A REFINED WARING PROBLEM FOR FINITE SIMPLE GROUPS

MICHAEL LARSEN ${ }^{1}$ and PHAM HUU TIEP ${ }^{2}$
${ }^{1}$ Department of Mathematics, Indiana University, Bloomington, IN 47405, USA; email: mjlarsen@indiana.edu
${ }^{2}$ Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA;
email: tiep@math.arizona.edu

Received 28 July 2014; accepted 23 February 2015

Abstract

Let w_{1} and w_{2} be nontrivial words in free groups $F_{n_{1}}$ and $F_{n_{2}}$, respectively. We prove that, for all sufficiently large finite nonabelian simple groups G, there exist subsets $C_{1} \subseteq w_{1}(G)$ and $C_{2} \subseteq$ $w_{2}(G)$ such that $\left|C_{i}\right|=O\left(|G|^{1 / 2} \log ^{1 / 2}|G|\right)$ and $C_{1} C_{2}=G$. In particular, if w is any nontrivial word and G is a sufficiently large finite nonabelian simple group, then $w(G)$ contains a thin base of order 2. This is a nonabelian analog of a result of Van Vu ['On a refinement of Waring's problem', Duke Math. J. 105(1) (2000), 107-134.] for the classical Waring problem. Further results concerning thin bases of G of order 2 are established for any finite group and for any compact Lie group G.

2010 Mathematics Subject Classification: 20C33 (primary); 20D06 (secondary)

1. Introduction

Let F_{n} denote the free group in n generators and $w \in F_{n}$ a nontrivial element. For every group G, the word w induces a function $G^{n} \rightarrow G$, which we also denote w. In joint work with Aner Shalev [LS2, LST], the authors proved that, if G is a finite simple group whose order is sufficiently large in terms of w, then $w\left(G^{n}\right)$ is a basis of order 2 ; that is, every element of G can be written as the product of two elements of $w\left(G^{n}\right)$. In particular, for any positive integer m, the m th powers in G form a basis of order 2 for all sufficiently large finite simple groups; this example explains the use of the term 'Waring problem' in the title of this paper.

[^0]The refinement we have in mind is indicated by a result of $\mathrm{Van} \mathrm{Vu}[\mathrm{Vu}]$ on the classical Waring problem. Vu observed that the m th powers in the set \mathbb{N} of natural numbers form a thick basis of sufficiently large order s, in the sense that the number of representations of $n \in \mathbb{N}$ as a sum of $s m$ th powers grows polynomially with n. He proved that the m th powers contain thin subbases of order s, that is, subsets X for which every element of \mathbb{N} can be written as a sum of s elements of X, but the growth of the number of representations is logarithmic. He asked one of us if there is an analogous result in the group-theoretic setting, that is, if $w\left(G^{n}\right)$ contains a thin subbase of order 2 . The main result of this paper gives an affirmative answer to this question; in fact, the growth of the average number of representations of $g \in G$ is $O(\log |G|)$.

More precisely, our result is as follows. We state it asymmetrically, that is, in the more general case that we have two possibly different words w_{1} and w_{2} instead of a single word w.

THEOREM 1.1. Let w_{1} and w_{2} be nontrivial words in free groups $F_{n_{1}}$ and $F_{n_{2}}$, respectively. For all sufficiently large finite nonabelian simple groups G, there exist subsets $C_{1} \subseteq w_{1}(G)$ and $C_{2} \subseteq w_{2}(G)$ such that $\left|C_{i}\right|=O\left(|G|^{1 / 2} \log ^{1 / 2}|G|\right)$ and $C_{1} C_{2}=G$.

It is known that, for many words w, we have $w\left(G^{n}\right)=G$ for all G sufficiently large. For instance, the commutator word in F_{2} satisfies this equality for all finite simple G; see [EG], [LBST]. In this case, we are looking for a thin subbase of G itself, and we prove that such order-2 subbases X_{G} exist, not merely for finite simple groups but for all finite groups, where the average number of representations of G as a product of two elements in X_{G} is $O(1)$ as $|G| \rightarrow \infty$; see Corollary 5.4. We conclude with an analogous result for compact Lie groups; see Proposition 6.4 and Theorem 6.5.

2. The probabilistic method

Given subsets X and Y of a finite group G with $X Y=G$, we would like to find subsets $X_{0} \subseteq X$ and $Y_{0} \subseteq Y$ such that $X_{0} Y_{0}$ is still all of G, while $\left|X_{0}\right|\left|Y_{0}\right|$ is only slightly larger than $|G|$. In this section, we show that appropriately large random subsets $X_{0} \subseteq X$ and $Y_{0} \subseteq Y$ usually have the property that $X_{0} Y_{0}$ includes every element of G that has many representations of the form $x y, x \in X, y \in Y$.

Lemma 2.1. Let a, b, n be positive integers, N a set of cardinality $n, A \subseteq N a$ fixed subset of cardinality a, and $B \subseteq N$ a random subset chosen uniformly from
all b-element subsets of N. Then

$$
\operatorname{Pr}[A \cap B=\emptyset] \leqslant e^{-a b / n}
$$

Proof. The statement is trivial if $a+b>n$, so we assume that $a+b \leqslant n$. The probability that $A \cap B=\emptyset$ is

$$
\begin{aligned}
\frac{\binom{n-a}{b}}{\binom{n}{b}} & =\frac{(n-a)!(n-b)!}{n!(n-a-b)!}=\frac{(n-a)(n-a-1) \cdots(n-a-b+1)}{n(n-1) \cdots(n-b+1)} \\
& \leqslant(1-a / n)^{b} \leqslant e^{-a b / n}
\end{aligned}
$$

The following lemma gives a somewhat cruder but more general estimate than Lemma 2.1.

LEMMA 2.2. Let a, b, n be positive integers, N a set of cardinality $n, A \subseteq N a$ fixed subset of cardinality a, and $B \subseteq N$ a random subset chosen uniformly from all b-element subsets of N. Then

$$
\operatorname{Pr}\left(|A \cap B| \leqslant \frac{a b}{e^{2} n}\right) \leqslant(2.2) e^{-5 a b / 2 e^{2} n}
$$

Proof. Assume that $\max (a+b-n, 0) \leqslant k \leqslant \min (a, b)$ so that k is a possible size for $A \cap B$. For $k>0$ we have $k!>(k / e)^{k}$, and so the probability that $|A \cap B|=k$ is

$$
\begin{aligned}
\frac{\binom{a}{k}\binom{n-a}{b-k}}{\binom{n}{b}} & =\frac{a!b!(n-a)!(n-b)!}{k!(a-k)!(b-k)!n!(n-a-b+k)!} \\
& =\frac{b \cdots(b-k+1) a \cdots(a-k+1)}{k!} \frac{(n-a) \cdots(n-a-b+k+1)}{n \cdots(n-k+1)} \\
& <\frac{b^{k}}{(k / e)^{k}} \frac{a^{k}}{n^{k}} \frac{(n-a)^{b-k}}{(n-k)^{b-k}} \leqslant \frac{(a b / n)^{k}}{(k / e)^{k}} \exp \left(-\frac{(b-k)(a-k)}{n-k}\right) \\
& =\exp (f(k))
\end{aligned}
$$

where

$$
f(x):=x+x \log a b / n-x \log x-g(x), \quad g(x):=(a-x)(b-x) /(n-x)
$$

Let $r:=a b / e^{2} n \leqslant \min \left(a / e^{2}, b / e^{2}\right)$. Then, when $0<x \leqslant r$, we have $f^{\prime}(x)>2$, and so $f(x)$ is increasing on $(0, r]$, and $f(x)-f(x-1)>2$ when $1<x \leqslant r$. Also,

$$
g(r) \geqslant \frac{a b\left(1-e^{-2}\right)^{2}}{n}>5.5 r, \quad f(r)=3 r-g(r)<-2.5 r
$$

It follows that

$$
\begin{aligned}
\operatorname{Pr}(0<|A \cap B| \leqslant r) & \leqslant \sum_{i=1}^{\lfloor r\rfloor} \exp (f(i))<\frac{1}{1-e^{-2}} \exp (f(r)) \\
& <\frac{e^{-2.5 r}}{1-e^{-2}}<(1.2) e^{-2.5 r} .
\end{aligned}
$$

Together with Lemma 2.1, this implies the claim.
Proposition 2.3. Let $c>0$ be a constant, and let X, Y, and Z be subsets of a finite group G such that, for all $z \in Z$,

$$
|\{(x, y) \in X \times Y \mid x y=z\}| \geqslant \frac{c|X||Y|}{|G|}
$$

Let $x_{0} \leqslant|X|$ and $y_{0} \leqslant|Y|$ be positive integers such that

$$
x_{0} y_{0} \geqslant\left(2 e^{2} / c\right)|G| \log |G| .
$$

Then there exist subsets $X_{0} \subseteq X$ and $Y_{0} \subseteq Y$, with x_{0} and y_{0} elements, respectively, such that $X_{0} Y_{0} \supseteq Z$.

