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Theory and computations are applied to assess the hydrodynamic permeability of cavity-
doped hydrogels, central to a variety range of contemporary technological applications.
Direct volume-averaging is undertaken in a two-dimensional, Brinkman-hydrodynamic
context to test an ensemble-averaging methodology recently proposed for the ion
permeability of such media. In two dimensions, the ensemble-averaging integral furnishes
a pre-factor 2 linking the pressure dipole strength of a single inclusion in an unbounded
continuum to the effective hydrodynamic permeability of a composite with small inclusion
area fraction. The factor is verified by direct computations for dilute simple-square arrays
of (cylindrical) inclusions. At area fractions up to the close-packing limit, computations
address the hydrodynamic interactions. The theory is shown to accurately predict the
effective hydrodynamic permeability of physically relevant composites (Brinkman length
of the continuous phase ¢ smaller than the inclusion radius a) for area fractions ¢ <
1t/9 ~ 0.3. Computations for random ensembles demonstrate that the dilute theory may be
extended to higher area fractions by drawing on Rayleigh’s self-consistent approximation
when the continuous-phase permeability places the continuous-phase flow well into the
Darcy regime (a/¢ 2 10). Computations also demonstrate, similarly to Rayleigh theories
for scalar diffusion, that microstructural order has a very weak influence on the effective
permeability when ¢ < 71/9 with £/a < 1 (Darcy hydrodynamic interactions). Finally, a
cursory examination is undertaken of the fluid velocity and its fluctuations arising from
shear-viscosity heterogeneity in media with perfectly uniform permeability £2.

Key words: biomedical flows, microscale transport, porous media

1. Introduction

Hydrodynamic flow in finely structured porous media is important in a wide variety of
contemporary applications, particularly those in which soft nanostructured materials, such
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as synthetic hydrogels, membranes and biological tissue, are central. For example, in a
purely hydrodynamic context, the permeability of such media has recently been identified
as controlling the rate of energy dissipation in shock absorbers for protecting against
traumatic sports injuries (Sokoloff 2022). Moreover, flow in hydrogel phantoms of neural
tissues is pertinent to the perfusion of drugs in the brain and spine (Gillies et al. 2002;
Pomfret, Miranpuri & Sillay 2013a). Manipulating the microstructure of agarose gels, in
particular, has been proposed as a means to mimic ion transport in brain tissue (Williams
et al. 2007; Lempka et al. 2009; Pomfret, Sillay & Miranpuri 20135).

Polyelectrolytes bearing a nanoscale structure are central to batteries (Harris 2018),
fuel cells (Matos 2020), polymeric/soft electronics and sensors (Pan er al. 2012) and
biomaterials (Brown et al. 2020; Zimmerman et al. 2021). To explore these from a
theoretical perspective, Hill (2022) recently proposed a theory for steady ionic transport
in multi-porous charged media. The theory couples disturbances to the electrostatic
potential, ion concentrations and electro-osmotic flow arising from a microstructure
with heterogeneous charge- and hydrodynamic permeability. These were computed for a
single spherical cavity embedded in an unbounded continuous medium, and their far-field
asymptotic decays were used to report the effective conductivity. The averaging neglected
electrostatic, ion-concentration and hydrodynamic interactions, and so is accurate to O(¢)
in the cavity volume fraction ¢. Hydrodynamic aspects of the problem advanced those
of Davis & Stone (1993) for the permeability of chromatography columns, bringing
additional physics from electrokinetic phenomena, along the lines of Saville (1979) and
O’Brien & Perrins (1984). Vortical flows arising from such ‘multiphysics’, albeit on
larger scales than Hill’s theory, have been demonstrated to enhance convective mixing
in disordered porous media (Mirzadeh et al. 2020).

In composites for which contrast in the properties of the dispersed and continuous
phases is step-like, it is customary to express averaging for dilute media in terms of
an integral over the internal volume of a single inclusion embedded in an unbounded
continuous phase, as exemplified by Jeffrey (1973) in the context of scalar diffusion in
random suspensions of spheres. However, when the dispersed phase is more complex,
it is oftentimes preferable to express the averaging in terms of the asymptotic far-field
disturbances of a dispersed particle, as exemplified by Delacey & White (1981) in
the context of the conductivity of colloidal dispersions. Merits of computing electrical
and hydrodynamic forces on nanoparticle spheres decorated with charge-regulating
polyelectrolyte layers, in the context of nanoparticle electrophoresis, are demonstrated by
Hill (2015). These motivate, in part, subsequent efforts to circumvent cumbersome volume
integrations (for complex dispersed particulates) by drawing on the asymptotic decay of
far-field disturbances.

Along these lines, Hill (2022) employed the ensemble averaging of Koch & Brady
(1985) to derive an averaged momentum transport equation for dilute cavity-doped
polyelectrolyte hydrogels in which coupled mass and ion fluxes are driven by an external
pressure gradient and electric field. The averaged fluid velocity in a charged/polyelectrolyte
porous medium that is doped with spherical inclusions (having an arbitrary, contrasting
permeability) was expressed in terms of the dipole pressure disturbance of a single
inclusion. No direct verification of this theory has been undertaken, e.g. to test that
the underlying integral is unconditionally convergent (Jeffrey 1973). Moreover, even if
the theory is validated in the dilute limit, it remains to establish how accurate the
approximation might be at higher concentrations. Significant computational challenges
are anticipated from coupled viscoelastic, hydrodynamic and ion-transport physics in
complex, three-dimensional geometries. For example, recent two-dimensional direct
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Figure 1. The coefficients of the O(¢) and 0(¢?) terms in the expansion of Maxwell’s self-consistent effective
diffusivity plotted vs the ratio of the dispersed- (spheres) and continuous-phase diffusivities. The O(¢?) term
is compared with the 0(¢?) theory of Jeffrey (1973, table 1).

computations of thermal convection in porous media (comprising square arrays of solid
cylinders) have been prompted by (i) the prohibitive challenge of performing well-resolved
three-dimensional simulations and (ii) reasonable grounds that a two-dimensional
approximation may still furnish robust physical insights and quantitative analysis in the
dimensionless parameter space (Liu et al. 2020).

