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Abstract. We show that Artin–Schelter regularity of a �-graded algebra can be
examined by its associated �r-graded algebra. We prove that there is exactly one class
of four-dimensional Artin–Schelter regular algebras with two generators of degree one
in the Jordan type. This class is strongly noetherian, Auslander regular, and Cohen–
Macaulay. Their automorphisms and point modules are described.

2000 Mathematics Subject Classification. 16E65, 16W50, 14A22.

Introduction The classification of Artin–Schelter regular algebras, or
classification of quantum projective spaces, is one of important questions in
noncommutative projective algebraic geometry. Many researchers have been interested
in Artin–Schelter regular algebras and many have made great contributions on the
subject. In the case of global dimension 4, plenty of Artin–Schelter regular algebras
have been discovered in recent years [9, 13, 17, 18], and most of them are endowed
with an appropriate �2-grading. It is not the case for four-dimensional Artin–Schelter
regular algebras of Jordan type (see the subsection 3.1 below). This motivates us to
study this kind of algebras.

The idea used here is to link a �-graded algebra with an appropriate �r-graded
algebra for some positive integer r (> 1). By means of the leading homogeneous
polynomials LH(G) (see the subsection 2.2) of some Gröbner basis G of an ideal,
we show it is available for those �-graded algebras without �2-grading on them. Our
first result is a regularity criterion for a connected graded algebra.

THEOREM 0.1. Let A = k〈X〉/I be a connected graded algebra. Then, A is Artin–
Schelter regular in case there is an appropriate �r-grading on k〈X〉 such that �r-graded
algebra k〈X〉/(LH(G)) is Artin–Schelter regular, where G is the reduced Gröbner basis of
I with respect to an admissible order ≺�r on the free monoid generated by X including 1.

An application of the criterion in this paper is the connected Artin–Schelter
regular algebras of dimension 4 with two generators whose Frobenius data is of
Jordan type. The generic constraints condition (see [9]) in this case turns out to be
invalid. Using the A∞-algebra theory and applying the criterion to the Jordan type,
we get a classification result:
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THEOREM 0.2. The algebra J = J (u, v, w) = k〈x, y〉/(f1, f2) is an Artin–Schelter
regular algebra of global dimension 4, where

f1 = xy2 − 2yxy + y2x,

f2 = x3y − 3x2yx + 3xyx2 − yx3 + (1 − u)xyxy + uyx2y
+ (u − 3)yxyx + (2 − u)y2x2 − vy2xy + vy3x + wy4,

and u, v, w ∈ k.
If k is algebraically closed of characteristic 0, then it is, up to isomorphism, the unique

Artin–Schelter regular algebra of global dimension 4 which is generated by two elements
whose Frobenius data is of Jordan type.

As the criterion for Artin–Schelter regularity, we provide a similar method to
recognize the ring-theoretic and homological properties of an Artin–Schelter regular
algebra from the known one.

THEOREM 0.3. Let J be the Artin–Schelter regular algebra showed in the theorem
above. Then

(a) J is strongly noetherian, Auslander regular and Cohen–Macaulay;

(b) The automorphism group of J is
{(

a b
0 a

) ∣∣∣ a ∈ k\{0}, b ∈ k
}

;

(c) J has two classes of point modules up to isomorphism.

Here is an outline of the paper. In Section 1, we review some basic definitions
of Artin–Schelter regular algebras, A∞-algebras and �r-filtered algebras. The links
about regularity between �r-filtered algebras and associated �r-graded algebras are
considered in Section 2. The next two sections are devoted to an application of
the criterion to the classification of Artin–Schelter regular algebras of Jordan type.
Properties of the classified result J of Jordan type in Theorem 0.2 are presented in
Section 5.

Throughout the paper, let k be a commutative based field; in Sections 3–5, we will
assume that k is algebraically closed with characteristic 0. Unless otherwise stated,
graded means �-graded, the tensor product ⊗ means ⊗k. For simplicity, we only
consider graded algebras that are generated in degree 1. The set of natural numbers
� = {0, 1, 2, . . .}. We denote �r the set of r-tuples of � with the standard basis εi =
(0, . . . , 1, . . . , 0) for i = 1, 2, . . . , r.

1. Preliminaries. In this section, we recall the definitions of Artin–Schelter
regular algebras, A∞-algebras, and �r-filtered algebras as well as some fundamental
consequents in preparation for the classification.

By a norm map on �r we mean the map ‖ · ‖ : �r → � which sends α = (a1, . . . , ar)
to

∑r
i=1 ai. An admissible ordering < related to the norm map is a total ordering

such that ‖α1‖ < ‖α2‖ implies α1 < α2, and α1 < α2 implies α1 + α3 < α2 + α3 for any
α1, α2, α3 ∈ �r.

Let A = ⊕
α∈�r Aα be a �r-graded algebra. For a homogeneous element a ∈ Aα,

we call α and ‖α‖ the degree and the total degree of a, denoted by deg a and tdeg a,
respectively. We say A is connected if Aα = 0 for all α /∈ �r and A0 = k. A connected
�r-graded algebra A is called proper if A is generated by

⊕r
i=1 Aεi with Aεi �= 0 for

i = 1, 2, . . . , r. We denote by GrMod A the category of �r-graded left A-modules
with morphisms of A-homomorphisms preserving degrees, and by grmod A the full
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subcategory of GrMod A consisting of finitely generated �r-graded left A-modules.
The categories of �r-graded right A-modules, denoted by GrMod Ao and grmod Ao,
respectively, are defined analogously. When r = 1, it goes back to the usual graded
situation.

Given a �r-graded A-module M = ⊕
α∈�r Mα and β ∈ �r, its shift is

M(β) ∈ GrMod A defined by M(β)α = Mα+β for any α ∈ �r. For M, N ∈
GrMod A, we write HomA(M, N) = ⊕

α∈�r HomGrMod A(M, N(α)) and Exti
A(M, N) =⊕

α∈�r Exti
GrMod A(M, N(α)).

1.1. Artin–Schelter regular algebras. The following definition is originally due to
Artin and Schelter [2].

DEFINITION 1.1. A connected �r-graded algebra A is called Artin–Schelter regular
(AS-regular, for short) of dimension d if the following three conditions hold:

(AS1) A has finite global dimension d;
(AS2) A has finite Gelfand–Kirillov dimension;
(AS3) A is Gorenstein; that is, for some l ∈ �r,

Exti
A(k, A) =

{
k(l) if i = d,

0 if i �= d,

where l is called Gorenstein parameter.

The following proposition was originally proved for �-graded algebras, and holds
true in our �r-setting.

PROPOSITION 1.2 ([14, Proposition 3.1]). Let A be a �r-graded AS-regular algebra
of dimension d with Gorenstein parameter l, then the minimal projective resolution of Ak
is

0 → Pd → Pd−1 → · · · → P1 → A →A k → 0,

where Pj = ⊕sj

i=1 Aej
i is a finitely generated free module on basis {ej

i}sj

i=1 with deg ej
i ∈ �r

for all 1 ≤ j ≤ d − 1, and Pd = Aed is a free module on ed with deg ed = l.

Artin and Schelter in [2] conjecture that all AS-regular algebras are noetherian. The
examples of AS-regular algebras found so far are in their guess. With the assumption
of noetherian on AS-regular algebras, some abstract properties have been proved in
small dimensions. For example, any noetherian connected graded AS-regular algebra
of global dimension 4 and GKdim A = 4 is a domain (see [4, Theorem 3.9]). Hence, in
the following we assume that AS-regular algebras are domains which is a fundamental
assumption in the classification of AS-regular algebras of Jordan type.

As the paper [9] observes, the AS-regular algebras of global dimension 4 which
are domains have three resolution types as they named (14641), (13431) and (12221)
according to the number of generators in degree 1. In the Sections 3–5, we will focus on
the AS-regular algebra A of type (12221) whose minimal resolution of trivial module
Ak is

0 → A(−7) → A(−6)⊕2 → A(−4) ⊕ A(−3) → A(−1)⊕2 → A →A k → 0, (∗)
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and the Hilbert series is

HA(t) = 1
(1 − t)3(1 − t2)(1 − t3)

.

In some papers, the condition (AS2) is not required in the definition of Artin–
Schelter regular algebra. The following theorem is a pivotal point in the classification
which was proved by using A∞-algebra method.

THEOREM 1.3 ([8, Theorem 12.5], [11, Corollary D]). Let A be a connected graded
algebra, and let E(A) := Ext∗A(k, k) be the Yoneda algebra of A. Then, A satisfies (AS1)
and (AS3) if and only if E(A) is Frobenius.

1.2. A∞-algebras. The definition and notation of the A∞-algebra are introduced
in this subsection briefly. We refer to [6, 9] for the details.

DEFINITION 1.4. Let E = ⊕
i∈� Ei be a �-graded k-vector space. The vector space

E is an A∞-algebra if it is endowed with a family of graded k-linear maps

mn : E⊗n → E, n ≥ 1,

of degree 2 − n satisfying the following Stasheff identities SI(n):∑
r+s+t=n;
s≥1; r,t≥0

(−1)r+stmr+1+t(id⊗r ⊗ms ⊗ id⊗t) = 0

for all n ≥ 1.

Note that when the formulas are applied to elements, additional signs appear due
to the Koszul sign rule. We assume every A∞-algebra in this article contains an identity
element 1 ∈ E0 which satisfies strictly unital condition; that is,

(a) m2(1, x) = x and m2(x, 1) = x, for every x ∈ E;
(b) mn(x1, . . . , xn) = 0, if xi = 1 for some i and n �= 2.
Now let A be a connected graded algebra, then the Yoneda algebra E(A) is bi-

graded naturally: one is the homological degree, written as superscript, and the other
one is Adams degree, written as subscript, the latter is induced by the grading of A. It
is a basic fact that E(A) can be viewed as the cohomology algebra of some differential
graded algebra.

