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Abstract
Sarnak’s density conjecture is an explicit bound on the multiplicities of nontempered representations in a sequence
of cocompact congruence arithmetic lattices in a semisimple Lie group, which is motivated by the work of Sarnak
and Xue ([58]). The goal of this work is to discuss similar hypotheses, their interrelation and their applications.
We mainly focus on two properties – the spectral spherical density hypothesis and the geometric Weak injective
radius property. Our results are strongest in the p-adic case, where we show that the two properties are equivalent,
and both imply Sarnak’s general density hypothesis. One possible application is that either the spherical density
hypothesis or the Weak injective radius property imply Sarnak’s optimal lifting property ([57]). Conjecturally, all
those properties should hold in great generality. We hope that this work will motivate their proofs in new cases.
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1. Introduction

Let k be a local field (Archimedean or non-Archimedean), let G be the k-rational points of a semisimple
algebraic group defined over k, letΓ1 ⊂ 𝐺 be a lattice and let (Γ𝑁 ) be a sequence of finite index subgroups
of Γ1 with [Γ1 : Γ𝑁 ] → ∞. There are various results about the multiplicities in the decomposition of
𝐿2 (Γ𝑁 \𝐺) into irreducible representations (e.g., [16, 59, 1]). An extremely strong property is the very
naive Ramanujan property, stating that if 𝜋 is nontempered and nontrivial, then it does not appear in
the decomposition. However, the very naive Ramanujan property is usually not true in high rank (see,
e.g., [9]). Notice that we do not make a distinction between cusp forms and noncusp forms – the naive
Ramanujan conjecture states that cusp forms are tempered, and it is also not true in general ([34]).
Moreover, even when the naive Ramanujan conjecture is expected to be true, it is usually out of reach
by the existing methods.

Recently, Sarnak made a density conjecture which approximates the very naive Ramanujan property
and should serve as a replacement for it for applications. Some instances of this general idea were
previously given for hyperbolic surfaces ([57, 28]), and for graphs ([7, 39]). Our goal here is to give a
general framework for similar density conjectures and their use in applications.

We give a geometric and somewhat elementary approach to the problem. An alternative approach
based on deep results in the Langlands program may be found in an ongoing work of Shai Evra.

To state Sarnak’s density conjecture, we first set some notations. Let (𝜋,𝑉) be a unitary irreducible
representation of G, and let 0 ≠ 𝑣0 ∈ 𝑉 be a K-finite vector, where K is a maximal compact subgroup of
G, which is good in the sense of Bruhat and Tits in the non-Archimedean case ([8]). We let 1 ≤ 𝑝(𝜋) ≤ ∞
be the infimum over 𝑝 ≥ 1 such that the matrix coefficient 𝛽 : 𝐺 → C, 𝛽(𝑔) = 〈𝑣0, 𝜋(𝑔)𝑣0〉 is in 𝐿 𝑝 (𝐺).
It is a simple fact that 𝑝(𝜋) does not depend on the choice of 𝑣0. Let Π(𝐺) be the set of isomorphism
classes of irreducible unitary representations of G endowed with the Fell topology. For a cocompact
lattice Γ and (𝜋,𝑉) ∈ Π(𝐺), denote 𝑚(𝜋, Γ) = dim Hom𝐺 (𝑉, 𝐿2 (Γ\𝐺)), that is, the multiplicity of
𝜋 in the decomposition of 𝐿2 (Γ\𝐺) into irreducible representations. For a subset 𝐴 ⊂ Π(𝐺), denote
𝑀 (𝐴, Γ, 𝑝) =

∑
𝜋∈𝐴,𝑝 (𝜋) ≥𝑝 𝑚(𝜋, Γ).

Conjecture 1.1 (Sarnak’s density conjecture). Let G be a real, semisimple, almost-simple and simply
connected Lie group, let Γ1 be a cocompact arithmetic lattice of G and let (Γ𝑁 ) be a sequence of finite
index congruence subgroups of Γ1, with [Γ1 : Γ𝑁 ] → ∞. Then for every precompact subset 𝐴 ⊂ Π(𝐺)
and 𝜖 > 0 there exists a constant 𝐶𝜖 ,𝐴 such that for every N and 𝑝 > 2,

𝑀 (𝐴, Γ, 𝑝) ≤ 𝐶𝐴,𝜖 [Γ1 : Γ𝑁 ]2/𝑝+𝜖 .

We refer to a sequence of lattices satisfying this multiplicity property as a sequence that satisfies the
general density hypothesis. A similar conjecture appeared in the work of Sarnak and Xue ([58]), but
they only considered the case when 𝐴 = {𝜋} is a singleton. In such a case, we say that the sequence of
lattices satisfies the pointwise multiplicity hypothesis.
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We will prefer to work with a different spectral definition, the spherical density hypothesis, which
is easier to use for applications, and concerns only spherical representations. Let Π(𝐺)sph ⊂ Π(𝐺)
be the set of isomorphism classes of spherical representations, that is, of irreducible unitary rep-
resentations with a nonzero K-invariant vector. In the p-adic case, or the rank 1 case, the set{
𝜋 ∈ Π(𝐺)sph : 𝑝(𝜋) > 2

}
is precompact, and the spherical density hypothesis is simply the case when

𝐴 =
{
𝜋 ∈ Π(𝐺)sph : 𝑝(𝜋) > 2

}
in the general density hypothesis. When G is Archimedean of high rank,{

𝜋 ∈ Π(𝐺)sph : 𝑝(𝜋) > 2
}

is not necessarily precompact, so we associate to a spherical representation
(𝜋,𝑉) ∈ Π(𝐺) a number 𝜆(𝜋) ∈ R≥0, which is the eigenvalue of the Casimir operator on the K-invariant
subspace of 𝜋, and define:

Definition 1.2. The sequence (Γ𝑁 ) of cocompact lattices satisfies the spherical density hypothesis if:

◦ In the p-adic or rank 1 case, for every 𝜖 > 0 there exists 𝐶𝜖 such that for every 𝑁 ≥ 1, 𝑝 > 2,

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝) ≤ 𝐶𝜖 [Γ1 : Γ𝑁 ]2/𝑝+𝜖 .

◦ In the general Archimedean case, there exists 𝐿 > 0 large enough, such that for every 𝜖 > 0 there
exists 𝐶𝜖 such that for every 𝜆 ≥ 0, 𝑁 ≥ 1, 𝑝 > 2,

𝑀 (
{
𝜋 ∈ Π(𝐺)sph : 𝜆(𝜋) ≤ 𝜆

}
, Γ𝑁 , 𝑝) ≤ 𝐶𝜖 (1 + 𝜆)𝐿 [Γ1 : Γ𝑁 ]2/𝑝+𝜖 .

In the second case, the spherical density hypothesis does not a priori follow from the general density
hypothesis.

To state our main geometric definition, we need to set some more notations. We view G, Γ1 and
the sequence (Γ𝑁 ) as fixed. We use the standard 𝑂,Θ, 𝑜 notations, where, for example, 𝑓 (𝑁, 𝜖) =
𝑂 𝜖 (𝑔(𝑁, 𝜖)) says that for every 𝜖 there exists C depending only on 𝜖 (and on 𝐺, Γ1, (Γ)𝑁 ) such that
𝑓 (𝑁, 𝜖) ≤ 𝐶𝑔(𝑁, 𝜖) for N large enough. The notation 𝑓 (𝑁, 𝜖) 
𝜖 𝑔(𝑁, 𝜖) is the same as 𝑓 (𝑁, 𝜖) =
𝑂 𝜖 (𝑔(𝑁, 𝜖)) and 𝑓 (𝑁, 𝜖) �𝜖 𝑔(𝑁, 𝜖) is the same as 𝑓 (𝑁, 𝜖) 
𝜖 𝑔(𝑁, 𝜖) and 𝑔(𝑁, 𝜖) 
𝜖 𝑓 (𝑁, 𝜖).

We fix a Cartan decomposition𝐺 = 𝐾𝐴+𝐾 and an Iwasawa decomposition𝐺 = 𝐾𝑃. Let 𝛿 : 𝑃 → R>0
be the left modular character of P (see Section 4 for more details).

We define a length 𝑙 : 𝐺 → R≥0 by first denoting for 𝑎 ∈ 𝐴+, 𝑙 (𝑎) = log𝑞 𝛿(𝑎), where q is equal to e
in the Archimedean case and is equal to the size of the quotient field of k otherwise. Then we extend l
to G using the Cartan decomposition, that is, 𝑙 (𝑘1𝑎𝑘2) = 𝑙 (𝑎). Finally, we define a metric on 𝐺/𝐾 by
𝑑 (𝑥, 𝑦) = 𝑙 (𝑥−1𝑦).

The weak injective radius property is based on the lattice point counting approach of Sarnak and Xue
([58, Conjecture 2]). Given an element 𝑦 = Γ𝑁 𝑦 ∈ Γ𝑁 \Γ1, we denote

𝑵(Γ𝑁 , 𝑑0, 𝑦) = #
{
𝛾 ∈ Γ𝑁 : 𝑙 (𝑦−1𝛾𝑦) ≤ 𝑑0

}
.

Definition 1.3. The sequence (Γ𝑁 ) satisfies the weak injective radius property if for every 0 ≤ 𝑑0 ≤
2 log𝑞 ([Γ1 : Γ𝑁 ]), 𝜖 > 0,

1
[Γ1 : Γ𝑁 ]

∑
𝑦∈Γ𝑁 \Γ1

𝑵(Γ𝑁 , 𝑑0, 𝑦) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑞𝑑0/2.

This definition is somewhat different from [58, Conjecture 2]. For rank 1, it is slightly weaker (see
Proposition 5.3), while for higher rank we use a different length. In this form, the weak injective radius
property follows from the spherical density hypothesis – see Theorem 1.6 below. On the other hand, the
weak injective radius property also makes sense for nonuniform lattices.

We can now state our intended application. First, we say that a sequence of lattices (Γ𝑁 ) has a
spectral gap if there exists 𝑝0 < ∞ such that 𝑝(𝜋) ≤ 𝑝0 for every nontrivial spherical 𝜋 ∈ Π(𝐺)
weakly contained in 𝐿2 (Γ𝑁 \𝐺). This definition can be applied to the nonuniform case as well, and in
the cocompact case we may replace weakly contained by 𝑚(𝜋, Γ) > 0.
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We look at the natural action 𝜋𝑁 : Γ1 → Aut(Γ𝑁 \Γ1), defined by 𝜋𝑁 (𝛾) (Γ𝑁 𝛾′) = Γ𝑁 𝛾′𝛾−1. Given
𝑥, 𝑦 ∈ Γ𝑁 \Γ1, we look for a small element 𝛾 ∈ Γ1 such that 𝜋𝑁 (𝛾)𝑥 = 𝑦. A very general way of
measuring how small is an element is by the Cartan decomposition, 𝐺 = 𝐾𝐴+𝐾 . For 𝛾 ∈ Γ ⊂ 𝐺 we let
𝑎𝛾 be the element in 𝐴+ in the Cartan decomposition of 𝛾. We also fix some norm ‖·‖𝔞 on the underlying
coroot space of 𝐴+. By [19], the number of 𝛾 ∈ Γ1 with

��𝑎𝛾 − 𝑎
��
𝔞 < 𝛿 is �Γ1 𝑞𝑙 (𝑎) . Therefore, the

following definition is optimal.

Definition 1.4. The sequence (Γ𝑁 ) has the optimal lifting property if for every 𝜖 > 0, for every 𝑎 ∈ 𝐴+
with 𝑙 (𝑎) ≥ (1 + 𝜖) log𝑞 ([Γ1 : Γ𝑁 ]),

#
{
(𝑥, 𝑦) ∈ (Γ𝑁 \Γ1)2 : ∃𝛾 ∈ Γ1 s.t. 𝜋𝑁 (𝛾)𝑥 = 𝑦,

��𝑎𝛾 − 𝑎
��
𝔞 < 𝜖 ‖𝑎‖𝔞

}
= (1 − 𝑜𝜖 (1)) [Γ1 : Γ𝑁 ]2.

Conjecturally, every sequence of congruence subgroups of an arithmetic lattice in an almost-simple
and simply connected Lie group satisfies the optimal lifting property. We refer to Conjecture 2.4 for a
full statement.

The following two theorems show that our two main properties imply the optimal lifting property.

Theorem 1.5. Let (Γ𝑁 ) be a sequence of lattices having a spectral gap and satisfying the weak injective
radius property. Then the sequence (Γ𝑁 ) has the optimal lifting property.

Theorem 1.6. Let (Γ𝑁 ) be a sequence of cocompact lattices satisfying the spherical density hypothesis.
Then (Γ𝑁 ) satisfies the weak injective radius property. Therefore, assuming also spectral gap, the
sequence also has the optimal lifting property.

The definition of optimal lifting is based on the main result in an influential letter of Sarnak ([57]),
who proved the optimal lifting property for principal congruence subgroups of SL2(Z), by utilizing a
version of the spherical density hypothesis proved by Huxley ([35]).

In the cocompact case, one may relate the optimal lifting property to almost-diameter of the quotient
space as follows. If we give 𝑋𝑁 = Γ𝑁 \𝐺/𝐾 the quotient metric d, the optimal lifting property implies
that the distances between the points of 𝑋𝑁 are concentrated at the optimal location log𝑞 (𝜇(𝑋𝑁 )), that
is, for every 𝜖 > 0,

𝜇
({
(𝑥, 𝑦) ∈ 𝑋𝑁 × 𝑋𝑁 : 𝑑 (𝑥, 𝑦) < (1 + 𝜖) log𝑞 ([Γ1 : Γ𝑁 ])

})
= (1 − 𝑜𝜖 (1))𝜇2(𝑋𝑁 ).

This concentration of distances phenomena was proven for Ramanujan graphs by Sardari ([56]) and
Lubetzky–Peres ([48]), who also related it to the cutoff phenomena. In higher dimensions, similar results
for Ramanujan complexes appear in [38, 47]. Theorem 1.5 implies that one may get results that are
almost as strong, as long as we assume only the far weaker spherical density hypothesis or the injective
radius property.

The weak injective radius property is intended as the arithmetic, or geometric, input to our approach,
and we discuss it further in Section 2. There are a few cases where it is known, most notably, following
the work of Sarnak and Xue, for principal congruence subgroups of arithmetic lattices in SL2(R) and
SL2 (C) (see Subsection 2.4). In a companion paper by the second named author and Hagai Lavner, the
weak injective radius property is proven for some nonprincipal congruence subgroups of SL3 (Z), and
this result is closely related to the works [6, 5] (see Subsection 2.5 for a full discussion). If we allow
ourselves to relax the definition and add a parameter 0 < 𝛼 ≤ 1 to the definition of the weak injective
radius property (see Subsection 2.2), then it is quite straightforward to show that principal congruence
subgroups of arithmetic groups satisfy the weak injective radius property with some explicit parameter
𝛼 > 0 (see Corollary 2.2). As a matter of fact, recent results in [1, 22] show that every sequence of
congruence subgroups satisfies the weak injective radius property with some explicit parameter 𝛼 > 0
(see Theorem 2.3). However, one must have 𝛼 = 1 for the optimal lifting application.

https://doi.org/10.1017/fms.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.40


Forum of Mathematics, Sigma 5

General Density

Weak Injective Radius Spherical Density

Optimal Lifting Pointwise Multiplicity

Thm 1.5

Thm 1.6

p-adic Thm 1.8
rank 1 or p-adic

Thm 1.10

rank 1 Thm 1.9

Figure 1.1. The relations between our main properties for a sequence of cocompact lattices.