This paper seeks to test Hill’s ensemble averaging and assess the importance of
hydrodynamic interactions, albeit in a simpler but more transparent two-dimensional,
hydrodynamic framework. This may still provide valuable insights to guide future
computational studies of coupled, time-dependent physics in three dimensions. In the
broader context of the present work, the frequency-dependent electrical impedance of
structured polyelectrolytes, within which viscoelastic coupling of a charged polyelectrolyte
skeleton to electroosmotic flow is pertinent, will be reported elsewhere.

The present work is informed, in part, by literatures addressing scalar diffusion and
hydrodynamic drag in composites. This stems from Brinkman’s model (Brinkman 1947;
Durlofsky & Brady 1987) bridging the Darcy- and Stokes-flow regimes. The Darcy limit
in which the volume flux u = —(¢2 /1) Vp brings an obvious parallel with scalar diffusion
(€2 /1 is the Darcy permeability and p is the pressure with £ the Brinkman screening length
and 7 the shear viscosity).

For scalar diffusion, Jeffrey (1973) highlighted the difference between the effective
diffusivities for ordered and random arrays of spheres as manifesting at O(¢?), where ¢ is
the sphere volume fraction. For random arrays, Jeffrey calculated the O(¢?) contribution
to an effective diffusivity (relative to the continuous-phase diffusivity) having the form
D./D~1—=3¢(1 —a)/(2+a) + O(¢?), where « is the ratio of the dispersed- and
continuous-phase diffusivities. Figure 1 compares the coefficient of the O(¢?) expansion
of Maxwell’s self-consistent formula (Bird, Stewart & Lightfoot 2002, (9.6-1)) (also
termed the Clausius—Mosotti equation (Bonnecaze & Brady 1991)) with the coefficient
from Jeffrey (1973, table 1). Arguably, the self-consistent formula furnishes an at least
qualitative approximation of the effective diffusivity to O(¢?) as long as the contrast o
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is not too large or small. According to Jeffrey’s analysis, the coefficient of ¢ spans the
range ~0.588-4.51 (according to «), whereas the self-consistent Maxwell formula spans
the range 0.75-3.

In the other extreme limit of the Brinkman model, i.e. of Stokes flow through
ordered and random arrays of impenetrable spheres, the drag forces are distinguished
by their leading orders in ¢: for simple-cubic arrays, the drag coefficient (force scaled
by the Stokes drag force based on the superficial fluid velocity) in the dilute limit
is F~ 14 1.7601¢'/3 (Hasimoto 1959), whereas the counterpart for random arrays is
F~1+ @3/ \/§)¢1/ 2 (Brinkman 1947). However, by analogy with scalar diffusion, the
hydrodynamic interactions of spheres (radius @) embedded in a Brinkman medium (with
Brinkman length ¢) are expected to be weak when particles are well separated and
intervened by Darcy flow. In three dimensions, these conditions demand ¢ < 47/3* &
0.16 with £/a < 1. If the Brinkman medium is itself comprised spheres with radius a,
then (to leading order in ¢) ¢/a ~ /2/(3¢), so the condition ¢/a < 1 demands ¢ =
2/9 ~ 0.22, suggesting a very narrow window 0.16 < ¢ < 0.22 where both the foregoing
conditions may be met. More generally, however, £/a is an independent parameter that,
when sufficiently small, may furnish ¢ < 0.16 so that, by analogy with scalar diffusion,
the effective permeability of the composite may be expected independent of the type of
sphere packing (to leading order in ¢). This is born out for diffusion by the computations of
Bonnecaze & Brady (1990, 1991), which furnished reduced effective diffusivities for ¢ =
0.1 and @« = Dy/D = 10: D,/D ~ 1.247 £ 0.011 (random hard sphere), 1.243 (simple
cubic), 1.243 (body-centred cubic), 1.243 (face-centred cubic). Expectations for the
effective Brinkman permeability are tested in the present study, albeit in a two-dimensional
context for which the analogue of the foregoing condition becomes (for the cylinder area
fraction) ¢ < 7/9 ~ 0.3 with £/a < 1.

The theory § 2 presents the hydrodynamic model in a form by which the dependent
variables (pressure and velocity) are computed using a direct numerical computation on a
periodic unit cell, for any discrete-phase area fraction, and discrete- and continuous-phase
permeabilities. Next, an analytical solution is presented for the dilute limit in which the
discrete-phase area fraction is small. In the results § 3, this analytical model is compared
with the direct computations (solving Brinkman’s equations), establishing the parameter
space in which the analytical theory is accurate, also testing the computations in dilute
and almost-touching regimes. Comparisons of the dilute theory and extensions to finite
area fractions — drawing on the Rayleigh self-consistent approximation — are motivated,
in part, by the analogy of Darcy hydrodynamics and scalar diffusion. Finally, a cursory
examination of the velocity fluctuations arising from shear-viscosity contrasts in media
with uniform Brinkman screening length is undertaken. The paper concludes in § 4 with a
brief summary.

2. Theory

As illustrated in figure 2, the porous media under investigation in this work have
continuous and discrete phases, each modelled as uniform Brinkman media with
contrasting Brinkman permeabilities. For the analytical model, the disturbance of a single
cylindrical inclusion in an unbounded continuous phase is used to derive the effective
permeability of a composite with inclusion area fraction ¢ < 1. For the computations,
a periodic unit cell with finite ¢ is subjected to a uniform pressure gradient P, and
the volume average of the steady fluid velocity (u) furnishes the effective permeability.
For a square unit cell (area L?) containing a single cylindrical inclusion (radius «) and
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Figure 2. (a) A periodic array of parallel cylindrical inclusions, each with Brinkman screening length Eg and
radius a, embedded in a continuous Brinkman medium with screening length ¢, subjected to a mean pressure
gradient P = —(Vp) (perpendicular to the cylinder axes). The Newtonian fluid is considered to have a uniform
shear viscosity n, but, more generally, fluid within the inclusions may be prescribed a shear viscosity n. = x7.
(b) Finite-element computations of Brinkman flow (with P = Pej) in a simple-square array (top) is compared
with a random counterpart (bottom) (with the same inclusion area fraction ¢).