For any differential graded algebra D, there is a canonical A∞-algebra structure on
its cohomology algebra H(D) which is unique in the sense of A∞-isomorphisms. This
is a key result in the A∞-world named “Minimal Model Theorem” (see [6]). A concrete
method of constructing the minimal model is provided in [12]. As a consequence, E(A) is
equipped with a natural A∞-algebra structure. We adopt that the A∞-algebra structure
in this paper are bi-graded and all multiplications {mn} preserve Adams degree; that is,
deg(mn) = (2 − n, 0). It is a nontrivial hypothesis since such an A∞-algebra structure
exists (see [10]).

We use E(A) to denote both the usual associative Yoneda algebra and the A∞-Ext-
algebra with any choice of its A∞-structure. There is such a graded algebra A that its
associative Yoneda algebra E(A) does not contain enough information to recover the
original algebra A; on the other hand, the information from the A∞-algebra E(A) is
sufficient to recover A. This is the point of the following theorem:
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THEOREM 1.5 ([10, Corollary B]). Let A be a connected graded algebra which is
finitely generated in degree 1 and E be the A∞-algebra Ext∗A(kA, kA). Let R = ⊕

n≥2 Rn

be a minimal graded space of relations of A such that Rn ⊂ A1 ⊗ An−1 ⊂ A⊗n
1 . Let

i : Rn → A⊗n
1 be the inclusion map, and i� be its k-linear dual. Then, the multiplication

mn of E restricted to (E1)⊗n is equal to the map

i� : (E1)⊗n = (A�

1)⊗n → R�
n ⊂ E2,

where R� and A�

1 is the graded k-linear dual of R and A1, respectively.

1.3. �r-filtered algebras and modules. The basic definitions and notations of �r-
filtered algebras and �r-filtered modules are given in this subsection. We refer to [7] for
the details. Let < be a fixed admissible ordering on �r.

DEFINITION 1.6. A k-algebra B is called a �r-filtered algebra if there is a family
{Fα(B)}α∈�r of k-subspaces of B such that

(a) Fα(B) ⊆ Fα′(B) if α < α′;
(b) Fα(B)Fα′(B) ⊆ Fα+α′ (B), for any α, α′ ∈ �r;
(c) B = ⋃

α∈�r Fα(B), and 1 ∈ F0(B).
In the definition above, the family {Fα(B)}α∈�r is called a �r-filtration of B.

An associated �r-graded algebra of �r-filtered algebra B is defined by

Gr(B) =
⊕
α∈�r

Fα(B)
F<α(B)

,

where F<α(B) = ⋃
α′<α Fα′(B).

DEFINITION 1.7. Let B be a �r-filtered algebra and M a B-module. We say M is a
�r-filtered B-module if there exists a �r-filtration on it; that is, a family {Fα(M)}α∈�r of
k-subspaces of M such that

(a) Fα(M) ⊆ Fα′(M) if α < α′;
(b) Fα(B)Fα′(M) ⊆ Fα+α′ (M), for any α, α′ ∈ �r;
(c) M = ⋃

α∈�r Fα(M).

Also there is an associated �r-graded module of M

Gr(M) =
⊕
α∈�r

Fα(M)
F<α(M)

,

where F<α(M) = ⋃
α′<α Fα′(M). Clearly, Gr(M) is a �r-graded Gr(B)-module.

Let M be a �r-filtered B-module. If L is a submodule of M, there is an induced
�r-filtration {Fα(L)}α∈�r on L, where Fα(L) = L

⋂
Fα(M). And an induced �r-filtration

{Fα(M/L)}α∈�r on M/L is defined by Fα(M/L) = (Fα(M) + L)/L. We assume that the
�r-filtration on submodules and quotient modules is always the induced one in this
paper.

DEFINITION 1.8. For two �r-filtered M, N ∈ GrMod B, let φ be a B-
homomorphism from M to N. We say φ is �r-filtered if φ(Fα(M)) ⊆ Fα(N) for any
α ∈ �r.
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Moreover, φ induces a Gr(B)-homomorphism from Gr(M) to Gr(N) denoted by
Gr(φ).

Furthermore, φ is called strict if φ(Fα(M)) = φ(M)
⋂

Fα(N) for all α ∈ �r. The
strictness also yields φ(F<α(M)) = φ(M) ∩ F<α(N) for all α. When r = 1, it coincides
with the usual situation.

2. �r-filtered algebras and associated �r-graded algebras. This section is devoted
to set up a link between the connected graded algebra and its associated �r-graded
algebra. We define a �r-filtration on a connected graded algebra related to a partition
of the generator set, and discuss relevant homological properties. Using Gröbner basis
theory, we prove two criterions for examining regularity and ring-properties from
known algebras.

In [17, 18], the authors proved that the regularity and some other ring-properties
of �-filtered algebras can be examined from their associated graded algebras. However,
�-filtration is not enough to reduce the complexity in general. Torrecillas and Lobillo
studied GK-dimension and global dimension of �r-filtered algebras in [15] and [16].
To deal with general cases, �r-filtration should be much more selective. This leads
to the following natural question, do the conclusions in [17, 18] still hold for some
�r-filtration?

We consider two-dimensional AS-regular algebras firstly. It only has two types:

A(q) := k〈x, y〉/(xy − qyx), A′ := k〈x, y〉/(yx − xy − x2).

The �2-graded part yx − xy in the relation of A′ is a special case of the relation of A(q).
In fact, A(1) is an associated �2-graded algebra of A′ for some �2-filtration. Similar
phenomenon exists in S2 and S′

2 of three-dimensional AS-regular algebras (see [2]).
Those evidences inspire us to find a criterion in general.

2.1. A �r-filtration arising from a partition on the generator set. In order to
guarantee that morphisms preserve the degrees, we need a special �r-filtration. Some
natural homological properties depending on this �r-filtration are collected in this
subsection.

First, we give an admissible ordering on the group �r as follows. Let α =
(a1, . . . , ar) and β = (b1, . . . , br) be two arbitrary elements of �r. We define α < β

if one of the following two cases being satisfied
(a) ‖α‖ < ‖β‖, or
(b) ‖α‖ = ‖β‖ and there exists a t (1 ≤ t ≤ r) such that ai = bi for i < t but at < bt.
Now let A = k〈X〉/I be a connected graded algebra, where X is the minimal set

of generators of A. Denote X∗ the free monoid generated by X including 1. There is a
canonical projection

π : k〈X〉 → A.

Given a positive integer r (1 < r ≤ #(X)), we introduce a �r-grading degr

on k〈X〉 as follows: let {X1, X2, . . . , Xr} be a partition of X , define degr x :=
(δ1i, δ2i, . . . , δri) if x ∈ Xi (i = 1, 2, . . . , r), where δij is the Kronecker symbol. Using
this grading, we can get a �r-filtration on k〈X〉 defined by: Fα(k〈X〉) = 0 if α < 0 and
Fα(k〈X〉) = Spank{u ∈ X∗ | degr u ≤ α} if α ≥ 0. That induces a �r-filtration on A
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defined by

Fα(A) = π (Fα(k〈X〉)), for any α ∈ �r.

Convention: From now on, we fix this �r-filtration on A, and denote by Gr(A) the
associated �r-graded algebra of A.

Note that since A is generated in degree 1, the following is obvious.

LEMMA 2.1. The �r-filtration on A defined as above satisfies
(a) Fα(A) ⊆ ⊕

i≤‖α‖ Ai and Fα(A) ⊆ A‖α‖ + F<α(A) for all α ∈ �r.
(b) If α /∈ �r, then Fα(A) = F<α(A).
(c) Gr(A) is a connected properly �r-graded algebra.

Let P = ⊕s
i=1 Aei be a finitely generated free A-module on the basis {ei}s

i=1. Take
αi ∈ �r (i = 1, 2, . . . , s) such that ‖αi‖ = deg ei. We define a �r-filtration on P by

Fα(P) =
s⊕

i=1

( ∑
γ+αi≤α

Fγ (A)
)

ei, α ∈ �r. (F1)

It is easy to check that Gr(P), the associated �r-graded module of P, is finitely generated
and free as Gr(A)-module. We call (P , {αi}s

i=1) a �r-filtered pair of the free module P.
Conversely, let P = ⊕s

i=1 Gr(A)ei be a finitely generated free Gr(A)-module on the
basis {ei}s

i=1 with deg ei = αi for i = 1, 2, . . . , s. Then, there exists a �r-filtered pair
(P , {αi}s

i=1) of a free module P such that Gr(P) = P, where P = ⊕s
i=1 Aei is a finitely

generated free A-module. Moreover, we set deg ei = tdeg ei for i = 1, 2, . . . , s.
For other modules M ∈ grmod A, some extra hypotheses of �r-filtration on M is

required. For convenience, we introduce a �r-filtration on M by

Fα(M) =
s∑

i=1

( ∑
γ+βi≤α

Fγ (A)
)
ξi, for all α ∈ �r, (F2)

where M = ∑s
i=1 Aξi and βi = (0, . . . , 0, deg ξi) for any i = 1, 2, . . . , s. This �r-

filtration on finitely generated modules is a so-called “good” �r-filtration. It also
assures that Gr(M) �= 0 if M �= 0. Using Lemma 2.1 on this �r-filtration of the finitely
generated module M we obtain:

LEMMA 2.2. Let M be a finitely generated A-module.
(a) The associated �r-graded Gr(A)-module Gr(M) is finitely generated.
(b) Fα(M) ⊆ ⊕

i≤‖α‖ Mi and Fα(M) ⊆ M‖α‖ + F<α(M) for all α ∈ �r.
(c) Let α = (a1, . . . , ar−1, ar) ∈ �r such that (a1, . . . , ar−1) /∈ �r−1, then Fα(M) =

F<α(M).
(d) For every i ∈ �, there are only finite α ∈ �r such that ‖α‖ = i and Fα(M) �=

F<α(M).