1.1. The relations between the different properties

We already stated that the spherical density hypothesis implies the weak injective radius property. For
the deduction of spectral results from the weak injective radius property, we have partial results in the
Archimedean case and full results in the p-adic case.

We believe that the following is true:

Conjecture 1.7. The weak injective radius property implies both the general density hypothesis and the
spherical density hypothesis.

In the p-adic case, one can choose larger and larger sets covering Π(𝐺) as follows. For a compact
open subgroup 𝐾 ′ of G, let Π(𝐺)𝐾 ′−sph be the set of isomorphism classes of irreducible unitary
representations with a nonzero 𝐾 ′-invariant vector. If we have a sequence (𝐾 ′

𝑚) of arbitrarily small
compact open subgroups (i.e., they generate the topology of G near the identity), then we have

Π(𝐺) =
⋃
𝑚

Π(𝐺)𝐾 ′
𝑚−sph.

We can now state:

Theorem 1.8. Conjecture 1.7 is true when G is non-Archimedean. More precisely, there exists a sequence
(𝐾 ′

𝑚) consisting of arbitrarily small compact open subgroups of G such that if the weak injective radius
property holds for a sequence of cocompact lattices (Γ𝑁 ), then for every 𝑁 ≥ 1, 𝑚 ≥ 1, 𝑝 > 2, 𝜖 > 0,

𝑀 (Π(𝐺)𝐾 ′
𝑚−sph, Γ𝑁 , 𝑝) 
𝐾 ′

𝑚 , 𝜖 [Γ1 : Γ𝑁 ]2/𝑝+𝜖 .

In the Archimedean case, we do not know even whether the weak injective radius property implies
the spherical density hypothesis. However, for rank 1 it was essentially proven in [58] (see the remark
after the statement of Theorem 3 in [58]):

Theorem 1.9. If G is of rank one and (Γ𝑁 ) is a sequence of cocompact lattices, then the weak injective
radius property implies the spherical density hypothesis.

For general representations in the Archimedean case, we have the following theorem. For rank 1 it
was proven in [58, Theorem 3].

Theorem 1.10. If the sequence (Γ𝑁 ) of cocompact lattices satisfies the weak injective radius property,
then (Γ𝑁 ) satisfies the pointwise multiplicity hypothesis.

Figure 1.1 summarizes the different relations between our main properties for a sequence of cocom-
pact lattices.

Let us end this introduction by stating some open problems this work leads to.
The main open problem is to prove either the spherical density hypothesis or the injective radius

property for new cases, which would lead to a proof of the optimal lifting property. See Conjecture 2.4 for
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a general conjecture for the Archimedean case. Very few cases of this conjecture are known for groups
of rank greater than 1. We remark that it seems that the problem is harder for principal congruence
subgroups and easier for groups that are far from being normal, such as Γ0 (𝑁) of SL𝑚(Z) (see Subsection
2.5). See, for example, the density amplification phenomena for graphs in [29].

On the more technical side, one of the main problems this work does not resolve is Conjecture 1.7,
which would show, in particular, that the spherical density hypothesis and the injective radius property are
indeed equivalent, also for the Archimedean high-rank case. It relates in particular to the understanding
of uniform lower bounds on matrix coefficients; see, for example, Conjecture 3.12.

Finally, we only discuss multiplicities for cocompact lattices. We strongly believe that the weak
injective radius property has spectral implications for nonuniform lattices as well, for example, for
bounds of multiplicities of representations in the discrete spectrum. This problem is related to the
concentration of 𝐿2-mass of nontempered automorphic functions away from the cusp, in a uniform
way. In hyperbolic spaces this problem is essentially solved, even for some discrete groups that are not
lattices, thanks to the work of Gamburd on hyperbolic surfaces ([23]) and the work of Magee on general
hyperbolic spaces ([53]). Therefore, Theorem 1.9 can be generalized to such cases.

Structure of the article

In Section 2, we give some applications of our results and state some open problems.
In Section 3, we present the main ideas behind the proofs.
In Section 4, we collect various results, mainly from representation theory. In particular, we discuss

upper bounds for matrix coefficients, which are well understood. Using those upper bounds, we prove
the essential Convolution Lemma 4.18.

In Section 5, we discuss the weak injective radius property and the spectral results it implies. We
prove Proposition 3.9, which reduces Theorem 1.10, Theorem 1.9, and Theorem 1.8 to finding some
explicit and strict lower bounds on matrix coefficients.

In Section 6, we prove Theorem 1.5.
In Section 7, we discuss the spherical density hypothesis and the results it implies. We prove

Theorem 1.6 and prove Theorem 7.4, which is a version of Theorem 1.5 which assumes the spherical
density hypothesis and has stronger implications.

In Section 8, we discuss Bernstein’s description of the Hecke algebra in the non-Archimedean case
and prove Theorem 3.11, which implies Theorem 1.8 together with Proposition 3.9.

In Section 9, we discuss the theory of leading coefficients and prove Theorem 3.10, which implies
Theorem 1.10 together with Proposition 3.9.

Added in proof

Since the completion of the draft of this paper, some exciting new developments have occurred. The
most significant is the verification of the weak injective radius property and the optimal lifting property
for the principal congruence subgroups Γ(𝑞) of SL𝑛 (Z), for square-free q, by Jana and the second
named author ([36, Theorem 5 and Theorem 6]). This followed a spectral breakthrough, similar to the
spherical density hypothesis, by Assing and Blomer ([2]).

Another development is the extension of the ideas of this paper to the theory of Ghosh–Gorodnik–
Nevo diophantine exponents by Jana and the second named author ([37]).

2. Applications and open problems

2.1. Ramanujan graphs and complexes

We shortly note that the results of this paper, and in particular Theorem 1.5 (or the stronger Theorem 7.4)
apply to Ramanujan complexes, by which we mean here the situation when G is p-adic, Γ1 is cocompact
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and no nontempered and nontrivial spherical representation appears in the decomposition of 𝐿2 (Γ𝑁 \𝐺).
In this case, the sequence (Γ𝑁 ) obviously satisfies the spherical density hypothesis. The Ramanujan
complexes themselves are the quotients of the Bruhat–Tits buildings of G by Γ𝑁 . Such complexes were
constructed (with the same definition) by Lubotzky, Samuels and Vishne (see [51, 50]). Similar results
to Theorem 7.4 appear in [38, 47, 13].

Note that the definition we use is not the same as in the more modern approach to Ramanujan
complexes, where one considers not only spherical representation but also representations with a
nontrivial vector fixed by the Iwahori subgroup (see [49, Subsection 2.3] and the references within).

The standard way of proving that a complex is a Ramanujan complex is to use results from the
Langlands program (e.g., [45]) and to eventually apply Deligne’s proof of the Weil conjectures ([17]).
This approach has obvious limitations, and in particular, it seems that one must assume that G is
p-adic for it to succeed. We refer to [21] for some recent work on this subject and to an ongoing and yet
unpublished work of Shai Evra.

We will avoid diving deeper into this subject, as it is based on spectral input, unlike our approach
which is geometric.

2.2. Adding a parameter to the properties

It is useful to add a parameter 0 < 𝛼 ≤ 1 to the properties, with 𝛼 = 1 being equivalent to the property
without the parameter.

Definition. We say that the sequence (Γ𝑁 ) satisfies the weak injective radius property with parameter
𝛼, if for every 0 ≤ 𝑑0 ≤ 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), 𝜖 > 0,

1
[Γ1 : Γ𝑁 ]

∑
𝑦∈Γ𝑁 \Γ1

𝑵(Γ𝑁 , 𝑑0, 𝑦) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑞𝑑0/2.

Definition. We say that the sequence (Γ𝑁 ) satisfies the general density hypothesis with parameter 𝛼 if
for every precompact subset 𝐴 ⊂ Π(𝐺) and every 𝜖 > 0, N and 𝑝 ≥ 2,

𝑀 (𝐴, Γ, 𝑝) 
𝜖 ,𝐴 [Γ1 : Γ𝑁 ]1−𝛼(1−2/𝑝)+𝜖 .

One may similarly define the spherical density hypothesis with parameter 𝛼 and the pointwise density
hypothesis with parameter 𝛼, by changing the exponent 2/𝑝 to 1 − 𝛼(1 − 2/𝑝).

Figure 1.1 remains true if we replace the properties with their parameterized version, for the same
parameter 0 < 𝛼 ≤ 1, with the exception that the derivation of the optimal lifting property from the
spherical density hypothesis requires 𝛼 = 1.

In the work itself, we work with the parameterized version of the properties.

2.3. Congruence subgroups of arithmetic groups

Let Γ1 be an arithmetic lattice in a semisimple noncompact Lie group G. Following [58], by arithmetic
we mean that G is defined over Q, Γ1 ⊂ 𝐺 (Q), there is a Q-embedding 𝜌 : 𝐺 → GL𝑛 and Γ1 is
commensurable with 𝜌−1(GL𝑛 (Z)).

In this case, we may define a sequence of principal congruence subgroups (Γ𝑁 ) of Γ1 by letting

Γ𝑁 = Γ1(𝑁) = Γ1 ∩ 𝜌−1({𝐴 ∈ GL𝑛 (Z) : 𝐴 ≡ 𝐼 mod 𝑁}).

It is a well-known fact that such subgroups have an injective radius which is logarithmic in the index
(e.g., [58, Lemma 1] or [30, Proposition 16]).
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Let us shortly give the argument – we assume by moving to a finite index inΓ1 thatΓ1 ⊂ 𝜌−1(GL𝑛 (Z)).
In this case, Γ𝑁 is normal in Γ1 and it is left to verify that for every 𝑑0 ≤ 2𝛼 ln([Γ1 : Γ𝑁 ]) and 𝜖 > 0,

#{𝛾 ∈ Γ𝑁 : 𝑙 (𝛾) ≤ 𝑑0} 
𝜖 𝑒𝑑0 (1/2+𝜖 ) .

We note that there exists a constant C such that for 𝑔 ∈ 𝐺 outside a compact set the length 𝑙 (𝑔) we
defined satisfies

𝐶−1 ln(‖𝜌(𝑔)‖) ≤ 𝑙 (𝑔),

where ‖ · ‖ : GL𝑛 (R) → R≥0 is the maximal absolute value of an entry of the matrix. Since each element
of 𝜌(Γ𝑁 ) which is not the identity has an entry of size N, We deduce that for every N large enough,

{𝛾 ∈ Γ𝑁 : 𝑙 (𝛾) < 𝐶 ln(𝑁)} = {𝐼}.

On the other hand, there is an injective map of Γ1/Γ𝑁 into GL𝑛 (Z/𝑁Z), so

[Γ1 : Γ𝑁 ] 
 𝑁𝑛2

(and the exponent 𝑛2 can usually be improved).
Combining the different estimates, for 𝑑0 < 2 𝐶

2𝑛2 ln([Γ1 : Γ𝑁 ]) ≤ 2 𝐶
2𝑛2 𝑁

𝑛2) = 𝐶 ln(𝑁), it holds that
for N large enough,

#{𝛾 ∈ Γ𝑁 : 𝑙 (𝛾) ≤ 𝑑0} = 1.

Therefore, the weak injective radius property is satisfied with parameter 𝛼 = 𝐶
2𝑛2 .

Remark 2.1. Pushing this argument further, we may take the parameter to be 𝛼 = 𝐶
𝑑 , where 𝑑 = dim𝐺,

at least when G is split. For example, for the principal congruence subgroups of SL2(Z) one gets this
way the parameter 𝛼 = 2

3 , while 𝛼 = 1 can be reached by a better analysis; see Subsection 2.4 below.

As a direct application of this fact, we have:

Corollary 2.2. Let G be Archimedean, let Γ1 be an arithmetic lattice, and let (Γ𝑁 ) be the sequence
of principal congruence subgroups of Γ1. Then the sequence (Γ𝑁 ) satisfies the weak injective radius
property with parameter 𝛼 = 𝛼(Γ1).

As a matter of fact, this corollary can be easily extended to principal congruence subgroups of
S-arithmetic groups, once those are properly defined.

For arbitrary congruence subgroups, let us recall some of the results of [22] (the same result can be
deduced from [1, Theorem 1.11 and Theorem 5.6]).

First, for 𝛾 ∈ Γ1, we denote

𝑐Γ𝑁 (𝛾) =


{𝑦 ∈ Γ𝑁 \Γ1 : 𝑦𝛾𝑦−1 ∈ Γ𝑁

}

,
which is the number of fixed points of the right action of 𝛾 on Γ𝑁 \Γ1. Then the weak injective radius
property with parameter 𝛼 is equivalent to the fact that for every 0 ≤ 𝑑0 ≤ 2𝛼 ln([Γ1 : Γ𝑁 ]), 𝜖 > 0,

1
[Γ1 : Γ𝑁 ]

∑
𝑙 (𝛾) ≤𝑑0

𝑐Γ𝑁 (𝛾) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑒𝑑0 (1/2+𝜖 ) .

A congruence subgroup is a subgroup of one of the groups Γ1(𝑁) as above.

Theorem 2.3 (Following [22, Corollary 5.9]). Let G be Archimedean, semisimple, almost-simple and
simply connected; let Γ1 be an arithmetic lattice and let (Γ𝑁 ) be a sequence of congruence subgroups

https://doi.org/10.1017/fms.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.40


Forum of Mathematics, Sigma 9

of Γ1. Then there exist constants 𝜇 > 0, 𝑐 > 0 depending only on Γ1 such that for every 𝑑0 > 0, 𝑁 ≥ 1
it holds that

1
[Γ1 : Γ𝑁 ]

∑
𝛾∈Γ1 ,𝑙 (𝛾) ≤𝑑0

𝑐Γ𝑁 (𝛾) 
 1 + 𝑒𝑐𝑑0 [Γ1 : Γ𝑁 ]−𝜇 . (2.1)

In particular, the injective radius property holds with parameter 𝛼 = 𝜇
𝑐 .

Proof. By [22, Corollary 5.9], there exists a constant 𝑐′ such that for every 𝛾 ∈ Γ1 which does not
belong to a proper normal subgroup of G it holds that

1
[Γ1 : Γ𝑁 ] 𝑐Γ𝑁 (𝛾) 
 𝑒𝑐′𝑙 (𝛾) [Γ1 : Γ𝑁 ]−𝜇 .

We remark that the dependence on 𝛾 in [22] is different, but it is obvious that 𝑒𝑐𝑙 (𝛾) for c large enough
is an upper bound on it. By our assumptions on G, the number of 𝛾 ∈ Γ1 belonging to a proper normal
subgroup is 
 1.

