suitably defined linear system of equations, and, finally, the infinitesimal matrix of a
continuous-time Markov chain.
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1. Introduction

In the theory of point processes, the Poisson processes are probably the most widely studied.
Their main feature is the so-called complete independence property; that is, given bounded and
disjoint measurable setsA1, . . . , Ak , the random variablesN(A1), . . . , N(Ak) are independent,
where N(Ai) for 1 ≤ i ≤ k stands for the number of points in the set Ai .

For practical purposes, however, the complete independence property can be too restric-
tive. Several generalizations aimed towards weakening the independence property have been
proposed in the literature. These include the Poisson cluster processes, which are derived
from a ‘parent’ Poisson process, Neyman–Scott processes, and bombing models, to name just
a few; see, e.g. [4, Chapter 4], [7, Section 5.5], and [9, Section 1.6]. These generalizations
are, however, mainly restricted to models for which the underlying Poisson process has finite
intensity measure, thus putting aside many interesting cases with infinite intensity measure.

In this paper we replace the complete independence assumption made for Poisson processes
with a weaker conditional independence requirement. Roughly speaking, the conditional
independence assumption states that, given a bounded measurable set A, the process inside
the set A is conditionally independent of the process outside the set A given the random
variable N(A). This assumption has a Markovian flavor; indeed, it looks very similar to the
definition of a Markov process on the real line, in the sense that the future is conditionally
independent of the past given the present. Thus, we will also call such processes Markovian
point processes.

At this point, it is worth noting that these processes should not be confused with the Markov
point processes of [9], which are defined in a different way. More precisely, in [9] the process
inside A is conditionally independent of the process outside A given the process on a set
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Conditionally independent increment point processes 491

outside A but ‘close enough’ to A. In spite of this, we must admit that the term Markovian
is rather appealing for processes with the conditional independence property stated above,
and, hence, they will be referred to as Markovian point processes as well, without any risk of
misunderstanding.

In this paper we will consider a Markovian point process N on a complete and separable
metric space, defined on an arbitrary probability space. The Markov property implies that the
finite-dimensional distributions of N are determined by

(i) the marginal distribution of N(A); and

(ii) the conditional distribution of N(B) given N(A),

for arbitrary bounded measurable sets B ⊆ A. Hence, our main efforts are aimed towards the
characterization of the marginal distributions in (i) and the conditional distributions in (ii).

The rest of the paper is organized as follows. In Section 2 we give a precise definition of
a Markovian point process, and we also introduce some useful concepts, such as regularity
or homogeneity of a Markovian point process. In Section 3 we analyze the Markovian point
processes which, in addition, are simple. Under some additional hypotheses, we prove that
they are multinomial point processes (which are somehow similar to mixed Poisson point
processes). Section 4 is devoted to the study of general Markovian point processes. We give a
complete characterization of their conditional distributions. Also, we show that Markovian point
processes are marked multinomial point processes and, finally, we give sufficient conditions
for constructing the marginal distributions of a Markovian point process. In Section 5 we
give an overview of the results in this paper, and, in particular, we show how to construct (or
characterize) an arbitrary Markovian point process from its basic elements. We also mention
some interesting open issues.

2. Basic definitions

We consider an arbitrary complete and separable metric space (E, d) endowed with its Borel
σ -algebra E . The ring of bounded sets in E will be denoted by B. GivenA ∈ E , by EA we will
denote the restriction of the σ -algebra E to A, that is,

EA = {A ∩ B | B ∈ E}.
Let N ≡ {N(A)}A∈E be a point process defined on a probability space (�,F ,P), whose

realizations are integer-valued, boundedly finite measures on (E, E); see [3, Section 7.1].
Given A ∈ E , by FA we will denote the sub-σ -field of F generated by the random variables
{N(B) : B ∈ E , B ⊆ A}.

Let us introduce some notation. Given a boundedly finite measure µ on (E, E), we will
denote by Rµ the range of µ over the family of bounded sets, that is, Rµ = {µ(A) | A ∈ B}.
Given a, b ∈ Rµ, we will write a ≺ b if there exist A ⊆ B ∈ B such that µ(A) = a and
µ(B) = b.

2.1. Markovian point processes

By a Markovian point process N we mean that, whenN(A) = i, the allocation of the i points
inside A is independent of the behavior of the process outside A. It should be noted that this
definition is different from the concept of a Markov point process considered in [9], where the
conditional independence is assumed to hold given the process in some ‘neighborhood’ of A;
see, e.g. [9, Theorem 2.1]. Without risk of confusion, we define Markovian point processes to
be those satisfying the following definition.
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Definition 2.1. A point process N will be called Markovian if, for all A ∈ B, the σ -fields FA
and FAc are conditionally independent given N(A).

It is easily seen that the finite-dimensional distributions of a Markovian point process N are
determined by the following elements:

(a) the family of probability row vectors pA, with pA(i) = P{N(A) = i} for i = 0, 1, . . .
and A ∈ B;

(b) the family of lower triangular stochastic matrices PA,B , where

PA,B(i, j) = P{N(B) = j | N(A) = i}

for 0 ≤ j ≤ i and A,B ∈ B with B ⊆ A.

Indeed, if B1, . . . , Br ∈ B are disjoint sets then P{N(B1) = i1, . . . , N(Br) = ir} equals

pA(i)PA,B1(i, i1)PA−B1,B2(i2 + · · · + ir , i2) · · ·PBr−1∪Br ,Br−1(ir−1 + ir , ir−1), (2.1)

where A = B1 ∪ · · · ∪ Br and i = i1 + · · · + ir .
From Theorem 7.1.XI of [3], it is straightforward to derive necessary and sufficient conditions

ensuring that a family of probability vectors pA and lower triangular stochastic matrices PA,B
determines the distribution of a Markovian point process.

Proposition 2.1. A family of probability row vectors pA (with A ∈ B) and lower triangular
stochastic matrices PA,B (with B ⊆ A in B) determines the finite-dimensional distributions of
a Markovian point process if and only if the following conditions are satisfied:

(i) PA,A−B(i, j) = PA,B(i, i − j) for all 0 ≤ j ≤ i;

(ii) PA,B1(i, j1)PA−B1,B2(i − j1, j2) = PA,B2(i, j2)PA−B2,B1(i − j2, j1) for i ≥ j1 + j2,
whenever B1 and B2 are disjoint bounded measurable subsets of A;

(iii) PA,BPB,C = PA,C if C ⊆ B ⊆ A, where A,B,C ∈ B;

(iv) pB = pAPA,B ;

(v) pBn(0) → 1 when Bn ↓ ∅.

Observe that Proposition 2.1(i) and (ii) ensure that (2.1) does not depend on the order of the
partition of A, while (i) and (iv) allow us to derive the marginal distribution of (N(B2), . . . ,

N(Br)) by summing (2.1) over i1. The multiplicative property in (iii) is an obvious compati-
bility assumption, similar to the Chapman–Kolmogorov equation, yielding, together with (i),
the Equation (7.1.9) of [3].

Since pBn = pAPA,Bn , if Bn ⊆ A, Proposition 2.1(v) may be reformulated as PA,Bn → P0
(componentwise), where P0 is the stochastic matrix whose first column terms are 1. By (i),
this is equivalent to PA,Bn → I (componentwise) if Bn ↑ A, where I is the identity matrix.
Condition (iv) implies that knowledge of the distribution pA for large sets (for instance, for a
sequence {En} of bounded sets increasing to E) suffices to determine the distribution pB for
smaller sets.
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2.2. Regular point processes

Suppose that µ is a measure on a topological space X endowed with its Borel σ -algebra.
We say that µ is supported on X if µ(A) > 0 for any nonempty open subset of X.

Definition 2.2. A point process N will be called regular if

P{N(B) = 1, N(A− B) = 0} > 0

for any bounded nonempty open sets A and B such that B ⊆ A.

The regularity hypothesis means that there is a positive probability that there is a unique
point in any bounded nonempty open set, and, further, that the probability measure onA defined
by B 
→ P{N(B) = 1 | N(A) = 1} is supported on A. As an illustration, a Poisson process
with intensity measure supported on E is regular.