Proof. Let n denote the order of G, which we may assume is at least 2 . We choose X_{0} and Y_{0} at random independently and uniformly from the subsets of X of cardinality x_{0} and the subsets of Y of cardinality y_{0}, respectively. It suffices to prove that, for each $z \in Z$, the probability that $z \in X_{0} Y_{0}$ is more than $1-1 / n$. (Indeed, in this case the probability that $X_{0} Y_{0}=G$ is larger than $1-n / n=0$; that is, $X_{0} Y_{0}=G$.) Let S_{z} denote the set of pairs (x, y) $\in X \times Y$ such that $x y=z$, and let π_{X} and π_{Y} denote the projection maps from $X \times Y$ to X and Y, respectively. We want to prove that the probability that $\pi_{Y}^{-1}\left(Y_{0}\right) \cap \pi_{X}^{-1}\left(X_{0}\right) \cap S_{Z}$ is nonempty is more than $1-1 / n$.

As G is a group, the restrictions of π_{X} and π_{Y} to S_{z} are injective, so

$$
\begin{gathered}
\left|\pi_{X}^{-1}\left(X_{0}\right) \cap S_{z}\right|=\left|\pi_{X}\left(S_{z}\right) \cap X_{0}\right|, \\
\left|\pi_{Y}^{-1}\left(Y_{0}\right) \cap \pi_{X}^{-1}\left(X_{0}\right) \cap S_{z}\right|=\left|\pi_{Y}\left(\pi_{X}^{-1}\left(X_{0}\right) \cap S_{z}\right) \cap Y_{0}\right| .
\end{gathered}
$$

It suffices to prove that the probability that $\pi_{X}\left(S_{z}\right) \cap X_{0}$ has at least $\left(x_{0}\left|S_{z}\right|\right) /\left(e^{2}|X|\right)$ elements is at least $1-1 / 2 n$, and that the conditional probability that $\pi_{Y}\left(\pi_{X}^{-1}\left(X_{0}\right) \cap S_{z}\right) \cap Y_{0}$ is nonempty given that

$$
\begin{equation*}
\left|\pi_{X}\left(S_{z}\right) \cap X_{0}\right| \geqslant \frac{x_{0}\left|S_{z}\right|}{e^{2}|X|} \tag{2.1}
\end{equation*}
$$

is at least $1-1 / 2 n$.

By hypothesis,

$$
\frac{\left|X_{0}\right|\left|\pi_{X}\left(S_{z}\right)\right|}{|X|}=\frac{x_{0}\left|S_{z}\right|}{|X|} \geqslant \frac{c x_{0}|Y|}{n} \geqslant \frac{c x_{0} y_{0}}{n} \geqslant 2 e^{2} \log n .
$$

By Lemma 2.2, the probability that

$$
\left|X_{0} \cap \pi_{X}\left(S_{z}\right)\right|=\left|\pi_{X}^{-1}\left(X_{0}\right) \cap S_{z}\right| \leqslant \frac{x_{0}\left|S_{z}\right|}{e^{2}|X|}
$$

is at most $2.2 / n^{5}<1 / 2 n$. If (2.1) holds, then

$$
\frac{\left|Y_{0}\right|\left|\pi_{X}^{-1}\left(X_{0}\right) \cap S_{z}\right|}{|Y|} \geqslant \frac{x_{0} y_{0}\left|S_{z}\right|}{e^{2}|X||Y|} \geqslant \frac{2 n \log n\left|S_{z}\right|}{c|X||Y|} \geqslant 2 \log n .
$$

By Lemma 2.1, the probability of Y_{0} being disjoint from a subset of Y of cardinality at least $\left(x_{0}\left|S_{z}\right|\right) /\left(e^{2}|X|\right)$ is at most $1 / n^{2} \leqslant 1 / 2 n$.

Corollary 2.4. Let w_{1} and w_{2} be two nontrivial words, and let S be a finite simple group. To prove Theorem 1.1 for $\left(w_{1}, w_{2}, S\right)$, it suffices to show that there exist subsets $X \subseteq w_{1}(S), Y \subseteq w_{2}(S)$, and a subset $S_{1} \subset S$ of cardinality at most $|S|^{1 / 2}$, such that the following hold.
(i) $w_{1}(S) w_{2}(S)=S$.
(ii) $|\{(x, y) \in X \times Y \mid x y=g\}| \geqslant \frac{|X| \cdot|Y|}{2|S|}$ for all $g \in S \backslash S_{1}$.
(iii) $|X|,|Y| \geqslant 2 e|S|^{1 / 2} \log ^{1 / 2}|S|$.

Proof. Choose $x_{0}=y_{0}:=\left\lfloor 2 e|S|^{1 / 2} \log ^{1 / 2}|S|\right\rfloor$ (note that we still have $x_{0} \leqslant|X|$ and $\left.y_{0} \leqslant|Y|\right)$. By Proposition 2.3 with $c=1 / 2$, there exist subsets $X_{0} \subseteq X$ and $Y_{0} \subseteq Y$ with $X_{0} Y_{0} \supseteq S \backslash S_{1},\left|X_{0}\right|=x_{0}$, and $\left|Y_{0}\right|=y_{0}$. For each $z \in S_{1}$, by (i) there exists $\left(x_{z}, y_{z}\right) \in w_{1}(S) \times w_{2}(S)$ such that $z=x_{z} y_{z}$. Now set

$$
C_{1}:=X_{0} \cup\left\{x_{z} \mid z \in S_{1}\right\}, \quad C_{2}:=Y_{0} \cup\left\{y_{z} \mid z \in S_{1}\right\} .
$$

Corollary 2.5. If x_{0} and y_{0} are integers in $[1,|G|]$ such that $x_{0} y_{0}>$ $2 e^{2}|G| \log |G|$, then there exist subsets X_{0} and Y_{0} of G of cardinality x_{0} and y_{0}, respectively, such that $X_{0} Y_{0}=G$.

Proof. Set $X=Y=Z:=G$ and $c=1$ in Proposition 2.3.

Corollary 2.6. There exists a square root R of G, that is, a subset such that $R^{2}=G$, with $|R| \leqslant 2^{1 / 2} e|G|^{1 / 2} \log ^{1 / 2}|G|$.

In fact, we will show that G has a square root of size $O\left(|G|^{1 / 2}\right)$; see Corollary 5.4. Analogs of this result for compact Lie groups will be proved in Section 6; cf. Proposition 6.4 and Theorem 6.5.

3. Simple groups of Lie type

In what follows, we say that S is a finite simple group of Lie type of rank r defined over \mathbb{F}_{q} if $S=\mathcal{G}^{F} / \mathbf{Z}\left(\mathcal{G}^{F}\right)$ for a simple simply connected algebraic group \mathcal{G} over \mathbb{F}_{q}, of rank r, and a Steinberg endomorphism $F: \mathcal{G} \rightarrow \mathcal{G}$, with q the common absolute value of the eigenvalues of F on the character group of an F-stable maximal torus \mathcal{T} of \mathcal{G}. In particular, this includes the Suzuki-Ree groups, for which q is a half-integer power of 2 or 3 . By slight abuse of terminology, we will say that an element $s \in S$ is regular semisimple if some inverse image of s is so in \mathcal{G}^{F}.

The aim of this section is to prove the following theorem.
Theorem 3.1. Let w_{1} and w_{2} be two nontrivial words. Then there is $N=N$ $\left(w_{1}, w_{2}\right)$ with the following property. For any finite nonabelian simple group S of Lie type of order at least N, there exist conjugacy classes $s_{1}^{S} \subseteq w_{1}(S)$, $s_{2}^{S} \subseteq w_{2}(S)$, and a subset $S_{1} \subset S$ of cardinality at most $|S|^{1 / 2}$, such that the following hold.
(i) $w_{1}(S) w_{2}(S)=S$.
(ii) $\left|\left\{(x, y) \in s_{1}^{S} \times s_{2}^{S} \mid x y=g\right\}\right| \geqslant \frac{\left|s_{1}^{S}\right| \cdot\left|s_{2}^{S}\right|}{2|S|}$ for all $g \in S \backslash S_{1}$.
(iii) $\left|s_{i}^{S}\right| \geqslant 4 e|S|^{1 / 2} \log ^{1 / 2}|S|$.

Note that condition (i) follows from the main result of [LST], and (ii) is equivalent to

$$
\begin{equation*}
\left|\sum_{1 s \neq \chi \in \operatorname{Irr}(S)} \frac{\chi\left(s_{1}\right) \chi\left(s_{2}\right) \bar{\chi}(g)}{\chi(1)}\right| \geqslant \frac{1}{2}, \quad \forall g \in S \backslash S_{1} . \tag{3.1}
\end{equation*}
$$

Also, Theorem 3.1 and Corollary 2.4 immediately imply Theorem 1.1 for sufficiently large nonabelian simple groups of Lie type.

First we recall the following consequence of [La, Proposition 7].

LEMMA 3.2. For any r_{0} and any nontrivial word $w \neq 1$, there exists a constant $c=c\left(w, r_{0}\right)$ such that

$$
|w(S)| \geqslant c|S|
$$

for all finite simple group S of Lie type of rank $\leqslant r_{0}$.

Corollary 3.3. For any r_{0} and any nontrivial word $w \neq 1$, there exists a constant $Q=Q\left(w, r_{0}\right)$ such that
(i) $w(S)$ contains a regular semisimple element s and
(ii) $\left|x^{S}\right| \geqslant 4 e|S|^{1 / 2} \log ^{1 / 2}|S|$ for any regular semisimple element $x \in S$
for all finite simple groups S of Lie type of rank $\leqslant r_{0}$ defined over \mathbb{F}_{q} with $q \geqslant Q$.
Proof. According to [GL, Theorem 1.1], the proportion of regular semisimple elements in S defined over \mathbb{F}_{q} is more than $1-f(q)$, with

$$
f(q):=\frac{3}{q-1}+\frac{2}{(q-1)^{2}}
$$

Applying Lemma 3.2 and choosing Q so that $f(Q)<c\left(w, r_{0}\right)$, we see that $w(S)$ contains a regular semisimple element s whenever the rank of S is at most r_{0} and $q \geqslant Q$.