Lemma 2.2 implies that the �r-filtration {Fα(M)}α∈�r on the finitely generated
module M is well-ordering with respect to the order by inclusion. Furthermore, for
any m ∈ M, there exists α ∈ �r such that Fα(M) �= F<α(M) and m ∈ Fα(M). The �r-
filtration on modules in grmod Ao can be defined in a similar way.

In the sequel, all �r-filtration on free modules and finitely generated modules is
considered to be defined as (F1) and (F2), respectively. With these preparations, we
turn to consider the homological aspect of them.
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LEMMA 2.3. Suppose �r-filtered modules M1, M2, M3 ∈ GrMod A. Consider �r-
filtered sequence

M1
ϕ1−→ M2

ϕ2−→ M3, (�)

with ϕ2ϕ1 = 0 and the associated �r-graded sequence:

Gr(M1)
Gr(ϕ1)−−−→ Gr(M2)

Gr(ϕ2)−−−→ Gr(M3). (Gr(�))

(a) If sequence (�) is exact and ϕ1, ϕ2 are strict, then sequence (Gr(�)) is exact.
(b) Suppose Mi ∈ grmod A (i=1, 2, 3), then sequence (Gr(�)) is exact if and only if

(�) is exact and ϕ1, ϕ2 are strict .

Proof. (a) Clearly Gr(ϕ2)Gr(ϕ1) = 0. Let m2 ∈ Fα(M2)\F<α(M2), and 0 �= m2 ∈
Gr(M2). Suppose Gr(ϕ2)(m2) = 0. This implies ϕ2(m2) ∈ F<α(M3). However, ϕ2(m2) ∈
ϕ2(F<α(M2)) by the strictness of ϕ2. There exists m′

2 ∈ Fα′(M2) such that m2 − m′
2 ∈

Ker ϕ2 where α′ < α. Exactness of (�) and strictness of ϕ1 yield

ϕ1(Fα(M1)) = Im(ϕ1) ∩ Fα(M2) = Ker(ϕ2) ∩ Fα(M2).

Thus, ϕ1(m1) = m2 − m′
2 for some m1 ∈ Fα(M1). Then, Gr(ϕ1)(m1) = ϕ1(m1) = m2.

This shows Ker Gr(ϕ2) ⊆ Im Gr(ϕ1).
(b) The sufficiency is a special case of (a). To get the necessity, we proceed in two

steps. The first step is to show the strictness. We need only to prove the strictness of ϕ2

since a similar argument is valid for ϕ1.
Choose m3 ∈ Fα(M3) ∩ Im(ϕ2) and m3 /∈ F<α(M3). There exists m2 ∈ M2 with

degree ‖α‖ which belongs to Fα′ (M2) such that ϕ2(m2) = m3. If α′ ≤ α, the strictness
is clear since Fα′(M2) ⊆ Fα(M2). We assume α′ > α, then Gr(ϕ2)(m2) = ϕ2(m2) = 0.
By the exactness, there exists m1 ∈ Fα′(M1) with degree ‖α‖ such that Gr(ϕ1)(m1) =
ϕ1(m1) = m2. Thus, m′

2 = m2 − ϕ1(m1) ∈ F<α′(M2) such that ϕ2(m′
2) = m3. The proof

is completed if m′
2 ∈ Fα(M2). Otherwise, there is α′′ > α such that m′

2 ∈ Fα′′ (M2) and
Fα′′ �= F<α′′ . Repeat this procedure, by Lemma 2.2(d), it stops in finite steps. Finally,
we get m̃2 ∈ Fα(M2) such that ϕ2(m̃2) = m3.

The second step is exactness. Let m2 ∈ Fα(M2)\F<α(M2) such that
ϕ2(m2) = 0. Then, Gr(ϕ2)(m2) = 0. Hence m2 ∈ Ker Gr(ϕ2). There exists m(1)

1 ∈
Fα(M1)\F<α(M1) satisfying Gr(ϕ1)(m(1)

1 ) = ϕ1(m(1)
1 ) = m2. Thus, m′

2 = m2 − ϕ1(m(1)
1 ) ∈

F<α(M2) ∩ Ker ϕ2. There is α′ < α such that m′
2 ∈ Fα′ (M2) and Fα′(M2) �= F<α′(M2).

Repeat this procedure, by Lemma 2.2(d) and M2 is bounded below, there exist
finite number of m(1)

1 , m(2)
1 , . . . , m(t)

1 such that m2 = ϕ1(
∑t

i=1 m(i)
1 ). Therefore, Ker ϕ2 ⊆

Im ϕ1. �
The following corollary tells that the properties of submodules can also be obtained

from its associated �r-graded version.

COROLLARY 2.4. Let M1, M2 ∈ GrMod A be �r-filtered modules.
(a) Suppose φ : M1 → M2 is a strict �r-filtered homomorphism. Then, Im Gr(φ) ∼=

Gr(Im φ) and Ker Gr(φ) ∼= Gr(Ker φ).
(b) If L is a submodule of M1, then Gr(M1/L) ∼= Gr(M1)/Gr(L).
(c) Suppose M1 ∈ grmod A. If L1, L2 are two submodules of M1 and L1 ⊆ L2 such

that Gr(L1) = Gr(L2), then L1 = L2.
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Proof. (a) and (b) are immediate consequences of Lemma 2.3(a).
(c) Notice that the �r-filtration on L1, L2 and L2/L1, induced from the one on M1,

is also a well-ordering. Then, L2/L1 = 0 follows from Gr(L2/L1) = 0, and the latter
follows from (b). �

Next lemma is a key step for constructing a resolution. This lemma is similar to
[7, Chapter 2, Proposition 2.3]. However, one shall notice that the homomorphism
constructed in next lemma preserves degrees. In other words, the conclusion holds in
the graded module category GrMod A.

LEMMA 2.5. Let M be a finitely generated A-module, and P = ⊕s
i=1 Gr(A)ei a finitely

generated free Gr(A)-module with basis {ei}s
i=1. Assume φ : P → Gr(M) is a surjective

morphism in GrMod Gr(A). Then, there exist a finitely generated free A-module P and a
strict �r-filtered surjection φ : P → M in GrMod A such that Gr(φ) = φ.

Proof. As mentioned above, set P = ⊕s
i=1 Aei on a basis of {ei}s

i=1 with deg ei =
tdeg ei for i = 1, 2, . . . , s. Let (P, {αi}s

i=1) be a �r-filtered pair of the free module P such
that Gr(P) = P where αi = deg ei (i = 1, 2, . . . , s).

Assume φ(ei) = mi, where mi is a homogeneous element in Gr(M)αi represented
by mi. Here, mi ∈ Fαi (M)\F<αi (M) and mi ∈ M‖αi‖ for i = 1, 2, . . . , s. The existence of
mi is guaranteed by Lemma 2.2.

We define the morphism φ : P → M in GrMod A by φ(ei) = mi. It is easy to see
that Gr(φ) = φ. Since φ is surjective, φ is a strict �r-filtered surjection by Lemma 2.3(b).
�

The following lemma exhibits a construction of a free resolution for a �r-filtered
graded module from a free resolution of its associative �r-graded module.

LEMMA 2.6. Let �r-filtered M be a finitely generated A-module. Suppose that Gr(M)
has a finite free resolution (the length is finite and each term in it is finitely generated):

0 −→ Pm
dm−→ Pm−1

dm−1−→ · · · d2−→ P1
d1−→ P0

d0−→ Gr(M) −→ 0,

where Pj = ⊕sj

i=1 Gr(A)ej
i for 0 ≤ j ≤ m. Then, there exists a finite free resolution of M

in GrMod A:

0 −→ Pm
dm−→ Pm−1

dm−1−→ · · · d2−→ P1
d1−→ P0

d0−→ M −→ 0,

where Pj = ⊕sj

i=1 Aej
i with deg ej

i = tdeg ej
i and (Pj, {deg ej

i}sj

i=1) is a �r-filtered pair of the
free module Pj such that Gr(Pj) ∼= Pj and Gr(dj) = dj for all 1 ≤ i ≤ sj, 0 ≤ j ≤ m.

As a consequence, gldim A ≤ gldim Gr(A).

Proof. The proof is similar to [16, Theorem 2.7] and [7, Chapter 2, Proposition
2.5]. But we need to notice that di is constructed as in Lemma 2.5 which preserves
degrees for all i = 1, 2, . . . , m. �
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In the sequel, we use the following notation if there is no confusion:

(−)∨ := HomA(−, A);

(−)∨ := HomGr(A)(−, Gr(A)).

As usual, the �r-filtration on the module P∨ for a finitely generated free A-module
P = ⊕s

i=1 Aei with basis {ei}s
i=1 is defined as

Fα(P∨) = {f ∈ P∨ | f (Fα′(P)) ⊆ Fα′+α(A) for all α′ ∈ �r}.

However, there is an isomorphism θ : P∨ ∼= P′ in grmod Ao , where P′ = ⊕s
i=1 e′

iA is
a free Ao-module on a basis {e′

i}s
i=1 with deg e′

i = − deg ei for i = 1, 2, . . . , s. It is easy
to check that θ is a strict �r-filtered isomorphism. Thus, the �r-filtration above also
satisfies Lemma 2.2.

LEMMA 2.7. Let (Pi, di) and (Pi, di) be defined as in Lemma 2.6 for i = 1, 2, . . . , m.
Then, Gr(P∨

i ) ∼= P∨
i and Gr(di

∨) = di
∨ for i = 1, 2, . . . , m.