By summing over all 𝛾 ∈ Γ1 with 𝑙 (𝛾) ≤ 𝑑0, we get

1
[Γ1 : Γ𝑁 ]

∑
𝛾∈Γ1 ,𝑙 (𝛾) ≤𝑑0

𝑐Γ𝑁 (𝛾) 
 [Γ1 : Γ𝑁 ]
[Γ1 : Γ𝑁 ] + 𝑒𝑐′𝑑0 [Γ1 : Γ𝑁 ]−𝜇

∑
𝛾∈Γ1 ,𝑙 (𝛾) ≤𝑑0

1


 1 + 𝑒 (1+𝑐′)𝑑0 [Γ1 : Γ𝑁 ]−𝜇,

which implies equation (2.1) with 𝑐 = 1 + 𝑐′.
When 𝑑0 ≤ 2 𝜇

𝑐 ln([Γ1 : Γ𝑁 ]) or [Γ1 : Γ𝑁 ]−𝜇 ≤ 𝑒𝑑0𝑐/2, we get

1
[Γ1 : Γ𝑁 ]

∑
𝛾∈Γ1 ,𝑙 (𝛾) ≤𝑑0

𝑐Γ𝑁 (𝛾) 
 𝑒𝑑0/2,

which implies the weak injective radius property with parameter 𝛼 = 𝜇
𝑐 , as needed. �

In the cocompact case, Theorem 1.10 implies the pointwise multiplicity hypothesis with parameter
𝛼 = 𝜇

𝑐 , namely

𝑚(𝜋, Γ𝑁 ) 
𝜋,𝜖 [Γ1 : Γ𝑁 ]1− 𝜇
𝑐 (1−2/𝑝 (𝜋))+𝜖 .

It should be compared with [1, Theorem 7.15], which states

𝑚(𝜋, Γ𝑁 ) 
𝜋 [Γ1 : Γ𝑁 ]1−𝛼(𝜋) .

Finally, we wish to make the following conjecture:

Conjecture 2.4. Let G be Archimedean, semisimple, almost-simple and simply connected; let Γ1 be
an arithmetic lattice and let (Γ𝑁 ) be a sequence of congruence subgroups of Γ1. Then the sequence
(Γ𝑁 ) satisfies the weak injective radius property with parameter 𝛼 = 1, and if Γ1 is cocompact then the
sequence (Γ𝑁 ) satisfies the general density hypothesis with parameter 𝛼 = 1.

As a corollary, the sequence (Γ𝑁 ) has the optimal lifting property.

The conjecture generalizes Conjecture 1 and Conjecture 2 from the work of Sarnak and Xue ([58]).
Finally, a similar conjecture should also hold in the S-arithmetic setting when G is p-adic.
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2.4. The Work of Sarnak and Xue and its implications

Sarnak and Xue proved the weak injective radius property with parameter 𝛼 = 1 for principal congruence
subgroups of cocompact arithmetic lattices in SL2 (R) and SL2(C) and proved the weak injective radius
property with parameter 𝛼 = 5/6 for principal congruence subgroups of cocompact arithmetic lattices
of SU(2, 1).

We refer to [58, Section 3] for their calculations. Their argument actually works also for principal
congruence subgroups of lattices in SL2 over p-adic fields coming from division algebras. See, for
example, [15, Theorem 4.4.4].

As a simple example, let us prove here the weak injective radius property for the principal congruence
subgroups of SL2(Z). In this case, we need to show that the number 𝑵(𝑇, Γ(𝑁)), of solutions to
𝑎𝑑 − 𝑏𝑐 = 1, with 𝑎 ≡ 𝑑 ≡ 1 mod 𝑁 , 𝑏 ≡ 𝑐 ≡ 0 mod 𝑁 and max{|𝑎 |, |𝑏 |, |𝑐 |, |𝑑 |} ≤ 𝑇 , for 𝑇 ≤ 𝑁3, is
bounded by

𝑵(𝑇, Γ(𝑁)) 
𝜖 𝑇1+𝜖 .

This is done as follows (see also [23, Proposition 5.3]). From the congruence condition, it follows that

𝑎 + 𝑑 − 2 = −(𝑎 − 1) (𝑑 − 1) + 𝑏𝑐 ≡ 0 mod 𝑁2.

One may therefore choose 𝑎+𝑑 in (2𝑇/𝑁2+1) ways, and choose (𝑎, 𝑑) in (2𝑇/𝑁2+1) (2𝑇/𝑁 +1) ways.
If 𝑎𝑑 ≠ 1, from 𝑏𝑐 = 1 − 𝑎𝑑 and bounds on the divisor function, there are 𝑇 𝜖 ways of choosing 𝑏𝑐.

If 𝑎𝑑 = 1, it is also simple to bound the number of possibilities of 𝑏, 𝑐 by 4(𝑇/𝑁 + 1). In total, we get
for 𝑇 ≤ 𝑁3,

𝑵(𝑇, Γ(𝑁)) 
𝜖 𝑇 𝜖 (𝑇/𝑁2 + 1) (𝑇/𝑁 + 1) 
𝜖 𝑇1+𝜖 .

2.5. On Some congruence subgroups of SL3 (Z)

Consider the following subgroups of Γ1 = SL3(Z):

Γ0 (𝑁) =
⎧⎪⎪⎨⎪⎪⎩���

∗ ∗ ∗
∗ ∗ ∗
𝑎 𝑏 ∗

��� ∈ SL3(Z) : 𝑎 ≡ 𝑏 ≡ 0 mod 𝑁

⎫⎪⎪⎬⎪⎪⎭ ⊂

Γ2 (𝑁) =
⎧⎪⎪⎨⎪⎪⎩���

∗ ∗ ∗
𝑐 ∗ ∗
𝑎 𝑏 ∗

��� ∈ SL3(Z) : 𝑎 ≡ 𝑏 ≡ 𝑐 ≡ 0 mod 𝑁

⎫⎪⎪⎬⎪⎪⎭ ⊂ Γ1 = SL3(Z).

In a companion paper by the second named author and Hagai Lavner ([40]), the following is proven:
Theorem 2.5. The sequences of lattices (Γ0(𝑁)) and (Γ2 (𝑁)), for N prime, have the weak injective
radius property (with parameter 1).

As a result, the sequences have the optimal lifting property.
We refer to [40] for an interpretation of this result in terms of the action of SL3(Z) on the projective

plane over the field with N elements, or on the corresponding flag space.
The work [40] is strongly influenced by a deep work of Blomer, Buttcane and Maga on Γ0(𝑁) ([6]),

which is based on the Kuznetsov trace formula:
Theorem 2.6 [6, Theorem 4]. For 𝜋 ∈ Π(SL3(R))sph, let 𝑚cusp (𝜋, Γ0(𝑁)) be the multiplicity of 𝜋 in
the cuspidal part of 𝐿2 (Γ0 (𝑁)\SL3 (R)). Then for every compact 𝐴 ⊂ Π(SL3(R))sph, it holds that for
every N prime, 𝑝 > 2, 𝜖 > 0,∑

𝜋∈𝐴,𝑝 (𝜋)>0
𝑚cusp (𝜋, Γ0(𝑁)) 
𝐴,𝜖 [Γ1 : Γ0(𝑁)]1−2(1−2/𝑝)+𝜖 .
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The result of the theorem is very similar to the spherical density hypothesis with parameter 𝛼 = 2.
There are also a number of differences: first, SL3(Z) is not cocompact, so our discussion does not apply
to it. In particular, we have to deal with the continuous spectrum if we wish to deduce the optimal lifting
property. Secondly and less crucially, the dependence on the subset A is not explicit, as needed in the
definition of the spherical density hypotheses, so it is hard to use it for geometric applications.

This result was recently generalized by Blomer ([5]) to general SL𝑀 (Z), where the subgroup Γ0(𝑁)
is similarly defined to be the set of matrices with the entries in the last row, except for the (𝑀, 𝑀) entry,
equal to 0 modulo N. We remark that Blomer uses a slightly weaker way to measure temperedness,
rather than 𝑝(𝜋) (for SL3 the two ways are equivalent).

In any case, it seems that the methods of [6, 5] are not applicable to the subgroups of the form Γ2(𝑁).

2.6. The weak injective radius of principal congruence subgroups of SL𝑛 (Z)

If the weak injective radius property would hold for the principal congruence subgroups of SL𝑛 (Z),
then it will imply that

#{𝛾 ∈ SL𝑛 (Z) : 𝛾 ≡ 𝐼 mod 𝑁, ‖𝛾‖ ≤ 𝑇} 
𝜖 𝑇 𝜖 𝑁 𝜖

(
𝑇𝑛2−𝑛

𝑁𝑛2−1
+ 𝑇 (𝑛2−𝑛)/2

)
,

where ‖·‖ is the maximal absolute value of an entry. One may also try to improve this estimate, in
particular, the ‘error’ part 𝑇 (𝑛2−𝑛)/2.

One of the results of [42], which is also cited in [58], states that

#{𝛾 ∈ SL𝑛 (Z) : 𝛾 ≡ 𝐼 mod 𝑁, ‖𝛾‖ ≤ 𝑇} 
 𝑇𝑛2−𝑛

𝑁𝑛2−1
log𝑇 + 1.

As was pointed to us by Sarnak, the proof contains an error. As a matter of fact, this naive estimate
is actually false, for simple reasons. For example, in SL2,

#
{(

1 ∗
0 1

)
∈ SL2(Z) : 𝛾 ≡ 𝐼 mod 𝑁, ‖𝛾‖ ≤ 𝑇

}
� 𝑇/𝑁 + 1.

and this is larger than 𝑇 2

𝑁 3 log𝑇 in the range 𝑁1+𝜖 < 𝑇 < 𝑁2(1−𝜖 ) . The same argument works for every
n, but there are 𝑛(𝑛 − 1)/2 entries we can use. Therefore, we have the lower bound:

#{𝛾 ∈ SL𝑛 (Z) : 𝛾 ≡ 𝐼 mod 𝑁, ‖𝛾‖ ≤ 𝑇} �
(
𝑇𝑛2−𝑛

𝑁𝑛2−1
+
(
𝑇

𝑁

) (𝑛2−𝑛)/2
+ 1

)
.

Up to 𝑇 𝜖 , this is also the upper bound for 𝑛 = 2. We conjecture that up to 𝑇 𝜖 this is also the upper
bound for larger values of n.

3. Main ideas of the proofs

In this section, we discuss some ideas from the proofs of the main theorems and the technical problems
they lead to.

All the proofs are based on a reduction of the geometric properties into spectral ones. We first restate
the weak injective radius property in terms of traces of operators.

Definition 3.1. For 𝑑0 ∈ R≥0, let 𝜒𝑑0 ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾) be a function that is equal to 1 for 𝑙 (𝑔) ≤ 𝑑0, equal

to 0 for 𝑙 (𝑔) ≥ 𝑑0+1 and for 𝑑0 ≤ 𝑙 (𝑔) ≤ 𝑑0+1 it is defined between 0 and 1 so that 𝜒𝑑0 ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾).

Let 𝜓𝑑0 (𝑔) ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾) be 𝜓𝑑0 (𝑔) = 𝑞 (𝑑0−𝑙 (𝑔) )/2𝜒𝑑0 (𝑔) for 𝑙 (𝑔) ≥ 1 and for 0 ≤ 𝑙 (𝑔) ≤ 1𝜓𝑑0 (𝑔)

is defined between 𝑞 (𝑑0−1)/2 and 𝑞𝑑0/2 so that eventually 𝜓𝑑0 (𝑔) ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾).
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As 𝜒𝑑0 , 𝜓𝑑0 ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾), they act naturally on 𝐿2 (Γ𝑁 \𝐺), and moreover, are trace-class ([25,

Chapter 1]; see also Subsection 4.6). The trivial eigenvalues of 𝜒𝑑0 , 𝜓𝑑0 satisfy 𝑞𝑑0 

∫
𝐺
𝜒𝑑0 (𝑔)𝑑𝑔 
𝜖

𝑞𝑑0 (1+𝜖 ) and 𝑞𝑑0 

∫
𝐺
𝜓𝑑0 (𝑔)𝑑𝑔 
𝜖 𝑞𝑑0 (1+𝜖 ) . Since 𝜒𝑑0 , 𝜓𝑑0 ∈ 𝐶𝑐 (𝐾\𝐺/𝐾), their action is actually

on 𝐿2 (Γ𝑁 \𝐺/𝐾).
The reason that we look at 𝜓𝑑0 , and one of the main reasons we use the length 𝑙 (𝑔), is the following

convolution lemma, which replaces the rank 1 case in [58, Lemma 3.1]. The lemma says that 𝜓𝑑0

provides an approximated upper bound for the convolution of 𝜒𝑑0/2 with itself:

Lemma 3.2 (See Lemma 4.18). It holds that 𝑐𝑑0 = 𝜒𝑑0 ∗ 𝜒𝑑0 ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾), and for every 𝑔 ∈ 𝐺 and

𝜖 > 0, we have

𝑐𝑑0 (𝑔) 
𝜖 𝑞𝑑0 𝜖𝜓2𝑑0 (𝑔).

Using the pretrace formula (see Subsection 4.7), we get:

Proposition 3.3. The following are equivalent for a sequence (Γ𝑁 ) of cocompact lattices:

1. The sequence (Γ𝑁 ) satisfies the weak injective radius property with parameter 𝛼.
2. For every 0 ≤ 𝑑0 ≤ 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), 𝜖 > 0,

tr 𝜒𝑑0 |𝐿2 (Γ𝑁 \𝐺) 
𝜖 [Γ1 : Γ𝑁 ]1+𝜖 𝑞𝑑0 (1/2+𝜖 ) . (3.1)

3. For every 𝜖 > 0, for every ℎ ∈ 𝐶𝑐 (𝐺) satisfying ℎ(𝑔) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖𝜓2𝛼 log𝑞 ( [Γ1:Γ𝑁 ]) (𝑔), it holds
that

tr ℎ|𝐿2 (Γ𝑁 \𝐺) 
𝜖 [Γ1 : Γ𝑁 ]1+𝛼+𝜖 . (3.2)

The proposition allows one to prove the weak injective radius property using the trace formula and
equation (3.1). It also allows proving various multiplicity results using equation (3.2).

By combining the Convolution Lemma 3.2, spectral gap and a version of equation (3.2), we prove
Theorem 1.5. See Section 6.

The direction ‘spectral to geometric’ uses carefully Harish-Chandra’s upper bounds on spherical
functions, and its generalization to arbitrary matrix coefficients of representations. Our analysis is
closely related to the work of Ghosh, Gorodnik and Nevo on Diophantine exponents ([26, 27] and the
reference therein). Very generally, the main difference between our analysis and theirs is that we assume
density, while they assume spectral gap. The new idea is to note that one applies the spectral estimates
to characteristic functions of ‘small sets’, and if there are few ‘bad eigenvectors’ they correlate poorly
with such functions.

Let us state some concrete results. Let Ξ(𝑔) =
∫
𝛿(𝑔𝑘)−1/2𝑑𝑘 be Harish-Chandra’s function of G.

This function satisfies |Ξ(𝑔) | 
𝜖 𝑞−𝑙 (𝑔) (1/2+𝜖 ) (which is another motivation for the definition of l). Now,
combining the two theorems of [14], we get:

Theorem 3.4 [14]. Let (𝜋,𝑉) be a unitary irreducible representation of G with 𝑝(𝜋) ≤ 2, and let
𝑣1, 𝑣2 ∈ 𝑉 be two K-finite vectors such that dim span𝐾𝑣1 = 𝑑1, dim span𝐾𝑣2 = 𝑑2. Then

|〈𝑣1, 𝑔𝑣2〉| ≤
√
𝑑1𝑑2‖𝑣1‖‖𝑣2‖Ξ(𝑔).