Next, view S as $G / \mathbf{Z}(G)$ for $G:=\mathcal{G}^{F}$, and consider an inverse image $g \in G$ of x in G that is regular semisimple. Note that $\left|\mathbf{C}_{G}(g)\right| \leqslant(q+1)^{r}$, and so $\left|\mathbf{C}_{G}(x \mathbf{Z}(G))\right| \leqslant(q+1)^{r}|\mathbf{Z}(G)|$. Also, $|G|>(q-1)^{3 r}$ and $|\mathbf{Z}(G)| \leqslant r_{0}+1$. Therefore,

$$
\left|s^{S}\right|=\frac{|S|}{\left|\mathbf{C}_{S}(x)\right|}=\frac{|G|}{\left|\mathbf{C}_{G}(x \mathbf{Z}(G))\right|} \geqslant \frac{|G|}{(q+1)^{r}\left(r_{0}+1\right)}>|S|^{3 / 5}>4 e|S|^{1 / 2} \log ^{1 / 2}|S|
$$

when $q \geqslant Q$ and we choose Q large enough.

Next we recall the following fact.

LEMMA 3.4. For any r_{0}, there is a constant $C=C\left(r_{0}\right)$ such that

$$
|\chi(s)| \leqslant C
$$

for all finite simple group S of Lie type of rank $\leqslant r_{0}$, for all regular semisimple elements $s \in S$, and for all $\chi \in \operatorname{Irr}(S)$.

Proof. Note that, if S is not a Suzuki-Ree group, then the statement is a direct consequence of [GLL, Proposition 5]. But in fact the same proof goes through in the case that S is a Suzuki-Ree group.

Proposition 3.5. Theorem 3.1 holds for Suzuki and Ree groups, with $S_{1}=\{1\}$.
Proof. Let $S={ }^{2} B_{2}\left(q^{2}\right),{ }^{2} G_{2}\left(q^{2}\right)$, or ${ }^{2} F_{4}\left(q^{2}\right)$. By [LST, Proposition 6.4.1] and Corollary 3.3, there exists $Q_{1}=Q\left(w_{1}, w_{2}\right)$ such that $w_{1}(S) w_{2}(S)=S$, and $w_{i}(S)$ contains a regular semisimple element s_{i} satisfying the condition 3.3(ii) for $i=1$, 2 , whenever $q \geqslant Q_{1}$. By Lemma 3.4, there is some $C>0$, independent of q, such that $\left|\chi\left(s_{i}\right)\right| \leqslant C$ for all $\chi \in \operatorname{Irr}(S)$ and $i=1,2$. We will now prove that there is some $B>0$, independent of q, such that

$$
\begin{equation*}
\sum_{1_{s \neq \chi \in \operatorname{Ir}(S)}} \frac{|\chi(g)|}{\chi(1)} \leqslant \frac{B}{q} \tag{3.2}
\end{equation*}
$$

for all $1 \neq g \in S$. Taking $q \geqslant \max \left(Q_{1}, 2 B C^{2}\right)$, we will achieve (3.1).
First let $S={ }^{2} B_{2}\left(q^{2}\right)$ with $q \geqslant \sqrt{8}$. The character table of S is known; see, for example, $[\mathrm{Bu}]$. In particular, $\operatorname{Irr}(S)$ consists of $q^{2}+3$ characters: 1_{S}, two characters of degree $q\left(q^{2}-1\right) / \sqrt{2}$, and the remaining characters of degree \geqslant $\left(q^{2}-1\right)\left(q^{2}-q \sqrt{2}+1\right)$. Furthermore,

$$
|\chi(g)| \leqslant q \sqrt{2}+1
$$

for all $1_{S} \neq \chi \in \operatorname{Irr}(S)$ and $1 \neq g \in S$. It follows that

$$
\sum_{1_{s \neq \chi \in \operatorname{rrr}(S)}} \frac{|\chi(g)|}{\chi(1)} \leqslant(q \sqrt{2}+1)\left(\frac{2 \sqrt{2}}{q\left(q^{2}-1\right)}+\frac{q^{2}}{\left(q^{2}-1\right)\left(q^{2}-q \sqrt{2}+1\right)}\right)<\frac{5}{q}
$$

as stated.
Next suppose that $S={ }^{2} G_{2}\left(q^{2}\right)$ with $q \geqslant \sqrt{27}$. The character table of S is known; see, for example, [Wa]. In particular, $\operatorname{Irr}(S)$ consists of $q^{2}+8$ characters: 1_{S}, one character of degree $q^{4}-q^{2}+1$, six characters of degree $\geqslant q\left(q^{2}-1\right)$ $\left(q^{2}-q \sqrt{3}+1\right) / \sqrt{12}$, and the remaining characters of degree $\geqslant q^{6} / 2$. Furthermore, $|\chi(g)| \leqslant \sqrt{\left|\mathbf{C}_{S}(g)\right|} \leqslant q^{3}$ for all $1 \neq g \in S$. It follows that

$$
\begin{aligned}
\sum_{1_{s} \neq \chi \in \operatorname{Irr}(S)} \frac{|\chi(g)|}{\chi(1)} & \leqslant q^{3}\left(\frac{1}{q^{4}-q^{2}+1}+\frac{6 \sqrt{12}}{q\left(q^{2}-1\right)\left(q^{2}-q \sqrt{3}+1\right)}+\frac{q^{2}}{q^{6} / 2}\right) \\
& <\frac{5}{q}
\end{aligned}
$$

as stated.

Suppose now that $S={ }^{2} F_{4}\left(q^{2}\right)$ with $q \geqslant \sqrt{8}$. The (generic) character table of S is known in principle, but not all character values are given explicitly in [Chevie] (in particular, ten families of characters are not listed therein). On the other hand, according to $[\mathbf{F G}, \mathrm{Lu} 2], \operatorname{Irr}(S)$ consists of $q^{4}+4 q^{2}+17$ characters: $\chi_{0}:=1_{S}$, four characters $\chi_{1,2,3,4}$ of degree

$$
\begin{gathered}
\chi_{1,2}(1)=q\left(q^{4}-1\right)\left(q^{6}+1\right) / \sqrt{2}, \\
\chi_{3}(1)=q^{2}\left(q^{4}-q^{2}+1\right)\left(q^{8}-q^{4}+1\right), \quad \chi_{4}(1)=\left(q^{2}-1\right)\left(q^{4}+1\right)\left(q^{12}+1\right),
\end{gathered}
$$

and the remaining characters of degree $>q^{20} / 48$ (when $q \geqslant \sqrt{8}$). The orders $\left|\mathbf{C}_{S}(g)\right|$ are listed in [Chevie]; in particular, $\left|\mathbf{C}_{S}(g)\right|<2 q^{30}$ when $1 \neq g \in S$. It follows that $|\chi(g)|<\sqrt{\left|\mathbf{C}_{S}(g)\right|}<\sqrt{2} q^{15}$, and so

$$
\begin{align*}
\sum_{\chi_{0,1,2,3} \neq \chi \in \operatorname{Irr}(S)} \frac{|\chi(g)|}{\chi(1)} & <\frac{\sqrt{2} q^{15}\left(q^{4}+4 q^{2}+12\right)}{q^{20} / 48}+\frac{\sqrt{2} q^{15}}{\left(q^{2}-1\right)\left(q^{4}+1\right)\left(q^{12}+1\right)} \\
& <\frac{144}{q} . \tag{3.3}
\end{align*}
$$

Among all nontrivial conjugacy classes of S, there are two classes $g_{1,2}^{S}$ with

$$
\left|\mathbf{C}_{S}\left(g_{1}\right)\right|=q^{24}\left(q^{2}-1\right)\left(q^{4}+1\right), \quad\left|\mathbf{C}_{S}\left(g_{2}\right)\right|=q^{20}\left(q^{4}-1\right)
$$

and all the other ones have centralizers of order $<4 q^{20}$; cf. [Chevie]. Hence if $g \notin\{1\} \cup g_{1}^{S} \cup g_{2}^{S}$ then $\left|\chi_{i}(g)\right|<2 q^{10}$, and so

$$
\begin{equation*}
\sum_{\chi=x_{1,2,3}} \frac{|\chi(g)|}{\chi(1)} \leqslant \frac{3 \cdot 2 q^{10}}{q\left(q^{4}-1\right)\left(q^{6}+1\right) / \sqrt{2}}<\frac{10}{q} . \tag{3.4}
\end{equation*}
$$

Finally, for $g=g_{1,2}$, using [Chevie] one can check that

$$
\left|\chi_{1,2}(g)\right| \leqslant q\left(q^{6}-q^{4}+1\right) / \sqrt{2}, \quad\left|\chi_{3}(g)\right| \leqslant q^{8}-q^{4}+q^{2}
$$

whence

$$
\begin{equation*}
\sum_{\chi=\chi_{1,2,3}} \frac{|\chi(g)|}{\chi(1)} \leqslant \frac{\sqrt{2} q\left(q^{6}-q^{4}+1\right)}{q\left(q^{4}-1\right)\left(q^{6}+1\right) / \sqrt{2}}+\frac{q^{8}-q^{4}+q^{2}}{\left(q^{2}-1\right)\left(q^{4}+1\right)\left(q^{12}+1\right)}<\frac{1}{q} \tag{3.5}
\end{equation*}
$$

Taken together, (3.3)-(3.5) imply (3.2) for $S={ }^{2} F_{4}\left(q^{2}\right)$.
Proposition 3.6. Theorem 3.1 holds for all (sufficiently large) finite nonabelian simple groups S of Lie type of bounded rank, with $S_{1}=\{1\}$.