Proof. Since P∨
i is a finitely generated free module, P∨

i
∼= Gr(P∨

i ) is an easy result
by Lemma 2.2. And the other one can be verified straightforwardly by Lemma 2.5 and
the isomorphism θ . �

2.2. The regularity. Now, we give the regularity criterion for a connected graded
algebra.

Let A = k〈X〉/I be a connected graded algebra. We keep the �r-filtration on A
defined in last subsection. Actually, this �r-filtration is equivalent to a �r-grading on
k〈X〉 such that Gr(A) is a �r-graded algebra. Provided an appropriate �r-grading, one
may derive some properties of A from Gr(A).

THEOREM 2.8. Let A = k〈X〉/I be a connected graded algebra. If Gr(A) is AS-regular
for an appropriate �r-grading on k〈X〉, then A is AS-regular.

Proof. By Lemma 2.6, we know gldim A ≤ gldim Gr(A) is finite.
Notice that Gr(A) can be seen as a �r-graded algebra which does not change the

GK-dimension. Thus, GKdim A = GKdim Gr(A) is finite by [15, Theorem 2.8].
It remains to show that A is Gorenstein. Since Gr(A) is AS-regular, there exists a

minimal free resolution of Gr(A)k:

0 −→ Pn
dn−→ Pn−1

dn−1−→ · · · d2−→ P1
d1−→ P0

d0−→ Gr(A)k −→ 0,

where Pj = ⊕sj

i=1 Gr(A)ej
i for all 0 ≤ j ≤ n.

It is easy to know Gr(k) ∼= k as Gr(A)-modules. By Lemma 2.6, there exists a finite
free resolution of Ak in GrMod A:

0 −→ Pn
dn−→ Pn−1

dn−1−→ · · · d2−→ P1
d1−→ P0

d0−→ Ak −→ 0,

where Pj = ⊕sj

i=1 Aej
i with deg ej

i = tdeg ej
i and (Pj, {deg ej

i}sj

i=1) is a �r-filtered pair of
the free module Pj such that Gr(Pj) ∼= Pj and Gr(dj) = dj for all 1 ≤ i ≤ sj, 0 ≤ j ≤ n.

The regularity of Gr(A) implies Im(di−1
∨) = Ker(di

∨). Note that Gr(di
∨) = di

∨ and
Gr(P∨

i ) ∼= P∨
i by Lemma 2.7 for i = 1, 2, . . . , n. Thus, Exti

A(k, A) = 0 for all i < n

https://doi.org/10.1017/S0017089515000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000075


REGULARITY CRITERION AND CLASSIFICATION 79

by Lemma 2.3(b). Moreover, dn
∨ is strict. Now we turn to compute Extn

A(k, A). By
definition, we have

Extn
Gr(A)(k, Gr(A)) = P∨

n / Im(dn
∨) ∼= Gr(P∨

n )/ Im(Gr(dn
∨)) ∼= k(l)

for some l ∈ �r. By Corollary 2.4, we obtain

Gr(Extn
A(k, A)) = Gr(P∨

n / Im(dn
∨)) ∼= Gr(P∨

n )/ Im(Gr(dn
∨)) ∼= k(l),

where the �r-filtration on Extn
A(k, A) is induced by the one on P∨

n .
Hence, F−l(Extn

A(k, A))/F<−l(Extn
A(k, A)) ∼= k and Fα(Extn

A(k, A)) =
F<α(Extn

A(k, A)) for all α ∈ �r except for α = −l. Since the �r-filtration on P∨
n satisfies

Lemma 2.2, we know Extn
A(k, A) ∼= k(‖l‖). In addition, gldim A = gldim Gr(A). �

To make the regularity criterion theorem above available in practice, a good way
is to use Gröbner theory. We review noncommutative Gröbner basis theory briefly,
a detailed treatment can be found in [7]. We firstly choose an arbitrary monomial
ordering ≺ on X∗. This induces a �r-graded admissible ordering ≺�r on X∗: for
u, v ∈ X∗, u ≺�r v is defined by

(a) degr(u) < degr(v), or
(b) degr(u) = degr(v) and u ≺ v.
For a nonzero polynomial f ∈ k〈X〉, we can write f = ∑q

i=1 fi, where each nonzero
fi is �r-homogeneous with degr fi = αi and α1 < α2 < · · · < αq. The element fq is called
the leading homogeneous polynomial of f , and it is denoted by LH(f ). Let G be the
reduced monic Gröbner basis of I under admissible ordering ≺�r , and let LH(G) =
{LH(f ) | f ∈ G}.

With the above preparations, now we are in position to prove Theorem 0.1.

Proof of Theorem 0.1 Due to the observation above Theorem 2.8, there exists a
partition on generator set X corresponding to the �r-grading on k〈X〉. This partition
induces a �r-filtration on A as defined in Section 2.1, and Gr(A) is the associated �r-
graded algebra. Here, the ordering < on �r is the top priority in ≺�r . And G is the
reduced Gröbner basis of I with respect to ≺�r . From [7, Chapter 4, Theorem 2.3], we
know

Gr(A) ∼= k〈X〉/(LH(G))

as �r-graded algebras. Thus, A is AS-regular by Theorem 2.8. �
REMARK 2.9. (1) Theorem 0.1 provides a possible generalized deformation from

known �r-graded AS-regular algebras; that is, by adding some appropriate low-terms
to the relations, one may produce some new classes of AS-regular algebras.

(2) The regularity criterion might not work for some AS-regular algebras. For
example, the three-dimensional Sklyanin algebra

A = k〈x, y, z〉/(axz + bzx + cy2, ayx + bxy + cz2, azy + byz + cx2),

where scalars a, b, c ∈ k. It is AS-regular except for some special values of scalars.
When c �= 0, Gr(A) are not domain for all �r-grading on k〈x, y, z〉 where r = 2, 3.
However, all AS-regular algebras of global dimension 3 are noetherian domains (see
[4]). So all of them are not AS-regular. Nevertheless, it is interesting to find a class of
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AS-regular algebras A = k〈X〉/I such that there exists an appropriate �r-grading on
k〈X〉 and make k〈X〉/(LH(G)) to be AS-regular where G is the Gröbner basis of I .

2.3. Ring-theoretic and homological properties. AS-regular algebras obtained so
far all have nice ring-theoretic and homological properties, such as noetherian, strongly
noetherian and Auslander regular. In this subsection, we show that those properties
also hold if their associated �r-graded algebras have them.

THEOREM 2.10. Let A = k〈X〉/I be a connected graded algebra. If Gr(A) is strongly
noetherian and Auslander regular for an appropriate �r-grading on k〈X〉, then so is A.

Before proving this theorem, we need some lemmas.
First, we set the definition of �r-filtration on tensor product. Let A1 and A2 be two

algebras with A1 being a �r-filtered algebra. We introduce a �r-filtration on A1 ⊗ A2

by

Fα(A1 ⊗ A2) = Fα(A1) ⊗ A2 for all α ∈ �r.

REMARK 2.11. Suppose A1 is a connected graded algebra and A2 is regard as a
graded algebra concentrated in degree 0. If the �r-filtration on A1 is the one defined
in Subsection 2.1, then the �r-filtration on A1 ⊗ A2 satisfies Lemma 2.1(a,b). If the
�r-filtration on modules in grmod A1 ⊗ A2 is defined as in (F2), then Lemmas 2.2, 2.3
and Corollary 2.4 still hold in the category grmod (A1 ⊗ A2).

LEMMA 2.12. Let A1 and A2 be two algebras where A1 is a �r-filtered algebras, then
Gr(A1 ⊗ A2) ∼= Gr(A1) ⊗ A2.

Proof. For any α ∈ �r, there exists an exact sequence as vector space,

0 → F<α(A1) → Fα(A1) → Gr(A1)α → 0.

Note that A2 is flat as k-module. Hence, acting − ⊗ A2 on that sequence,

0 → F<α(A1) ⊗ A2 → Fα(A1) ⊗ A2 → Gr(A1)α ⊗ A2 → 0

is still exact, which implies

Gr(A1)α ⊗ A2
∼= Fα(A1) ⊗ A2

F<α(A1) ⊗ A2
= Gr(A1 ⊗ A2)α.

It is easy to check that Gr(A1 ⊗ A2) ∼= Gr(A1) ⊗ A2 as �r-graded algebras. �
LEMMA 2.13. Let A be a connected graded algebra. If a �r-filtered A-module M has

a finite free resolution, then Gr(Exti
A(M, A)) is a subquotient of Exti

Gr(A)(G
r(M), Gr(A))

for any i ≥ 0.

Proof. We claim that for any �r-filtered homomorphism φ : N1 → N2, we have
Gr(Ker φ) ⊆ Ker(Gr(φ)) and Im(Gr(φ)) ⊆ Gr(Im φ), where N1, N2 are two �r-filtered
A-modules. If it is the case, the conclusion follows from Lemma 2.6.

Now we verify the claim. For any α ∈ �r,

Gr(Ker φ)α = Ker φ
⋂

Fα(N1)
Ker φ

⋂
F<α(N1)

∼= Ker φ
⋂

Fα(N1) + F<α(N1)
F<α(N1)

.
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However,

Ker(Gr(φ))α = Ker φ
⋂

Fα(N1) + φ−1(F<α(N2))
⋂

Fα(N1) + F<α(N1)
F<α(N1)

,

where φ−1(F<α(N2)) = {n1 ∈ N1 | φ(n1) ∈ F<α(N2)}. Obviously, Gr(Ker φ) ⊆
Ker(Gr(φ)).

The proof for Im φ is similar. �
We now recall the definition of j-number of modules. Let A be a �r-graded algebra

and M ∈ GrMod A,

jA(M) = inf{i | Exti
A(M, A) �= 0}.

LEMMA 2.14. Let A be a connected graded algebra. If Gr(M) has a finite free
resolution for �r-filtered M ∈ grmod A (resp. grmod Ao), then jA(M) ≥ jGr(A)(Gr(M))
(resp. jAo (M) ≥ jGr(A)o (Gr(M))).