Theorem 2.1. If N is a regular Markovian point process then there exists a boundedly finite
measure m on (E, E) supported on E such that

P{N(B) = 1 | N(A) = 1} = m(B)

m(A)

for any A ∈ B with m(A) > 0 and any measurable B ⊆ A. Moreover, m is unique up to a
multiplicative constant.

Proof. If N is a regular Markovian point process and A is a nonempty open set, we can
consider

mA(B) = P{N(B) = 1 | N(A) = 1} for B ∈ EA,

which is a probability measure on the Borel subsets of A. Furthermore, if B is a nonempty
open subset of A and C ∈ EB , we have

P{N(C) = 1 | N(A) = 1}
= P{N(B) = 1 | N(A) = 1} P{N(C) = 1 | N(B) = 1, N(A− B) = 0}
= P{N(B) = 1 | N(A) = 1} P{N(C) = 1 | N(B) = 1},

and, therefore,
mA(C) = mA(B)mB(C).

Fix a point a ∈ E, and consider En = {x ∈ E | d(x, a) < n}, which is a sequence of
bounded open sets increasing to E. Since the regularity hypothesis implies thatmEn(E1) > 0,
the finite measure

mn(A) = mEn(A)

mEn(E1)
for A ∈ EEn

is such that mn agrees with mn−1 on En−1 because, when A ∈ EEn−1 , it is

mn(A) = mEn(En−1)mEn−1(A)

mEn(En−1)mEn−1(E1)
= mn−1(A).

Consequently, we obtain a unique measure defined, for any set A ∈ B, as

m(A) = mn(A) for all n such that A ⊂ En,
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and m can be extended to unbounded Borel sets. Obviously, m is boundedly finite since
m(En) = mEn(E1)

−1, andm(A) > 0 for any nonempty open set A. Furthermore, if B ⊆ A ⊂
En and m(A) > 0, it is

m(B)

m(A)
= mEn(B)

mEn(A)
= mEn(A)mA(B)

mEn(A)
= mA(B) = P{N(B) = 1 | N(A) = 1}.

Finally, assume thatm′ is another measure for which the result holds. In this case, if A ∈ B
and A ⊆ En, we have

m′(A) = m′(En)
m(En)

m(A) = cn m(A);

hence, cn does not depend on n, and m′(A) = cm(A). This completes the proof.

Theorem 2.1 makes use of the regularity assumption only to construct a sequence of bounded
open sets En ↑ E such that

P{N(En) = 1, N(En − E1) = 0} > 0 for all n.

By assuming the existence of such a sequence, we could drop the hypothesis thatE is a complete
and separable metric space, and still prove this result in the context of an abstract measurable
space (E, E), along the line proposed in [8].

2.3. Symmetric point processes

We say that a point process N is symmetrically distributed with respect to a boundedly finite
measure µ on (E, E) if (cf. [5, p. 73])

[N(B1), . . . , N(Br)] d= [N(B ′
1), . . . , N(B

′
r )]

whenever {Bl}1≤l≤r and {B ′
l }1≤l≤r are families of disjoint sets in B such that µ(Bl) = µ(B ′

l )

for each l = 1, . . . , r .
Obviously, for a Markovian point process N symmetrically distributed with respect to µ,

the distribution of N(A) for A ∈ B depends only on µ(A). Similarly, the matrix PA,B , with
B ⊆ A ∈ B, depends only on µ(A) and µ(B). Therefore, in this case, we will write

p(a) = pA and Pa,b = PA,B,

where a = µ(A) and b = µ(B) for A, B ∈ B. For a symmetric Markovian point process
which, in addition, is regular, we obtain the next result.

Proposition 2.2. If N is a regular Markovian point process symmetrically distributed with
respect to some boundedly finite, nonpurely atomic measure µ, then µ is the measure m given
in Theorem 2.1.

Proof. For disjoint sets B,B ′ ∈ B with µ(B) = µ(B ′), given any A ∈ B such that
A ⊇ B ∪ B ′, since PA,B depends only on the distribution of [N(B),N(A − B)], we have
PA,B = PA,B ′ .

Moreover, N being regular, Theorem 2.1 holds, and so m(B) = m(B ′). Hence, m is a
function of µ: m(B) = f (µ(B)), where f must be increasing, linear, and such that f (0) = 0.
But, µ being nonpurely atomic, its range necessarily contains some interval [0, δ]. Therefore,
m(B) = cµ(B), and the stated result follows.
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2.4. Homogeneous symmetric Markovian point processes

For a Markovian point process N symmetric with respect to a measure µ, it seems sensible
to assume that

PA,B(i, j) = P{N(B) = j | N(A) = i}
should be the same for any B ⊆ A in B whose relative size (with respect to the measure µ) is
the same. In our next definition, we make precise this idea.

Definition 2.3. A Markovian point process N symmetric with respect to the boundedly finite
measureµwill be said to be homogeneous with respect toµ ifPca,cb = Pa,b for every a, b ∈ Rµ
and c > 0 such that b ≺ a and cb ≺ ca.

It then follows that Pa,b is the same matrix P(b/a) for all b ≺ a. As a consequence, the
distribution of a homogeneous Markovian point process with respect to a nonpurely atomic
measure µ is determined by

(a) a family of probability (row) vectors p(a) for a ∈ Rµ;

(b) a family of (lower) triangular stochastic matrices P(x) for 0 ≤ x ≤ 1.

Note that the fact that µ is nonpurely atomic is needed to ensure that, for every x ∈ [0, 1],
there exist b ≺ a such that b/a = x. The result of Proposition 2.1 is easily adapted to the case
of a homogeneous Markovian point process.

Proposition 2.3. Suppose that a boundedly finite, nonpurely atomic measure µ on (E, E) is
given. A family of probability row vectors p(a) (with a ∈ Rµ) and lower triangular stochastic
matricesP(x) (with 0 ≤ x ≤ 1) determines the finite-dimensional distributions of a Markovian
point process N , symmetric and homogeneous with respect to µ, if and only if the following
conditions are satisfied:

(i) Pi,j (1 − x) = Pi,i−j (x) for all j ≤ i and x ∈ [0, 1];
(ii) for all i ≥ j1 + j2 and x1 + x2 ≤ 1,

Pi,j1(x1)Pi−j1,j2

(
x2

1 − x1

)
= Pi,j2(x2)Pi−j2,j1

(
x1

1 − x2

)
;

(iii) P(x)P (y) = P(xy) for all x, y ∈ [0, 1];
(iv) P(x) → I componentwise as x ↑ 1 (or P(x) → P0 componentwise as x ↓ 0);

(v) p(ax) = p(a)P (x) for all a ∈ Rµ and x ∈ [0, 1] such that ax ≺ a.

This leads to the next definition.

Definition 2.4. A family of lower triangular stochastic matrices {P(x)}x∈[0,1] satisfying the
conditions (i)–(iv) of Proposition 2.3 will be called an allocation function.

It follows from Proposition 2.3(iii) and (iv) that P(x) is a continuous function of x ∈ [0, 1].
Moreover, by making the change of variable x = e−t for t ≥ 0, and thus defining Q(t) =
P(e−t ), it follows that Q(t)Q(s) = Q(s + t) for any s, t ∈ [0,∞). Therefore, the {Q(t)}t≥0
are the transition matrices of a homogeneous continuous-time Markov chain, which decreases
to the absorbing state 0. As is well known (see, e.g. [2, Chapter 2]), the infinitesimal matrix
Q′(0), as well as P ′(1), exists and completely determines Q(t) for every t ≥ 0, or P(x) for
every x ∈ [0, 1].
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Proposition 2.3(i) and (ii), however, impose further restrictions onP(x), so thatQ′(0) cannot
be chosen as an arbitraryQ-matrix for a Markov chain decreasing to 0. The terms of the matrix
Q′(0) will be denoted by qi,j for i, j ≥ 0; we define also qi = −qi,i ≥ 0 for i ≥ 0.

Remark 2.1. Proposition 2.3(i) and (iii) imply that Pi,i(x) = xqi with qi > 0, and then
Pi,0(x) = (1 − x)qi . In particular, since P1,0(x) + P1,1(x) = 1 for x ∈ [0, 1], it follows that
the first two rows of P(x) are necessarily

[
1 0 0 · · ·

1 − x x 0 · · ·
]
.