P perpendicular to the cylinder axes, the effective permeability (of the simple-square
array) is isotropic. For random configurations, averaging over an ensemble furnishes an
effective permeability that is isotropic, even though the permeability of each member of
the ensemble is not.

2.1. Computational model

The steady, incompressible, inertialess flows in this work are modelled by the Brinkman
equations (Brinkman 1947; Durlofsky & Brady 1987)

n

0=nViu—Vp— ——
nv-u p Zz(x)

u, V.u=0, (2.1a,b)
where the fluid shear viscosity 7 is predominantly assumed uniform (unless explicitly
stated otherwise), and the Brinkman screening length £(x) is prescribed a (uniform)
value ¢ in the continuous phase and ¢, in the discrete (cylinder) phase of a periodic
unit cell (see figure 2). Using Stokesian-dynamics simulations, Durlofsky & Brady
(1987) have shown that Brinkman’s model accurately describes the conditionally averaged
velocity disturbance in porous media comprising randomly positioned, non-overlapping
impenetrable spheres (radius a) when the sphere volume fraction <0.05, thus
corresponding to ¢ = 2.1a with characteristic sphere separation ~4.4a. In the present
work, the Brinkman media are envisioned — without loss of generality — to represent
hydrogel networks for which the solid volume fraction (crudely considered an assembly of
Stokes-resistance centres) is often <0.1 with £ ~ 0.1-100 nm.

The response of Brinkman’s model to forcing by a first-order tensor X, e.g. X = P
(average pressure gradient) or U (average velocity), furnishes the pressure (to within an
arbitrary constant) and velocity of the form (linear in X)

p=P-x+X-px), u=X-ux), (2.2a,b)
972 A25-5
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where p and & are periodic first- and second-order tensors, respectively. Accordingly, the
model to be solved for p and & on a periodic domain is

U .
— ZZ(X)X .U,
V.-X-u)=0. (2.4)

0=nV?’X-it) —P—V(X-p) (2.3)

In this paper, the periodic unit cells are square, enclosing either a single circular inclusion
or randomly positioned, non-overlapping inclusions (with doubly periodic boundary
conditions). The accompanying deterministic or statistical isotropy reduces the model to
one for which X = Xe; (i = 1, 2), where e; is a unit vector. It follows that X - p — Pp and
X - 4 — Pu, where p and & become periodic scalar and vector fields, respectively.

When & is an isotropic second-order tensor (so X - & is a first-order tensor), the
volume-average velocity

1 . 2
(u)=‘—//P-udVE—— , (2.5)
v n

where Zg /n is the effective permeability with £, the effective Brinkman screening length.
This may be written as

S|

62
o + payp, (2.6)

where, for small dispersed-phase volume fractions ¢, the permeability increment oyp
is independent of ¢. Note that ayp is defined by analogy with the ionic conductivity
increment for colloidal dispersions being the limiting slope of the conductivity—volume
fraction relation (Zukoski & Saville 1985), as expected based on considerations of
linearity, isotropy and a neglect of particle interactions (to leading order in ¢).

The Brinkman model comprising (2.3) and (2.4) with periodic boundary conditions
was solved as a coupled triplet of scalar partial-differential equations using the COMSOL
Multiphysics (versions 5.1.0.145 and 6.1) finite-element software. Direct evaluation of (u)
furnishes Eg /n and thus agyp/(£%/n), which are compared with analytical theory based
on the averaging methodology of Hill (2022) for random media when the inclusion area
fraction ¢ < 1. In this dilute limit (which also requires the continuous-phase Brinkman
screening length ¢ to be small compared with the characteristic inclusion separation), o/p
becomes independent of ¢, as demonstrated below by direct numerical calculations and
comparison with analytical theory. Accordingly, the next section presents an analytical
solution of the Brinkman model in two dimensions for a dilute discrete phase. In the results
section, this is used to test the analytical averaging methodology of Hill (2022), which
is hereunto unverified by any independent analysis. Moreover, a thin-gap approximation
is undertaken for the close-packing limit in which £ is kept small compared with the
vanishing gap € between almost-touching circular inclusions.

2.2. Analytical model

Consider a single cylindrical domain (centred at the origin, radius a) with Brinkman
screening length £, and shear viscosity xn (x is the viscosity ratio, which will be set to one
as prescribed in the foregoing computational model) in an unbounded continuous medium
with Brinkman screening length £ and shear viscosity n. Defining § = a/¢ and B, = a/{.,
scaling position with a, velocity with the Darcy velocity u. = P¢?/n and pressure with
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pe = nue/a = P02 /a, the (scaled) velocity and pressure have the forms (inside and outside
the cylinder)

u(r < 1) = {U/X — by — by [Io(ﬁcr) — Il(ﬂcr)]}x

IBCr
T (Ber) ] X -ee,, 2.7)

+ b2 [Io(ﬂcr) -2

p(r<1)=p2rby — DX - ey, 2.8)

and

u(r > 1) = {U/X—i—clﬁ |:K0(,Br) + Kl;fr)} - %}X

Iz

4 {2;2 —eip [Ko(ﬂr) NPt ”]}X erer, 2.9)

Br
pr> 1) = B2 (% - r) X-e. (2.10)

where e, = x/r. These forms of the velocity and pressure are deduced by considerations
of linearity (with respect to X), symmetry and fluid incompressibility (Batchelor 1967).
Substitution into Brinkman’s momentum- and mass-conservation equations furnishes
ordinary differential equations for the unknown scalar functions of radial position. These
furnish the modified Bessel functions (Ip, I;, Ko and K;) and integration constants (b1, by,
c1 and A). Accordingly, four independent linear algebraic relations are required to prescribe
a continuous velocity and stress at r = 1

I1 (,36)

K A
—bi — by [Io(ﬁc) - } =1 |:K0(,3) + lff“)} -5 (2.11)
b 16 ~ 2272 | 20 1 [y + 2552 | @12)

I (B¢ K
o | =n G+ 300 — 67 | —cup | ka8 - 3Ky — 64 | 4 61
(2.13)
1B
X {bz [ﬂch(ﬂc) — Slo(e) + 10%} — B2 (b1 — 1)}
B Ki(B) >

= cip | p1) + Ko + 8552 |~ toa- -y, @.14)

Integrating the (Newtonian) stress traction over the cylinder surface (r = 1) furnishes a
(dimensional) force (per unit length)

F =nn{p*> 4+ A2 — B*) — c1lB*Ki1(B) + BKo(B) + 2K1(B)1}U, (2.15)

where U = —P¢? /n is the far-field (undisturbed) fluid velocity, and c¢; and A are from
(2.11)—(2.14). This solution of Brinkman’s model for a permeable inclusion may now be
compared with prior solutions in more restricted regions of the parameter space.