Proof. By Proposition 3.5, we may assume that S is not a Suzuki or Ree group. Assume that S is defined over \mathbb{F}_{q} and of rank $\leqslant r_{0}$. Then we view S as $\mathcal{G}^{F} / \mathbf{Z}\left(\mathcal{G}^{F}\right)$
for some simple simply connected algebraic group \mathcal{G}, of rank $r \leqslant r_{0}$, and some Steinberg endomorphism $F: \mathcal{G} \rightarrow \mathcal{G}$. According to [LS2, Theorem 1.7], $w_{1}(S) w_{2}(S)=S$ when q is large enough. By [LST, Corollary 5.3.3], there exists a positive constant $\delta=\delta\left(w_{1}, w_{2}, r_{0}\right)$ such that, for any F-stable maximal torus \mathcal{T} of \mathcal{G}, and for $i=1,2$,

$$
\left|\mathcal{T}^{F} \cap w_{i}\left(\mathcal{G}^{F}\right)\right| \geqslant \delta\left|\mathcal{T}^{F}\right| \geqslant \delta(q-1)^{r} .
$$

On the other hand, part (3) of the proof of [Lu1, Theorem 2.1] shows that \mathcal{T}^{F} contains at most $2^{r} r^{2}(q+1)^{r-1}$ nonregular elements. Hence, if we choose

$$
q>\max \left(5,1+3^{r_{0}} r_{0}^{2} / \delta\right)
$$

then $\mathcal{T}^{F} \cap w_{i}\left(\mathcal{G}^{F}\right)$ contains a regular semisimple element. Now we apply this observation to a pair of F-stable maximal tori $\mathcal{T}_{1}, \mathcal{T}_{2}$ of \mathcal{G} that is weakly orthogonal in the sense of [LST, Definition 2.2.1], and get regular semisimple elements $s_{i} \in \mathcal{T}^{F} \cap w_{i}\left(\mathcal{G}^{F}\right)$ for $i=1$, 2. By [LST, Proposition 2.2.2], if $\chi \in \operatorname{Irr}\left(\mathcal{G}^{F}\right)$ is nonzero at both s_{1} and s_{2}, then χ is unipotent (and so trivial at $\mathbf{Z}\left(\mathcal{G}^{F}\right)$). In this case, the results of [DL] imply that $\chi\left(s_{1}\right)$ does not depend on the particular choice of the element s_{1} of given type, and similarly for $\chi\left(s_{2}\right)$. Also, $\left|s_{i}^{S}\right| \geqslant 4 e|S|^{1 / 2} \log ^{1 / 2}|S|$ if $q>\max \left(Q\left(w_{1}, r_{0}\right), Q\left(w_{2}, r_{0}\right)\right)$; cf. Corollary 3.3.

We claim that we can find such a pair $\mathcal{T}_{1}, \mathcal{T}_{2}$ so that there are $\kappa \leqslant 4$ characters $\chi \in \operatorname{Irr}\left(\mathcal{G}^{F}\right)$ with $\chi\left(s_{1}\right) \chi\left(s_{2}\right) \neq 0$, and moreover $\left|\chi\left(s_{1}\right) \chi\left(s_{2}\right)\right|=1$ for all such χ. Indeed, this can be done with $\kappa=2$ for \mathcal{G}^{F} of type A_{r} by [MSW, Theorem 2.1], of type ${ }^{2} A_{r}$ by [MSW, Theorem 2.2], of type C_{r} by [MSW, Theorem 2.3], of type B_{r} by [MSW, Theorem 2.4], of type ${ }^{2} D_{r}$ by [MSW, Theorem 2.5], and of type $D_{2 l+1}$ by [MSW, Theorem 2.6]. For type $D_{2 l}$, we can get $\kappa=4$ by using [GT, Proposition 2.3]. For the exceptional groups of Lie type, we can get $\kappa=2$ by using [LM, Theorem 10.1]. Certainly, if $\kappa=2$, then these characters are the trivial character and the Steinberg character St of \mathcal{G}^{F}.

Now consider any nontrivial element $g \in S$. Since S is simple, St is faithful, and so $|\operatorname{St}(g)|<\operatorname{St}(1)$. But $\operatorname{St}(g) \in \mathbb{Z}$ divides $\operatorname{St}(1)$, so we get $|\mathrm{St}(g) / \mathrm{St}(1)| \leqslant 1 / 2$ and

$$
\sum_{1_{s \neq \chi \in \operatorname{lrr}(S)}}\left|\frac{\chi\left(s_{1}\right) \chi\left(s_{2}\right) \bar{\chi}(g)}{\chi(1)}\right|=\frac{|\operatorname{St}(g)|}{\operatorname{St}(1)} \leqslant 1 / 2,
$$

as desired. Finally, assume that $\kappa=4$ (so \mathcal{G}^{F} is of type $D_{2 l}$). By [LST, Theorem 1.2.1], we have

$$
\sum_{1_{s \neq \chi \in \operatorname{Irr}(S)}}\left|\frac{\chi\left(s_{1}\right) \chi\left(s_{2}\right) \bar{\chi}(g)}{\chi(1)}\right| \leqslant 3 q^{-1 / 481}<1 / 2
$$

if $q>6^{481}$.

To deal with (classical) groups of unbounded rank, we recall the notion of the support of an element of a classical group [LST, Definition 4.1.1]. For $g \in G L_{n}(\mathbb{F}) \subset G L_{n}(\overline{\mathbb{F}})$, the support is the codimension of the largest eigenspace of g acting on \mathbb{F}^{n}. The support of any element in a classical group $G(\mathbb{F})$ is the support of its image under the natural representation $\rho: G(\overline{\mathbb{F}}) \rightarrow G L_{n}(\overline{\mathbb{F}})$. Most elements have large support; we have the following quantitative estimate.

Lemma 3.7. Let S be a finite simple classical group of rank $r \geqslant 8$, and $B \geqslant 1$ any constant. If $r \geqslant 8 B+3$, then the set S_{1} of elements of support $<B$ can contain at most $|S|^{1 / 2}$ elements of S.

Proof. We will bound the total number N of elements g of support $\leqslant B$ in $L=$ $S L_{n}(q), S U_{n}(q), S p_{n}(q)$, or $S O_{n}^{ \pm}(q)$ (note that $S \hookrightarrow L / \mathbf{Z}(L)$). Let $V=\mathbb{F}_{q}^{n}$, respectively $\mathbb{F}_{q^{2}}, \mathbb{F}_{q}^{n}, \mathbb{F}_{q}^{n}$, denote the natural L-module. By the results in $[\mathbf{F} \mathbf{G}$, Section 3], the number of conjugacy classes in L is less than $16 q^{r} \leqslant q^{r+4}$. Since $B<n / 2, g$ has a primary eigenvalue $\lambda \in \mathbb{F}_{q}^{\times}$, respectively $\lambda^{q+1}=1, \lambda= \pm 1$, or $\lambda= \pm 1$; cf. [LST, Proposition 4.1.2]. Moreover, one can show that V admits a g-invariant decomposition $V=U \oplus W$ into a direct (orthogonal if $L \neq S L_{n}(q)$) sum of (nondegenerate if $L \neq S L_{n}(q)$) subspaces, with $U \leqslant \operatorname{Ker}\left(g-\lambda \cdot 1_{V}\right)$ and $m:=\operatorname{dim}(U) \geqslant n-2 B$ (see [LST, Lemma 6.3.4] for the orthogonal case).

Consider the case $L=S L_{n}^{\epsilon}(q)$, with $\epsilon=+$ for $S L$ and $\epsilon=-$ for $S U_{n}(q)$. Then $\mathbf{C}_{L}(g)$ contains $S L_{m}^{\epsilon}(q)$. It follows that

$$
\left|g^{L}\right| \leqslant \frac{\left|S L_{n}^{\epsilon}(q)\right|}{\left|S L_{m}^{\epsilon}(q)\right|}<\frac{2 q^{n^{2}-1}}{q^{m^{2}-1} / 2}=4 q^{n^{2}-m^{2}} \leqslant q^{4 n B+2},
$$

as $n \geqslant m \geqslant n-2 B$. Hence,

$$
N \leqslant q^{n(4 B+1)+3} \leqslant q^{\left(n^{2}-3\right) / 2} \leqslant|S|^{1 / 2} .
$$

Suppose now that $L=S O_{n}^{ \pm}(q)$. Then $\mathbf{C}_{L}(g)$ contains $S O_{m}^{ \pm}(q)$. It follows that

$$
\left|g^{L}\right| \leqslant \frac{\left|S O_{n}^{ \pm}(q)\right|}{\left|S O_{m}^{ \pm}(q)\right|}<\frac{q^{n(n-1) / 2}}{q^{m(m-1) / 2} / 2}=2 q^{(n-m)(n+m-1) / 2+1} \leqslant q^{(2 n-1) B+2}
$$

and so

$$
N \leqslant q^{B(2 n-1)+r+6} \leqslant q^{(n(n-1) / 2-1) / 2} \leqslant|S|^{1 / 2} .
$$

Consider the case $L=S p_{n}(q)$, so $n=2 r$ and m are even. Then $\mathbf{C}_{L}(g)$ contains $S p_{m}(q)$. It follows that

$$
\left|g^{L}\right| \leqslant \frac{\left|S p_{n}(q)\right|}{\left|S p_{m}(q)\right|}<\frac{q^{n(n+1) / 2}}{q^{m(m+1) / 2} / 2}=2 q^{(n-m)(n+m+1) / 2+1} \leqslant q^{(2 n+1) B+2},
$$

and so

$$
N \leqslant q^{B(2 n+1)+r+6} \leqslant q^{(n(n+1) / 2-1) / 2} \leqslant|S|^{1 / 2}
$$

THEOREM 3.8. Theorem 3.1 holds for all simple classical groups of sufficiently large rank.