As a direct consequence of Remark 2.1, given B ⊆ A ∈ B, it is

P{N(B) = 1 | N(A) = 1} = µ(B)

µ(A)

and

P{N(B) = 1, N(A− B) = 0} = p1(µ(A))µ(B)

µ(A)
,

which yield the following result.

Corollary 2.1. A Markovian point process, homogeneous with respect to a nonpurely atomic
measure µ, is regular if and only if p1(a) > 0 for all a > 0 in Rµ, and, in addition, µ is
supported on E.

Remark 2.2 below provides an interpretation of the terms ofQ′(0) associated with a homo-
geneous Markovian point process. Let N be a Markovian point process, homogeneous with
respect to µ. Given a setA ∈ B, suppose that there exists a family of measurable subsets ofA,
{Ax}x∈[0,1], decreasing as x decreases from 1 to 0, and such thatµ(Ax) = xµ(A) for 0 ≤ x ≤ 1.
(For instance, if E = R

d , A is a convex set, and µ is absolutely continuous with respect to the
Lebesgue measure, we can fix a point z0 ∈ A and then consider A′

r = {z0 + r(z− z0) | z ∈ A}
for each r ∈ [0, 1]. Sinceµ(A′

r ) = α(r)µ(A), where α is a continuous function of r decreasing
from 1 to 0 as r decreases, we can take Ax = A′

α−1(x)
as an adequate reparametrization of the

homothetic sets A′
r .) Now consider the stochastic process {N(Ax)}1≥x≥0, where x decreases

from 1 to 0. The so-defined Markov process is a reparametrization (by means of x = e−t ) of a
continuous-time Markov chain with transition matrices Q(t) for t ≥ 0, and with infinitesimal
matrix Q′(0). Therefore, we can state our next remark.

Remark 2.2. Let N be a homogeneous Markovian point process with respect to a nonpurely
atomic measure, with corresponding infinitesimal matrix Q′(0). The process {N(Ax)}1≥x≥0
defined above satisfies the following conditions.

(i) If N(A) = i then the random variable ξi = max{x ∈ [0, 1] | N(Ax) < i} is distributed
with density qiuqi−1 on [0, 1] (indeed, −log ξi is exponentially distributed with param-
eter qi).

(ii) P{N(Aξi ) = j | N(A) = i} = qi,j /qi .

The easiest example of an allocation function is

Pi,j (x) =
(
i

j

)
xj (1 − x)i−j for 0 ≤ j ≤ i and 0 ≤ x ≤ 1, (2.2)
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associated to the infinitesimal matrix Q′(0) with terms

−qi,i = qi = i and qi,i−1 = i for i ≥ 1, and qi,j = 0 otherwise. (2.3)

In this case, conditional on N(A) = i, the i points are independently allocated inside A with
distribution µ(dx)/µ(A).

Our plan in Sections 3 and 4 below is as follows. We now know that a homogeneous
Markovian point process is characterized by its allocation function P(x) and the family {p(a)}
of its marginal distributions. In Section 3 we propose several sufficient conditions to ensure
that a Markovian point process is multinomial (hence, its allocation function is given by (2.2)),
and also we propose a characterization of its marginal distributions. In Section 4 we analyze the
case of nonmultinomial homogeneous Markovian point process, and we give a characterization
of the infinitesimal matrix Q′(0) of an allocation function.

3. Markovian and multinomial point processes

Let N be a point process on the complete and separable metric space E.

Definition 3.1. We say that the point process N is multinomial, directed by the boundedly
finite measure µ on (E, E), if, for all A ∈ B and any measurable partition B1, . . . , Bk of A,
we have

P{N(B1) = n1, . . . , N(Bk) = nk | N(A) = n}
=

(
n

n1, . . . , nk

)(
µ(B1)

µ(A)

)n1

· · ·
(
µ(Bk)

µ(A)

)nk

for all n ≥ 1 and n1, . . . , nk with n1 + · · · + nk = n.

A direct calculation shows that if N is multinomial, directed by µ, then N is symmetric
with respect to µ and, moreover, N is Markovian and homogeneous. Also, it is easily seen that
if N is a multinomial point process directed by a diffuse measure µ then N is simple.

Our next theorem explores some properties of multinomial point processes, but first we
introduce some more notation. Recall that Rµ denotes the range of the measure µ over the
family of bounded measurable sets B. Let R̃µ be the smallest interval containing Rµ, and
note that R̃µ can be either [0, µ(E)) or [0, µ(E)] when µ(E) < ∞, or R̃µ = [0,∞) when
µ(E) = ∞.

Theorem 3.1. Let N be a multinomial point process directed by a boundedly finite measure µ
on (E, E). There exists a continuous and nonnegative function ψ on R̃µ, with ψ(0) = 1, such
that, for any disjoint sets A1, . . . , Aj in B and real numbers 0 ≤ z1, . . . , zj ≤ 1,

E[zN(A1)
1 · · · zN(Aj )j ] = ψ(µ(A1)(1 − z1)+ · · · + µ(Aj )(1 − zj )). (3.1)

Moreover, the function ψ has derivatives of any order k on R̃µ − {0}, which satisfy

(−1)kψ(k)(x) ≥ 0 and
∞∑
k=0

1

k!ψ
(k)(x)(−x)k = 1 for all x ∈ R̃µ − {0}. (3.2)

Proof. Suppose that x ∈ R̃µ, and fix a ∈ Rµ such that x ≤ a. Let G(a, z) for 0 ≤ z ≤ 1
be the generating function of N(A) for a set A ∈ B with µ(A) = a; that is, G(a, z) =∑∞
n=0 pn(a)z

n. We define ψ(x) = G(a, 1 − x/a).
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Our first task is to show that the function ψ is well defined. To this end, let b ∈ Rµ be such
that 0 ≤ x ≤ b, and let us prove that

G

(
a, 1 − x

a

)
= G

(
b, 1 − x

b

)
. (3.3)

Suppose that a ≤ b. If a ≺ b, it follows from the fact that N is multinomial that the marginal
distributions p(a) and p(b) are related via

pk(a) =
∞∑
n=k

pn(b)

(
n

k

)(
a

b

)k(
1 − a

b

)n−k
for k ≥ 0.

Therefore, G(a, z) = G(b, 1 − a(1 − z)/b) for 0 ≤ z ≤ 1, and (3.3) follows. Suppose now
that a �≺ b. Then there exists c ∈ Rµ with a ≺ c and b ≺ c, and (3.3) also follows by the same
arguments.

The continuity of ψ on R̃µ, the fact that ψ(0) = 1, and the properties of the derivatives
of ψ in (3.2) are now easily verified. Finally, the formula for the generating function of
[N(A1), . . . , N(Aj )] in (3.1) is derived from the multinomial property of N and the definition
of ψ .

We conclude with an important remark.

Remark 3.1. Given a bounded measurable set A ∈ B with µ(A) = a, its generating function
G(a, z) verifies

E[zN(A)] = G(a, z) = ψ(a(1 − z)) for 0 ≤ z ≤ 1. (3.4)

Thus, P{N(A) = 0} = G(a, 0) = ψ(a), and we conclude that ψ , when restricted to Rµ, is the
avoidance function of the multinomial point process N .

3.1. Marginal distributions of a multinomial point process

Let N be a multinomial point process directed by the boundedly finite measure µ. We
consider two cases, depending on whether µ(E) = ∞ or µ(E) < ∞.

Case 1: µ(E) = ∞. Suppose that A is a bounded measurable set in B. Given u ≥ 0 and
letting z = e−u/µ(A) in (3.4), we find that the Laplace transform of N(An)/µ(An) is

E[e−uN(A)/µ(A)] = ψ(µ(A)(1 − e−u/µ(A))).

If A ↑ E (and, hence, µ(A) ↑ ∞) then E[e−uN(A)/µ(A)] → ψ(u), and it follows from the
continuity theorem for Laplace transforms that ψ is the Laplace transform of a nonnegative
random variable, say �, and, moreover, that

N(A)

µ(A)

d−→ � as A ↑ E. (3.5)

In the case when ψ ′(0) exists and is finite, N(A) has finite expectation equal to −ψ ′(0)µ(A),
and the above convergence is also almost sure. Indeed, this is derived, taking into account the
symmetry property, from standard exchangeability results [1, p. 227] applied to the sequence
{N(Ak)}k≥1, where the {Ak}k≥1 are disjoint sets in B with µ(A1) = µ(A2) = · · ·.