Proof. Assume Gr(M) has a finite free resolution

0 −→ Pm
dm−→ Pm−1

dm−1−→ · · · d2−→ P1
d1−→ P0

d0−→ Gr(M) −→ 0,

where Pj = ⊕sj

i=1 Gr(A)ej
i for 0 ≤ j ≤ m. By Lemma 2.6, M has a free resolution

0 −→ Pm
dm−→ Pm−1

dm−1−→ · · · d2−→ P1
d1−→ P0

d0−→ M −→ 0,

where Pj = ⊕sj

i=1 Aej
i with deg ej

i = tdeg ej
i and (Pj, {deg ej

i}sj

i=1) is a �r-filtered pair of
the free module Pj such that Gr(Pj) ∼= Pj and Gr(dj) = dj for 1 ≤ i ≤ sj, 0 ≤ j ≤ m.

Put t = jGr(A)(Gr(M)); that is, the following sequence is exact

P∨
t

dt
∨

←− P∨
t−1

dt−1
∨

←− · · · · · · d0
∨

←− P∨
0 ←− 0.

By Lemmas 2.7 and 2.3(b), the sequence

P∨
t

dt
∨

←− P∨
t−1

dt−1
∨

←− · · · · · · d0
∨

←− P∨
0 ←− 0

is also exact, which implies jA(M) ≥ t. �
Proof of Theorem 2.10 Assume Gr(A) is strongly noetherian. For every

commutative noetherian algebra B, Gr(A ⊗ B) is noetherian by Lemma 2.12. It follows
immediately from Remark 2.11 and Corollary 2.4 that A ⊗ B is noetherian.

If Gr(A) is Auslander regular, so A is also noetherian with finite global dimension.
For any M ∈ grmod A and i ∈ �, let N be an Ao-submodule of Exti

A(M, A). We need
to show jAo (N) ≥ i.

From Lemma 2.13, we know that Gr(N) is a subquotient of Exti
Gr(A)(G

r(M), Gr(A)).
Therefore, the Auslander condition implies jGr(A)o (Gr(N)) ≥ i. However, jAo (N) ≥
jGr(A)o (Gr(N)) ≥ i by Lemma 2.14.

The right ones can be verified similarly. �
Analogous to the criterion of the regularity, we also have a corollary to examine

some ring-theoretic properties by means of Gröbner basis.
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COROLLARY 2.15. Let A = k〈X〉/I be a connected graded algebra. Suppose G is the
reduced Gröbner basis of I with respect to an admissible ordering ≺�r for some �r-grading
on k〈X〉. If the �r-graded algebra k〈X〉/(LH(G)) is strongly noetherian and Auslander
regular, then so is A.

REMARK 2.16. We fail to prove that A is Cohen–Macaulay if Gr(A) is Cohen–
Macaulay. It is equivalent to prove jGr(A)(Gr(M)) = jA(M) for any M ∈ grmod A. We
conjecture it is true. For the class of AS-regular algebras J , we will prove it directly in
Section 5.

3. A∞-algebra structure of Jordan type. From this section, we turn to the AS-
regular algebras of type (12221). As mentioned in the introduction, we hope to classify
the AS-regular algebras whose Frobenius data is of Jordan type. We first review the
A∞-algebra structures on the Ext-algebra of the type (12221), the readers may find the
details in [9]. After that, we concentrate on analysing and solving the equations gotten
from the Stasheff identities in Jordan case.

In our case, A is generated by two elements x1 and x2 with two relations r3 and
r4 whose degrees are 3 and 4, respectively. Denote by E := E(A) the A∞-Ext-algebra
of A.

3.1. A∞-Ext-algebras of type (12221). Notice that our A∞-algebra structures
satisfy the strictly unital condition, all multiplications and Stasheff identities can be
described without E0 = k.

3.1.1. Multiplications. According to the minimal resolution (∗) of trivial module
Ak, we know

E ∼= k ⊕ E1
−1 ⊕ E2

−3 ⊕ E2
−4 ⊕ E3

−6 ⊕ E4
−7,

where dim E1
−1 = dim E3

−6 = 2, dim E2
−3 = dim E2

−4 = dim E4
−7 = 1.

As stated above, all mn preserves Adams degree. After straightforward
computation, we have mn = 0 except for n = 2, 3, 4. The non-trivial multiplications
m2, m3, m4 are described explicitly in [9]. For the sake of computation, we copy them
below.

• m2 : The possible non-trivial actions of m2 on E⊗2 are

E1
−1 ⊗ E3

−6 → E4
−7, E3

−6 ⊗ E1
−1 → E4

−7,

E2
−3 ⊗ E2

−4 → E4
−7, E2

−4 ⊗ E2
−3 → E4

−7.

By Lemma 1.3, the algebra E is Frobenius. The Frobenius structure on E can be
described as follows. There exists a basis {β1, β2} of E1

−1, a basis {γ1} of E2
−3, a basis

{γ2} of E2
−4, a basis {ξ1, ξ2} of E3

−6, and a basis {η} of E4
−7 such that

γ1γ2 = η, γ2γ1 = tη, t ∈ k,

βiξj = δijη, ξiβj = rijη, rij ∈ k,

where t �= 0,R = (rij) is nonsingular. The pair (R, t) is called the Frobenius data of E.
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Since k is algebraically closed, R is similar to a diagonal matrix or a Jordan block;
that is, (

g1 0
0 g2

)
or

(
g 1
0 g

)
.

We will focus on the latter case which is called Jordan type.
• m3 : Possible nonzero components of m3 on E⊗3 are

(E1
−1)⊗3 → E2

−3,

(E1
−1)⊗2 ⊗ E2

−4 → E3
−6, E1

−1 ⊗ E2
−4 ⊗ E1

−1 → E3
−6, E2

−4 ⊗ (E1
−1)⊗2 → E3

−6,

E1
−1 ⊗ (E2

−3)⊗2 → E4
−7, E2

−3 ⊗ E1
−1 ⊗ E2

−3 → E4
−7, (E2

−3)⊗2 ⊗ E1
−1 → E4

−7.

For 1 ≤ i, j, k ≤ 2, we have

m3(βi, βj, βk) = aijkγ1,

m3(βi, βj, γ2) = b13ijξ1 + b23ijξ2, m3(βi, γ1, γ1) = c1iη,

m3(βi, γ2, βj) = b12ijξ1 + b22ijξ2, m3(γ1, βi, γ1) = c2iη,

m3(γ2, βi, βj) = b11ijξ1 + b21ijξ2, m3(γ1, γ1, βi) = c3iη,

where the coefficients are scalars in k.
• m4 : The possible non-trivial actions of m4 on E⊗4 are

(E1
−1)⊗4 → E2

−4,

(E1
−1)⊗3 ⊗ E2

−3 → E3
−6, E2

−3 ⊗ (E1
−1)⊗3 → E3

−6,

E1
−1 ⊗ E2

−3 ⊗ (E1
−1)⊗2 → E3

−6, (E1
−1)⊗2 ⊗ E2

−3 ⊗ E1
−1 → E3

−6.

For 1 ≤ i, j, k, h ≤ 2, we have

m4(βi, βj, βk, βh) = vijkhγ2,

m4(βi, βj, βk, γ1) = u14ijkξ1 + u24ijkξ2, m4(βi, βj, γ1, βk) = u13ijkξ1 + u23ijkξ2,

m4(βi, γ1, βj, βk) = u12ijkξ1 + u22ijkξ2, m4(γ1, βi, βj, βk) = u11ijkξ1 + u21ijkξ2,

where the coefficients are scalars in k.

3.1.2. Stasheff identities for the A∞-algebra E. The nontrivial Stasheff identities
are just SI(4), SI(5), SI(6).

• SI(4): Since m1 = 0, SI(4) becomes

m3(m2 ⊗ id⊗2 − id ⊗m2 ⊗ id + id⊗2 ⊗m2) − m2(m3 ⊗ id + id ⊗m3) = 0.

Applying it to the basis of E, the non-trivial ones give the relationships between the
coefficients.

aijk = bi3jk, bi2jk = ∑2
s=1 rskbs3ij,

bi1jk = ∑2
s=1 rskbs2ij, −taijk = ∑2

s=1 rskbs1ij,
for 1 ≤ i, j, k ≤ 2. (SI(4a))

Immediately, we have

−taijk =
2∑

s,t,u=1

rskrtjruiauts, for 1 ≤ i, j, k ≤ 2. (SI(4b))
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• SI(5): The Stasheff identity SI(5) is equivalent to

m4(m2 ⊗ id⊗3 − id ⊗m2 ⊗ id⊗2 + id⊗2 ⊗m2 ⊗ id − id⊗3 ⊗m2)

+m3(m3 ⊗ id⊗2 + id ⊗m3 ⊗ id + id⊗2 ⊗m3) + m2(m4 ⊗ id − id ⊗m4) = 0.

Then, it follows that SI(5) holds if and only if for 1 ≤ i, j, k, h ≤ 2,

aijkc2h − ajkhc1i + tvijkh − ui4jkh = 0,

aijkc3h + r1hu14ijk + r2hu24ijk − ui3jkh = 0,

r1hu13ijk + r2hu23ijk − ui2jkh = 0,

c1iajkh − r1hu12ijk − r2hu22ijk + ui1jkh = 0,

ajkhc2i − aijkc3h − r1hu11ijk − r2hu21ijk + vijkh = 0.

(SI(5a))

• SI(6): The Stasheff identity SI(6) becomes

m4(−m3 ⊗ id⊗3 − id ⊗m3 ⊗ id⊗2 − id⊗3 ⊗m3 ⊗ id − id⊗3 ⊗m3)

+m3(m4 ⊗ id⊗2 − id ⊗m4 ⊗ id + id⊗2 ⊗m4) = 0.