However, this theorem is not sufficient for our uses since we wish to consider 𝑝(𝜋) arbitrary. We
remark that [14] does give some results for arbitrary 𝜋 and p, but they are not precise enough for us.

Let us state here a general theorem that generalizes the above and gives a bound of the form that we
need. For 2 ≤ 𝑝 ≤ ∞, let Ξ𝑝 (𝑔) =

∫
𝛿(𝑔𝑘)−1/𝑝𝑑𝑘 be the p-th version of Harish-Chandra’s function of

G. This function satisfies Ξ𝑝 (𝑔) 
 Ξ(𝑔)𝑞−𝑙 (𝑔) (1/𝑝−1/2) 
𝜖 𝑞−𝑙 (𝑔) (1/𝑝+𝜖 ) . Then we have:
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Theorem 3.5 (See Theorem 4.10). Let (𝜋,𝑉) be a unitary irreducible representation of G with 𝑝(𝜋) ≤ 𝑝,
𝑝 ≥ 2, and let 𝑣1, 𝑣2 ∈ 𝑉 be two K-finite vectors such that dim span𝐾𝑣1 = 𝑑1, dim span𝐾𝑣2 = 𝑑2. Then

|〈𝑣1, 𝑔𝑣2〉| ≤
√
𝑑1𝑑2‖𝑣1‖‖𝑣2‖Ξ𝑝 (𝑔).

We discuss such bounds further in Subsection 4.2. Using Theorem 3.5 one may deduce various upper
bounds on matrix coefficients, norms of operators and traces of operators. In particular, a useful bound is:

Theorem 3.6 (See Corollary 4.14). Let (𝜋,𝑉) be a unitary irreducible representation of G with 𝑝(𝜋) =
𝑝, 𝑝 ≥ 2. Then for every 𝑑0 > 0 and 𝜖 > 0��𝜋(𝜒𝑑0 )

�� 
𝜖 𝑞𝑑0 (1−1/𝑝+𝜖 ) .

Applying Theorem 3.6 carefully allows us to deduce Theorem 1.6.
To prove Theorem 1.10, Theorem 1.9 and Theorem 1.8, which deduce multiplicity bounds from

the weak injective radius property, we use equation (3.2) of Proposition 3.3. To deduce from it upper
bounds on multiplicity, one needs lower bounds on traces on representations of functions ℎ ∈ 𝐶∞

𝑐 (𝐺).
The following definition and proposition capture the situation:

Definition 3.7. Let 𝐴 ⊂ Π(𝐺) be a precompact subset. We say that a family of functions
{
𝑓𝑑0

}
⊂

𝐶∞
𝑐 (𝐺), 𝑑0 ∈ R, 𝑑0 ≥ 𝐷 is good for A if it holds that:

1. For every 𝜋 ∈ 𝐴, and 𝜖 > 0,

𝑞𝑑0 (1−1/𝑝 (𝜋)−𝜖 ) 
𝐴,𝜖 tr(𝜋( 𝑓𝑑0 )).

2. It holds that for every 𝑔 ∈ 𝐺, 𝜖 > 0, 𝑓𝑑0 (𝑔) 
𝜖 𝑞𝑑0 𝜖𝜓𝑑0 (𝑔), where 𝜓𝑑0 (𝑔) is from Definition 3.1.
3. For every representation 𝜋′ ∈ Π(𝐺), it holds that 0 ≤ tr(𝜋′( 𝑓𝑑0)).

Remark 3.8. If we replace (2) by the slightly stronger condition


 𝑓𝑑0 (𝑔)



 
𝜖 𝑞𝑑0 𝜖𝜓𝑑0 (𝑔) and further
assumes that 𝑓𝑑0 is left and right K-finite, then one actually has by Theorem 3.5

tr(𝜋( 𝑓𝑑0 )) 
𝜋,𝜖 𝑞𝑑0 (1−1/𝑝 (𝜋)+𝜖 ) ,

so the lower bound is rather tight.

Proposition 3.9. Let 𝐴 ⊂ Π(𝐺) be a precompact subset, and assume that it has a good family of
functions. Under this condition, if the sequence (Γ𝑁 ) of cocompact lattices satisfies the weak injective
radius property with parameter 𝛼 then for every 𝑁 ≥ 1, 𝑝 > 2, 𝜖 > 0,

𝑀 (𝐴, Γ𝑁 , 𝑝) 
𝐴,𝜖 [Γ1 : Γ𝑁 ]1−𝛼(1−2/𝑝)+𝜖 .

Finding general lower bounds on traces (uniformly for a family of representations) is not well studied.
Two special cases, which appear (somewhat implicitly) in the work of Sarnak and Xue, correspond to
Theorem 1.9 and Theorem 1.10:

1. In rank 1, one has a simple classification of spherical irreducible unitary representations. In the
Archimedean case, for each 2 < 𝑝 ≤ ∞ there is at most a single spherical irreducible unitary
representation (𝜋,𝑉) with 𝑝(𝜋) = 𝑝 (with a corresponding spherical function Ξ𝑝 (𝑔)), and one can
easily deduce lower bounds on the trace of 𝑓𝑑0 = 𝜒𝑑0/2 ∗ 𝜒𝑑0/2, and deduce Theorem 1.9. In the
non-Archimedean case, Theorem 1.9 reduces to some statement on graphs; see Subsection 4.4.

2. If one is interested in a single representation, one has the following, from which we deduce Theo-
rem 1.10. In the Archimedean case, it follows from the asymptotic behavior of leading exponents
([12, 43, Chapter VIII]). The non-Archimedean case is easier, and in any case follows from Theorem
3.11 below.
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Theorem 3.10 (See Section 9). Let (𝜋,𝑉) ∈ Π(𝐺). Then the set 𝐴 = {𝜋} has a good family of functions.

Finally, we provide the following theorem, which implies Theorem 1.8 together with Proposition 3.9.

Theorem 3.11 (See Theorem 8.5). Let G be non-Archimedean. Then there exists a set {𝐾 ′} of arbitrarily
small open-compact subgroups of G, such that for every 𝐾 ′, Π(𝐺)𝐾 ′−𝑠𝑝ℎ has a good family.

The proof of Theorem 3.11 is based on two sources. The first is the connection between the Ihara
graph zeta function and expansion (see [33]), and the second is Bernstein’s description of the Hecke
algebra 𝐶𝑐 (𝐾 ′\𝐺/𝐾 ′) (see [3]). A precise connection for (𝑞 + 1)-regular graphs between 𝑝(𝜋) for
spherical function and poles of the Ihara zeta function may be found in [39]. In recent years, there were
various generalizations of the graph zeta function to higher-dimensional buildings (see, e.g., [41] and
the references within). In [38], the second named author generalized the connection between 𝑝(𝜋) for
representations 𝜋 ∈ Π(𝐺) with Iwahori-fixed vector and the poles of some generalized zeta function.
By a slight variant of those ideas, one may prove the special case of Theorem 3.11 when 𝐾 ′ is the
Iwahori subgroup. For more general 𝐾 ′, we follow the same ideas, by using Bernstein’s description of
the Hecke algebra 𝐶𝑐 (𝐾 ′\𝐺/𝐾 ′). See Section 8 for details.

If we consider only the spherical case, it would be useful if the functions 𝑓𝑑0 in the definition of a
good family will be left and right K-invariant, that is, 𝑓𝑑0 ∈ 𝐶∞

𝑐 (𝐾\𝐺/𝐾). Recently, Matz and Templier
proved a similar theorem for 𝐺 = PGL𝑛 using the Satake isomorphism ([55]). However, their results
are less precise than we desire – they find a spherical function 𝑓𝑑0 ∈ 𝐶∞

𝑐 (𝐾\𝐺/𝐾) which satisfies
𝑓𝑑0 (𝑔) 
𝜖 𝑞𝑑0 𝜖𝜓𝑑0 (𝑔), with a lower bound 𝑞𝛽𝑑0 (1−1/𝑝 (𝜋)) 
 tr(𝜋( 𝑓𝑑0 )) for some 𝛽 < 1, instead of the
optimal bound 𝑞𝑑0 (1−1/𝑝 (𝜋)) 
 tr(𝜋( 𝑓𝑑0)).

Let us finish this discussion with the following conjecture, which concerns only spheri-
cal functions. For 𝑔 ∈ 𝐺, let 𝑆(𝑔) be the K-bi-invariant function such that

∫
𝐺
𝑓 (𝑔)𝑑𝑔 =∫

𝐾

∫
𝐾

∫
𝐴+

𝑓 (𝑘𝑎𝑘 ′)𝑆(𝑎)𝑑𝑎𝑑𝑘𝑑𝑘 ′. It holds that for g ‘far from the walls’ 𝑆(𝑔) ≈ 𝑞𝑙 (𝑔) (see Subsection
4.1).

Conjecture 3.12. There exist 𝐷 > 0, 𝐿 > 0 such that for every 𝜖 > 0 and every (𝜋,𝑉) ∈ Π(𝐺)sph (i.e.,
a unitary irreducible spherical representation) with 𝑝(𝜋) > 2, if 𝑣 ∈ 𝑉 , ‖𝑣‖ = 1 is K-fixed, then:

1. In the non-Archimedean case, for 𝑑0 > 𝐷∫
𝑙 (𝑔) ≤𝑑0

𝑆(𝑔) |〈𝑣, 𝜋(𝑔)𝑣〉|2𝑑𝑔 �𝜖 𝑞2𝑑0 (1−1/𝑝 (𝜋)−𝜖 ) .

2. In the Archimedean case, for 𝑑0 > 𝐷,∫
𝑙 (𝑔) ≤𝑑0

𝑆(𝑔) |〈𝑣, 𝜋(𝑔)𝑣〉|2𝑑𝑔 �𝜖 (𝜆(𝜋) + 1)−𝐿𝑞2𝑑0 (1−1/𝑝 (𝜋)−𝜖 ) .

The exponents in the conjecture are tight, as the corresponding upper bounds can be deduced from
Theorem 3.5.

4. Preliminaries

4.1. Distances and length of elements

Besides our definition of length, the following is standard; see, for example, [26, Section 3]. We mainly
follow [43] when G is Archimedean and [10] when G is non-Archimedean.

Let k be R or a p-adic field, and |·|𝑘 : 𝑘 → R+ its standard nontrivial valuation. Let G be a semisimple
noncompact algebraic group over k, of k-rank r. Let𝑇 � 𝐺𝑟

𝑚 ⊂ 𝐺 be a maximal k-split torus. The choice
of T determines the set of weights 𝑋∗(𝑇), that is, of rational characters of T. Let Φ(𝑇, 𝐺) ⊂ 𝑋∗(𝑇) be
the set of roots of G with respect to T.
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In the Archimedean case, if 𝑇0 � {±1}𝑟 is the maximal compact subgroup of T, the connected
component 𝐴 � 𝑇/𝑇0 of the identity of T is the Lie group of a real Cartan subalgebra 𝔞 of 𝔤, and we
define 𝜈 : 𝑇 → 𝐴 → 𝔞 � R𝑟 by the logarithm map.

In the non-Archimedean case, let 𝑇0 be a maximal compact subgroup of T. Then 𝑇/𝑇0 � Z𝑟 , this
identification defines 𝜈 : 𝑇 → Z𝑟 ⊂ R𝑟 , and we identify R𝑟 with 𝔞.

Let 𝑋∗(𝑇)R � 𝑋∗(𝑇) ⊗ R be the weight space. For an element 𝛼 ∈ 𝑋∗(𝑇), we let 𝜒𝛼 ∈ 𝔞∗ be the
linear functional defined such that for 𝑡 ∈ 𝑇 |𝛼(𝑡) |𝑘 = 𝑞𝜒𝛼 (𝜈 (𝑡)) , where 𝑞 = 𝑒 in the Archimedean case
and otherwise the size of the quotient field of k. For 𝛼 ∈ 𝑋∗(𝑇)R, we define 𝜒𝛼 ∈ 𝔞∗ by extension of
the action above. This isomorphism (as linear spaces) between 𝑋∗(𝑇)R and 𝔞∗ defines an isomorphism
between the coweight space (𝑋∗(𝑇)R)∗ and 𝔞.

Choose an ordering on the root system which defines the positive roots Φ+ ⊂ Φ(𝑇, 𝐺) and let Δ =
{𝛼1, ..., 𝛼𝑟 } ⊂ 𝑋∗(𝑇)R � 𝔞∗ be the simple roots of Φ with respect to this ordering. Let {𝜔1, ..., 𝜔𝑟 } ⊂ 𝔞
be the set of simple coweights, that is, the dual basis to Δ . The set

{∑𝑟
𝑖=1 𝑥𝑖𝜔𝑖 : 𝑥𝑖 ≥ 0

}
⊂ 𝔞 is called

the dominant sector, or the positive Weyl chamber. It is isomorphic to 𝔞/𝑊 , where W is the Weyl group
of the root system.

Let Φ∨
+ ⊂ 𝔞 be the corresponding coroot system, let Δ∨ =

{
𝛼∨

1 , ..., 𝛼
∨
𝑟

}
be the dual basis of simple

coroots and let
{
𝜔∨

1 , ..., 𝜔
∨
𝑟

}
⊂ 𝔞∗ be the set of simple weights. We define a partial ordering on 𝔞 by

𝛼 ≥𝔞 𝛼
′ if and only if 𝜔∨

𝑖 (𝛼) ≥ 𝜔∨
𝑖 (𝛼) for every simple weight, or alternatively 𝛼 − 𝛼′ is a nonnegative

sum of elements of Δ∨.
Let P be the Borel subgroup with respect to the set of positive roots. It holds that 𝑃 = 𝑀𝑁 , where

M is the centralizer of T in G and N is the unipotent radical of P ([10, p. 134]). Let K be a maximal
special compact open subgroup (i.e., in the p-adic case we choose it to be ‘good’ in the sense of Bruhat
and Tits [8]). The Iwasawa decomposition 𝐺 = 𝐾𝑃 holds ([43, Proposition 1.2],[10, p. 140]). It holds
that 𝑀 = (𝑀 ∩ 𝐾) · 𝑇 , and we extend 𝜈 : 𝑀 → R𝑟 by 𝜈(𝑘) = 1 for 𝑘 ∈ 𝑀 ∩ 𝐾 .

Let us recall the Cartan decomposition 𝐺 = 𝐾𝐴+𝐾:

◦ In the real case, following [43, Theorem 5.20], 𝐴 � 𝑇/𝑇0 is the Lie group of the Cartan subalgebra
𝔞 of 𝔤. 𝐴+ is the exponent of the closure of the dominant sector in 𝔞, that is, the set of elements
𝐴+ = {𝑡 ∈ 𝐴 : ∀𝛼 ∈ Φ+, 𝛼(𝑡) ≥ 1}. It is isomorphic (as a set, using the exponential map) to the
dominant sector in 𝔞.