972 A25-7
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For an impenetrable cylinder (8. >> 1), it can be shown that (2.15) reduces to

2K (ﬂ):| U
BKo(B)

which is the same as derived by Spielman & Goren (1968, (26)) using a streamfunction.
Note that 8 — 0 corresponds to viscous flow past a cylinder, which becomes subject to the
well-known Stokes’ paradox and inertial effects (Spielman & Goren 1968; Koch & Ladd
1997). For a large impenetrable cylinder (8. > > 1), we find

F = —2nnp’AU = 2nn B> [1 + (2.16)

F =2y B*U, (2.17)
which is the force from a Darcy flow
u=—*/n)Vp with V?p = 0. (2.18)

The analogy between scalar diffusion and Darcy flow, which arises from the Brinkman
model when 8 > 1 and B, > 1, will be drawn upon to assess the degree to which theories
for tracer diffusion may be applied to approximate the more general Brinkman model.
Next, similarly to the averaging undertaken by Hill (2022) for dilute arrays of spherical
inclusions, the averaged momentum counterpart for dilute arrays of cylindrical inclusions
(accurate only to leading order in ¢) is furnished by evaluating a surface integral of the
far-field pressure disturbance (dimensional) (the counterpart of the pressure dipole nAX =
nAp? in Hill’s paper is CXn/ 2. Moreover, in all of Hill’s formulas for the averaged fluxes
(not Hill’s equations (19) and (20)), CX is signed as minus that of the pressure-dipole

strength, whereas in Hill’s equations (19) and (20), CX is signed as the pressure dipole
strength)
Pr—>o0)=p—P-x=nAr"'X -¢,, (2.19)

where AX is a constant (dimensioned according to X).
For the cylindrical inclusions in the present two-dimensional geometry, Hill’s integral
(now on a per unit length basis) is

/ (re,Vp - e, — ple,)dA — —2mnAYU = 27AY 2P, (2.20)
r— 00
thus furnishing an averaged momentum equation (Hill 2022)
02 02
(u) = ——P[1 + $2AY (¢ /a)*] = ——P (1 + ¢$22), (2.21)
n n

where ¢ = nna* < 1 (n is the cylinder number density) and (dimensionless) A is from
(2.11)—(2.14). The (dimensionless) permeability increment (from (2.6)) is therefore

aup/ (/1) = 24. (2.22)

Note that (2.21) is the two-dimensional counterpart of Hill’s averaged momentum
equation for dilute arrays of spherical inclusions. The factor 2 in (2.22) is the counterpart
of Hill’s factor 3 for three dimensions. Comparing this analytical approximation with
direct numerical solutions of (2.3) and (2.4) on ordered and random periodic domains
(in the dilute limit), as undertaken in the next section, serves to validate the averaging
methodology (albeit in a two-dimensional framework) and provide insights into the
hydrodynamic interactions when ¢ is not sufficiently small.

972 A25-8


https://doi.org/10.1017/jfm.2023.664

https://doi.org/10.1017/jfm.2023.664 Published online by Cambridge University Press

Circular-inclusion-doped Brinkman media

(a) 10* b) 3
102 ~
PR N
S Il
= 100 &
o) T
o~ ~
= 3
102 3
104 k2 . . . . . -
102 10! 100 10! 102 102 10! 10° 10! 102
B=all B=all

Figure 3. Theoretical predictions of the Brinkman theory equation (2.21) for dilute arrays of permeable
cylindrical inclusions with 8. = a/€, = 0.01 (blue, bottom in (a) and top in (b)), 0.7 (red), 1, 2, 4, 8, 16, 32,
64, 128 (solid lines), oo (impenetrable cylinders, dashed lines, (2.16)) in a continuous Brinkman medium with
B =a/l. (a) Scaled drag force (per unit length) according to (2.15) and (b) scaled hydrodynamic permeability
increment according to (2.22). Dash-dotted line in (a) is the Darcy drag force for an impenetrable cylinder
according to (2.17).

3. Results

The analytical model, evaluated by solving (2.11)—(2.14) and substituting ¢; and A into
(2.15) and (2.22), is plotted in figure 3. Panel (a) shows the scaled drag force (per unit
length) according to (2.15) for several values of 8. = a/f.. The upper limit is bounded by
the Brinkman drag (for impenetrable inclusions, (2.16)), which approaches the Darcy drag
(large, impenetrable inclusions, (2.17)) when 8 2 10. Panel (b) shows the dimensionless
permeability increment, which vanishes at values for which there is zero permeability
contrast between the discrete and continuous phases. As expected, for inclusions that are
more permeable than the continuous phase, the increment is positive, reflecting an increase
in the permeability of the composite relative to its continuous phase, and vice versa.

Comparing direct numerical computations (for simple-square arrays of cylindrical
inclusions) with the forgoing analytical model in the dilute-inclusion limit tests the
averaging methodology underlying the theory of Hill (2022), albeit in a two-dimensional
context. As shown in figure 4(a), the analytical theory (solid lines) agrees well with the
direct numerical solutions (circles) when 8 = 1. Here, the numerical solutions in panel
(a) are undertaken with a small cylinder area fraction ¢ = 1/100. Under these conditions,
the agreement is excellent when 8 2 1. This is because the hydrodynamic interactions
of the cylinders are screened by the intervening Brinkman medium. This is expected
when the characteristic distance between the cylinders L — 2a = L(1 — \/4¢ /7)) 2 a with
B =a/t > 1. Thus, with ¢ = 1(a/L)> we find

¢<Sn/9~03, (B (3.1)

which is in reasonable accord with figure 4. Otherwise, when 8 < 1, the permeability is
subject to hydrodynamic interactions that are not addressed by the analytical theory. Here,
the accuracy of the finite-element computations may be tested, in part, by comparing
the permeability based on slow viscous flow through dilute simple-square arrays of
impenetrable cylinders.