Conversely, suppose that ψ is the Laplace transform of a nonnegative random variable �.
We say that N ′ is a mixed Poisson process (see, e.g. [3, Example 7.4(b)]) directed by the
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boundedly finite measure µ with mixing random variable � if, conditional on � = λ, N ′ is a
Poisson process with intensity measure λµ. It is easy to check that, in this case, the generating
functions of N ′ are precisely as in (3.1). Therefore, N is a multinomial point process directed
byµ if and only if it is a mixed Poisson process directed byµ. Moreover, the avoidance function
of N and the Laplace transform of the mixing random variable coincide.

Case 2: µ(E) = M < ∞. Suppose that Rµ = [0,M). The function ψ , which is monotone
nonincreasing and continuous on [0,M), can be continuously extended at M , and, besides,
ψ(M) = P{N(E) = 0}. Moreover, it can be shown that N(E) < ∞ with probability 1, and
that, with G being the generating function of the distribution of N(E),

ψ(a) = G

(
1 − a

M

)
for all 0 ≤ a ≤ M .

It follows that (3.1) holds for every disjoint measurable set in E . These same results trivially
hold when R̃µ = [0,M].

In this case, however, the function ψ is not necessarily the Laplace transform of a positive
random variable, and so N need not be a mixed Poisson process. As an illustration, suppose
that µ(E) = M < ∞, and choose the total number of points in E according to the shifted
geometric distribution

p0(M) = 0 and pi(M) = pqi for i ≥ 1,

where p and q are positive, with p + q = 1. The generating function of p(M) is G(z) =
pz/(1 − qz), and ψ(a) = G(1 − a/M) is not a Laplace transform because ψ(M) = 0, and the
so-defined multinomial process is not a mixed Poisson process.

3.2. Sufficient conditions for a Markovian point process to be multinomial

In Theorems 3.2 and 3.3 below, we explore conditions under which a Markovian point
process is multinomial. Loosely speaking, we show that a simple Markovian point process is
multinomial.

Theorem 3.2. A simple regular Markovian point process directed by a diffuse measure µ is a
multinomial point process directed by µ.

Proof. Suppose thatA ∈ B verifies µ(A) > 0, and let B ⊆ A be a measurable set. Since µ
is assumed to be diffuse, there exists a nested sequence of partitions {Bn,k}k=1,...,2n of B such
that µ(Bn,k) = µ(B)/2n. We will prove by induction on i that

P{N(B) = j | N(A) = i} =
(
i

j

)(
µ(B)

µ(A)

)j(
1 − µ(B)

µ(A)

)i−j
for 0 ≤ j ≤ i. (3.6)

For i = 1, (3.6) is the assertion of Theorem 2.1. Now, assume that (3.6) holds for i − 1.
To simplify the notation, let Pi{·} = P{· | N(A) = i}. Then the Markovian character of N
gives

Pi{N(B) = 1} =
2n∑
k=1

Pi{N(Bn,k) = 1} P{N(B − Bn,k) = 0 | N(A− Bn,k) = i − 1}

=
2n∑
k=1

Pi{N(Bn,k) = 1}
(

1 − µ(B − Bn,k)

µ(A− Bn,k)

)i−1
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=
(

1 − µ(B)− µ(B)/2n

µ(A)− µ(B)/2n

)i−1 2n∑
k=1

Pi{N(Bn,k) = 1}

=
(

1 − µ(B)

µ(A)

)i−1

lim
n→∞

2n∑
k=1

Pi{N(Bn,k) = 1}. (3.7)

Similarly, for j = 2, . . . , i, we compute the probability Pi{N(B) = j} as the sum of

(i) the probability that N(B) = j when there exists some k such that N(Bn,k) > 1, that is,
Pi{N(B) = j, N(Bn,k) ≥ 2 for some k}, which converges to 0 as n → ∞ because N
is simple;

(ii) the probability that N(B) = j when there is, at most, one point in each Bn,k .

The probability in (ii) can be decomposed into contributions from the setsBn,k containing one
arbitrarily chosen point among the j points in B; to account for this arbitrary choice, we will
require a 1/j factor. Furthermore, there must be j − 1 additional points in B − Bn,k and,
therefore,

Pi{N(B) = j} = εn + 1

j

2n∑
k=1

Pi{N(Bn,k) = 1}

× P{N(B − Bn,k) = j − 1 | N(A− Bn,k) = i − 1},
where εn is the residual term in (i) converging to 0 as n → ∞. Using the induction hypothesis
and letting n → ∞, we obtain

Pi{N(B) = j} = 1

i

(
i

j

)(
µ(B)

µ(A)

)j−1(
1 − µ(B)

µ(A)

)i−j
lim
n→∞

2n∑
k=1

Pi{N(Bn,k) = 1}. (3.8)

Let us define x = µ(B)/µ(A). Then (3.7) and (3.8) give

Pi{N(B) = j} = 1

i

(
i

j

)(
x

1 − x

)j−1

Pi{N(B) = 1} for 0 < j ≤ i. (3.9)

To account for the case j = 0, which is missing in (3.9), observe that, forD = A−B, we have

Pi{N(D) = j} = 1

i

(
i

j

)(
1 − x

x

)j−1

Pi{N(D) = 1},

and, in particular,
Pi{N(B) = 0} = Pi{N(D) = i}

= 1

i

(
1 − x

x

)i−1

Pi{N(B) = i − 1}

= 1

i

1 − x

x
Pi{N(B) = 1},

thus showing that (3.9) also holds for j = 0.
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From the fact that
∑i
j=0 Pi{N(B) = j} = 1, we obtain

Pi{N(B) = 1} = ix(1 − x)i−1,

and, thus,

Pi{N(B) = j} =
(
i

j

)
xj (1 − x)i−j for 0 ≤ j ≤ i,

which establishes (3.6). The fact that N is multinomial easily follows.

Theorem 3.3. A simple homogeneous Markovian point process with respect to a nonpurely
atomic measure µ is multinomial, directed by µ.

Proof. We must prove that the infinitesimal matrix of a simple homogeneous Markovian
point process is given by (2.3), and we will prove it by induction on i.

Equality (2.2) when i = 1 was established in Remark 2.1. Suppose now that (2.2) holds for
i − 1, that is, the first i − 1 rows of P(x) are binomial or, equivalently, the first i − 1 rows of
Q′(0) satisfy (2.3).

It is easy to see that the transition matrix of a homogeneous Markovian point process satisfies
the Kolmogorov backward differential equations, which in this case are −xP ′(x) = Q′(0)P (x).
Then, the backward differential equation for pi,0(x) = (1 − x)qi can be written as

qi (1 − x)qi−1 =
i−1∑
j=0

qi,j (1 − x)j for 0 ≤ x ≤ 1.

This shows that, for some 0 ≤ j < i, qi = qi,j = j + 1, and qi,j ′ = 0 for j ′ �= j and
0 ≤ j ′ < i. But, if 1 ≤ j < i − 1, the state i communicates with 1, so that Pi,1(x) > 0 for all
0 < x < 1, and, thus, Pi,i−1(x) > 0 for 0 < x < 1, which yields a contradiction. Thus, P(x)
does not verify Proposition 2.3(i), except if either j = 0 or j = i−1. If j = 0 then the ith row
of P(x) is [1 − x, 0, . . . , 0, x], and it is easily shown that the process N is not simple (that is,
the i points inA hold together). Therefore, the ith row ofQ′(0) is necessarily [0, . . . , 0, i,−i],
completing the proof.

As a conclusion, we have shown that a simple homogeneous Markovian point process is
(under some additional hypotheses) multinomial, and it is, therefore, characterized by the
Laplace transform of a nonnegative random variable when µ(E) = ∞, and by the distribution
of N(E) when µ(E) < ∞.

4. General homogeneous Markovian point processes

In the previous section we gave conditions under which a Markovian point process is
multinomial. Now, we are interested in general Markovian point processes.