◦ In the p-adic case, following [10, p. 140], letΛ � 𝑀/𝑀0, where 𝑀0 is the maximal compact subgroup
of M. We identify elements ofΛwith elements of 𝑀 ⊂ 𝑃. Elements of the weight space are unramified
characters of M, and therefore are characters of Λ as well. We let 𝐴+ = {𝜆 ∈ Λ : ∀𝛼 ∈ Φ+, 𝛼(𝜆) ≥ 1}.
The action 𝜈 : 𝑇/𝑇0 → 𝔞 extends to 𝜈 : 𝑀/𝑀0 → 𝔞. Then 𝐴+ is isomorphic as a set with the
intersection of 𝜈(Λ) with the dominant sector in 𝔞. It is also isomorphic to a subset of the special
vertices in the dominant sector in an apartment in the Bruhat–Tits building of G.

In both cases, there exists a map 𝜈 : 𝐴+ → 𝔞. It is also useful to extend it to a map 𝐻 : 𝐺 → 𝔞, using the
Iwasawa decomposition 𝐺 = 𝐾𝑀𝑁 , by 𝐻 (𝑘𝑚𝑛) = 𝜈(𝑚).

We will need the following fundamental technical lemma:

Lemma 4.1. For 𝑎 ∈ 𝐴+ and 𝑘 ∈ 𝐾

𝐻 (𝑎𝑘) ≤𝔞 𝐻 (𝑎).

Proof. For the non-Archimedean case, see [8, Proposition 4.4.4(i)]. For the Archimedean case, see [24,
Corollary 3.5.3]. �

Corollary 4.2. Let 𝑎, 𝑎′, 𝑎′′ ∈ 𝐴+. If 𝐾𝑎𝐾𝑎′𝐾 ∩ 𝐾𝑎′′𝐾 ≠ 𝜙, then 𝜈(𝑎′′) ≤𝔞 𝜈(𝑎) + 𝜈(𝑎′).

Proof. We first notice the following property of the H-function: for 𝑘 ∈ 𝐾 , 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀 , 𝑛 ∈ 𝑁

𝐻 (𝑘𝑔𝑚𝑛) = 𝐻 (𝑔) + 𝐻 (𝑚)
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Now, if 𝐾𝑎𝐾𝑎′𝐾 ∩𝐾𝑎′′𝐾 ≠ 𝜙, then 𝑎′′ = 𝑘0𝑎𝑘1𝑎
′𝑘2. Applying the Iwasawa decomposition to 𝑎′𝑘2

we have 𝑎′𝑘2 = 𝑘 ′2𝑚𝑛 with 𝐻 (𝑚) ≤𝔞 𝐻 (𝑎′) by Lemma 4.1. Applying Lemma 4.1 again, we have

𝜈(𝑎′′) = 𝐻 (𝑘0𝑎𝑘1𝑘
′
2𝑚𝑛) = 𝐻 (𝑘0𝑎𝑘1𝑘

′
2) + 𝐻 (𝑚)

≤𝔞 𝐻 (𝑎) + 𝐻 (𝑎′) = 𝜈(𝑎) + 𝜈(𝑎′). �

Corollary 4.2 in the non-Archimedean case is [8, Proposition 4.4.4(iii)], and is deduced from
Lemma 4.1 in the same way.

Let 𝛿(𝑝) be the left modular character of P, that is, if 𝑑𝑝 is a left Haar measure on P, then
𝛿(𝑝)𝑑𝑝 is a right Haar measure. Normalize the measures so that for 𝑓 ∈ 𝐶𝑐 (𝐺),

∫
𝐺
𝑓 (𝑔)𝑑𝑔 =∫

𝐾

∫
𝑃
𝑓 (𝑘 𝑝)𝛿(𝑝)𝑑𝑝𝑑𝑘 =

∫
𝐾

∫
𝑃
𝑓 (𝑝𝑘)𝑑𝑝𝑑𝑘 ,

∫
𝐾
𝑑𝑘 = 1.

It can also be defined as follows: M acts by conjugation on the Lie algebra 𝔫 of N. Then for
𝑚 ∈ 𝑀 , 𝛿(𝑚) = |Det Ad𝔫 (𝑚) |𝑘 ([10, p. 135], [43, Proposition 5.25]). Unwinding the definitions,
𝛿(𝑚) = 𝑞2𝜌(𝜈 (𝑚)) , where 𝜌 = 1

2
∑

𝛼∈Φ+ (dim𝔤𝛼)𝜒𝛼. Here, 𝔤𝛼 is the root space of 𝛼 in the Lie algebra 𝔤
of G. Also, recall that 𝑞 = 𝑒 for 𝑘 = R and otherwise is the size of the quotient field of k. As an example,
for 𝐺 = SL𝑛 (R), and the matrix 𝑎 = diag(𝑎0, . . . , 𝑎𝑛−1), 𝛿(𝑎) =

∏
𝑎𝑛−1−2𝑖

𝑖 .
We associate with each element 𝑎 ∈ 𝐴+ ⊂ 𝐺 a length 𝑙 : 𝐴+ → R≥0 by 𝑙 (𝑎) = log𝑞 𝛿(𝑎) = 2𝜌(𝑎).

We extend 𝑙 : 𝐺 → R≥0 by 𝑙 (𝑘𝑎𝑘 ′) = 𝑙 (𝑎). By definition, l is left and right K-invariant.
For 𝑎 ∈ 𝑇 , we may identify 𝑙 (𝑎) by the entropy (taken with logarithm in base q) of the dynamical

system of translation of Γ\𝐺 by a, with respect to the Haar measure (Γ here is an arbitrary lattice; see
[20, Theorem 7.9]). Using this fact, we have for 𝑎 ∈ 𝐴, 𝑙 (𝑎) = 𝑙 (𝑎−1) and therefore for every 𝑔 ∈ 𝐺,
𝑙 (𝑔) = 𝑙 (𝑔−1). The same fact can be proven directly.

Proposition 4.3. For 𝑔1, 𝑔2 ∈ 𝐺, it holds that 𝑙 (𝑔1𝑔2) ≤ 𝑙 (𝑔1) + 𝑙 (𝑔2).

Proof. The proposition actually states that if 𝐾𝑎𝐾𝑎′𝐾 ∩ 𝐾𝑎′′𝐾 ≠ 𝜙 for 𝑎, 𝑎′, 𝑎′′ ∈ 𝐴+, then 𝑙 (𝑎′′) ≤
𝑙 (𝑎) + 𝑙 (𝑎′) = 𝑙 (𝑎𝑎′). Since 𝑙 (𝑎) = 2𝜌(𝑎), it follows from Corollary 4.2. �

For 𝑎 ∈ 𝐴+, define 𝑆(𝑎) =
∫
𝛿(𝑎𝑘)𝑑𝑘 . For 𝑓 ∈ 𝐶𝑐 (𝐺), we have∫
𝑓 (𝑔)𝑑𝑔 =

∫
𝐾

∫
𝐾

∫
𝐴+

𝑓 (𝑘𝑔𝑘 ′)𝑆(𝑎)𝑑𝑘𝑑𝑘 ′𝑑𝑎.

We interpret 𝑆(𝑎) as the measure of the ‘circle’ 𝐾𝑎𝐾 . In the non-Archimedean case, 𝑆(𝑎) � 𝛿(𝑎) ([10,
p. 141]). In the Archimedean case, by [43, Proposition 5.28],

𝑆(𝑎) =
∏
𝛼∈Φ+

(sinh(𝜒𝛼 (𝑎)))dim𝔤𝛼 .

Since sinh(𝑥) �𝛽 𝑒𝑥 for 𝑥 > 𝛽, for 𝑎 ∈ 𝐴+ ‘far from the walls’, that is, with 𝜒𝛼 (𝑎) > 𝛽 for every
𝛼 ∈ Δ (and therefore 𝜒𝛼 (𝑎) > 𝛽 for every 𝛼 ∈ Φ+), we have 𝑆(𝑎) �𝛽 𝛿(𝑎) = 𝑒𝑙 (𝑎) . Near the
walls where sinh 𝑥 ≈ 𝑥 this approximation fails, but we still have 𝑆(𝑎) 
 𝛿(𝑎). In any case, if we
choose some norm ‖·‖𝔞 on 𝐴+, then for every 𝜏 > 0, 𝑎 ∈ 𝐴+, 𝜇(

{
𝑔 :

��𝑎𝑔 − 𝑎
��
𝔞 ≤ 𝜏

}
) �𝜏 𝑞𝑙 (𝑎) , since

the set
{
𝑎′ ∈ 𝐴+ : ‖𝑎′ − 𝑎‖𝔞 ≤ 𝜏

}
contains elements that are far enough (with respect to 𝜏) from the

walls.
We deduce that the size of balls for 𝑙 � 1,

𝑞𝑙 
 𝜇(∪𝑎′:𝑙 (𝑎′) ≤𝑙𝐾𝑎
′𝐾) =

∫
𝑎∈𝐴+:𝑙 (𝑎) ≤𝑙

𝑆(𝑎)𝑑𝑎 
 𝑝(𝑙)𝑞𝑙 
𝜖 𝑞𝑙 (1+𝜖 ) , (4.1)

for some polynomial p.
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Remark 4.4. The literature has two popular choices of ‘distance’ or ‘length’ on 𝐺/𝐾 or G.

1. For 𝐺 ⊂ SL𝑛, where 𝐾 = 𝐺 ∩𝐾 ′ for 𝐾 ′ maximal compact in SL𝑛, one defines 𝑙 (𝑔) = log ‖𝑔‖, where
‖𝑣‖ is some matrix norm on GL𝑛. Recall that we are mainly interested in distances as 𝑔 → ∞, so the
specific choice of matrix norm does not matter. Such choice (without calling it a distance) is studied
in [58, 19].

2. For G Archimedean, let 𝔤, 𝔱 be the Lie algebras of G and K, and let 𝐵 : 𝔤 × 𝔤 → C the Killing form
of G. Let 𝔭 = {𝑋 ∈ 𝔤 : 𝐵(𝑋,𝑌 ) = 0∀𝑌 ∈ 𝔱}. Then 𝐵 |𝔭×𝔭 is positive definite. 𝔭 can be identified with
the tangent space of 𝐺/𝐾 at the identity, and it defines a natural Riemannian structure on 𝐺/𝐾 , with
length 𝑙 (𝑔) = 𝑑 (𝑔, 1). See, for example, [16, Section 2], [58]. A similar distance is used in the p-adic
case in [62, 2.3].

Since we mostly care about far distances in the group, and since K is compact, by the Cartan decompo-
sition it suffices to compare l to other distances on 𝐴+. In general, l and 𝑙 look like an 𝐿1-norm on 𝐴+,
and 𝑙 looks like an 𝐿2-norm.

Let us concentrate on 𝐺 = SL𝑛 (R) and 𝑙 (𝑔) = ln(‖𝑔‖2), ‖𝑔‖2
2 = tr(𝑔𝑔𝑡 ). For 𝐺 = SL2(R), its

symmetric space is the hyperbolic plane with the standard metric of curvature −1, and l we defined

above coincides with the hyperbolic metric. For example, consider the matrix 𝑔 =

(
𝑒

𝑡
2 0

0 𝑒−
𝑡
2

)
. Then

𝑙 (𝑔) = 𝑡, and 𝑙 (𝑔) = 1
2 ln(𝑒𝑡 + 𝑒−𝑡 ) ≈ 𝑡

2 . In fact, for every 𝑔 ∈ SL2(R), 𝑙 (𝑔) − 2𝑙 (𝑔) = 𝑂 (1), and l and 𝑙
are equal up to an additive constant.

For 𝐺 = SL3(R), it is no longer true. For

𝑔1 =
���
𝑒𝑡/3

𝑒𝑡/3

𝑒−2𝑡/3

���, 𝑔2 =
���
𝑒2𝑡/3

𝑒−𝑡/3

𝑒−𝑡/3

���,
it holds that 𝑙 (𝑔1) = 𝑙 (𝑔2) = 2𝑡, while 𝑙 (𝑔1) ≈ 𝑡/3, 𝑙 (𝑔2) ≈ 2𝑡/3. So the two distances 𝑙, 𝑙 are not equal
up to an additive constant, but are only Lipschitz-equivalent, with 3

2 𝑙 ≤ 𝑙 + 𝑂 (1) ≤ 3𝑙. However, if we
chose ˜̃𝑙 (𝑔) = 2(𝑙 (𝑔) + 𝑙 (𝑔−1)), then 𝑙 (𝑔) − 2˜̃𝑙 (𝑔) = 𝑂 (1). This solution no longer works for SL4(R).

4.2. Growth of matrix coefficients and Harish-Chandra’s bounds

For 2 ≤ 𝑝 ≤ ∞, let Ξ𝑝 (𝑔) =
∫
𝛿(𝑔𝑘)−1/𝑝𝑑𝑘 be the p-th version of Harish-Chandra’s function. Let

Ξ(𝑔) = Ξ2(𝑔) be the standard Harish-Chandra’s function. Note that since Ξ(𝑔) is left and right K-
invariant it only depends on 𝑎 ∈ 𝐴+ from the Cartan decomposition of g.

An explicit upper bound on Harish-Chandra’s function is given by the following theorem:

Theorem 4.5. There is a constant C such that for every 𝑔 ∈ 𝐺 and 𝜖 > 0,

Ξ𝑝 (𝑔) ≤ Ξ2/𝑝 (𝑔) ≤ 𝑞 (1/2−1/𝑝)𝑙 (𝑔)Ξ(𝑔) 
 (𝑙 (𝑔) + 1)𝐶𝑞−𝑙 (𝑔)/𝑝 
𝜖 𝑞−𝑙 (𝑔) (1/𝑝−𝜖 ) .

Proof. By the Cartan decomposition, it suffices to verify the theorem for 𝑎 ∈ 𝐴+, where 𝑞𝑙 (𝑎) = 𝛿(𝑎).
The first inequality follows from convexity, the second inequality follows from Ξ(𝑔) ≥ 𝑞−𝑙 (𝑔)/2 (see
equation (4.4)), and the fourth inequality is trivial. We are left with the third inequality.

For the Archimedean case, see [32, Theorem 3] or [43, Proposition 7.15]. For the non-Archimedean
case, the standard reference is [61, 4.2.1], where there is an assumption that char 𝑘 = 0, but the same proof
works in the general case with minor modifications. In any case, the general non-Archimedean result
follows from the slightly more general results of [38, Theorem 28.3] for arbitrary affine buildings. �

A representation (𝜋,𝑉) of G is called tempered if 𝑝(𝜋) ≤ 2. The following theorem is the standard
reference for upper bounds on matrix coefficients:
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Theorem 4.6 [14]. Let (𝜋,𝑉) be a unitary irreducible tempered representation of G, and let 𝑣1, 𝑣2 ∈ 𝑉
be two K-finite vectors such that dim span𝐾𝑣1 = 𝑑1, dim span𝐾𝑣2 = 𝑑2. Then |〈𝑣1, 𝑔𝑣2〉| ≤√
𝑑1𝑑2‖𝑣1‖‖𝑣2‖Ξ(𝑔).