Note that Koch & Ladd (1997) provide an analytical formula from the multipole
expansion of Sangani & Acrivos (1982) for the Stokes drag force per unit length on
simple-square arrays of aligned cylinders (flow parallel to the cylinder axes). Writing the
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Figure 4. Scaled hydrodynamic permeability increment for simple-square arrays of porous cylinders. Circles
are from finite-element computations, and solid lines are the Brinkman theory equation (2.22) for ¢ — 0.
Panel (a) shows B, = a/f. = 0.01 (blue), 1 (red), 2, 5, 10, 30 (cyan), 100 with L/a = 10 corresponding to
¢ ~ 0.0314. Dashed line is (3.4) for Stokes flow in dilute simple-square arrays of impenetrable cylinders. Panel
(b) shows L/a = 10 (blue), 5 (red), 2.5 (yellow) correspond to ¢ = 0.0314, 0.1257, 0.5027, respectively, with
Be = 0.1 (highly permeable inclusions).

average pressure gradient in terms of the cylinder number density and drag force per unit
length gives
¢

P=-—5F, (3.2)
Ta
thus furnishing
¢? ayp ¢
=—\(l4+—0¢)|—F 33
w n ( +€2/n¢) na? G-
and
2
1
oup _ T —. (3.4)
em ¢’ko @
where the drag coefficient (Koch & Ladd 1997)
4
ko = (3.5)

~ Z0.5log¢ — 0.738¢ + ¢ — 0.877¢% + 2.038¢3 + 0(@%)’

Equation (3.4), which is clearly not independent of ¢ as ¢ — 0, is plotted in figure 4(a)
as the dashed line to which the finite-element computations for impenetrable cylinders
(Bc 2 30) agree when B < 0.1. These conditions correspond to a highly permeable
continuous phase, thus mimicking the viscous flow underlying (3.4). Figure 4(b) compares
the finite-element computations for several cylinder area fractions, spanning the dilute to
concentrated range, when B. = 0.1, corresponding to highly permeable inclusions. For
reference, the line is (2.22) for the dilute limit. These results are consistent with (3.1),
also showing that the permeability is significantly enhanced by hydrodynamic interactions
when ¢ 2 0.3. This is explored in the section below by reference to finite-element
computations for random, non-overlapping-inclusion arrays.

Figure 5 shows streamlines for more permeable inclusions (8. = 1/100), at three
cylinder area fractions spanning the dilute to almost-touching limits with two
continuous-phase permeabilities. The close resemblance of the streamlines in panel (a)
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(a) ¢=0.0314

(b) ¢ =0.349

© $=0.712

Figure 5. Streamlines and |u| (colour map) for pressure-driven flows through simple-square arrays of
cylindrical inclusions in continuous Brinkman media: ¢ = 1/10% (a), /3% (b), /2.1% (c); B = 8 (left), 64
(right); B, = 1/100.

to their counterparts in panel (b) reflects hydrodynamic screening by the intervening
Brinkman medium. This screening is seen to break down in panel (c), where the
streamlines are increasingly aligned with the primary flow (i.e. less tortuous) throughout
the periodic unit cell.

Figure 6 focuses on the permeability increment with finite cavity area fractions spanning
the dilute to almost-touching limits. In both panels, the finite-element solutions are in good
agreement with the analytical model when ¢ < 0.1 and 8 2 1. The close-packing limit is
amenable to a thin-gap approximation (Batchelor & O’Brien 1977), furnishing the dashed
line in figure 6(b). As shown below, this approximation is valid in the limit where the
smallest gap between the cylinders € is large compared with £ as € — 0.
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Figure 6. Scaled hydrodynamic permeability increment for simple-square arrays of cylindrical inclusions
(Bc = a/t. = 1/100). Circles are finite-element computations, and solid lines are the Brinkman theory for
the dilute limit ¢ — 0. Panel (a) shows L/a = 10 (blue), 5 (red), 2.5 (yellow), 4, 3, 2.2 (cyan), 2.1 (red).
Panel (b) shows = a/l = 64 (blue), 8 (red), 4 (orange), 1, 1/32, 1/64 (cyan). Dashed line is the thin-wall
approximation, (3.8), for the closed-packed limit, as detailed further in figure 7.

In the close-packing limit where L — 2a and ¢ — 7/4, the smallest gap between the
inclusions is € = L —2a = L(1 — 4/4¢/m), and so the average volume flux through this
thin gap may be approximated as

21 [ d
U= —Ap——/ al (3.6)

nalo e+2a—2ay1— (x/a)?

where Ap &~ PL is the pressure differential across the gap, and « ~ L/2 = a. This formula
is derived similarly to Batchelor & O’Brien (1977) for perfectly conducting, random
spheres; here, the volume flux across the gap is taken to be a unidirectional Darcy flow
with local pressure gradient Ap/y(x), where y(x) > € is the gap thickness. In addition to
the cavity being highly permeable (8; < 1), the gap must be larger than the Brinkman
screening length for this approximation to hold, i.e. €/¢ = fe/a > 1. Expanding the
denominator of the integrand for small gaps, i.e. € /a < 1, gives a thin-wall approximation

2Ap 0% [ dx
U~ -2 — (3.7)
L nJo e+ax/a)—+...

which, upon integrating, and taking o//ae = L/~/4ae > 1, furnishes

ovp _ T Ja 1 1< elaxt 3.8)
e/n  ¢Ve ¢

As shown in figure 6(b), this provides a compelling upper bound on the permeability
in the close-packing limit. As expected by the quadratic approximation of the gap
under-estimating the gap, (3.8) over-predicts the permeability. Note that the requirement
for Be/a > 1 with € /a <« 1 places an increasingly stringent limit on the validity of (3.8)
as€/a — 0.