Proof. (a) View $S=G / \mathbf{Z}(G)$ with $G=\mathcal{G}^{F}$ as above, and let $r:=\operatorname{rank}(\mathcal{G})$. We will show that there are some $r_{0}=r_{0}\left(w_{1}, w_{2}\right)>8$ and $B=B\left(w_{1}, w_{2}\right)$ such that Theorem 3.1 holds when $r \geqslant r_{0}$, for suitable regular semisimple elements s_{1}, $s_{2} \in S$ and with S_{1} being the set of elements in S of support $<B$. By Lemma 3.7, $\left|S_{1}\right| \leqslant|S|^{1 / 2}$ if $r_{0} \geqslant 8 B+3$.

Again, note that, for any regular semisimple element $h \in G, \mathbf{C}_{\mathcal{G}}(h)$ is a maximal torus (as \mathcal{G} is simply connected), and so $\left|\mathbf{C}_{G}(h)\right| \leqslant(q+1)^{r}$. It follows that $\left|\mathbf{C}_{G}(h \mathbf{Z}(G))\right| \leqslant(q+1)^{r}|\mathbf{Z}(G)|$, and so $\left|\mathbf{C}_{S}(h \mathbf{Z}(G))\right| \leqslant(q+1)^{r}$. Also, $|G|>q^{r(r+1)}$ and $|\mathbf{Z}(G)| \leqslant r+1$. So when $r \geqslant r_{0}>8$ we have

$$
\left|\mathbf{C}_{S}(h \mathbf{Z}(G))\right| \leqslant(q+1)^{r}<\left(\frac{q^{r(r+1)}}{r+1}\right)^{1 / 3}<|S|^{1 / 3}
$$

In particular, s_{1} and s_{2} satisfy condition (iii) of Theorem 3.1 when $r_{0} \geqslant 9$. As mentioned above, condition (i) of Theorem 3.1 follows from [LST, Theorem 1.1.1]. So it suffices to establish (3.1) for all $g \in S \backslash S_{1}$.
(b) Suppose first that \mathcal{G}^{F} is a special linear, special unitary, or symplectic group. By Propositions 6.2.4 and 6.1.1 of [LST], there is some $r_{1}=r_{1}\left(w_{1}, w_{2}\right)$ with the following property. When $r \geqslant r_{1}$, there are regular semisimple elements $s_{i} \in$ $w_{i}(S)$ for $i=1,2$ such that there are at most $\kappa \leqslant 4$ irreducible characters $\chi_{i} \in$ $\operatorname{Irr}(S)$ with $\chi_{i}\left(s_{1}\right) \chi_{i}\left(s_{2}\right) \neq 0,1 \leqslant i \leqslant \kappa$, and $\chi_{1}=1_{S}$. Moreover, $\left|\chi_{i}\left(s_{1}\right) \chi_{i}\left(s_{2}\right)\right|=1$ for $1 \leqslant i \leqslant \kappa$. Now we choose $B \geqslant 1443^{2}$ and consider any $g \in S \backslash S_{1}$. By [LST, Theorem 1.2.1],

$$
\frac{|\chi(g)|}{\chi(1)}<q^{-\sqrt{B} / 481}<q^{-3} \leqslant 1 / 8
$$

whence

$$
\left|\sum_{1_{S} \neq \chi \in \operatorname{Irr}(S)} \frac{\chi\left(s_{1}\right) \chi\left(s_{2}\right) \bar{\chi}(g)}{\chi(1)}\right| \leqslant \sum_{i=2}^{\kappa} \frac{\left|\chi_{i}(g)\right|}{\chi_{i}(1)}<3 / 8
$$

as required. In fact, if \mathcal{G}^{F} is a symplectic group, then $\kappa=2, \chi_{2}=\mathrm{St}$, $\left|\chi_{2}(g) / \chi(1)\right| \leqslant 1 / q \leqslant 1 / 2$ for all $1 \neq g \in S$, and so we can take $S_{1}=\{1\}$.
(c) Suppose now that \mathcal{G}^{F} is a simple orthogonal group. By Propositions 6.3.5 and 6.3.7 of [LST], there exist some $r_{2}=r_{2}\left(w_{1}, w_{2}\right), \kappa=\kappa\left(w_{1}, w_{2}\right)$, and $C=C\left(w_{1}, w_{2}\right)$ with the following property. When $r \geqslant r_{2}$, there are regular
semisimple elements $s_{i} \in w_{i}(S)$ for $i=1,2$ such that there are at most κ irreducible characters $\chi_{i} \in \operatorname{Irr}(S)$ with $\chi_{i}\left(s_{1}\right) \chi_{i}\left(s_{2}\right) \neq 0,1 \leqslant i \leqslant \kappa$, and $\chi_{1}=1_{S}$. Moreover, $\left|\chi_{i}\left(s_{1}\right) \chi_{i}\left(s_{2}\right)\right| \leqslant C$ for $1 \leqslant i \leqslant \kappa$. Now we choose $B \geqslant 1443^{2}$ such that

$$
(\kappa-1) C^{2} 2^{-\sqrt{B} / 481}<1 / 2 .
$$

Then, for any $g \in S \backslash S_{1}$, by [LST, Theorem 1.2.1], we have

$$
\left|\sum_{1_{S} \neq \chi \in \operatorname{Irr}(S)} \frac{\chi\left(s_{1}\right) \chi\left(s_{2}\right) \bar{\chi}(g)}{\chi(1)}\right| \leqslant \sum_{i=2}^{\kappa} \frac{C^{2}\left|\chi_{i}(g)\right|}{\chi_{i}(1)}<(\kappa-1) C^{2} 2^{-\sqrt{B} / 481}<1 / 2
$$

Hence we are done by choosing $r_{0}:=\max \left(r_{1}, r_{2}, 9,8 B+3\right)$.

4. Alternating groups

Suppose that G is a group and that X and Y are subsets. If we have subsets $X_{1}, \ldots, X_{k} \subseteq X, Y_{i}, \ldots, Y_{k} \subseteq Y$, and $Z_{1}, \ldots, Z_{k} \subseteq Z$ such that $Z_{i} \subseteq X_{i} Y_{i}$ and $\cup Z_{i}=G$, then, setting $X_{0}=X_{1} \cup \cdots \cup X_{k}$ and $Y_{0}=Y_{1} \cup \cdots \cup Y_{k}$, we have $X_{0} Y_{0}=G$. We use this construction to find $X_{0} \subseteq w_{1}\left(\mathrm{~A}_{n}\right)$ and $Y_{0} \subseteq w_{2}\left(\mathrm{~A}_{n}\right)$ such that $X_{0} Y_{0}=\mathrm{A}_{n}$ and $\left|X_{0}\right|,\left|Y_{0}\right|$ are of order $n!^{1 / 2} \sqrt{\log n!}$.

We begin by noting that, for any word w and any group $G, w(G)$ is a characteristic set, that is, invariant under every automorphism of G. In particular, $w\left(\mathrm{~A}_{n}\right)$ is a union of S_{n}-conjugacy classes. If $g_{1}, g_{2} \in \mathrm{~A}_{n}$ and C_{1} and C_{2} denote their S_{n}-conjugacy classes, then

$$
\begin{equation*}
\left|\left\{\left(c_{1}, c_{2}\right) \in C_{1} \times C_{2} \mid c_{1} c_{2}=g\right\}\right|=\frac{\left|C_{1}\right|\left|C_{2}\right|}{n!} \sum_{\chi} \frac{\chi\left(g_{1}\right) \chi\left(g_{2}\right) \bar{\chi}(g)}{\chi(1)} . \tag{4.1}
\end{equation*}
$$

We recall a basic upper bound estimate [LS1, Theorem 1.1] for $|\chi(g)|$. For $g \in \mathrm{~S}_{n}$ and $i \in \mathbb{N}$, let $\Sigma_{i}(g)$ denote the union of all g-cycles of length $\leqslant i$ in $\{1, \ldots, n\}$. Define $e_{1}(g), e_{2}(g), \ldots$ so that

$$
n^{e_{1}(g)+\cdots+e_{i}(g)}=\max \left(1,\left|\Sigma_{i}(g)\right|\right)
$$

for all $i \in \mathbb{N}$. Define

$$
E(g)=\sum_{i=1}^{\infty} \frac{e_{i}(g)}{i}
$$

Then for all $\epsilon>0$ there exists N such that, for all $n>N$, all $g \in \mathrm{~S}_{n}$, and all irreducible characters χ of S_{n},

$$
|\chi(g)| \leqslant|\chi(1)|^{E(g)+\epsilon} .
$$

For example, if g has a bounded number of cycles, and n is sufficiently large in terms of ϵ,

$$
|\chi(g)| \leqslant|\chi(1)|^{\epsilon} .
$$

If g has no more than $n^{2 / 3}$ fixed points and n is sufficiently large in terms of ϵ, then

$$
|\chi(g)| \leqslant|\chi(1)|^{5 / 6+\epsilon} .
$$

By a result of Liebeck and Shalev [LiS, Theorem 1.1], for all $s>0$,

$$
\lim _{n \rightarrow \infty} \sum_{\chi \in \operatorname{Irr}\left(S_{n}\right)} \chi(1)^{-s}=2 .
$$

Note that the trivial character and the sign character each contribute 1 to the above sum; excluding them from the sum, the limit would be zero. Of course, thus if g_{1}, g_{2}, and g are all even permutations, then the trivial character and the sign character each contribute $\left(\left|C_{1}\right|\left|C_{2}\right|\right) / n!$ to expression (4.1). From this, we conclude the following.