The work [14] also provides a bound when 𝑝(𝜋) > 2:

Theorem 4.7 [14]. Let (𝜋,𝑉) be a unitary irreducible representation of G with 𝑝(𝜋) ≤ 2𝑘 , 𝑘 ∈ N
and let 𝑣1, 𝑣2 ∈ 𝑉 be two K-finite vectors such that dim span𝐾𝑣1 = 𝑑1, dim span𝐾𝑣2 = 𝑑2. Then
|〈𝑣1, 𝑔𝑣2〉| ≤

√
𝑑1𝑑2‖𝑣1‖‖𝑣2‖Ξ1/𝑘 (𝑔).

This theorem is not sufficient for this work since we need more precise bounds when 𝑝(𝜋) ∉ 2N.
The following theorem contains a general upper bound that is good enough for all the applications of
this paper.

Theorem 4.8. Let (𝜋,𝑉) be a unitary irreducible representation of G with 𝑝(𝜋) ≤ 𝑝, 𝑝 ≥ 2 and let
𝑣1, 𝑣2 ∈ 𝑉 be two K-finite vectors such that dim span𝐾𝑣1 = 𝑑1, dim span𝐾𝑣2 = 𝑑2. Then

|〈𝑣1, 𝑔𝑣2〉| ≤
√
𝑑1𝑑2‖𝑣1‖‖𝑣2‖Ξ𝑝 (𝑔).

Let us discuss older similar results, slightly weaker than Theorem 4.8.
We first consider bounds on matrix coefficients of a single representation 𝜋. In the Archimedean case,

we may consider the theory of leading exponents ([43, Chapter VIII]), which we describe in Subsection
9.1. In the non-Archimedean case, analogous results hold ([11, Section 4]).

Theorem 4.9 (See Theorems 9.1,9.2). Let (𝜋,𝑉) be a unitary irreducible representation of G with
𝑝(𝜋) ≤ 𝑝, 𝑝 ≥ 2, and let 𝑣1, 𝑣2 ∈ 𝑉 be two K-finite vectors. Then for every 𝜖 > 0,

|〈𝑣1, 𝑔𝑣2〉| 
𝑣1 ,𝑣2 , 𝜋, 𝜖 𝑞−𝑙 (𝑔) (1/𝑝−𝜖 ) .

Next, we consider bounds on matrix coefficients when 𝑣1, 𝑣2 are K-fixed. In such case (if 𝑣1, 𝑣2 ≠ 0),
the representation is spherical and well understood, at least in the Archimedean case (see Subsection 4.4
below). From those bounds, we have:

Theorem 4.10 (See [26, Section 3]). Let G be Archimedean, and let (𝜋,𝑉) be a unitary irreducible
representation of G with 𝑝(𝜋) ≤ 𝑝, and let 𝑣1, 𝑣2 ∈ 𝑉 be two K-fixed vectors. Then for every 𝜖 > 0,

|〈𝑣1, 𝜋(𝑔)𝑣2〉| ≤ ‖𝑣1‖‖𝑣2‖Ξ(𝑔)𝛿1/2−1/𝑝 
𝜖 ‖𝑣1‖‖𝑣2‖𝑞−𝑙 (𝑔) (1/𝑝−𝜖 ) .

Let us provide a proof of Theorem 4.8 when 𝑣1, 𝑣2 are K-fixed. A bit more work can give bounds for
K-finite vectors as well, using the ideas of [14]. Let us first prove the following lemma, which is based
on the proof of [14, Theorem 2]. For 𝑓 ∈ 𝐿 𝑝 (𝐺) and 𝑔 ∈ 𝐺, we let 𝑔 𝑓 ∈ 𝐿𝑝 (𝐺) be 𝑔 𝑓 (𝑔′) = 𝑓 (𝑔−1𝑔′).

Lemma 4.11. If 𝑓1 ∈ 𝐿𝑝/(𝑝−1) (𝐾\𝐺), 𝑓2 ∈ 𝐿 𝑝 (𝐾\𝐺) are two K-fixed functions, then |〈 𝑓1, 𝑔 𝑓2〉| ≤
‖ 𝑓1‖𝑝/(𝑝−1) ‖ 𝑓2‖ 𝑝Ξ𝑝 (𝑔).

Proof. To avoid integrability questions, we assume that 𝑓1, 𝑓2 ∈ 𝐶𝑐 (𝐺) and deduce the theorem by
density. Denote 𝑝′ = 𝑝

𝑝−1 . For 𝑓 ∈ 𝐶𝑐 (𝐺), it holds that∫
𝐺

𝑓 (𝑥)𝑑𝑥 =
∫
𝐾

∫
𝑃

𝑓 (𝑘 𝑝)𝛿(𝑝)𝑑𝑝𝑑𝑘,
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so

|〈 𝑓1, 𝑔 𝑓2〉| ≤
∫
𝐾

∫
𝑃

| 𝑓1(𝑘 𝑝) |


 𝑓2(𝑔−1𝑘 𝑝)



𝛿(𝑝)𝑑𝑝𝑑𝑘 =

=
∫
𝐾

∫
𝑃

| 𝑓1(𝑘 𝑝) |𝛿(𝑝)1/𝑝′ 

 𝑓2(𝑔−1𝑘 𝑝)


𝛿(𝑝)1/𝑝𝑑𝑝𝑑𝑘

≤
∫
𝐾

���
∫
𝑃

| 𝑓1 (𝑘 𝑝) |𝑝
′
𝛿(𝑝)𝑑𝑝���

1/𝑝′���
∫
𝑃



 𝑓2(𝑔−1𝑘 𝑝)


𝑝𝛿(𝑝)𝑑𝑝���

1/𝑝

𝑑𝑘.

Since 𝑓1 is K-fixed, we have for every 𝑘 ∈ 𝐾 ,

���
∫
𝑃

| 𝑓1(𝑘 𝑝) |𝑝
′
𝛿(𝑝)𝑑𝑝���

1/𝑝′

= ‖ 𝑓1‖ 𝑝′ .

write 𝑔−1𝑘 = 𝑘0𝑝0. Then

���
∫
𝑃



 𝑓2(𝑔−1𝑘 𝑝)


𝑝𝛿(𝑝)𝑑𝑝���

1/𝑝

=
���
∫
𝑃

| 𝑓2(𝑘0𝑝0𝑝) |𝑝𝛿(𝑝)𝑑𝑝
���

1/𝑝

=
���
∫
𝑃

| 𝑓2(𝑝0𝑝) |𝑝𝛿(𝑝0𝑝)𝑑𝑝
���

1/𝑝

𝛿(𝑝0)−1/𝑝

=
���
∫
𝑃

| 𝑓2(𝑝) |𝑝𝛿(𝑝)𝑑𝑝
���

1/𝑝

𝛿(𝑝0)−1/𝑝

= ‖ 𝑓2‖ 𝑝𝛿(𝑝0)−1/𝑝 .

Since 𝛿 is left K-fixed and 𝑝0 = 𝑘−1
0 𝑔−1𝑘∫

𝐾0

���
∫
𝑃



 𝑓2(𝑔−1𝑘 𝑝)


𝑝𝛿(𝑝)𝑑𝑝���

1/𝑝

𝑑𝑘 = ‖ 𝑓2‖ 𝑝

∫
𝛿(𝑔−1𝑘)−1/𝑝𝑑𝑘 =

= ‖ 𝑓2‖ 𝑝Ξ𝑝 (𝑔). �

The lemma has a nice corollary: For 𝑎 ∈ 𝐴+ let 𝐴𝑎 be the operator 𝐴𝑎 : 𝐶 (𝐾\𝐺) → 𝐶 (𝐾\𝐺)
defined by 𝐴𝑎 𝑓 (𝑔) =

∫
𝐾
𝑓 (𝑎−1𝑘−1𝑔)𝑑𝑘 =

∫
𝐾

∫
𝐾
𝑓 (𝑘 ′−1𝑎−1𝑘−1𝑔)𝑑𝑘𝑑𝑘 ′. We may define 𝐴𝑔 for 𝑔 ∈ 𝐺,

but it only depends on the 𝐴+ component of g from the Cartan decomposition. Since 𝐴𝑎 is a translation
followed by an average, its 𝐿𝑝-norm is bounded by 1 on 𝐿 𝑝 (𝐺) ∩ 𝐶 (𝐾\𝐺), and therefore it defines an
operator 𝐴𝑎 : 𝐿 𝑝 (𝐾\𝐺) → 𝐿 𝑝 (𝐾\𝐺).
Corollary 4.12. The norm of 𝐴𝑎 : 𝐿 𝑝 (𝐾\𝐺) → 𝐿 𝑝 (𝐾\𝐺) is bounded by Ξ𝑝 (𝑎).
Proof. Let 𝑝′ = 𝑝/(𝑝−1). Let 𝑓 ∈ 𝐿 𝑝 (𝐾\𝐺). Let 𝑓1 ∈ 𝐿 𝑝′ (𝐾\𝐺) with ‖ 𝑓1‖ 𝑝′ = 1 be such that
〈 𝑓1, 𝐴𝑎 𝑓 〉 = ‖𝐴𝑎 𝑓 ‖ 𝑝 . Then since 𝑓1 is left K-invariant 〈 𝑓1, 𝐴𝑎 𝑓 〉 = 〈 𝑓1, 𝑎 𝑓 〉. Applying Lemma 4.11,
we have

‖𝐴𝑎 𝑓 ‖ 𝑝 ≤ Ξ𝑝 (𝑎)‖ 𝑓 ‖ 𝑝 ,

as needed. �
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Note that if (𝜋,𝑉) is a unitary representation of G, we may define 𝜋(𝐴𝑎) : 𝑉𝐾 → 𝑉𝐾 by the same
arguments as above, as

𝜋(𝐴𝑎)𝑣 =
∫
𝐾

𝜋(𝑘𝑎)𝑣 𝑑𝑘 =
∫
𝐾

∫
𝐾

𝜋(𝑘𝑎𝑘 ′)𝑣 𝑑𝑘𝑑𝑘 ′, (4.2)

and ‖𝐴𝑎‖𝑉 ≤ 1. By a standard argument, this operation commutes with taking matrix coefficients
– denote for 𝑣1, 𝑣2 ∈ 𝑉𝐾 , 𝜑𝑣1 ,𝑣2 (𝑔) = 〈𝑣1, 𝜋(𝑔)𝑣2〉, 𝜑𝑣1 ,𝑣2 (𝑔) ∈ 𝐿∞(𝐺) and then 𝐴𝑎𝜑𝑣1 ,𝑣2 (𝑔) =
𝜑𝐴𝑎𝑣1 ,𝑣2 (𝑔).

Corollary 4.13. Let (𝜋,𝑉) be a unitary irreducible representation of G with 𝑝(𝜋) ≤ 𝑝, and let 𝑣1, 𝑣2 ∈ 𝑉
be two K-fixed vectors. Then

|〈𝜋(𝑔)𝑣1, 𝑣2〉| ≤ ‖𝑣1‖‖𝑣2‖Ξ𝑝 (𝑔).

Proof. We may assume that 𝑣1, 𝑣2 are of norm 1. Since both of them are left K-invariant 〈𝜋(𝑔)𝑣1, 𝑣2〉 =〈
𝜋(𝐴𝑎𝑔 )𝑣1, 𝑣2

〉
, where 𝑎𝑔 ∈ 𝐴+ is the 𝐴+ component of the Cartan decomposition of g. If 𝜋 is

irreducible, it is well known that the subspace 𝑉𝐾 of K-fixed vectors is one-dimensional ([43, Theorem
8.1],[10, Theorem 4.3]). Therefore, 𝑣1 is an eigenvector of 𝜋(𝐴𝑎𝑔 ) on 𝑉𝐾 . Therefore, 𝑐𝑣1 ,𝑣2 (𝑔) is an
eigenvector of 𝐴𝑎𝑔 on 𝐿 𝑝+𝜖 (𝑔) for every 𝜖 > 0, with eigenvalue 〈𝜋(𝑔)𝑣1, 𝑣2〉. As the norm of 𝐴𝑎𝑔 on
𝐿𝑝+𝜖 (𝐾\𝐺) is bounded by Ξ𝑝+𝜖 (𝑔), each of its eigenvalues is bounded by Ξ𝑝+𝜖 (𝑔) as well. Therefore,
|〈𝜋(𝑔)𝑣1, 𝑣2〉| ≤ Ξ𝑝+𝜖 (𝑔) for every 𝜖 > 0. By taking 𝜖 → 0, we deduce



〈𝑣1, 𝜋(𝐴𝑔)𝑣2
〉

 ≤ Ξ𝑝 (𝑔), as

required. �

4.3. Upper bounds on operators

Let (𝜋,𝑉) be a unitary representation of G. For 𝑎 ∈ 𝐴+, let 𝜋(𝐴𝑎) : 𝑉𝐾 → 𝑉𝐾 be from equation (4.2).
Similarly, for 𝑑0 ∈ R≥0, let 𝜒𝑑0 , 𝜓𝑑0 ∈ 𝐶∞

𝑐 (𝐺) be as in Definition 3.1. Recall that 𝜒𝑑0 is a smooth
approximation for the characteristic function of {𝑔 : 𝑙 (𝑔) ≤ 𝑑0} and 𝜓𝑑0 is a smooth approximation for
𝑞 (𝑑0−𝑙 (𝑔))/2𝜒𝑑0 .

For ℎ ∈ 𝐶𝑐 (𝐺) we define as usual 𝜋(ℎ)𝑣 =
∫
𝐺
ℎ(𝑔)𝜋(𝑔)𝑣 𝑑𝑔.

Corollary 4.14. Let (𝜋,𝑉) be a unitary irreducible representation of G with 𝑝(𝜋) ≤ 𝑝, and let 𝑣 ∈ 𝑉
be a K-fixed vector. Then

‖𝜋(𝐴𝑎)𝑣‖ 
𝜖 𝑞−𝑙 (𝑎) (1/𝑝−𝜖 ) ‖𝑣‖��𝜋(𝜒𝑑0 )𝑣
�� 
𝜖 𝑞𝑑0 (1−1/𝑝+𝜖 ) ‖𝑣‖��𝜋(𝜓𝑑0 )𝑣
�� 
𝜖 𝑞𝑑0 (1−1/𝑝+𝜖 ) ‖𝑣‖.

Proof. The bound on 𝜋(𝐴𝑎) follows from Corollary 4.13, using the explicit bounds of Theorem 4.5.
We will only prove the estimate for 𝜓𝑑0 since the proof for 𝜒𝑑0 is similar and a little easier.��𝜋(𝜓𝑑0 )𝑣

�� ≤ ∫
𝑙 (𝑔) ≤𝑑0+1

𝑞
(𝑑0−𝑙 (𝑔) )/2‖𝜋(𝑔)𝑣‖𝑑𝑔


𝜖

∫
𝑙 (𝑔) ≤𝑑0+1

𝑞
𝑑0/2−𝑙 (𝑔) (1/2+1/𝑝−𝜖 ) ‖𝑣‖𝑑𝑔

=
∫
𝐾

∫
𝐾

∫
𝑙 (𝑎) ≤𝑑0+1

𝑆(𝑎)𝑞𝑑0/2−𝑙 (𝑘1𝑎𝑘2) (1/2+1/𝑝−𝜖 ) ‖𝑣‖𝑑𝑘1 𝑑𝑎 𝑑𝑘1
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∫

𝑙 (𝑎) ≤𝑑0+1

𝑞𝑙 (𝑎)𝑞
𝑑0/2−𝑙 (𝑎) (1/2+1/𝑝−𝜖 ) ‖𝑣‖𝑑𝑎


𝜖

∫
𝑙 (𝑎) ≤𝑑0+1

𝑞
𝑑0/2+𝑙 (𝑎) (1/2−1/𝑝+𝜖 ) ‖𝑣‖𝑑𝑎

≤
∫

𝑙 (𝑎) ≤𝑑0+1

𝑞
𝑑0/2+𝑑0 (1/2−1/𝑝+𝜖 ) ‖𝑣‖𝑑𝑎


𝜖 𝑞𝑑0 (1−1/𝑝+𝜖 ) ‖𝑣‖.