The accuracy of (3.8) is explored more rigorously in figure 7, where the permeability
increment is plotted versus the scaled gap €/a for three values of 8 = 1. The vertical lines
identify the area fractions at which € = a/f = £. Thus, the parameter space where ¢ < a
and ¢ < € is confined to the narrow windows where the abscissa € /a < 1, but with € /a still
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Figure 7. Scaled hydrodynamic permeability increment for simple-square arrays of cylindrical inclusions
(B = 1/100) in the close-packing limit, testing the validity of the thin-wall approximation, (3.8). Circles are
finite-element computations, and the solid line is (3.8), valid for 1/8 <« €/a < 1: B = 256 (blue), 64 (red) 32
(yellow). Vertical lines identify € /a = 1/ = £/a (colours matched to the respective values of ).

Figure 8. Streamlines and |u| (colour map from blue to red identifies increasing fluid speed) for
pressure-driven flow through a simple-square array of highly permeable cylindrical inclusions in a
low-permeability, continuous Brinkman medium: ¢ = 1/2.005% ~ 0.7815, 8 = 256, . = 1/100.

well to the right of the vertical lines. This is clearly best achieved in the close-packing limit
with 8 = 256 (blue). Such calculations demand highly refined finite-element meshes. An
example of the streamlines and velocity magnitude in such an array is shown in figure 8.
Here, the fastest flowing fluid is ostensibly localized to the small almost-touching regions
at poles that are aligned along the primary flow direction.
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o 0.104 0.196 0.349 0.503

N 16 16 16 16

L 22 16 12 10

n 3 3 3 3
B=ua/t=10,B. =ajt.=1/10

(m) 0.01220 0.0149 0.0211 0.0309

(s.d.) 7.64 x 1073 1.49 x 1074 1.08 x 1073 1.13 x 1073

(ci) [0.0120, 0.0124] [0.0145, 0.0152] [0.0184, 0.0237] [0.0281, 0.0337]

(SS) 0.01218 (p ~ 0.66)  0.0146 (p ~ 0.083)  0.0199 (p ~ 0.22)  0.0287 (p ~ 0.083)

(dilute theory)  0.01197 (p ~ 0.033)  0.0137 (p ~ 0.0057)  0.0166 (p ~ 0.019)  0.0195 (p ~ 0.0033)
B=a/l=2 B =allc=1/10

(m) 0.2895 0.332 0.423 0.556
(s.d.) 9.17 x 1074 1.36 x 1073 7.49 x 1073 5.31 x 1073
(c.i) [0.287,0.291] [0.329, 0.335] [0.404, 0.441] [0.543, 0.570]
(SS) 0.289 (p ~ 0.40) 0.329 (p ~ 0.075) 0.414 (p ~ 0.20) 0.545 (p ~ 0.063)

(dilute theory)  0.281 (p ~ 0.0043)  0.309 (p ~ 0.0012)  0.356 (p ~ 0.0041)  0.402 (p =~ 0.00039)
B=a/l=2,B=all.=1]2

(m) 0.286 0.323 0.403 0.514
(s.d.) 7.63 x 1074 2.39 x 1073 5.88 x 1073 3.91 x 1073
(ci.) [0.284, 0.288] [0.317, 0.329] [0.388, 0.417] [0.505, 0.524]
(SS) 0.285 (p ~ 0.45) 0.322 (p ~ 0.53) 0.397 (p ~ 0.21) 0.506 (p ~ 0.065)

(dilute theory) ~ 0.279 (p ~ 0.0039)  0.305 (p ~ 0.0057)  0.347 (p ~ 0.0037)  0.390 (p ~ 0.00033)
B =a/t =10, B, = a/l, = 100

(m) 0.0077 0.0059 0.0036 0.0020
(s.d.) 9.8 x 107 1.7 x 10~* 5.6x 1074 3.2 x 1074
(i) [0.008, 0.0075] [0.0055, 0.0064] [0.0022, 0.0055] [0.0012, 0.0028]
(SS) 0.0078 (p ~ 0.21)  0.0063 (p ~ 0.079)  0.0042 (p ~ 0.21)  0.0012 (p ~ 0.065)

(dilute theory)  0.0076 (p ~ 0.11) 0.0054 (p ~ 0.036)  0.0019 (p ~ 0.033) 0.0044 (p ~ 0.0025)

Table 1. Statistical analysis of the average fluid velocity (i) (scaled with —Pa? /n) in ordered (simple square,
SS) and random arrays (square periodic unit cell, size L, N cylindrical inclusions) with inclusion area fraction
¢: ensemble mean (m), ensemble standard deviation (s.d.), Student’s ¢ distribution 95% confidence interval
(c..) for v = n — 1 degrees of freedom; p-values in parentheses reference the null hypothesis that the ensemble
mean equals the SS or dilute-theory counterpart.

Finite-element meshes for the simple-square arrays above were explicitly refined
in the interfacial regions. In general, calculations in the dilute- and close-packing
limits were most demanding. Inadequately refined meshes in the dilute limit failed to
produce convergence, or converged to an ostensibly incorrect solution. Bounds on the
element sizes, particularly in the interfacial regions, were prescribed according to the
specific values of 8 and a/L. Accuracy was assessed by ensuring that numerical results
were invariant to at least three significant figures upon doubling the mesh resolution.
Numerical integration to furnish the volume-averaged velocity underlying the permeability
calculations was undertaken using standard integration functions within the COMSOL
finite-element framework. It was necessary to adopt linear basis functions for the pressure
to mitigate spurious, large-amplitude spatial oscillations at the mesh length scale.