Proposition 4.1. For all $\epsilon>0$ and integers k_{1} and k_{2}, there exists an integer $N=N\left(\epsilon, k_{1}, k_{2}\right)$ such that, if $n>N$ and C_{1} and C_{2} are even conjugacy classes in S_{n} consisting of k_{1} and k_{2} cycles, respectively, then every $g \in \mathrm{~A}_{n}$ with no more than $n^{2 / 3}$ fixed points is represented in at least

$$
(1-\epsilon) \frac{\left|C_{1}\right|\left|C_{2}\right|}{\left|\mathrm{A}_{n}\right|}
$$

different ways as $x_{1} x_{2}, x_{1} \in C_{1}, x_{2} \in C_{2}$.
Now, by [LS2, Theorem 1.3], if n is sufficiently large, $w_{1}\left(\mathrm{~A}_{n}\right)$ and $w_{2}\left(\mathrm{~A}_{n}\right)$ each contain elements g_{1} and g_{2}, respectively, with at most 6 cycles of length >1 and $\leqslant 17$ cycles in total. So there is some constant A such that $\left|\mathbf{C}_{\mathrm{S}_{n}}\left(g_{i}\right)\right|<A n^{6}$ for $i=1$, 2, whence

$$
\left|w_{i}\left(\mathrm{~A}_{n}\right)\right| \geqslant\left|\left(g_{i}\right)^{\mathrm{S}_{n}}\right|>2 e(n!)^{1 / 2} \log ^{1 / 2} n!.
$$

Defining Z_{1} as the set of elements of A_{n} with no more than $n^{2 / 3}$ fixed points, it follows from Proposition 2.3 that there exist X_{1} and Y_{1} contained in $w_{1}\left(\mathrm{~A}_{n}\right)$ and $w_{2}\left(\mathrm{~A}_{n}\right)$, respectively, such that $Z_{1} \subseteq X_{1} Y_{1}$.

What remains is to define X_{i}, Y_{i}, Z_{i} for $i \geqslant 2$ to cover the elements of A_{n} with more than $n^{2 / 3}$ fixed points.

The number of elements of A_{n} with at least $m:=\lceil 2 n / 3\rceil$ fixed points is less than

$$
\sum_{i=m}^{n}\binom{n}{i}(n-i)!=\sum_{i=m}^{n} \frac{n!}{i!}<2 \frac{n!}{m!} \leqslant n!^{1 / 3+o(1)}
$$

Therefore, we can represent each element g with at least m fixed points as $x_{g} y_{g}$, $x_{g} \in w_{1}\left(\mathbf{A}_{n}\right), y_{g} \in w_{2}\left(\mathbf{A}_{n}\right)$, and we can define X_{2} to be the union of all such x_{g} and Y_{2} the union of all such y_{g}. Note that

$$
\left|X_{2}\right|,\left|Y_{2}\right|<(n!)^{1 / 3+o(1)} .
$$

This reduces the problem to elements g with

$$
n^{2 / 3} \leqslant|\operatorname{Fix}(g)| \leqslant 2 n / 3 .
$$

For each $T \subseteq\{1,2, \ldots, n\}$ with $m:=|T| \in\left[n^{2 / 3}, 2 n / 3\right]$, we define $\mathrm{S}_{T} \subseteq \mathrm{~S}_{n}$ to be the pointwise stabilizer of T in S_{n} and A_{T} to be the pointwise stabilizer of T in A_{n}. Thus S_{T} is isomorphic to S_{n-m} and A_{T} is isomorphic to A_{n-m}, where $n-m \in\left[n / 3, n-n^{2 / 3}\right]$. For each T, we choose an S_{T}-conjugacy class $C_{1, T}$ in $w_{1}\left(\mathrm{~A}_{T}\right)$ and an S_{T}-conjugacy class $C_{2, T}$ in $w_{2}\left(\mathrm{~A}_{T}\right)$, each consisting of at most 17 cycles when regarded as elements of S_{n-m}. (Of course there are $|T|$ additional 1 -cycles when we regard them as elements of S_{n}.) If n is sufficiently large, $n-m$ is larger than the constant N of Proposition 4.1, and we conclude that every fixed point free element of A_{n-m} can be written in at least

$$
(1-\epsilon) \frac{\left|C_{1, T}\right|\left|C_{2, T}\right|}{\left|\mathrm{A}_{n-m}\right|}
$$

ways. Applying Proposition 2.3 and arguing as above, we conclude that there exist subsets X_{T} and Y_{T} of $C_{1, T}$ and $C_{2, T}$, respectively, such that $X_{T} Y_{T}$ contains all elements of S_{n} with fixed point set exactly T, and $\left|X_{T}\right|$ and $\left|Y_{T}\right|$ are bounded above by

$$
c(n-m)!^{1 / 2} \log ^{1 / 2}(n-m)!
$$

where c is independent of n or m. An upper bound for the cardinality of $\bigcup_{T} X_{T}$ is

$$
\begin{aligned}
& c n \log n \sum_{n^{2 / 3} \leqslant m \leqslant 2 n / 3}\binom{n}{m}(n-m)!^{1 / 2} \\
& \quad \leqslant c n^{3} \max \left\{\left.\binom{n}{m}(n-m)!^{1 / 2} \right\rvert\, n^{2 / 3} \leqslant m \leqslant 2 n / 3\right\}
\end{aligned}
$$

and likewise for $\bigcup_{T} Y_{T}$.
For $m \geqslant n^{2 / 3}$, we have by Stirling's approximation

$$
m!>(m / e)^{m}
$$

So, when $n>\left(2 e^{2}\right)^{3}$ is large enough, we have that

$$
\begin{aligned}
\frac{\binom{n}{m} \cdot(n-m)!^{1 / 2}}{(n!)^{1 / 2}} & =\frac{\left(\prod_{j=n-m+1}^{n} j\right)^{1 / 2}}{m!}<\frac{n^{m / 2}}{e^{-m} m^{m}} \\
& =\left(\frac{e^{2} n}{m^{2}}\right)^{m / 2}<\left(\frac{e^{2}}{n^{1 / 3}}\right)^{\left(n^{2 / 3}\right) / 2}<\left(\frac{1}{2}\right)^{\left(n^{2 / 3}\right) / 2}<\frac{1}{c n^{3}}
\end{aligned}
$$

In this case, the cardinalities of $\bigcup_{T} X_{T}$ and $\bigcup_{T} Y_{T}$ are less than $n!^{1 / 2}$. It follows that X_{1}, X_{2}, and all the X_{T} together have cardinality $O\left((n!)^{1 / 2} \log ^{1 / 2} n\right)$, and likewise for Y. That concludes the proof of Theorem 1.1 in the alternating case.

5. Groups as products of two subsets

Lemma 5.1. Let G be a cyclic group of prime order p, and x any real number with $2 \leqslant x \leqslant p$. Then there exist subsets X and Y of G with $|X| \leqslant x$ and $|Y| \leqslant$ $2 p / x$ such that $X Y=G$.

Proof. Identify G with the additive group $\mathbb{Z} / p \mathbb{Z}$ and its elements with $0,1, \ldots$, $p-1$. The cases $2 \leqslant p \leqslant 7$ are obvious, so we will assume that $p \geqslant 11$. Since the roles of x and $2 p / x$ are symmetric, we may assume that $x \geqslant \sqrt{2 p}>4$. Now if $x \geqslant p-2$ then $G=X+Y$ with $X:=\{2 j \mid 0 \leqslant j \leqslant(p-1) / 2\}$ and $Y=\{0,1\}$. Suppose that $p-2>x \geqslant \sqrt{2 p}$. Setting $a:=\lfloor x\rfloor \leqslant x$ and $b:=\lceil p / a\rceil \geqslant p / a$, we see that $b<\max (p / a+1,2 p / x)$ and $G=X+Y$ for

$$
X:=\{0,1, \ldots, a-1\}, \quad Y=\{j a \mid 0 \leqslant j \leqslant b-1\} .
$$

Lemma 5.2. Let G be a finite nonabelian simple group of order n. Then G possesses a maximal subgroup M, with $|M| \geqslant \sqrt{n}$ if $G=J_{3}$ and $|M| \geqslant \sqrt{2 n}$ otherwise.