4.1. Characterization of allocation functions

Before proceeding with our main results in this section, we give some examples of allocation
functions that are not of multinomial type (recall (2.2)). In what follows, we suppose that N is a
homogeneous Markovian point process with respect to the boundedly finite, nonpurely atomic
measure µ on (E, E).

Example 4.1. (Binary allocation.) We allocate points in E with weights 1, 2, 4, 8, . . . in
positions independently chosen with distribution µ(dx)/µ(A) inside each set A ∈ B.
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If N(A) = i, and i has a binary expression i = 2m1 + 2m2 + · · · + 2mr , then

Pi,j (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − x)r if j = 0,

x(1 − x)r−1 if j = 2m1 , 2m2 , . . . , 2mr ,

x2(1 − x)r−2 if j = 2mu + 2mv for some mu,mv,
...

xr if j = i.

Thus, the first rows of Q′(0) are

0 1 2 3 4 5 6 7
0 0
1 1 −1
2 1 0 −1
3 0 1 1 −2
4 1 0 0 0 −1
5 0 1 0 0 1 −2
6 0 0 1 0 1 0 −2
7 0 0 0 1 0 1 1 −3

In general, if i = 2m1 + 2m2 + · · ·+ 2mr then qi = r and qi,i−2mu = 1, and qi,j = 0 otherwise.

Example 4.2. (Ternary allocation.) As in the previous example, we allocate points with
weights 1, 1, 3, 3, 9, 9, . . . in positions independently chosen with distribution µ(dx)/µ(A)
for each set A ∈ B.

In this way, if i = c13m1 +· · ·+cr3mr then row i has qi,i−3mu = cu, qi,j = 0 for j �= i−3mu

and, finally, qi = c1 + · · · + cr . Therefore, the first rows of Q′(0) are

0 1 2 3 4 5 6 7
0 0
1 1 −1
2 0 2 −2
3 1 0 0 −1
4 0 1 0 1 −2
5 0 0 1 0 2 −3
6 0 0 0 2 0 0 −2
7 0 0 0 0 2 0 1 −3

...
...

...
. . .

A careful inspection of the above matrices Q′(0) yields the following conclusions.

• There exist some ‘batches’, that is, points that are allocated together. There exists a batch
of size i if qi = 1.

• When i is not a batch, then i is decomposed as a sum of batches. For instance,

7 = 1 + 2 + 4 or 7 = 1 + 3 + 3 (4.1)

in the binary and ternary cases, respectively. In both cases, q7 = 3 corresponds to the
number of batches in (4.1). Moreover, qi,j equals the number of batches of size i − j in
the decomposition of i.
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Example 4.3. (Allocation with random choices of the batches.) Consider the infinitesimal
matrix

0 1 2 3 4 5 6 7
0 0
1 1 −1
2 1 0 −1
3 1 0 0 −1
4 0 1 − p 2p 1 − p −2
5 1 0 0 0 0 −1
6 1 0 0 0 0 0 −1
7 0 q 1 − q 0 0 1 − q q −2

...
...

. . .

for 0 < p < 1 and 0 < q < 1. The batches correspond to i = 1, 2, 3, 5, 6. When i = 4, there
are two possible decompositions into two batches (indeed, q4 = 2):

4 = 1 + 3 and 4 = 2 + 2.

The above matrix corresponds to the case when, with probabilityp, the chosen decomposition is
2+2 (hence, q4,2 = 2p) and, with probability 1−p, it is 4 = 1+3 (hence, q4,1 = q4,3 = 1−p).
Similarly, for i = 7, the decomposition can be 7 = 1 + 6 with probability q, or 7 = 2 + 5 with
probability 1 − q.

4.1.1. General allocation functions. After the preceding examples, our goal is to characterize
the form of the allocation functions P(x) and their infinitesimal matrices Q′(0).

Lemma 4.1. If Q′(0) is the infinitesimal matrix of an allocation function P(x) then

(i) for every i ≥ 1, qi is an integer with qi ≤ i;

(ii) qi,j = 0 if qj �= qi − 1.

Proof. As pointed out in Remark 2.1, qi > 0 for i ≥ 1. Also, as in the proof of Theorem 3.3,
we can show that

qi(1 − x)qi−1 =
i−1∑
j=0

qi,j (1 − x)qj for 0 ≤ x ≤ 1,

and, since q0 = 0 and q1 = 1, we recurrently find that qi is an integer which is less than or
equal to i. Furthermore, qi,j = 0 unless qi − 1 = qj . This completes the proof.

The form of the terms of an allocation function P(x) is now analyzed.

Proposition 4.1. Suppose that P(x) for 0 ≤ x ≤ 1 is an allocation function with correspond-
ing infinitesimal matrix Q′(0). Then

Pi,j (x) = 
i,j

(
qi

qj

)
xqj (1 − x)qi−qj for 0 ≤ j ≤ i and 0 ≤ x ≤ 1,

where 
i,j is the probability that, starting from i, the Markov chain with infinitesimal matrix
Q′(0) reaches state j . In other words, 
i,j is the sum of the products

∏r−1
l=0 qjl,jl+1/qjl for all

the decreasing sequences i = j0 > j1 > · · · > jr−1 > jr = j . In particular, 
i,0 = 1.
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Proof. Recall the continuous-time Markov chain interpretation of P(x) and Q′(0) given in
Remark 2.2. Suppose that the Markov chain with infinitesimal matrix Q′(0) is in state i at
time t = 0 (or x = 1). Let us determine the probability that the Markov chain reaches state
j at time t after traveling through the states i = j0, j1, j2, . . . , jr−1, jr = j (in particular,
r = qi − qj and qjl = qi − l if this probability is positive). If the jump times are t1, . . . , tr
then the probability of such a path equals

∫ t

0

∫ tr

0
· · ·

∫ t2

0
qi e−qi t1 qi,j1

qi
(qi − 1) e−(qi−1)(t2−t1) qj1,j2

qi − 1
· · ·

× (qi − r + 1) e−(qi−r+1)(tr−tr−1)
qjr−1,jr

qi − r + 1
e−qj (t−tr ) dt1 dt2 · · · dtr

= qi,j1qj1,j2 · · · qjr−1,j e−qj t
∫ t

0

∫ tr

0
· · ·

∫ t2

0
e−(t1+t2+···+tr ) dt1 dt2 · · · dtr

= qi,j1qj1,j2 · · · qjr−1,j e−qj t 1

r! (1 − e−t )r

= qi,j1qj1,j2 · · · qjr−1,j

qi !/qj !
(
qi

qj

)
e−qj t (1 − e−t )qi−qj .

Therefore, recalling that x = e−t , the terms of the allocation matrix P(x) are given by

Pi,j (x) = 
i,j

(
qi

qj

)
xqj (1 − x)qi−qj , (4.2)

where 
i,j is the sum of the probabilities qi,j1/qi · qj1,j2/qi − 1 · · · qjr−1,j /qj + 1 for all the
sequences of states i, j1, . . . , jr−1, j leading from i to j . In other words,
i,j is the probability
of passing through j when starting from i, and, in particular, 
i,0 = 1.

We can now give a characterization of the allocation functions and their infinitesimal
matrices.

Theorem 4.1. Suppose that Q′(0) = (qi,j )i,j is the infinitesimal matrix of a homogeneous
continuous-time Markov chain with state space {0, 1, 2, . . .} decreasing to the absorbing state 0.
Let the {Q(t)}t≥0 be the corresponding transition matrices, and let P(x) = Q(−log x) for
0 < x ≤ 1 (while P(0) = P0). The necessary and sufficient conditions for P(x), 0 ≤ x ≤ 1,
to be an allocation function are

(i) for every i ≥ 1, qi = −qi,i is an integer;

(ii) if qj �= qi − 1 then qi,j = 0;

(iii) if i ≥ 1 verifies i = u1 + · · · + ur , where u1, . . . , ur are positive integers, then the
product

qi,i−u1qi−u1,i−u1−u2 · · · qi−u1−u2−···−ur−1,0 (4.3)

is invariant under any permutation of (u1, . . . , ur ).