In the last line, we used the fact that
∫
𝑙 (𝑎) ≤𝑑0+1 𝑑𝑎 
𝜖 𝑞𝑑0 𝜖 . �

4.4. Spherical Functions

Let us recall the definition of spherical functions. For 𝜆 ∈ 𝔞∗
C
= 𝔞∗ ⊗ C dominant, we let 𝜆𝑃 : 𝑃 → C×

be 𝜆𝑃 (𝑚𝑛) = 𝑞𝜆(𝜈 (𝑚))𝛿−1/2(𝑚) = 𝑞 (𝜆−𝜌) (𝜈 (𝑚)) . Extend it to �̃� : 𝐺 → C by �̃�(𝑘 𝑝) = 𝜆𝑃 (𝑝). Finally,
define the spherical function

𝜑𝜆(𝑔) =
∫
𝐾

�̃�(𝑔𝑘)𝑑𝑘.

Note that 𝜑0 = Ξ and 𝜑 (1−2/𝑝)𝜌 = Ξ𝑝 for 2 ≤ 𝑝 ≤ ∞.
The theory of spherical functions was developed by Harish-Chandra in the Archimedean case and

by Satake in the non-Archimedean case (see [26, Subsection 3.2] and the reference therein). We will
need some very basic properties of spherical functions.

Let (𝜋,𝑉) ∈ Π(𝐺)sph be a unitary spherical representation, that is, a unitary irreducible representation
with a nontrivial K-fixed vector. If 𝑣1, 𝑣2 are K-fixed, then there exists a dominant 𝜆 ∈ 𝔞∗

C
such that

〈𝑣1, 𝜋(𝑔)𝑣2〉 = 〈𝑣1, 𝑣2〉𝜑𝜆 (𝑔).

Upper bounds on spherical functions are given as follows. By [26, Lemma 3.3], it holds that for
𝑎 ∈ 𝐴+, 𝑘, 𝑘 ′ ∈ 𝐾 and 𝜖 > 0,

𝜑𝜆 (𝑘𝑎𝑘 ′) = 𝜑𝜆 (𝑎) 
 𝑞Re 𝜆(𝜈 (𝑎))Ξ(𝑎) 
𝜖 𝑞Re 𝜆(𝜈 (𝑎))𝑞−𝑙 (𝑎) (1/2−𝜖 ) .

Let 𝜔1, ..., 𝜔𝑟 ∈ 𝔞 be the fundamental coweights. Since 𝜆 is dominant Re𝜆(𝜔𝑖) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑟 .
Using the above bounds, we deduce that

Re𝜆(𝜔𝑖) ≤ (1 − 2/𝑝)𝜌(𝜔𝑖) ∀1 ≤ 𝑖 ≤ 𝑟 =⇒ 𝑝(𝜋) ≤ 𝑝. (4.3)

See also [26, Lemma 3.2], which has a small misprint.
In the Archimedean case, the other direction of the implication of equation (4.3) is also true ([43,

Theorem 8.48]), which gives a proof of Theorem 4.10 in this case.
However, the other direction is no longer true for the general non-Archimedean case. The simplest

example is when the Bruhat–Tits building of G is a bipartite (𝑑0, 𝑑1)-regular tree, 𝑑0 ≠ 𝑑1, where for
one of the choices of a maximal compact subgroup, there is a spherical function that is square integrable
but Re𝜆(𝜔) > 0 (this result was first observed by [54]). In general, the other direction is true in the
standard case according to MacDonald ([52, Chapter V]), which excludes the case above. In particular,
every group has a standard maximal compact subgroup for which equation (4.3) is an equivalence.
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Lower bounds on spherical functions can be given in general if Re 𝜆 = 𝜆. By Lemma 4.1, if Re𝜆 = 𝜆
and Re𝜆(𝜔𝑖) ≤ 𝜌(𝜔𝑖), then for 𝑎 ∈ 𝐴+, 𝑘, 𝑘 ′ ∈ 𝐾

𝜑𝜆(𝑘𝑎𝑘 ′) = 𝜑𝜆 (𝑎) =
∫
𝐾

�̃�(𝑎𝑘)𝑑𝑘 ≥
∫
𝐾

�̃�(𝑎)𝑑𝑘 = 𝜆𝑃 (𝑎). (4.4)

In the case when G is Archimedean, it is well known that the dominant 𝜆 ∈ 𝔞∗
C

which occur this way
for unitary spherical representations must satisfy −�̄� = 𝑤𝜆 for some 𝑤 ∈ 𝑊 ([44]).

If we moreover assume that G is of rank 1, then 𝔞∗
C
� C and 𝑊 = {1, 𝑠} acts by 𝑠𝜆 = −𝜆. Therefore,

the only dominant 𝜆 ∈ 𝔞∗
C

which may occur satisfy either Re𝜆 = 0 or Re𝜆 = 𝜆. In the case Re𝜆 = 0,
the corresponding unitary representation satisfies 𝑝(𝜋) = 2. If Re𝜆 = 𝜆, then 𝜆 = 𝛼𝜌 with 𝛼 ≥ 0. By
equation (4.3), 𝛼 ≤ 1. Write 𝛼 = 1− 1/𝑝, 2 ≤ 𝑝 ≤ ∞. Using equation (4.3) and the definition of Σ𝑝 (𝑔),
we conclude that for 𝑝 > 2, there is at most a single unitary irreducible representation (𝜋,𝑉) with a
nontrivial K-fixed vector and 𝑝(𝜋) = 𝑝. The corresponding spherical function is Ξ𝑝 (𝑔). We conclude:

Proposition 4.15. Let G be Archimedean of rank 1, 𝑝 > 2 and (𝜋,𝑉) a unitary irreducible representation
of G with 𝑝(𝜋) = 𝑝, having a non-trivial K-fixed vector v. Then 𝜋(𝐴𝑎)𝑣 = 𝜆1𝑣, 𝜋(𝜒𝑑0 )𝑣 = 𝜆2𝑣, with

𝑒−𝑙 (𝑎)/𝑝 ≤ 𝜆1

𝑒𝑑0 (1−1/𝑝) 
 𝜆2 for 𝑑0 ≥ 1.

Moreover, if ℎ ∈ 𝐶𝑐 (𝐾\𝐺/𝐾) satisfies ℎ(𝑔) ≥ 𝜒𝑑0 (𝑔) for every 𝑔 ∈ 𝐺, then 𝜋(ℎ)𝑣 = 𝜆ℎ𝑣, with
𝜆ℎ ≥ 𝜆2.

Proof. It is well known that in this case the set of all K-fixed vectors in V is one-dimensional and equals
span{𝑣} ([10, Theorem 4.3]). Since 𝜋(𝐴𝑎)𝑣, 𝜋(𝜒𝑑0 )𝑣,𝜋(ℎ)𝑣 are K-fixed, we get that 𝜋(𝐴𝑎)𝑣 = 𝜆1𝑣,
𝜋(𝜒𝑑0 )𝑣 = 𝜆2𝑣 and 𝜋(ℎ)𝑣 = 𝜆ℎ𝑣. Applying matrix coefficients, we see that

𝜆1 = Ξ𝑝 (𝑎)

𝜆2 =
∫
𝐺

𝜒𝑑0 (𝑔)Ξ𝑝 (𝑔)𝑑𝑔

𝜆ℎ =
∫
𝐺

ℎ(𝑔)Ξ𝑝 (𝑔)𝑑𝑔 ≥
∫
𝐺

𝜒𝑑0 (𝑔)Ξ𝑝 (𝑔)𝑑𝑔 = 𝜆2.

Using equation (4.4), we get

Ξ𝑝 (𝑔) ≥ 𝑒−
2
𝑝 𝜌(𝜈 (𝑎)) = 𝑒−𝑙 (𝑎)/𝑝 .

And therefore 𝜆1 ≥ 𝑒−𝑙 (𝑎)/𝑝 and for 𝑑0 ≥ 1,

𝜆2 =
∫
𝐺

𝜒𝑑0 (𝑔)Ξ𝑝 (𝑔)𝑑𝑔 ≥

≥
𝑑0∫

0

sinh(𝑡)𝑒−𝑡/𝑝𝑑𝑡 � 𝑒 (1−1/𝑝)𝑑0 . �

A similar analysis can be done for the non-Archimedean rank 1 case, whenever the Bruhat–Tits tree
of G is regular. However, when the Bruhat–Tits tree of G is not regular, the description of the spherical
unitary dual is more complicated, and in particular, it is different for the two nonconjugate maximal
compact subgroups. The analysis of this can be done by analyzing the slightly more general case of
regular and biregular trees. See [33] or [39] for an analysis of this case.
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Since the calculations are a bit long and are not the main focus of this work, we skip them and state
the final result. Recall that we have a map 𝜈 : 𝑀/𝑀0 → 𝔞 with a discrete image. We identify its image
with Z.

Proposition 4.16. Let G be non-Archimedean of rank 1, 𝑝 > 2 and (𝜋,𝑉) a unitary irreducible
representation of G with 𝑝(𝜋) = 𝑝, having a nontrivial K-fixed vector v. Then for 𝑎 ∈ 𝐴+ with 𝜈(𝑎) ∈ Z
even, we have 𝜋(𝐴𝑎)𝑣 = 𝜆1𝑣, with

𝑞−𝑙 (𝑎)/𝑝 
 𝜆1.

We can finally conclude:

Theorem 4.17. Let G be of rank 1. Then the set Π(𝐺)sph,nt of spherical nontempered unitary represen-
tations has a good family of functions.

Proof. For G Archimedean, we choose 𝑓𝑑0 = 𝜒𝑑0/2 ∗ 𝜒𝑑0/2. For G non-Archimedean, we choose 𝑎 ∈ 𝐴+
with 𝜈(𝑎) ∈ Z even, and with 𝑙 (𝑎) = 𝑑0/2 ±𝑂 (1), and choose 𝑓𝑑0 = 𝐴𝑎 ∗ 𝐴∗

𝑎.
The first property of a good family follows from Proposition 4.15, Proposition 4.16 and the Convo-

lution Lemma 4.18 below.
The second and third properties follow from simple properties of convolutions. �

4.5. Convolution of Operators

In this section, we analyze the function 𝜒𝑑0 ∗ 𝜒𝑑0 (𝑔). Similar analysis can be found for rank 1 in [58,
Lemma 3.1]. Our analysis is less accurate but is more abstract and works for every rank.

Lemma 4.18 (Convolution Lemma). It holds that 𝑐𝑑0 = 𝜒𝑑0 ∗ 𝜒𝑑0 ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾) and satisfies the

inequality

𝑐𝑑0 (𝑔) 
𝜖 𝑞𝑑0 𝜖𝜓2𝑑0+2(𝑔).

The same bound holds for the convolution of every 𝑓1, 𝑓2 ∈ 𝐶𝑐 (𝐾\𝐺/𝐾) such that 𝑓1(𝑔), 𝑓2(𝑔) 
𝜖

𝑞𝑑0 𝜖 𝜒𝑑0 (𝑔).

Proof. The second statement is a consequence of the first, so we only need to prove the first statement.
The idea is to look at the action (by right convolution) of 𝜒𝑑0 on 𝐿2 (𝐺). By Lemma 4.11 and the same

arguments as in Corollary 4.12, the norm of 𝜒𝑑0 on 𝐿2 (𝐺) is bounded by 
𝜖 𝑞𝑑0 (1/2+𝜖 ) . Therefore, the
norm of 𝑐𝑑0 on 𝐿2 (𝐺) is bounded by 
𝜖 𝑞𝑑0 (1+𝜖 ) . Now, we need to use some continuity arguments to
deduce pointwise bounds.

Notice that since 𝜒𝑑0 ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾), the same is true for 𝑐𝑑0 . In the non-Archimedean case, the

arguments are simpler: We look at the action of 𝑐𝑑0 on the characteristic function 1𝐾 of K. Then��1𝐾 ∗ 𝑐𝑑0

��2
𝐿2 (𝐺) 
𝜖 𝑞2𝑑0 (1+𝜖 ) ‖1𝐾 ‖𝐿2 (𝐺) = 𝑞2𝑑0 (1+𝜖 ) .

But if 𝑐𝑑0 (𝑔) = 𝑅 then 1𝐾 ∗ 𝑐𝑑0 (𝑔) = 𝑅, so��1𝐾 ∗ 𝑐𝑑0

��2
𝐿2 (𝐺) ≥ 𝜇(𝐾𝑔𝐾)𝑅2 � 𝑞𝑙 (𝑔)𝑅2.

Therefore, 𝑐𝑑0 (𝑔) = 𝑅 
𝜖 𝑞𝑑0 (1+𝜖 )−𝑙 (𝑔)/2 as needed.
In the Archimedean case, assume that 𝑐𝑑0 (𝑔) = 𝑅. Then 𝑐𝑑0+2(𝑔′) ≥ 𝑅 for every 𝑔′ ∈ 𝐺 with

|𝑙 (𝑔) − 𝑙 (𝑔′) | ≤ 1. We consider 1𝐵1 , where 𝐵1 is the ball of radius 1 around the identity. It holds that��1𝐵1 ∗ 𝑐𝑑0+2
��2

𝐿2 (𝐺) 
𝜖 𝑞2𝑑0 (1+𝜖 )��1𝐵1

��
𝐿2 (𝐺) 
 𝑞2𝑑0 (1+𝜖 ) .
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It also holds that 1𝐵1 ∗ 𝑐𝑑0+2 (𝑔) � 𝑅, for 𝑔′ satisfying |𝑙 (𝑔) − 𝑙 (𝑔′) | ≤ 1, so��1𝐾 ∗ 𝑐𝑑0+2
��2

𝐿2 (𝐺) � 𝜇(𝐾𝐵1𝑔𝐾)𝑅2 � 𝑞𝑙 (𝑔)𝑅2,

and 𝑐𝑑0 (𝑔) = 𝑅 
𝜖 𝑞𝑑0 (1+𝜖 )−𝑙 (𝑔)/2 as needed. �

4.6. Traces of operators on irreducible unitary representations

Our goal in this section is to relate the lower and upper bounds of the previous sections to lower and
upper bounds on traces.

Let us recall how to define traces of an operator ℎ ∈ 𝐶𝑐 (𝐺) on a unitary irreducible representation
(𝜋,𝑉). We will only consider the case when h is left and right K-finite, which simplifies the theory. In
such case, there is an orthogonal projection 𝑒ℎ : 𝐶 (𝐾) → 𝐶 (𝐾), with a finite-dimensional image, such
that ℎ = 𝑒ℎ ∗ ℎ ∗ 𝑒ℎ (see, e.g., [14, proof of Theorem 2]).