Applying it to the basis of E, all are trivial except for (βi, βj, βk, βh, βm, βn). We obtain

−aijkus1hmn + ajkhus2imn − akhmus3ijn + ahmnus4ijk

+bs1mnvijkh − bs2invjkhm + bs3ijvkhmn = 0,
for 1 ≤ i, j, k, h, m, n, s ≤ 2. (SI(6a))

Since E2 = E2
−3 ⊕ E2

−4, the relations R = {r3, r4} where deg r3 = 3 and deg r4 = 4.
By Lemma 1.5 and the A∞-algebra structure on E described above, we can write

r3 =
∑

1≤i,j,k≤2

aijkxixjxk,

r4 =
∑

1≤i,j,k,h≤2

vijkhxixjxkxh.

Furthermore, r3 and r4 are neither zero nor a product of lower-degree polynomials
since A is a domain.

3.2. Jordan type. We now concentrate on the Jordan type. We write

R =
(−g 1

0 −g

)
.

Next, we work with m3 by considering SI(4) to describe r3. By SI(4b), we have

(t − g3)a111 = 0,

(t − g3)a112 + g2a111 = 0, (t − g3)a212 + g2(a211 + a112) − ga111 = 0,

(t − g3)a121 + g2a111 = 0, (t − g3)a221 + g2(a211 + a121) − ga111 = 0,

(t − g3)a211 + g2a111 = 0, (t − g3)a122 + g2(a112 + a121) − ga111 = 0,

(t − g3)a222 + g2(a221 + a212 + a122) − g(a112 + a121 + a211) + a111 = 0.

(SI(4c))

If t − g3 �= 0, all aijk = 0 which implies r3 = 0. Therefore

t = g3.
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From (SI(4c)), it is easy to obtain{
a111 = a112 = a121 = a211 = 0,

a221 + a212 + a122 = 0.

Hence, r3 = a122x1x2
2 + a212x2x1x2 + a221x2

2x1 + a222x3
2. Moreover, it is easy to see

a122a221 �= 0 since A is a domain, we write a122 = 1, a221 = p �= 0 and a222 =
w, a212 = −(1 + p). So

r3 = x1x2
2 − (1 + p)x2x1x2 + px2

2x1 + wx3
2.

We get the solutions for {bisjk} from (SI(4a)),

b1322 = 1, b2312 = −(1 + p), b2321 = p, b2322 = w,

b1222 = g(1 + p), b2212 = −gp, b2221 = −g, b2222 = 1 − gw,

b1122 = g2p, b2112 = g2, b2121 = −g2(1 + p), b2122 = gp + g2w,

the other of bijkh are zero.

Then, consider SI(5) to describe r4. By replacing r4 with the equivalent relation

r4 − v1122x1r3 − v2122x2r3 − v1221r3x1 − v1222r3x2,

we may assume that

v1122 = v2122 = v1221 = v1222 = 0.

Using (SI(5a)) recursively to eliminate {uisjkh}, we obtain equations:

(1 − g4t)v1111 = 0, (3.0.1)

(1 − g4t)v1112 = −g3tv1111, (3.0.2)

(1 − g4t)v1121 = −g3tv1111, (3.0.3)

(1 − g4t)v1122 = −g3t(v1112 + v1121) + g2tv1111 − (g4c11 + c21 + g3c31) = 0, (3.0.4)

(1 − g4t)v1211 = −g3tv1111, (3.0.5)

(1 − g4t)v1212 = −g3t(v1112 + v1211) + g2tv1111 + (1 + p)(g4c11 + c21 + g3c31), (3.0.6)

(1 − g4t)v1221 = −g3t(v1121 + v1211) + g2tv1111

−p(g4c11 + c21 + g3c31) + gc11 + g4c21 + c31 = 0, (3.0.7)

(1 − g4t)v1222 = −g3tv1212 + g2t(v1112 + v1121 + v1211) − gtv1111 − c11 − g3c21

−w(g4c11 + c21 + g3c31) + gc12 + g4c22 + c32 = 0, (3.0.8)

(1 − g4t)v2111 = −g3tv1111, (3.0.9)

(1 − g4t)v2112 = −g3t(v1112 + v2111) + g2tv1111, (3.0.10)

(1 − g4t)v2121 = −g3t(v1121 + v2111) + g2tv1111 − (1 + p)(gc11 + g4c21 + c31), (3.0.11)

(1 − g4t)v2122 = −g3t(v2112 + v2121) + g2t(v1112 + v1121 + v2111) − gtv1111

+(1 + p + g3)c11 + g3(1 + p)c21 − (1 + p + g3)gc12

−(g4(1 + p) + 1)c22 − (g3 + p + 1)c32 = 0, (3.0.12)

(1 − g4t)v2211 = −g3t(v1211 + v2111) + g2tv1111 + p(gc11 + g4c21 + c31), (3.0.13)
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(1 − g4t)v2212 = −g3t(v1212 + v2112 + v2211) + g2t(v1112 + v1211 + v2111) − gtv1111

+(−g3(1 + p) − p)c11 − g3pc21 + (g4(1 + p) + gp)c12

+(g4p + 1 + p)c22 + (p + g3(1 + p))c32, (3.0.14)

(1 − g4t)v2221 = −g3t(v2121 + v2211) + g2t(v1121 + v1211 + v2111) − gtv1111

+w(gc11 + g4c21 + c31) + g3pc11 − p(g4c12 + c22 + g3c32), (3.0.15)

(1 − g4t)v2222 = −g3t(v2212 + v2221) + g2t(v1212 + v2112 + v2121 + v2211)

−gt(v1112 + v1121 + v1211 + v2111) + tv1111

+w(g3c11 − c11 − g3c21)

+w((−g4 + g)c12 + (g4 − 1)c22 + (1 − g3)c32). (3.0.16)

If 1 − g4t �= 0, then all v1ijk = 0, which implies x2 is a zero divisor, contrary to our
assumption. Hence,

g4t = 1, g7 = 1.

From (3.0.2), we get v1111 = 0. Hence, (3.0.4), (3.0.6), (3.0.7) become

v1112 + v1121 = −gM, (3.0.17)

v1112 + v1211 = (1 + p)gM, (3.0.18)

v1121 + v1211 = (g4 − p)gM, (3.0.19)

where M := g4c11 + c21 + g3c31. The equations (3.0.10), (3.0.11), (3.0.13) become

v1112 + v2111 = 0, (3.0.20)

v1121 + v2111 = −(1 + p)g5M, (3.0.21)

v1211 + v2111 = pg5M. (3.0.22)

Following from the equations (3.0.17)-(3.0.22), we obtain

−gM = (g4 − p − pg4)gM,

(1 + p)gM = (2g4 − p + pg4)gM.

Note that g7 = 1, we have two cases:

Case 1 M = 0.
Case 2 M �= 0, g = 1, p = 1.

4. Regular algebras of Jordan type. We continue to analyse the A∞-algebra
structures in this section. We solve all the algebras corresponding to Case 1 and
Case 2, and prove that there is one class of AS-regular algebras in Case 2, and no
AS-regular algebra in Case 1.

PROPOSITION 4.1. Suppose that A is an AS-regular algebra of type (12221) which is
Jordan type, then Case 1 gives no AS-regular algebras and Case 2 gives exactly one class
of AS-regular algebras.
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4.1. Case 1: non-AS-regular algebras. If M = 0, the equations (3.0.17)–(3.0.22)
tell that

v1112 = v1121 = v1211 = v2111 = 0.

Then,

r4 =v1212x1x2x1x2 + v2112x2x2
1x2 + v2121x2x1x2x1 + v2211x2

2x2
1

+ v2212x2
2x1x2 + v2221x3

2x1 + v2222x4
2.

Since A is a domain, v1212 must be nonzero. Hence, we can assume v1212 = 1. Now

r4 =x1x2x1x2 + v2112x2x2
1x2 + v2121x2x1x2x1 + v2211x2

2x2
1

+ v2212x2
2x1x2 + v2221x3

2x1 + v2222x4
2.

Next, we start to perform the computations to find all solutions
of {aijk, vijkh} satisfying all Stasheff identities SI(4), SI(5) and SI(6). Find
expressions of {v1212, v2112, v2121, v2211, v2212} from (3.0.1)–(3.0.16) which are
represented by {g, p, w, c11, c21, c12, c22, c32, v2221}, and formulas of {uisjkh} from
SI(5a). We omit them because of its length. Then, input the expressions of
{aijk, bstmn, uisjkh, vijkh} into SI(6a). This produces 27 equations involving the variables
{g, p, w, c11, c21, c12, c22, c32, v2221, v2222}. We compute those and solve the equations
by Maple.

After deleting useless solutions, we have five different solutions in total. Input
them into the coefficients of r3, r4 as listed below.

Solution 1

g = 1, p = 1, w = 0,

v1212 = 1, v2112 = −1, v2121 = −1, v2211 = 1,

v2212 = c22, v2221 = −c22, v2222 = v2222.

(S1)

Solution 2

g = 1, p = −1, w = w,

v1212 = 1, v2112 = 1, v2121 = 1, v2211 = −3,

v2212 = 1 − w

2
, v2221 = 7w

2
− 1, v2222 = −3w2

2
+ w

2
.

(S2)

Solution 3

g = 1, p = −1, w = 2
7
,

v1212 = 1, v2112 = 1, v2121 = 1, v2211 = −3,

v2212 = 6
7
, v2221 = 0, v2222 = v2222.

(S3)
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Solution 4

g = j, p = −j3, w = w,

v1212 = 1, v2112 = j, v2121 = −j6 − j2 − 2j − 2,

v2211 = j6 + j2 + j + 1, v2212 = −w(
j4

2
+ 2j3 + 3j2 + 2 + 7j

2
) + j6 + 1

2
,

v2221 = w(j5 + 3j4

2
+ 2j3 + 3j2 + 7j

2
+ 3) − j6 + 1

2
,

v2222 = 1
2

(
w2(−4j5 + 10j3 + 14j2 + 13j + 6) − w(j3 + 2j2 + 2j + 1)

)
.