Proof. The necessity of conditions (i) and (ii) is proved in Lemma 4.1. In order to prove
the necessity of (iii), from Proposition 2.3(i) and Proposition 4.1, it follows that, for every
0 ≤ x ≤ 1,


i,i−j
(
qi

qi−j

)
(1 − x)qi−j xqi−qi−j = 
i,j

(
qi

qj

)
xqj (1 − x)qi−qj .
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In particular, we obtain

(a) qi = qj + qi−j if 0 ≤ j ≤ i and 
i,j > 0;

(b) 
i,i−j = 
i,j if 0 ≤ j ≤ i;

while Proposition 2.3(ii), together with (b), gives

(c) 
i,i−j1
i−j1,i−j1−j2 = 
i,i−j2
i−j2,i−j1−j2 for 0 ≤ j1, j2 ≤ i.

Finally, observe that qi,i−u = 0 unless u ∈ U = {i ∈ N | qi = 1} (see (a)). In this case, it is
easily seen that qi,i−u/qi = 
i,i−u. Therefore, the product in (4.3) is 0 unless u1, . . . , ur ∈ U.
Supposing then that u1, . . . , ur ∈ U in (4.3), and iterating (c), we can show that (iii) holds.

The proof of the sufficiency requires us to show that P(x) verifies conditions (i) and (ii)
of Proposition 2.3. Observe first that q0 = 0 and qi > 0 for i ≥ 1, since the Markov
chain must decrease to the absorbing state 0. Using the same arguments as in the proof of
Proposition 4.1, we can show that the transition probabilities of the continuous-time Markov
chain (after the reparametrization x = e−t ) are given by (4.2). Note also that, according to (ii),
the Markov chain with transition matrices {Q(t)} evolves through a sequence of states such
that the corresponding qi decreases by 1 after each jump; thus, qi ≤ i.

Suppose that
i = (u1 + · · · + ur)+ (ur+1 + · · · + us), (4.4)

where ur+1 + · · · + us = j , s − r = qj , and s = qi . This decomposition represents the
sequence of states, traveling from i to 0 through j :

i, i − u1, . . . , i − u1 − · · · − ur = j, j − ur+1, . . . , 0.

If this sequence has a positive probability then, by rearranging the terms in (4.4), it follows
from hypothesis (iii) that the decomposition

i = (ur+1 + · · · + us)+ (u1 + · · · + ur) (4.5)

gives a sequence, traveling from i to 0 through i−j , which also has positive probability. Hence,
qi−j = r = qi − qj whenever we can travel with positive probability from i to j , or, in other
words,

qi = qj + qi−j if 
i,j > 0. (4.6)

Thus, Pi,j (1 − x) = Pi,i−j (x) will follow (recall (4.2)) from (4.6) and


i,j = 
i,i−j . (4.7)

However, as pointed out in (4.4) and (4.5), for every sequence leading from i to 0 and passing
through j , we can construct a sequence leading from i to 0 and passing through i − j which
has the same probability. Hence, 
i,j
j,0 = 
i,i−j
i−j,0, and (4.7) holds, since 
j,0 =

i−j,0 = 1.

By (4.2) and (4.7), to prove the condition in Proposition 2.3(ii), it suffices to show that


i,i−j1
i−j1,j2 = 
i,i−j2
i−j2,j1 . (4.8)

The left- and right-hand sides of (4.8) are the probabilities of the sequences leading from i

to 0 through i − j1 and j2, and through i − j2 and j1, respectively; they are related to the
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decompositions

i = (u1 + · · · + ur)+ (ur+1 + · · · + us)+ (us+1 + · · · + ut ),

i = (us+1 + · · · + ut )+ (ur+1 + · · · + us)+ (u1 + · · · + ur),

where u1, . . . , ut ∈ U, u1 + · · · + ur = j1, and us+1 + · · · + ut = j2. Since both have the
same probability, as a consequence of hypothesis (iii), we obtain


i,i−j1
i−j1,j2
j2,0 = 
i,i−j2
i−j2,j1
j1,0,

and (4.8) holds.

Remark 4.1. Another consequence of the proof of Theorem 4.1 is that the product in (4.3) is 0
unless the ul are in U = {i ∈ N | qi = 1}. Therefore, it suffices to prove the permutation-
invariant property only when u1, . . . , ur ∈ U.

It is worth noting that Theorem 4.1 does not assert that a homogeneous Markovian process
can be constructed from any Q-matrix satisfying the conditions (i)–(iii). Indeed, it remains to
choose a family of marginal distributions {p(a)} compatible with P(x); see Proposition 2.3.

Example 4.4. Consider the infinitesimal matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 −1
1 0 −1
1 0 0 −1
0 1 − p 2p 1 − p −2
0 0 1 1 0 −2
0 0 0 2 0 0 −2
0 0 0 0 p1 p2 p3 −3
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where 0 < p < 1 and p1 + p2 + p3 = 3. We have {1, 2, 3} ⊆ U.
According to this matrix, i = 4 can be decomposed either as 4 = 2 + 2 (with probability p)

or 4 = 3+1 (with probability 1−p). For i = 5 and i = 6, the only possible decompositions are
5 = 3+2 and 6 = 3+3. For i = 7, there are two possibilities: 7 = 1+3+3 and 7 = 2+2+3.
However, in order to fulfill Theorem 4.1(iii), the corresponding probabilities must be related
in some way to p. More precisely, the equality of the products in (4.3) corresponding to the
decompositions

7 =

⎧⎪⎨
⎪⎩

1 + 3 + 3 with probability p3 · 2 · 1,

3 + 1 + 3 with probability p1 · (1 − p) · 1,

3 + 3 + 1 with probability p1 · (1 − p) · 1,

gives 2p3 = p1(1 − p). Similarly, from the decompositions

7 =

⎧⎪⎨
⎪⎩

2 + 2 + 3 with probability p2 · 1 · 1,

2 + 3 + 2 with probability p2 · 1 · 1,

3 + 2 + 2 with probability p1 · 2p · 1,

https://doi.org/10.1239/jap/1308662640 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662640


Conditionally independent increment point processes 507

we obtain p2 = 2p · p1. Recalling that p1 + p2 + p3 = 3, it follows that

p1 = 2

1 + p
, p2 = 4p

1 + p
, and p3 = 1 − p

1 + p

is the unique row, for i = 7, compatible with the preceding rows.

4.2. Marked multinomial processes

In this section we explore the relationship existing between homogeneous Markovian pro-
cesses and marked multinomial processes. First of all, we show how to construct a Markovian
point process on a bounded measurable set.

Theorem 4.2. Let Q′(0) be the infinitesimal matrix associated to a homogeneous Markovian
point process N with respect to a boundedly finite, nonpurely atomic measureµ. GivenA ∈ B,
let us define the homogeneous Markovian point process N ′ on A as follows.

• Suppose that N(A) = i for some i ≥ 1.

• Select qi random points in A, denoted by X1, . . . Xqi , independent and identically
distributed with distribution given by µ(dx)/µ(A).

• Assign to X1 a weight k1 chosen at random with distribution {qi,i−k/qi}k≥1.

• Assign to X2 a weight k2 chosen with distribution {qi−k1,i−k1−k/qi−k1}k≥1 conditional
on k1 (recall that qi−k1 = qi − 1).

• Assign to Xqi−1 a weight kqi−1 chosen with distribution{
qi−k1−···−kqi−2,i−k1−···−kqi−2−k

qi−k1−···−kqi−2

}
k≥1

conditional on k1, . . . , kqi−2 (recall that qi−k1−···−kqi−2 = 2).

• Assign to Xqi a weight i − k1 − · · · − kqi−1.

Finally, define

N ′(B) =
qi∑
r=1

krδXr (B) for B ⊆ A in B.

Then, the point processes {N(B)}B⊆A, conditional on N(A) = i, and N ′ have the same
distribution.

Proof. According to Theorem 4.1(iii), the joint distribution of the weights assigned to the
points X1, . . . , Xqi is invariant under any permutation of the indices.