Proof. The case of 26 sporadic simple groups can be checked using [Atlas]. If $G=\mathrm{A}_{n}$ with $n \geqslant 5$, take $M:=\mathrm{A}_{n-1}$. So we may assume that G is a finite simple group of Lie type. If G is a classical group, then the smallest index of proper subgroups of G is listed in [KL, Table 5.2.A], whence the statement follows. If G is an exceptional group, then [MMT, Table 3.5] lists a subgroup N of G, and one can check that $|N| \geqslant \sqrt{2 n}$.

THEOREM 5.3. Let G be any finite group of order n, and x any real number with $2 \leqslant x \leqslant n$. Then there exist subsets X and Y of G with $|X| \leqslant x$ and $|Y| \leqslant 2 n / x$ such that $X Y=G$.

Proof. We proceed by induction on $|G|$. Note that the roles of x and $y:=2 n / x$ in the statement are symmetric, and so without loss of generality we may assume that $x \leqslant y$, that is $x \leqslant \sqrt{n / 2}$.
(a) Suppose that there is a subgroup $H<G$ with $|H|>x$. By the induction hypothesis, there exist subsets $X^{\prime}, Y^{\prime} \subseteq H$ with $X^{\prime} Y^{\prime}=H,\left|X^{\prime}\right| \leqslant x$, and $\left|Y^{\prime}\right| \leqslant$ $2|H| / x$. Decompose $G=\bigcup_{i=1}^{m} H y_{i}$ with $m=[G: H]$, and let $X:=X^{\prime}$ and $Y:=\bigcup_{i=1}^{m} Y^{\prime} y_{i}$. Then $X Y=G,|X| \leqslant x$, and $|Y| \leqslant m\left|Y^{\prime}\right| \leqslant 2|G| / x$.

Next, let us consider the possibility that $H<G$ is a subgroup with $x / 2 \leqslant$ $|H|<x$. Then setting $X:=H$ and Y a set of coset representatives of H in G, we get $G=X Y,|X| \leqslant x$, and $|Y|=[G: H] \leqslant 2 n / x$.

Thus we are done if G possesses a proper subgroup of order $\geqslant x / 2$.
(b) Suppose now that G admits a nontrivial normal subgroup H with $|H|<$ $x / 2$. By the induction hypothesis applied to G / H and $x^{\prime}:=x /|H|$, there exist subsets $X^{\prime}, Y^{\prime} \subseteq G / H$ with $\left|X^{\prime}\right| \leqslant x^{\prime},\left|Y^{\prime}\right| \leqslant 2|G / H| / x^{\prime}=2 n / x$, and $X^{\prime} Y^{\prime}=$ G / H. Now let X denote the full inverse image of X^{\prime} in G, and let Y denote a set of coset representatives in G for Y^{\prime}. Then $G=X Y,|X|=\left|X^{\prime}\right| \cdot|H| \leqslant x$, and $|Y|=\left|Y^{\prime}\right| \leqslant 2 n / x$.
(c) Assume that G is not simple: $1 \neq N \triangleleft G$ for some $N<G$. If $|N| \geqslant x / 2$, then we are done by (a). Otherwise, we are done by (b).

It remains to consider the case when G is simple. If G is abelian, then we can apply Lemma 5.1. Otherwise, by Lemma 5.2 there is a maximal subgroup $M<G$ of order $\geqslant \sqrt{n}>x / 2$, and so we are again done by (a).

Corollary 5.4. Any finite group G admits a square root R, that is, a subset $R \subseteq G$ such that $R^{2}=G$, with $|R| \leqslant \sqrt{8|G|}$.

Proof. Taking $x=\sqrt{2|G|}$ in Theorem 5.3, we see that $G=X Y$ with $|X|$, $|Y| \leqslant x$. Now set $R:=X \cup Y$.

6. Square roots of a Lie group

In this section we show that the results of Section 5 extend in a suitable sense to compact Lie groups. We would like to say that the minimum dimension of a square root of G is half the dimension of G, but we need a suitable definition of dimension. Hausdorff dimension does not do the job; indeed, it is not difficult to see that S^{1} can be written as $X Y$, where X and Y are both of Hausdorff dimension 0 . It turns out that upper Minkowski dimension is the better notion for our purposes.

We begin by recalling some basic definitions. A good reference is [Ta]. For $\delta>0$, we define the δ-packing number of a bounded metric space $X, N_{\delta}(X)$, to be the maximum number of disjoint open balls of radius δ in X. We recall that the upper Minkowski dimension, $\overline{\operatorname{dim}} X$, of a bounded metric space X is given by the formula

$$
\overline{\operatorname{dim}} X=\underset{\delta>0}{\limsup } \frac{-\log N_{\delta}(X)}{\log \delta} .
$$

If $\phi: X \rightarrow Y$ is a surjective Lipschitz map with constant L, then $N_{L \delta}(Y) \leqslant$ $N_{\delta}(X)$, so $\overline{\operatorname{dim}} \phi(X) \leqslant \overline{\operatorname{dim}} X$.

If $[-1,1]$ is endowed with the usual metric $d(x, y)=|x-y|$, then

$$
N_{\delta}([-1,1])=\lfloor 1 / \delta\rfloor,
$$

and it follows that $\overline{\operatorname{dim}}[-1,1]=1$. If the ring \mathbb{Z}_{p} of p-adic integers is endowed with the usual metric $d(x, y)=|x-y|_{p}$, it follows that

$$
N_{\delta}\left(\mathbb{Z}_{p}\right)=p^{\max \left(0,1+\left\lfloor-\log _{p} \delta\right\rfloor\right)},
$$

so $\overline{\operatorname{dim}} \mathbb{Z}_{p}=1$.
Upper Minkowski dimension is well suited to our purposes because of the following elementary proposition, which is well known for subsets of Euclidean spaces [Ma, 8.10-8.11].

Proposition 6.1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be bounded metric spaces, and let d be a metric on $X \times Y$ such that

$$
\max \left(d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right) \leqslant d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \leqslant d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)
$$

Then

$$
\begin{equation*}
\overline{\operatorname{dim}} X \times Y \leqslant \overline{\operatorname{dim}} X+\overline{\operatorname{dim}} Y, \tag{6.1}
\end{equation*}
$$

with equality if $\log N_{\delta}(X) / \log \delta$ and $\log N_{\delta}(Y) / \log \delta$ both converge as $\delta \rightarrow 0$.
Proof. If x_{1}, \ldots, x_{m} are the centers of a maximal collection of disjoint open balls of radius δ in X, then balls of radius 2δ centered at x_{1}, \ldots, x_{m} cover X, and likewise for Y. The product of any ball of radius 2δ in X and any ball of radius 2δ in Y is contained in some ball of radius 4δ in $X \times Y$, so $X \times Y$ can be covered by $N_{\delta}(X) N_{\delta}(Y)$ balls of radius 4δ. Given any disjoint collection of balls of radius 4δ in $X \times Y$, no two centers can lie in the same ball of radius 4δ. Thus,

$$
N_{4 \delta}(X \times Y) \leqslant N_{\delta}(X) N_{\delta}(Y),
$$

which proves (6.1). On the other hand, if x_{1}, \ldots, x_{m} are centers of disjoint balls of radius δ in X and y_{1}, \ldots, y_{n} are centers of disjoint balls of radius δ in Y, then $\left(x_{i}, y_{j}\right)$ are the centers of disjoint balls of radius δ in $X \times Y$, so

$$
N_{\delta}(X \times Y) \geqslant N_{\delta}(X) N_{\delta}(Y) .
$$

It follows that

$$
\lim _{\delta \rightarrow 0} \frac{-\log N_{\delta}(X \times Y)}{\log \delta}=\lim _{\delta \rightarrow 0} \frac{-\log N_{\delta}(X)}{\log \delta}+\lim _{\delta \rightarrow 0} \frac{-\log N_{\delta}(Y)}{\log \delta}
$$

if both limits on the right-hand side exist.

Now let G be a compact Lie group. We say that a metric d on G is compatible if it is left invariant and right invariant by G and there exists a coordinate map from some open neighborhood of the identity e of G to some open set in \mathbb{R}^{n} which is Lipschitz in some neighborhood of e. If this is true for some coordinate map, it is true for all coordinate maps at e, since smooth maps between open sets in \mathbb{R}^{n} are locally Lipschitz. Likewise, a compatible metric on a compact p-adic Lie group is a translation-invariant metric for which there exists a coordinate map from some open neighborhood of e to some open set in \mathbb{Q}_{p}^{n}, and the choice of coordinate map does not matter. We recall [Bo, III, Section 4, no. 3] that every real (respectively, p-adic) Lie group admits an exponential map from a neighborhood of 0 in \mathbb{R}^{n} (respectively, \mathbb{Q}_{p}^{n}) which is bijective and whose inverse is a coordinate map.

PROPOSITION 6.2. Let G be a compact Lie group endowed with a compatible metric. Then $\overline{\operatorname{dim}} G$ coincides with the usual topological dimension of G.

Proof. By Proposition 6.1, $\overline{\operatorname{dim}} I^{n}=n$, where I is any open interval in \mathbb{R}, and it follows that $\overline{\operatorname{dim}} U=n$ for any bounded open set in \mathbb{R}^{n}. If $\phi: U \rightarrow G$ is a biLipschitz coordinate map, then $U^{\prime}:=\phi(U)$ is an open subset of G of dimension n. Therefore, any translate of U^{\prime} in G has dimension n, and likewise for any finite union of such translates. By compactness, G itself is such a union, so $\overline{\operatorname{dim}} G=$ $\operatorname{dim} G$.