(S4)

Solution 5

g = j, p = j2, w = c22(−j6 + j5),

v1212 = 1, v2112 = −1, v2121 = −j2,

v2211 = j2, v2212 = (j4 − j3 + j2)c22,

v2221 = c22(2j5 + 2j3 + j + 1),

v2222 = c2
22(j6 − 2j5 − j3 − j2 − 2).

(S5)

The number j occurring in Solutions 4 and 5 satisfies j6 + j5 + j4 + j3 + j2 + j + 1 = 0.
We check Hilbert series of them by using Diamond Lemma [5] to calculate the

Gröbner bases. Before that, we show a lemma to help us compare the Hilbert series
with other series in low degrees. In the following, we fix an arbitrary monomial ordering
on X∗. For any u, v ∈ X∗, we say v is a factor of u, if there exist w,w′ ∈ X∗ such that
u = wvw′ denoted by v|u. Let any nonzero polynomial f ∈ k〈X〉, the leading monomial
LM(f ) of f is the largest monomial in f . Let G be the reduced monic Gröbner basis of
I , and G = ⋃

i Gi where Gi = {f ∈ G | deg f ≤ i}. Then, the set

NW(G) = {u ∈ X∗ | LM(g) � u for any g ∈ G} =
⋃

i

NW(G)i

is a k-basis of A, where NW(G)i consists of the elements of degree i in
NW(G). Hence, dimk Am = #(NW(G)m). Notice that NW(G)i = {u ∈ X∗ | LM(g) �
u for any g ∈ Gi and deg u = i}.

LEMMA 4.2. Let A = k〈X〉/I be a connected graded algebra, G is a Gröbner basis of
I, and let A′ = k〈X〉/(LM(Gm)). Then, HA′ (t) − HA(t) = ∑

i>m aiti with ai ≥ 0.

Proof. For any i ≥ 0, LM(Gm)i ⊂ LM(G)i since LM(Gm) ⊂ LM(G). Then,
NW(LM(G))i ⊂ NW(LM(Gm))i and dimk A′

i ≥ dimk Ai. HA′ (t) − HA(t) = ∑
i≥0 aiti

with ai ≥ 0.
Moreover, for i ≤ m,

NW(LM(Gm))i = {u ∈ X∗ | LM(g) � u for any g ∈ LM(Gm) and deg u = i}
= {u ∈ X∗ | LM(g) � u for any g ∈ Gm and deg u = i}
= {u ∈ X∗ | LM(g) � u for any g ∈ Gi and deg u = i}
= NW(G)i.

Hence, dimk Ai = dimk A′
i if i ≤ m, which implies HA′(t) − HA(t) = ∑

i>m aiti with
ai ≥ 0. �
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We choose a monomial ordering ≺gr−lex on the free monoid {x1, x2}∗ as follows:
For any u = xi1 xi2 · · · xis , v = xj1 xj2 · · · xjt ∈ X∗, to say u ≺gr−lex v we mean either

(a) s < t, or
(b) s = t and there exists p such that xil = xjl for l < p and ip > jp.
Keep in mind that Hilbert series of type (12221) is

HA(t) = 1 + 2t + 4t2 + 7t3 + 11t4 + 16t5 + 23t6 + 31t7 + · · · . (HS)

The algebra corresponding to (S1) is U(g, h) = k〈x1, x2〉/(f11, f12), where

f11 = x1x2
2 − 2x2x1x2 + x2

2x1,

f12 = x1x2x1x2 − x2x2
1x2 − x2x1x2x1 + x2

2x2
1 + gx2

2x1x2 − gx3
2x1 + hx4

2,

with g, h ∈ k.
V (w, l) = k〈x1, x2〉/(f21, f22) is the algebra corresponding to (S5), where

f21 =x1x2
2 − (1 + j2)x2x1x2 + j2x2

2x1 + w(−j6 + j5)x3
2,

f22 =x1x2x1x2 − x2x2
1x2 − j2x2x1x2x1 + j2x2

2x2
1 + l(j4 − j3 + j2)x2

2x1x2

+ l(2j5 + 2j3 + j + 1)x3
2x1 + l2(j6 − 2j5 − j3 − j2 − 2)x4

2,

with j6 + j5 + j4 + j3 + j2 + j + 1 = 0 and w, l ∈ k.

LEMMA 4.3. U(g, h), V (w, l) are not AS-regular.

Proof. By Diamond Lemma, we know that {f11, f12} and {f21, f22} are Gröbner bases
of (f11, f12) and (f21, f22), respectively. Then, their leading monomials of Gröbner bases
are the same, that is, LM(G) = {x1x2

2, x1x2x1x2}. Let MON := k〈x1, x2〉/(LM(G)).
Hence,

HU(g,h)(t) = HV (w,l)(t) = HMON(t) = 1 + 2t + 4t2 + 7t3 + 11t4 + 17t5 + · · · ,

which is different from (HS). �
The algebras corresponding to solutions (S2)–(S4) are listed below.

(S2) O(w) = k〈x1, x2〉/(f31, f32), where

f31 =x1x2
2 − x2

2x1 + wx3
2,

f32 =x1x2x1x2 + x2x2
1x2 + x2x1x2x1 − 3x2

2x2
1 + (1 − w

2
)x2

2x1x2

+ (
7w

2
− 1)x3

2x1 + (−3w2

2
+ w

2
)x4

2,

with w ∈ k.
(S3) P(a) = k〈x1, x2〉/(f41, f42), where

f41 =x1x2
2 − x2

2x1 + 2
7

x3
2,

f42 =x1x2x1x2 + x2x2
1x2 + x2x1x2x1 − 3x2

2x2
1 + 6

7
x2

2x1x2 + ax4
2,

with a ∈ k.
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(S4) Q(d) = k〈x1, x2〉/(f51, f52), where

f51 =x1x2
2 − (1 − j3)x2x1x2 + j3x2

2x1 + dx3
2,

f52 =x1x2x1x2 + jx2x2
1x2 − (j6 + j2 + 2j + 2)x2x1x2x1 + (j6 + j2 + j + 1)x2

2x2
1

+ ( j6 + 1
2

− d(
j4

2
+ 2j3 + 3j2 + 2 + 7j

2
)
)
x2

2x1x2

+ (
d(j5 + 3j4

2
+ 2j3 + 3j2 + 7j

2
+ 3) − j6 + 1

2

)
x3

2x1

+ 1
2

(
d2(−4j5 + 10j3 + 14j2 + 13j + 6) − d(j3 + 2j2 + 2j + 1)

)
x4

2,

with j6 + j5 + j4 + j3 + j2 + j + 1 = 0 and d ∈ k.

LEMMA 4.4. O(w), P(a), Q(d) are not AS-regular.

Proof. Only consider G7. Then, we obtain that the leading monomials in G7 of
them are the same, that is,

LM(G7) = {x1x2
2, x1x2x1x2, x2

2x2
1x2, x2

2x3
1x2, x2

2x1x2x2
1x2, x2

2x4
1x2}.

Let MON7 := k〈x1, x2〉/(G7).
Suppose they are AS-regular, then they have the same Hilbert series (HS) denoted

H(t). Then, HMON7 (t) − H(t) = ∑
i≥8 aiti with ai ≥ 0 by Lemma 4.2.

However, HMON7 (t) = 1 + 2t + 4t2 + 7t3 + 11t4 + 16t5 + 23t6 + 32t7 + · · · and

HMON7 (t) − H(t) = t7 + �i≥8aiti.

It is a contradiction. �

4.2. Case 2: AS-regular. Now we turn to Case 2. From (SI(5a)), we find that
v1112 = −M

2 . Assume

v1112 = 1.

The same method is used as in Case 1. Using (3.0.1)–(3.0.16) again, represent {vijkh}
by {w, c11, c21, c31, c12, c22, c32, v2221, v2222}. Find expressions for {uisjkh} from SI(5a).
We also omit those explicit formulas. Then, input the formulas into SI(6a) which
produces 27 equations involving the variables {w, c11, c21, c31, c12, c22, c32, v2221, v2222}
and solve them. All those steps are computed by Maple. There exits only one solution,
and taking it back to {vijkh} we obtain:

Solution 6

g = 1, p = 1, w = 0,

v1112 = 1, v1121 = −3, v1211 = 3,

v1212 = −c21 + 1, v2111 = −1, v2112 = c21,

v2121 = c21 − 3, v2211 = −c21 + 2, v2212 = −v2221,

v2221 = v2221, v2222 = v2222.

(S6)
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The corresponding algebra is J = k〈x1, x2〉/(f1, f2) where

f1 =x1x2
2 − 2x2x1x2 + x2

2x1,

f2 =x3
1x2 − 3x2

1x2x1 + 3x1x2x2
1 − x2x3

1 + (1 − u)x1x2x1x2 + ux2x2
1x2

+ (u − 3)x2x1x2x1 + (2 − u)x2
2x2

1 − vx2
2x1x2 + vx3

2x1 + wx4
2,

and u, v, w ∈ k.
Then, we define a �2-grading on k〈x1, x2〉 with deg2 x1 = (1, 0), deg2 x2 = (0, 1).

We choose ≺gr−lex on {x1, x2}∗ as the monomial ordering defined in Section 4.1. The
admissible ordering ≺�2 is defined as in Section 2. Let I = (f1, f2) and G be the Gröbner
basis of I respect to ≺�2 . Then,

G2(J ) ∼= k〈x1, x2〉/(LH(I)) ∼= k〈x1, x2〉/(LH(G)).