Now {N ′(B)}B∈EA is a Markovian point process. In fact, for any C ⊆ A and, conditional on
N ′(C) = j , there are qj points inside C (say, X1, . . . , Xqj , since their weights do not depend
on their order) and qi−j = qi − qj points in A − C (say, Xqj+1, . . . , Xqi−qj ); they all have
independent positions and, moreover, the weights kqj+1, . . . , kqi are independent of k1, . . . , kqj ,
once k1 + · · · + kqj = j is fixed. Therefore, N ′(B1), . . . , N

′(Br) and N ′(B ′
1), . . . , N

′(B ′
s) are

independent if B1, . . . , Br ⊆ C and B ′
1, . . . , B

′
s ⊆ A− C.

Furthermore, N ′ is homogeneous with respect to µ because, if B ⊆ C is such that µ(B) =
xµ(C), it is

P{N ′(B) = h | N ′(C) = j} =
(
qj

qh

)
xqh(1 − x)qj−qh
j,h,
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since the first term is the probability that exactly qh of the qj points lie in B, and 
j,h is the
probability that the weights of these qh points sum up a total weight h. Hence, inside A, N ′ is
a homogeneous Markovian point process with the same allocation function as N .

Let N be a homogeneous Markovian point process with respect to a boundedly finite,
nonpurely atomic measure µ. We define the point process Ñ as

Ñ = qN . (4.9)

More explicitly, given a bounded setA ∈ B, we define Ñ(A) = qN(A), which gives the number
of batches in A. Observe that, conditional on N(A) = i, the point processes

Ñ ′(B) =
qi∑
r=1

δXr (B) for B ⊆ A

(using the notation in Theorem 4.2) and Ñ have the same distribution.

Remark 4.2. If the measureµ is diffuse then Ñ is the support process of N ; see [3, Section 7.1].
If µ is not diffuse, however, then Ñ might not be a simple point process, thus being different
from the support process of N .

In our next result, we prove that Ñ in (4.9) is a multinomial point process.

Theorem 4.3. Let N be a homogeneous Markovian point process with respect to a boundedly
finite, nonpurely atomic measure µ. Then Ñ is a multinomial point process with respect to µ.

Proof. Given disjoint bounded measurable setsA1, . . . , Ak and nonnegative integers r1, . . . ,
rk , let A = ⋃k

i=1Ai, r = r1 + · · · + rk , and define the set of indices

Ij (r1, . . . , rk) = {(i1, . . . , ik) | qi1 = r1, . . . , qik = rk, i1 + · · · + ik = j}.
Then we have

P{Ñ(A1) = r1, . . . , Ñ(Ak) = rk} =
∑

{j | qj=r}

∑
Ij (r1,...,rk)

P{N(A1) = i1, . . . , N(Ak) = ik}.

However, as a consequence of Proposition 4.1, the terms of this sum are given by

P{N(A) = i1 + · · · + ik}
(

r

r1 · · · rk
)(

µ(A1)

µ(A)

)r1
· · ·

(
µ(Ak)

µ(A)

)rk

×
i1+···+ik,i2+···+ik
i2+···+ik,i3+···+ik · · ·
ik,0.
Summing up in (i1, . . . , ik) ∈ Ij (r1, . . . , rk), the above expression yields

P{N(A) = j}
(

r

r1 · · · rk
)(

µ(A1)

µ(A)

)r1
· · ·

(
µ(Ak)

µ(A)

)rk
.

Therefore, the probability P{Ñ(A1) = r1, . . . , Ñ(Ak) = rk} equals

P{Ñ(A) = r}
(

r

r1 · · · rk
)(

µ(A1)

µ(A)

)r1
· · ·

(
µ(Ak)

µ(A)

)rk
.

From this, it is easily proved that Ñ is multinomial with respect to µ.

https://doi.org/10.1239/jap/1308662640 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662640


Conditionally independent increment point processes 509

Our next result shows that, under suitable assumptions, a Markovian point process is a
marked multinomial process.

Theorem 4.4. Suppose that N is a homogeneous Markovian point process with respect to a
boundedly finite, nonpurely atomic measure µ. Suppose further that either the corresponding
infinitesimal matrix Q′(0) is integer valued or µ is diffuse. Then N is a marked multinomial
point process.

Proof. Suppose first that µ is a diffuse measure. Then, since Ñ is a multinomial point
process, it is simple. Thus, P-almost surely, the sample path Ñω is characterized by a sequence
{xn} of points in E (with no accumulation points); to each of them Nω associates a weight
wn = Nω(xn). Now define N̂ω to be the boundedly finite, integer-valued measure on E × N

given by
N̂ω{(xn,wn)} = 1.

It follows from [3, Definition 7.1.XII] that N̂ is a marked point process, whose first component
N̂(A × N) = Ñ(A) is a multinomial point process. Since there is an obvious bijective
correspondence between the paths of N̂ and N , N itself may be considered as a marked
multinomial point process.

If µ is not diffuse, Ñ is not simple; so that, for each ω ∈ �, there may exist points
in the sequence {xn} with multiplicity Ñω(xn) = k. However, if the infinitesimal matrix
Q′(0) is integer valued, the value Nω(xn) can be uniquely decomposed as a sum of k terms:
Nω(xn) = w1 + · · · +wk (see, e.g. the binary and ternary allocation functions in Section 4.1).
Thus, we can define

N̂ω{(xn,wj )} = 1 for 1 ≤ j ≤ k,

and the proof proceeds as in the previous case.

Regarding the restrictions of the above theorem, suppose that µ is not diffuse and that the
infinitesimal matrix Q′(0) is not integer valued. As an illustration, consider the infinitesimal
matrix in Example 4.3. Given a sampleNω, suppose that we haveNω(A) = 4 for someA ∈ B.
Then

Ñω(A) = qNω(A) = q4 = 2

(that is, there are two batches x1 and x2 in A with corresponding weights w1 and w2, such that
w1 + w2 = 4). But, µ not being diffuse, the two batches may coincide: x = x1 = x2. In this
case, Nω{x} = 4, although the weights w1 and w2 are unidentifiable; indeed, they might either
be w1 = 1 and w2 = 3, or w1 = w2 = 2. In other words, in the case that µ is not diffuse and
Q′(0) is not integer valued, from the sole observation of N we cannot determine N̂ as defined
in the proof of Theorem 4.4.

4.3. Marginal distributions of a homogeneous Markovian point process

Let N be a homogeneous Markovian point process with respect to the boundedly finite,
nonpurely atomic measure µ. The issue of the marginal distributions of N is of no interest
when µ(E) = M < ∞ because, in this case, we can choose an arbitrary probability vector
p(M), and then define

p(a) = p(M)P

(
a

M

)
for a ∈ Rµ.

Therefore, our subsequent results are only relevant in the case µ(E) = ∞, although they are
true whether µ(E) is finite or not.
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Let Q′(0) be the infinitesimal matrix associated to the allocation function of N . We know
from Proposition 2.3(v) that, given a > 0 and 0 ≤ x ≤ 1,

p(ax) = p(a)P (x) if ax ≺ a. (4.10)

Therefore, p(a) satisfies the backward Kolmogorov differential equations, which in this case
take the form −ap′(a) = p(a)Q′(0), i.e.

−ap′
j (a) = −qjpj (a)+

∑
{i | qi=qj+1}

pi(a)qi,j for j ≥ 0. (4.11)

It is worth noting that p(a) is defined when a ∈ Rµ, and, thus, the derivative of p(a) with
respect to a might not make sense. However, we may take (4.10) as a definition (which will
coincide, when ax ≺ a, with the distribution of N on a set with µ-measure ax), and then the
derivative in (4.11) exists for a ∈ (0, µ(E)).

On the other hand, for the multinomial point process Ñ defined in (4.9), let us denote
its marginal distribution by p̃q(a) = P{Ñ(A) = q} when µ(A) = a. They verify the
corresponding backward Kolmogorov differential equations:

−ap̃q ′(a) = −qp̃q(a)+ (q + 1)p̃q+1(a) for q ≥ 0 and a ∈ (0, µ(E)). (4.12)

Let us now define the conditional probabilities

wi(a) = P{N(A) = i | Ñ(A) = qi} = pi(a)

p̃qi (a)
for i ≥ 0, (4.13)

which can be arranged in a nonnegative row vector w(a) = (wi(a))i≥0 such that
∑

{i | qi=q}
wi(a) = 1 for all q ≥ 0 and a ∈ (0, µ(E)).