There is also a p-adic version of the same proposition, whose proof is the same.
PROPOSITION 6.3. Let G be a compact p-adic Lie group endowed with a compatible metric. Then $\overline{\operatorname{dim}} G$ coincides with the usual topological dimension of G.

We can now prove our lower bound for square roots of a real or p-adic Lie group.

Proposition 6.4. If X and Y are subsets of a compact real or p-adic Lie group G endowed with a compatible metric d and $X Y=G$, then $\overline{\operatorname{dim}} X+\overline{\operatorname{dim} Y \geqslant}$ $\operatorname{dim} G$. In particular, if X is a square root of $G, \overline{\operatorname{dim}} X \geqslant(\operatorname{dim} G) / 2$.

Proof. Defining the metric e on $G \times G$ by

$$
e\left(\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right):=d\left(g_{1}, g_{2}\right)+d\left(h_{1}, h_{2}\right),
$$

we have

$$
d\left(g_{1} h_{1}, g_{2} h_{2}\right) \leqslant d\left(g_{1} h_{1}, g_{1} h_{2}\right)+d\left(g_{1} h_{2}, g_{2} h_{2}\right)=e\left(\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right) .
$$

Thus, the multiplication map $m: G \times G \rightarrow G$ is Lipschitz. It follows that

$$
\overline{\operatorname{dim}} X Y=\overline{\operatorname{dim}} m(X \times Y) \leqslant \overline{\operatorname{dim}} X \times Y \leqslant \overline{\operatorname{dim}} X+\overline{\operatorname{dim} Y}
$$

If $X Y=G$, then

$$
\overline{\operatorname{dim}} X+\overline{\operatorname{dim}} Y \geqslant \overline{\operatorname{dim}} G=\operatorname{dim} G
$$

The more interesting direction is the converse.
Theorem 6.5. Let G be a compact real or p-adic Lie group, endowed with a compatible metric. Then G has a square root of dimension $(\operatorname{dim} G) / 2$.

Proof. Let G be a real (respectively, p-adic) Lie group, L the Lie algebra, and exp the exponential map from a neighborhood U of 0 in L to a neighborhood N of $e \in G$. Let $v \in L$ be a sufficiently small nonzero element, specifically, an element satisfying $[-1,1] v \subset U$ (respectively, $\mathbb{Z}_{p} v \subset U$). Then the function $e_{v}:[-1$, $1] \rightarrow G$ (respectively, $e_{v}: \mathbb{Z}_{p} \rightarrow G$) defined by $e_{v}(t)=\exp (t v)$ is Lipschitz. Let C_{v} denote the image of e_{v}.

Choose a basis v_{1}, \ldots, v_{n} of sufficiently small vectors in L. If $n=2 k$, let $X_{0}=C_{v_{1}} \cdots C_{v_{k}}$ and $Y=C_{v_{k+1}} \cdots C_{v_{2 k}}$. As X_{0} and Y are each images of sets of dimension k under Lipschitz maps, $\overline{\operatorname{dim}} X_{0}, \overline{\operatorname{dim}} Y \leqslant k=(\operatorname{dim} G) / 2$. On the other hand, $X_{0} Y$ contains a neighborhood of e in G, so, letting X denote a suitable finite union of left translates of X, we have $X Y=G$ and $\overline{\operatorname{dim}} X \leqslant k$. Thus $X \cup Y$ is a square root of G of dimension $(\operatorname{dim} G) / 2$.

If $n=2 k+1$, we observe that there exist subsets A and B of $[-1,1]$ such that $\overline{\operatorname{dim}} A=\overline{\operatorname{dim}} B=1 / 2$ and $A+B=[-1,1]$. We can take, for instance, the Cantor sets

$$
A=-a_{0}+\sum_{i=1}^{\infty} a_{i} 4^{-i}, \quad a_{i} \in\{0,1\} ; \quad B=\sum_{i=1}^{\infty} b_{i} 4^{-i}, \quad b_{i} \in\{0,2\} .
$$

Likewise, there exist $A, B \subset \mathbb{Z}_{p}$ of dimension $1 / 2$ such that $A+B=\mathbb{Z}_{p}$, for instance,

$$
\begin{gathered}
A=\sum_{i=1}^{\infty} a_{i} p^{2 i}, \quad a_{i} \in\{0,1, \ldots, p-1\} \\
B=\sum_{i=1}^{\infty} b_{i} p^{2 i}, \quad b_{i} \in\{0, p, 2 p, \ldots,(p-1) p\}
\end{gathered}
$$

Now, setting

$$
X_{0}=C_{v_{1}} \cdots C_{v_{k}} \exp \left(A v_{k+1}\right), \quad Y=\exp \left(B v_{k+1}\right) C_{v_{k+2}} \cdots C_{v_{2 k+1}},
$$

we see that

$$
X_{0} Y=C_{v_{1}} \cdots C_{v_{2 k+1}}
$$

contains a neighborhood of e, while $\overline{\operatorname{dim}} X_{0}, \overline{\operatorname{dim}} Y \leqslant k+1 / 2$. The rest of the argument goes as before.

Acknowledgements

Michael Larsen was partially supported by NSF grant DMS-1101424 and a Simons Fellowship. Pham Huu Tiep was partially supported by NSF grant DMS1201374 and the Simons Foundation Fellowship 305247.

References

[Bo] N. Bourbaki, 'Éléments de Mathématique. Fasc. XXXVII', in: Groupes et Algèbres de Lie. Chapitre II: Algèbres de Lie Libres. Chapitre III: Groupes de Lie, Actualités Scientifiques et Industrielles, No. 1349 (Hermann, Paris, 1972).
[Bu] R. Burkhardt, 'Über die Zerlegungszahlen der Suzukigruppen $\operatorname{Sz}(q)$ ', J. Algebra 59 (1979), 421-433.
[Atlas] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, An ATLAS of Finite Groups (Clarendon, Oxford, 1985).
[DL] P. Deligne and G. Lusztig, 'Representations of reductive groups over finite fields', Ann. of Math. (2) 103(1) (1976), 103-161.
[EG] E. W. Ellers and N. Gordeev, 'On the conjectures of J. Thompson and O. Ore', Trans. Amer. Math. Soc. 350 (1998), 3657-3671.
[FG] J. Fulman and R. M. Guralnick, 'Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements', Trans. Amer. Math. Soc. 364 (2012), 3023-3070.
[GLL] S. Garion, M. Larsen and A. Lubotzky, 'Beauville surfaces and finite simple groups', J. Reine Angew. Math. 666 (2012), 225-243.
[Chevie] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, 'CHEVIE-A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras', Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175-210.
[GL] R. M. Guralnick and F. Lübeck, 'On p-singular elements in Chevalley groups in characteristic p^{\prime}, in: Groups and Computation, III, Vol. 8 (Columbus, OH, 1999) (Ohio State University Mathematical Research Institute Publication, de Gruyter, Berlin, 2001), 169-182.
[GT] R. M. Guralnick and P. H. Tiep, 'Effective results on the Waring problem for finite simple groups', submitted.
[KL] P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series. no. 129 (Cambridge University Press, 1990).
[La] M. Larsen, 'Word maps have large image', Israel J. Math. 139 (2004), 149-156.
[LS1] M. Larsen and A. Shalev, 'Characters of symmetric groups: sharp bounds and applications', Invent. Math. 174(3) (2008), 645-687.
[LS2] M. Larsen and A. Shalev, 'Word maps and Waring type problems', J. Amer. Math. Soc. 22(2) (2009), 437-466.
[LST] M. Larsen, A. Shalev and P. H. Tiep, 'Waring problem for finite simple groups', Ann. of Math. (2) 174(3) (2011), 1885-1950.
[LBST] M. W. Liebeck, E. O’Brien, A. Shalev and P. H. Tiep, ‘The ore conjecture’, J. Eur. Math. Soc. 12 (2010), 939-1008.
[LiS] M. W. Liebeck and A. Shalev, 'Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks', J. Algebra 276 (2004), 552-601.
[Lu1] F. Lübeck, 'Finding p^{\prime}-elements in finite groups of Lie type', in: Groups and Computation, III, Vol. 8 (Columbus, OH, 1999) (Ohio State University Mathematical Research Institute Publication, de Gruyter, Berlin, 2001), 249-255.
[Lu2] F. Lübeck, Character degrees and their multiplicities for some groups of Lie type of rank < 9, http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/DegMult/index.html.
[LM] F. Lübeck and G. Malle, '(2, 3)-generation of exceptional groups', J. Lond. Math. Soc. 59 (1999), 109-122.
[MMT] K. Magaard, G. Malle and P. H. Tiep, 'Irreducibility of tensor squares, symmetric squares, and alternating squares’, Pacific J. Math. 202 (2002), 379-427.
[MSW] G. Malle, J. Saxl and T. Weigel, 'Generation of classical groups', Geom. Dedicata 49 (1994), 85-116.
[Ma] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44 (Cambridge University Press, Cambridge, 1995).
[Ta] T. Tao, 245C, Notes 5: Hausdorff dimension, http://terrytao.wordpress.com/2009/05/19/ 245c-notes-5-hausdorff-dimension-optional/.
[Vu] H. Van Vu, 'On a refinement of Waring's problem', Duke Math. J. 105(1) (2000), 107-134.
[Wa] H. N. Ward, 'On Ree's series of simple groups', Trans. Amer. Math. Soc. 121 (1966), 62-89.

[^0]: (C) The Author(s) 2015. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