Applying the Diamond Lemma, the Gröbner basis G is {f1, f2, f3} where

f3 =x2
1x2x1x2 − 3x1x2x2

1x2 + 2x1x2x1x2x1 + 3x2x2
1x2x1 − 5x2x1x2x2

1

+ (2u − 2)x2x1x2x1x2 + 2x2
2x3

1 − 2ux2
2x2

1x2 + (6 − 2u)x2
2x1x2x1

+ (2u − 4)x3
2x2

1 + 2vx3
2x1x2 − 2vx4

2x1 − 2wx5
2.

So, LH(G) = {LH(f1), LH(f2), LH(f3)}, where

LH(f1) = x1x2
2 − 2x2x1x2 + x2

2x1,

LH(f2) = x3
1x2 − 3x2

1x2x1 + 3x1x2x2
1 − x2x3

1,

LH(f3) = x2
1x2x1x2 − 3x1x2x2

1x2 + 2x1x2x1x2x1 + 3x2x2
1x2x1 − 5x2x1x2x2

1 + 2x2
2x3

1.

However, LH(f3) = LH(f2)x2 − x2 LH(f2) + LH(f1)x2
1 − x2

1 LH(f1) − x1 LH(f1)x1.
Therefore,

G2(J ) = k〈x1, x2〉/(x1x2
2 − 2x2x1x2 + x2

2x1, x3
1x2 − 3x2

1x2x1 + 3x1x2x2
1 − x2x3

1).

This is just D(−2,−1) in [9] which is AS-regular. By Theorem 0.1, we have

PROPOSITION 4.5. The algebra J is an AS-regular algebra of global dimension 4.

5. Properties of the algebras. In this section, we show some properties ofJ about
ring-theoretic, homology and geometry.

The algebra D(−2,−1) has been proved to be noetherian, strongly noetherian and
Auslander regular in [9]. By Corollary 2.15, we immediately obtain the following:

THEOREM 5.1. The algebra J is strongly noetherian and Auslander regular.

Besides, we still want to know whether J is Cohen–Macaulay. An Ore extension
is constructed below.

THEOREM 5.2. The algebra J is Cohen–Macaulay.

Proof. We claim J is an Ore extension of an algebra which is Cohen–Macaulay.
Hence, J is Cohen–Macaulay by [13, Lemma 1.3].

Take a graded polynomial algebra B = k[x2, z1, z2] with deg x2 = 1, deg z1 = 2,

and deg z2 = 3. This is Cohen–Macaulay since it is an iterated Ore extension.
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Let x1 be a new variable with degree 1 and C = B[x1; σ, δ] where σ is the identity
and

δ(x2) = z1, δ(z1) = z2, δ(z2) = (u − 1)z2
1 − x2z2 + vx2

2z1 − wx4
2, u, v, w ∈ k.

We rewrite the relations between x1 and x2, z1 as

x1x2 = x2x1 + z1, x1z1 = z1x1 + z2.

Then, z1, z2 can be generated by x1, x2 as

z1 = x1x2 − x2x1, z2 = x1z1 − z1x1.

Hence, C is generated by x1, x2. The other four relations of C are listed below

x2z1 − z1x2,

x1z2 − z2x1 + (1 − u)z2
1 + x2z2 − vx2

2z1 + wx4
2,

x2z2 − z2x2,

z1z2 − z2z1.

Replacing z1, z2, the first relation is equivalent to the relation f1 of J . After being
reduced by f1 with respect to ≺�2 , the second is equivalent to f2 of J . And the last two
relations can be derived from f1, f2, f3. Hence, J ∼= C. �

REMARK 5.3. The proof also shows that J is AS-regular of dimension 4, strongly
noetherian and Auslander regular. However, finding an Ore extension is a tedious task,
the method used in last section is more effective.

THEOREM 5.4. The automorphism group of J is isomorphic to the group G, where

G =
{(

a b
0 a

) ∣∣∣ a ∈ k\{0}, b ∈ k
}

.

Proof. Let σ is an arbitrary automorphism of J . Suppose that

σ (x1) = a1x1 + a2x2, σ (x2) = b1x1 + b2x2,

and the matrix
(

a1 a2

b1 b2

)
is nonsingular, that is, a1b2 − a2b1 �= 0. Then,

σ (f1) = b1(a2b1 − a1b2)(x2
1x2 − 2x1x2x1 + x2x2

1)

+ b2(a1b2 − a2b1)(x1x2
2 − 2x2x1x2 + x2

2x1).

It is zero in J , so it must be a scalar multiple of f1. Hence,

b1 = 0.
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To see the other relation f2,

σ (f2) = a3
1b2(x3

1x2 − 3x2
1x2x1 + 3x1x2x2

1 − x2x3
1) + a2

1b2(4a2 + (1 − u)b2)x1x2x1x2

+ a2
1b2((u − 3)b2 − 4a2)x2x1x2x1 + a2

1b2(2a2 + (2 − u)b2)x2
2x2

1

− 2a2
1a2b2x2

1x2
2 + ua2

1b2
2x2x2

1x2 + a1a2b2(a2 + (1 − u)b2)x1x3
2

+ a1a2b2((2u − 3)b2 − 3a2)x2x1x2
2 + a1b2((3 − u)a2b2 + 3a2

2 − vb2
2)x2

2x1x2

+ a1b2(vb2
2 − a2

2 − a2b2)x3
2x1 + wb4

2x4
2

= (1 − u)a2
1b2(b2 − a1)x1x2x1x2 + (u − 3)a2

1b2(b2 − a1)x2x1x2x1

+ (2 − u)a2
1b2(b2 − a1)x2

2x2
1 + ua2

1b2(b2 − a1)x2x2
1x2

+ va1b2(a2
1 − b2

2)x2
2x1x2 + va1b2(b2

2 − a2
1)x3

2x1 + wb2(b3
2 − a3

1)x4
2

= 0.

Because the leading monomial x1x2x1x2 of right hand has no factors in
LM(f1), LM(f2), it must be zero. While a1, b2 �= 0, we obtain

a1 = b2.

Therefore, Aut(J ) ∼= G. �
At last, we calculate the point modules of J . Before that recall the definition.

DEFINITION 5.5 [3]. Let A be a connected graded algebra, a graded A-module M
is called a point module if it satisfies the following conditions:

(a) M is generated in degree zero,
(b) M0 = k,
(c) dimk Mi = 1, for all i ≥ 0.

THEOREM 5.6. The algebra J has two classes of point modules up to isomorphism.

Proof. Let M = J e0 be a point module ofJ . As vector space, M = ⊕∞
i=0 kei where

deg ei = i. The J -module structure on M can be described by generators as

x1ei = pi+1ei+1, x2ei = qi+1ei+1, for any i ≥ 0,

where pi, qi ∈ k. For every i > 0, pi, qi cannot be zero simultaneously. Denote αi =
(pi, qi), then M determines a unique sequence of points {αi}∞i=1 in �1.

Because of the J -module structure on M, we have the equations

pi+3qi+2qi+1 − 2qi+3pi+2qi+1 + qi+3qi+2pi+1 = 0,

pi+4pi+3pi+2qi+1 − 3pi+4pi+3qi+2pi+1 + 3pi+4qi+3pi+2pi+1 + (1 − u)pi+4qi+3pi+2qi+1

− qi+4pi+3pi+2pi+1 + uqi+4pi+3pi+2qi+1 + (u − 3)qi+4pi+3qi+2pi+1

+ (2 − u)qi+4qi+3pi+2pi+1 − vqi+4qi+3pi+2qi+1 + vqi+4qi+3qi+2pi+1

+ wqi+4qi+3qi+2qi+1 = 0,

for any i ≥ 0.
Notice that, the solutions of equations above are sequences of points {αi}∞i=1 in �1.

And those sequences of points also determines point modules of J .
Suppose S = {(a1, b1), (a2, b2), . . .} is a sequence of points related toJ , it must be a

solution of the equations. Now we consider the sequence S1 = {(a2, b2), (a3, b3), . . .}, it
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is also a solution of the equations. It always holds for Si = {(ai+1, bi+1), (ai+2, bi+2), . . .}
for any i > 0. In this sense, the minimum period length of those equations is 4. Hence,
we solve the equation as follows:

p3q2q1 − 2q3p2q1 + q3q2p1 = 0,

p4q3q2 − 2q4p3q2 + q4q3p2 = 0,

p4p3p2q1 − 3p4p3q2p1 + 3p4q3p2p1 + (1 − u)p4q3p2q1 − q4p3p2p1 + uq4p3p2q1

+ (u − 3)q4p3q2p1 + (2 − u)q4q3p2p1 − vq4q3p2q1 + vq4q3q2p1 + wq4q3q2q1 = 0.

(EP)
If pi = 0 (respectively, qi = 0), then we assume qi = 1 (respectively, pi = 1) by some

appropriate change of basis. If both qi and pi are nonzero, we assume qi = 1. Then, the
solutions of equations (EP) are listed below{

p1 = 1, p2 = 1, p3 = 1, p4 = 1,

q1 = 0, q2 = 0, q3 = 0, q4 = 0.
(P1)

{
p1 = p1, p2 = 1, p3 = 1, p4 = p1 − u,

q1 = 1, q2 = 0, q3 = 0, q4 = 1.
(P2)

{
p1 = p1, p2 = p1 + d, p3 = p1 + 2d, p4 = p1 + 3d,

q1 = 1, q2 = 1, q3 = 1, q4 = 1,
(P3)

where d ∈ k satisfies 6d3 + (3 − u)d2 − vd + w = 0.
Assemble them under the rule that each Si is a solution for any i > 0. Therefore,

there exist two classes of point modules:
(a) (P1)(P1)(P1)(P1)(P1)(P1)· · · · · · ,
(b) (P3)(P3)(P3)(P3)(P3)(P3)· · · · · · .

where (a) and (b) are sequenced by (P1) and (P3), respectively. �
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