3.1. Random arrays

To address hydrodynamic interactions in more detail, computations of flows in
simple-square arrays of cylindrical inclusions and ensembles of their periodic,

972 A25-14


https://doi.org/10.1017/jfm.2023.664

https://doi.org/10.1017/jfm.2023.664 Published online by Cambridge University Press

Circular-inclusion-doped Brinkman media

(b)

~
)
~

Figure 9. Streamlines and |u| (colour map from blue to red identifies increasing fluid speed) for
pressure-driven flow through periodic, random arrays of highly permeable cylindrical inclusions in
low-permeability, continuous Brinkman media: 8 = a/¢ = 10, B, = a/l. = 1/10 (Darcy-like flow in the
continuous phase); ¢ ~ 0.104 (a), 0.196 (b), 0.349 (¢) and 0.503 (d).

non-overlapping random counterparts were undertaken. Ensembles with cylinder area
fractions ¢ < 0.55 were generated using a random-insertion Monte—Carlo algorithm
with periodic boundary conditions and hard-sphere interaction potential. A summary
of these computations with statistical hypothesis tests against theoretical formulas
and computations for their periodic, ordered counterparts is provided in table 1.
The random-insertion approach fails at higher area fractions, since the probability of
accepting trail insertions becomes vanishing small. This motivates the swelling and
displacement trials undertaken in a code provided by Dr A. Zinchenko (modified from
its three-dimensional counterpart of Zinchenko & Davis (2008)) applied here for the
ensemble with ¢ =~ 0.621.

To mitigate periodic artefacts, square domains containing N = 16 cylinders with

area fractions in the range ¢ = Nw(a/L)*> ~ 0.104-0.621 were adopted to target a
972 A25-15
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Figure 10. The same as figure 9 but with 8 = a/¢ = 10, . = a/€, = 100 (Darcy-like flow in the continuous
and discrete phases). Here, ¢ ~ 0.104 (a), 0.196 (), 0.349 (¢) and 0.503 (d).

domain size L ~ 4 times the characteristic cylinder separation a+/m/¢. For reference, in
their Stokesian-dynamics inspired calculations of the effective conductivity of random
suspensions of spherical particles, Bonnecaze & Brady (1990) reported that N = 20
spheres (in a cubic domain) were required (at a volume fraction ¢ = 0.4) to furnish
domain-size-independent results; this corresponds to a domain size L that is only

approximately 20'/3 a2 2.7 times the characteristic sphere separation a[4m/(3¢)]"/>.
Representative flows are shown in figure 9 for highly permeable inclusions (B, =
a/l. = 1/10) in a low-permeability continuous phase (8 = a/¢ = 10) with n. = n. These
highlight an increasing propensity of the flow with increasing inclusion concentration to
connect inclusions in the principal flow direction (co-linear with P along the x-axis).

The statistical hypothesis testing in table 1 indicates negligible differences (p = 0.05)
between the permeabilities for ordered arrays and their random counterparts, as might
be expected based on differences between the self-consistent random and simple-square
Rayleigh formulas being O(¢>). On the other hand, there are significant differences (p <
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Figure 11. Average streamwise component of the velocity (scaled with —P¢2/n) in simple-square (squares)
and random (circles) arrays vs the cylindrical-inclusion area fraction: (a) 8 = a/¢ = 10, B. = a/l. = 1/10;
DYB=a/t=2,B=all.=1/10;(c) B =a/l =2,B. =a/l. =1/2;(d) B =a/t =10, B, = a/l, = 100.
Error bars identify the Student’s ¢ distribution 95 % confidence interval on each estimate of the ensemble mean
(see table 1). Red lines are Rayleigh formulas evaluated with the Darcy permeability ratio equation (3.10); blue
lines are the Rayleigh formulas evaluated with an effective permeability ratio according to (3.11). Black lines
are the dilute Brinkman theory equation (2.21).

0.05) revealed between the computations for random arrays and the dilute theory. Note that
this does not reflect a failure of the dilute theory, but is rather evidence of the statistical
testing being able to discriminate 0(¢>2) differences between the computations and O(¢)
dilute theory.

The ensemble-averaged fluid velocity (scaled with the Darcy velocity —P¢2/n) is plotted
as a function of the cylinder area fraction in figure 11(a) (circles). Error bars are the
Student’s ¢ distribution 95 % confidence interval on each estimate of the ensemble mean
from n = 3 random configurations. The notably larger fluctuations when ¢ > 0.3 appear to
reflect channelling (through the network of permeable inclusions), percolating the periodic
unit cells. These fluctuations are much weaker when there is smaller permeability contrast,
as demonstrated by the cases in panels (b,c). When the inclusion permeability is low, there
are notably larger fluctuations at intermediate area fractions, as demonstrated in panel (d)
with 8. = 100. As revealed in figure 10, this reflects tortuous channelling through the
continuous phase, as highlighted in panel (c) with ¢ ~ 0.349.

Figure 11(a) demonstrates that the effective permeabilities for media with £/a = 0.1 K
1 are well approximated by the self-consistent Rayleigh model (blue line) for which the
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Figure 12. Streamlines and |u| (colour map from blue to red identifies increasing fluid speed) for
pressure-driven flow of a dilute (¢ = 0.104) random array of cylindrical inclusions with shear-viscosity contrast
in uniform Brinkman media: (a) n./n =0.1, 8. = B = 10; (b) n./n =10, B. = B = 10; (¢) n./n = 0.1,
Be =B =1, n:/n =10, B. = B = 1. Statistics from these flows are summarized in figure 13.

reduced effective scalar diffusivity D, /D is readily modified to furnish a reduced effective
permeability

Cme  1—¢(1—a)/(1 +a) . 2
2 - Tte(—a/ita P Tre TO@D: (3.9)
where
_ /e
T2 (3.10)

is the conductivity/diffusivity ratio modified for Darcy hydrodynamics. Recall, the analogy
between Darcy flow and scalar diffusion reflects the mass and tracer fluxes being
proportional to gradients of pressure and concentration, respectively.