From (4.11), (4.12), and (4.13), for all j ≥ 0 and a ∈ (0, µ(E)), we obtain

w′
j (a) = p̃qj+1(a)(qj + 1)

−ap̃qj (a)
( ∑

{i | qi=qj+1}
wi(a) ti,j − wj(a)

)
, (4.14)

where the ti,j are the terms of the jump matrix T associated toQ (that is, t0,0 = 1, ti,j = qi,j /qi
if 0 ≤ j < i, and ti,j = 0 otherwise).

The differential equation (4.14) suggests that we can obtain constant solutions when the
expression within the parentheses vanishes. This is made clear in our next result.

Theorem 4.5. Let Ñ be a multinomial process with respect to a measure µ with marginal
distributions p̃(a) for a ∈ Rµ. Suppose that Q′(0) is the infinitesimal matrix of an allocation
function P(x) for 0 ≤ x ≤ 1, and suppose that the row vector w is a solution of the linear
system of equations

w = wT

with wi ≥ 0 and
∑

{i | qi=q}wi = 1 for all q ≥ 0, where T is the jump matrix of Q′(0).
Then pi(a) = wi p̃qi (a) for i ≥ 0 and a ∈ Rµ are the marginal probabilities of a

homogeneous Markovian process with respect to µ, with allocation function given by Q′(0),
and with the same avoidance function as Ñ .
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Proof. Note first that


i,j = (T qi−qj )i,j , and, thus, 
 =
∞∑
n=0

T n.

Therefore, if w = wT then w = wT n for all n, and w verifies∑
{i | qi=q}

wi 
i,j = wj for all j and q ≥ qj .

Now, fix a ∈ Rµ and ax ≺ x for 0 ≤ x ≤ 1. The j th term of p(a)P (x) is

∞∑
i=j

pi(a)
i,j

(
qi

qj

)
xqj (1 − x)qi−qj =

∞∑
q=qj

p̃q(a)

(
q

qj

)
xqj (1 − x)q−qj

∑
{i | qi=q}

wi
i,j

= wj p̃qj (ax)

= pj (ax);
hence, p(ax) = p(a)P (ax) and, by Proposition 2.3, the stated result holds.

In our next result, we prove that when the infinitesimal matrix Q′(0) has a finite number of
‘batches’, then solutions to w = wT exist.

Proposition 4.2. Let Q′(0) be the infinitesimal matrix of an allocation function, and let T be
the corresponding jump matrix. Suppose that U = {i | qi = 1} is a finite set. Then there exists
a solution to

w = wT , w ≥ 0, and
∑

{i | qi=q}
wi = 1 for all q ≥ 0.

Proof. Let us rearrange the integers {0, 1, 2, 3, . . .} as

0, {i | qi = 1}, {i | qi = 2}, . . . ,
where, as a consequence of our hypotheses, the above sets are all finite. In this way, the jump
matrix T adopts a block lower-triangular form:

T =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·
T1,0 0 0 0 · · ·

0 T2,1 0 0 · · ·
0 0 T3,2 0 · · ·
...

. . .

⎤
⎥⎥⎥⎥⎥⎦
.

Now fix an arbitrary sequence {v(q)}q≥1 of probability vectors on {i | qi = q}. Given
j ≥ 0, define w

(q)
j = v(q)T q−j for q ≥ j , which is a probability vector on {i | qi = j}. Now

{w(q)
1 }q≥1 is a sequence of probability vectors on the finite set {i | qi = 1}, and, therefore, it

has a subsequence {w(q ′)
1 } converging to some probability vector w∗

1 . Similarly, {w(q ′)
2 } has

a subsequence {w(q ′′)
2 } converging to some probability vector w∗

2 on {i | qi = 2}. Using a
diagonal argument, we can show that there exists a subsequence {q∗} such that w

(q∗)
j converges

to w∗
j , which is a probability vector on {i | qi = j} for all j ≥ 1. It also follows that

w∗
j = w∗

j+1Tj+1,j ,

and, therefore, w∗ = (1,w∗
1,w

∗
2, . . .) verifies the stated result.
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Let us now analyze the existence of nonconstant solutions to (4.14). For j ≥ 0 and a ∈
(0, µ(E)), define

vj (a) = pj (a)
qj !
aqj

.

Note that, for a = 0, the definition is made by continuity. Using (4.11), it is easily shown that

v′
j (a) = −

∑
{i | qi=qj+1}

vi(a) ti,j for j ≥ 0 and a ∈ (0, µ(E)).

In vector notation, letting v(a) = {vj (a)}j≥0, it follows that v(a) is a solution of the linear
system of differential equations v′(a) = −v(a)T for a ∈ (0, µ(E)). This fact allows us to
state the following result.

Theorem 4.6. Suppose that T is the jump matrix of the infinitesimal matrix Q′(0) of an
allocation function. Suppose further that there exists some vector v such that v(a) = ve−aT
verifies vj (a) ≥ 0 for all a ∈ (0, µ(E)) and j ≥ 0, and

∞∑
j=0

vj (a)
aqj

qj ! = 1 for all a ∈ (0, µ(E)).

Then

pj (a) = vj (a)
aqj

qj ! for j ≥ 0 and a ∈ (0, µ(E)) (4.15)

is the marginal probability function of a homogeneous Markovian point process with jump
matrix T .

Proof. The proof is made by direct substitution of (4.15) in

pj (ax) =
∞∑
i=j

pi(a)
i,j

(
qi

qj

)
xqj (1 − x)qi−qj ,

and using the fact that v(ax) = v(a) ea(1−x)T for a ≥ 0 and 0 ≤ x ≤ 1.

Observe that if µ(E) = M < ∞ then p(M) determines v(M), and v = v(M) eMT satisfies
the hypotheses of Theorem 4.6. On the other hand, when µ(E) = ∞, it will be interesting to
know whether the existence of such a vector v can be granted, or the only available marginal
distributions are as in Theorem 4.5.

5. Conclusions

In this paper we have presented a self-contained survey of Markovian point processes, as
defined in Section 2. With respect to the homogeneous Markovian point processes, we have
given an exhaustive description of their allocation functions by means of the infinitesimal ma-
trix Q′(0). Furthermore, they have been characterized as marked multinomial point processes
with marks attributed as indicated by the matrix Q′(0).

Our analysis of the marginal distributions of general homogeneous Markovian point pro-
cesses is not that thorough, and we have only given sufficient conditions (in Theorems 4.5
and 4.6) yielding the aforementioned marginal distributions. Further research on this issue is
currently in progress.
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Summarizing, under the hypotheses of Theorem 4.5, a general homogeneous Markovian
point process N with respect to a fixed boundedly finite measure µ, with µ(E) = ∞, may be
constructed from the following basic elements:

(a) an avoidance function ψ , which is the Laplace transform of a nonnegative random vari-
able, yielding the marginal distributions p̃q(a) of the underlying multinomial process Ñ ;

(b) a solution of w = wT (with wi ≥ 0 and
∑

{i | qi=q}wi = 1) which, together with p̃q(a),
determines the marginal distributions of N : pi(a) = wip̃qi (a) (or, also, a vector v

satisfying Theorem 4.6, which allows us to determine the marginal distributions pi(a)
by means of (4.15));

(c) an infinitesimal matrixQ′(0), as in Theorem 4.1, which, conditional onN(A), allows us
to assign weights to the points in each set A ∈ B by using the procedure described in
Theorem 4.2.

Let us now mention some interesting open issues. It would be interesting to know whether
all the results in this paper could be extended to Markovian processes defined on an abstract
measurable space (instead of complete and separable metric spaces). In this sense, reference [7],
which deals with Poisson processes defined on general measurable spaces, may be enlightening.

Another challenging issue is the statistical inference for Markovian point processes [6]. It is
easily shown (and, moreover, it is quite intuitive) that, given the observation of N on A ∈ B,
N(A) is a sufficient statistic. The convergence (3.5) shows that consistent estimators cannot
be derived from N(A) as A ↑ E. This is a very important departure point from the results
on Poisson processes, for which the limit in (3.5) is a constant. This shows that the statistical
inference issue for Markovian point process may be an awkward problem, and, thus, worth
taking care of.
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