The lines referenced in figure 11 with the descriptor ‘Brinkman’ are calculated
by enforcing an equality of the dilute limits (¢ — 0) for the effective hydrodynamic
(‘Brinkman’, (2.21)) and conduction/diffusion (‘Rayleigh’, (3.9)) theories, thus furnishing

A+1

=1—71 (3.11)

Figure 11 also shows Rayleigh’s calculation of the effective conductivity/diffusivity for
square arrays, as reported in Bird ez al. (2002, (9.6-4)), here with ¢ = (£, /0)? (‘Rayleigh’)
and according to (3.11) (‘Brinkman’). As expected, o = (£, /6)2 furnishes a reasonable
approximation when flow in the continuous phase may be approximated as Darcy flow,
ie. B =a/l > 1, as illustrated in figure 11(a) and the respective flows in figure 9. Panels
(b,c) demonstrate a breakdown of the scalar-diffusion analogy. Here, the self-consistent
and square-array formulas based on (3.11) are much improved over their (‘Darcy’ flow)
counterparts with o = (£./£)2, but still depart significantly from the computations when
¢ 2 0.1. As already noted, the differences between the computations for ordered and
random arrays are qualitatively similar to those between the Rayleigh formulas for
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Figure 13. Statistics of the streamwise velocity (scaled with —P¢2 /) for pressure-driven flow of a dilute
(¢ = 0.104) random array of cylindrical inclusions with shear-viscosity contrast in uniform Brinkman
media. Parameters: (a) n./n = 0.1, B = B = 10; (b) nc/n =10, B = B =10; (¢c) nc/n =0.1, e =B = 1;
(d) ne/n =10, B. = B = 1. Here, (-) and (-). denote area averages over the entire domain and over the
cylinder/discrete phase, respectively.

simple-square and random arrays. This echoes inferences above that Brinkman screening
of the hydrodynamic interactions (when 8 = a/¢ > 1 and ¢ < 0.3) makes the effective
hydrodynamic permeability relatively insensitive to microstructural order, perhaps also
explaining why the confidence intervals in table 1 and figure 9 are generally small.
Finally, figure 12 shows flows in a dilute (¢ ~ 0.104) random array, computed with four
combinations (cases a—d) of shear viscosities and uniform permeability, i.e. £ = €., as
detailed in the caption. Here, the non-uniform fluid viscosity imparts notable fluid-velocity
fluctuations, some statistics of which are compared in figure 13. Note that it is not presently
clear if or how such model predictions — in this perhaps obscure region of the parameter
space — should be applied to physical systems. Nevertheless, the fluid velocity and its
fluctuations might inform, e.g., on the initial stage of displacing a dispersed/segregated
fluid through a uniform porous medium. Circular domains must serve as two-dimensional
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approximations of spherical drops or bubbles having a low/vanishing surface tension, or as
Hele-Shaw flow with appropriate prescription of the shear viscosities and permeabilities
(Batchelor 1967). Note that the drops or bubbles in this context are envisioned to
wet/permeate the porous medium in the same manner as the continuous phase, thus
demandinga = ¢,i.e. B. = B 2 1, as might be achieved by micro- or macro-scale bubbles
or drops in a hydrogel (Haudin ez al. 2016). Circular and spherical phases are expected from
nucleation and growth, upon which a pressure gradient may initiate flow, thus inducing
translation and deformation. If such a flow were sufficiently slow, then the velocity fields
from the Brinkman model might be considered quasi-static snapshots of the dispersed
phase translating through the porous medium. The contrasting viscosities then control the
relative velocity of the discrete and continuous phases, inducing hydrodynamic dispersion.
The underlying forces and velocities may also inform how susceptible the dispersed phase
is to flow-induced deformation and dispersion.

Note that the average velocities (u,) in figure 13 are scaled with the continuous-phase
Darcy velocity (—P¢?/n), the magnitude of which varies considerably with the large
changes in the permeability (82 = 2 = 10 and 1). The averaged streamwise velocities
from the direct computations (blue bars) are in good agreement with the dilute Brinkman
theory (2.21) (red bars), as to be expected based on the low dispersed-phase area fraction.
The average velocity of the dispersed phase relative to the medium average (uy). — (uy)
(orange bars) has a direction/sign and magnitude that varies considerably with the
shear-viscosity contrast and medium permeability; low permeability (cases a,b) clearly
accentuates the magnitudes, which are significant. As expected from the flows visualized
in figure 12, the (root mean squared) velocity fluctuations within the medium as a whole
(violet) have respectable magnitudes. Further analysis, perhaps in a three-dimensional
context with consideration of interfacial tension, should be undertaken in a future study.

4. Summary

The momentum averaging proposed by Hill (2022) for pressure- and electric-field-driven
flows in electrolyte-saturated cavity-doped hydrogels has been tested in a two-dimensional
hydrodynamic computational framework. Whereas Hill’s theory for spherical inclusions
furnished a pre-factor of the pressure dipole equal to 3 for spherical inclusions, by a
similar analytical calculation, this factor was shown to be 2 for cylindrical inclusions
(two-dimensional counterpart). The analytical averaging of the momentum in two
dimensions was verified by comparison with direct numerical calculations of the flow
in periodic unit cells when the cavity area fraction ¢ < 1. Such comparisons identified
the parameter space (¢, . = a/l., B = a/f) in which the analytical averaging breaks
down due to hydrodynamic interactions at finite cavity area fractions. However, even
for highly permeable inclusions (8. <« 1) with continuous-phase permeabilities that
are representative of real porous solids (8 > 1), the hydrodynamic interactions are
weak due to Brinkman screening, so the analytical theory (for two dimensions, and,
by inference/speculation, for the three-dimensional counterpart) provides a reasonable
approximation of the effective permeability when ¢ < 0.3 and B 2 1. Computations
were undertaken for random ensembles, systematically varying the inclusion area
fraction, comparing with computations for ordered arrays and Rayleigh’s self-consistent
approximation evaluated using the single-inclusion disturbances for Darcy and Brinkman
flows. The self-consistent Rayleigh approximations based on the Brinkman disturbance
improved correspondence with computations, but still failed to adequately capture the
hydrodynamic interactions when 8 = a/¢ < 10 and ¢ 2 0.3. The random velocity fields
arising from shear-viscosity contrast in Brinkman media with uniform permeability
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¢ were considered very briefly. These might inspire future studies of dispersion in
three dimensions, accounting for interfacial tension between the phases with contrasting
viscosity. The present study, which was conducted in a purely hydrodynamic context,
sets the stage for computations of electrokinetic transport in such media (structured
polyelectrolytes). These will be reported elsewhere in the context of ion conduction,
as probed experimentally, and interpreted empirically, using impedance spectroscopy at
frequencies into the megahertz range.
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