Since 𝜋 is admissible, the image of 𝜋(ℎ) is finite-dimensional and therefore is trace class ([43,
Chapter X]), with trace given by

tr 𝜋(ℎ) =
∑

𝑖

〈𝑢𝑖 , 𝜋(ℎ)𝑢𝑖〉,

where {𝑢𝑖} ⊂ 𝑉 is an orthonormal basis.
By uniform admissibility ([43, Theorem 10.2], [3]) and the fact the image of 𝜋(ℎ) is supported

on a finite number of K-types, the image of 𝜋(ℎ) is of bounded dimension, depending only on the
projection 𝑒ℎ .

Finally, recall that the norm of a finite-dimensional operator is larger than the largest absolute value
of an eigenvalue. We conclude:

Proposition 4.19. Assume that ℎ ∈ 𝐶𝑐 (𝐺) is left and right K-finite and (𝜋,𝑉) ∈ Π(𝐺). Then

|tr 𝜋(ℎ) | 
𝑒ℎ ‖𝜋(ℎ)‖,

the bound depending only on the projection 𝑒ℎ such that 𝑒ℎ ∗ ℎ ∗ 𝑒ℎ .

As an example, if ℎ ∈ 𝐶𝑐 (𝐾\𝐺/𝐾) is left and right K-invariant, the image of 𝜋(ℎ) is of dimension
1 or 0. If the dimension is 0, obviously tr 𝜋(ℎ) = 𝜋(ℎ) = 0. If the dimension is 1, V has a K-invariant
vector 𝑣 ∈ 𝑉 , ‖𝑣‖ = 1 and

|tr 𝜋(ℎ) | = ‖𝜋(ℎ)‖ = |〈𝑣, 𝜋(ℎ)𝑣〉|.

One may also deduce lower bounds on traces of nonnegative self-adjoint operators. It follows from
the same considerations as in the finite-dimensional case.

Proposition 4.20. Assume that ℎ ∈ 𝐶𝑐 (𝐺) is left and right K-finite and (𝜋,𝑉) ∈ Π(𝐺). Moreover,
assume that 𝜋(ℎ) is self-adjoint and nonnegative. Then

‖𝜋(ℎ)‖ = sup
𝑣:‖𝑣 ‖=1

〈𝑣, 𝜋(ℎ)𝑣〉 ≤ tr 𝜋(ℎ).

4.7. The pretrace formula

Let us recall the pretrace formula ([25, Chapter 1]). Let ℎ ∈ 𝐶𝑐 (𝐺), and let Γ ⊂ 𝐺 be a cocompact lattice.
Denote by ℎ̂ ∈ 𝐶𝑐 (𝐺) the function ℎ̂(𝑔) = ℎ(𝑔−1). Then we have an operator ℎ : 𝐿2 (Γ\𝐺) → 𝐿2 (Γ\𝐺),
acting on 𝑓 ∈ 𝐿2 (Γ\𝐺) by
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(ℎ 𝑓 ) (𝑥) = 𝑓 ∗ ℎ̂(𝑥) =
∫
𝐺

𝑓 (𝑥𝑔)ℎ(𝑔)𝑑𝑔 =
∫
𝐺

𝑓 (𝑦)ℎ(𝑥−1𝑦)𝑑𝑦

=
∫

Γ\𝐺

𝑓 (𝑦) (
∑
𝛾∈Γ

ℎ(𝑥−1𝛾𝑦))𝑑𝑦 =
∫

Γ\𝐺

𝐾 (𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦,

for 𝐾 (𝑥, 𝑦) =
∑

𝛾∈Γ ℎ(𝑥−1𝛾𝑦). By [25, Chapter 1], if h is also self-adjoint, then it is trace-class on
𝐿2 (Γ\𝐺) and

tr ℎ|𝐿2 (Γ\𝐺) =
∫

Γ\𝐺

∑
𝛾∈Γ

ℎ(𝑥−1𝛾𝑥)𝑑𝑥.

Moreover, if ℎ ∈ 𝐶∞
𝑐 (𝐺) and 𝐿2 (Γ\𝐺) � ⊕𝜋∈Π (𝐺)𝑚(𝜋, Γ) is the decomposition into irreducible

representations, then we have the pretrace formula:

tr ℎ|𝐿2 (Γ\𝐺) =
∫

Γ\𝐺

∑
𝛾∈Γ

ℎ(𝑥−1𝛾𝑥)𝑑𝑥

=
∑

𝜋∈Π (𝐺)
𝑚(𝜋, Γ) tr 𝜋(ℎ),

where tr(𝜋(ℎ)) is the usual trace on the representation space (𝜋,𝑉).
The following lemma is immediate from the pretrace formula but essential for our work.

Lemma 4.21. If ℎ1, ℎ2 ∈ 𝐶𝑐 (𝐺) satisfy that ℎ1 (𝑔) ≥ ℎ2 (𝑔) for every 𝑔 ∈ 𝐺 then tr ℎ1 |𝐿2 (Γ\𝐺) ≥
tr ℎ2 |𝐿2 (Γ\𝐺) . In particular, if ℎ1 (𝑔) ≥ 0 then tr ℎ1 |𝐿2 (Γ\𝐺) ≥ 0.

4.8. Spectral decomposition of a characteristic function of a small ball

For 𝑥 ∈ Γ𝑁 \Γ1 ⊂ 𝑋𝑁 = Γ𝑁 \𝐺/𝐾 , let 𝑏𝑥, 𝛿 ∈ 𝐿2 (𝑋𝑁 ) be defined as follows:
◦ In the non-Archimedean case, choose ℎ𝛿 ∈ 𝐶𝑐 (𝐾\𝐺/𝐾) to be the characteristic function of K.
◦ In the Archimedean case, choose 0 < 𝛿 < 1/4 such that 𝑙 (𝛾) > 𝛿 for every 𝛾 ∈ Γ1 with 𝑙 (𝛾) > 0.

Choose a function ℎ𝛿 ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾) such that:

– 0 ≤ ℎ𝛿 (𝑔) ≤ 2
𝜇 (𝐵𝛿 (𝑒)) for all 𝑔 ∈ 𝐺, where 𝐵𝛿 (𝑒) is the ball of radius 𝛿 around the identity 𝑒 ∈ 𝐺.

– ℎ𝛿 (𝑔) is supported on {𝑔 ∈ 𝐺 : 𝑙 (𝑔) ≤ 𝛿}.
–
∫
𝐺
ℎ𝛿 (𝑔)𝑑𝑔 = 1

– ℎ(𝑔) = ℎ(𝑔−1), that is, ℎ = ℎ̂.
Finally, let 𝑏𝑥, 𝛿 ∈ 𝐿2 (𝑋𝑁 ) be

𝑏𝑥, 𝛿 (𝑦) =
∑

𝛾∈Γ𝑁

ℎ𝛿 (𝑥−1𝛾𝑦).

We fix 𝛿 > 0 once and for all (depending on Γ1) and suppress the dependence on it from now on. We
notice that ∫

𝑋𝑁

𝑏𝑥, 𝛿 (𝑦)𝑑𝑦 = 1.

By the properties of 𝛿, the sum defining it is over at most |Γ1 ∩ 𝐾 | elements, and therefore (recall
that we suppress the dependence on Γ1 from our notations),��𝑏𝑥, 𝛿

��
∞ 
 1,

��𝑏𝑥, 𝛿

��
2 
 1.
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Let us remark that for our uses in the Archimedean rank 1 case one can simply choose instead

ℎ𝛿 (𝑔) =
{

1
𝜇 (𝐵𝛿 (𝑒)) 𝑙 (𝑔) ≤ 𝛿

0 else
,

and for higher rank, we make this choice so that one can apply the Paley–Wiener theorem for spherical
functions due to Harish-Chandra, which is used as follows:

Lemma 4.22. Let 𝑓 ∈ 𝐿2 (𝑋𝑁 ). Then, ∑
𝑥∈Γ𝑁 \Γ1



〈𝑏𝑥, 𝛿 , 𝑓
〉

2 
 ‖ 𝑓 ‖2

2.

Moreover, in the Archimedean case, if 𝑓 ∈ 𝐿2 (𝑋𝑁 ) is the K-fixed function of some irreducible
representation 𝜋 ⊂ 𝐿2 (Γ𝑁 \𝐺) with 𝜆(𝜋) = 𝜆, then for every 𝐿 ′ > 0,∑

𝑥∈Γ𝑁 \Γ1



〈𝑏𝑥, 𝛿 , 𝑓
〉

2 
𝐿′ (1 + 𝜆)−𝐿′ ‖ 𝑓 ‖2

2.

(The last result will only be used in the Archimedean rank ≥ 2 case.)

Proof. By our assumption on 𝛿, the balls 𝐵𝛿 (𝑥) for 𝑥 ∈ Γ𝑁 \Γ1 are all either equal (with multiplicity at
most |Γ1 ∩ 𝐾 |) or distinct, so by Cauchy–Schwartz∑

𝑥∈Γ𝑁 \Γ1



〈 𝑓 , 𝑏𝑥, 𝛿

〉

2 ≤
∑

𝑥∈Γ𝑁 \Γ1

�� 𝑓 |𝐵𝛿 (𝑥)
��2

2

��𝑏𝑥, 𝛿

��2
2 ≤ |Γ1 ∩ 𝐾 |‖ 𝑓 ‖2

2 max
𝑥∈Γ𝑁 \Γ1

‖𝑏𝑥 ‖2
2


𝛿 ‖ 𝑓 ‖2
2.

For the moreover part, note that 〈
𝑓 , 𝑏𝑥, 𝛿

〉
= 𝑓 (𝑥) tr 𝜋(ℎ𝛿).

It is well known (see [60] for an exact statement) that there is a constant 𝑀 > 0 such that

| 𝑓 (𝑥) | 
 (1 + 𝜆)𝑀
�� 𝑓 |𝐵𝛿 (𝑥)

��2
2.

By the Paley–Wiener theorem for spherical functions ([18, Subsection 3.4]),

tr 𝜋(ℎ𝛿) 
𝐿′ (1 + 𝜆)−𝐿′−𝑀 .

Combining both estimates we get the required inequality. �

5. The weak injective radius property

In this section, we will study the weak injective radius property and deduce spectral results from it when
the lattices are cocompact.

Consider 𝜒𝑑0 ∈ 𝐶∞
𝑐 (𝐺) from Section 3. It is self-adjoint since 𝑙 (𝑔) = 𝑙 (𝑔−1). Since 𝜒𝑑0 is left and

right K-invariant, it acts on 𝐿2 (Γ\𝐺/𝐾).
Note that, by the definition of 𝑵(Γ, 𝑑0, 𝑦), it holds that for every 𝑥 ∈ Γ𝑛\Γ1,

𝑵(Γ, 𝑑0, 𝑥) ≤
∑
𝛾∈Γ

𝜒𝑑0 (𝑥−1𝛾𝑥) ≤ 𝑵(Γ, 𝑑0 + 1, 𝑥). (5.1)
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If 𝜒𝑑 had been the characteristic function of {𝑔 ∈ 𝐺 : 𝑙 (𝑔) ≤ 𝑑}, then the first inequality in equation
(5.1) would simply be an equality.

Our initial observation is:

Lemma 5.1. For every 𝑥0 ∈ Γ𝑁 \Γ〈
𝑏𝑥0 , 𝛿 , 𝜒𝑑0−2𝑏𝑥0 , 𝛿

〉

 𝑵(Γ𝑁 , 𝑑0, 𝑥0) 


〈
𝑏𝑥, 𝛿 , 𝜒𝑑0+2𝑏𝑥0 , 𝛿

〉
.

Proof. By unfolding, we get that

〈𝑏𝑥, 𝛿 , 𝜒𝑑0𝑏𝑥0 , 𝛿〉 =
∫

Γ𝑁 \𝐺

∫
Γ𝑁 \𝐺

∑
𝛾∈Γ𝑁

𝑏𝑥0 , 𝛿 (𝑥)𝜒𝑑 (𝑥−1𝛾𝑦)𝑏𝑥0 , 𝛿 (𝑦)𝑑𝑥𝑑𝑦

=
∫

Γ𝑁 \𝐺

∫
Γ𝑁 \𝐺

∑
𝛾1∈Γ𝑁

ℎ𝛿 (𝑥−1
0 𝛾1𝑥)

∑
𝛾∈Γ𝑁

𝜒𝑑 (𝑥−1𝛾𝑦)
∑

𝛾2∈Γ𝑁

ℎ𝛿 (𝑥−1
0 𝛾2𝑦)𝑑𝑥𝑑𝑦

=
∫

Γ𝑁 \𝐺

∫
Γ𝑁 \𝐺

∑
𝛾1∈Γ𝑁

ℎ𝛿 (𝑥−1
0 𝛾1𝑥)

∑
𝛾∈Γ𝑁

𝜒𝑑 (𝑥−1𝛾𝑦)
∑

𝛾2∈Γ𝑁

ℎ𝛿 (𝑦−1𝛾2𝑥0)𝑑𝑥𝑑𝑦

=
∫
𝐺

∫
𝐺

ℎ𝛿 (𝑥−1
0 𝑥)

∑
𝛾∈Γ𝑁

𝜒𝑑 (𝑥−1𝛾𝑦)ℎ𝛿 (𝑦−1𝑥0)𝑑𝑥𝑑𝑦

=
∑

𝛾∈Γ𝑁

(ℎ𝛿 ∗ 𝜒𝑑 ∗ ℎ𝛿) (𝑥−1
0 𝛾𝑥0).

The lemma follows from equation (5.1), and the simple pointwise estimates

𝜒𝑑−2(𝑔) 
 ℎ𝛿 ∗ 𝜒𝑑 ∗ ℎ𝛿 (𝑔) 
 𝜒𝑑+2 (𝑔). �

We can now prove that some bounds on 𝑵(Γ𝑁 , 𝑑0, 𝑥) imply bounds on 𝑵(Γ𝑁 , 𝑑0 + 𝑑, 𝑥).

Lemma 5.2. Assume that for some 0 ≤ 𝑑0, 𝑥 ∈ Γ𝑁 \Γ1 it holds for some M that for every 𝑑 ≤ 𝑑0

𝑵(Γ𝑁 , 𝑑, 𝑥) 
 𝑀𝑞𝑑/2.

Then for every 𝑑1 ≥ 0, 𝜖 > 0 it holds that

𝑵(Γ𝑁 , 𝑑0 + 𝑑1, 𝑥) 
𝜖 𝑀𝑞 (𝑑0+𝑑1) 𝜖 𝑞𝑑0/2+𝑑1 .

Proof. We choose 𝑑 = (𝑑0 − 4)/2 and calculate
��𝜒𝑑𝑏𝑥, 𝛿

��2
2 using Lemma 4.18 and Lemma 5.1:��𝜒𝑑𝑏𝑥, 𝛿

��2
2 =

〈
𝜒𝑑𝑏𝑥, 𝛿 , 𝜒𝑑𝑏𝑥, 𝛿

〉
=
〈
𝜒𝑑 ∗ 𝜒𝑑𝑏𝑥, 𝛿 , 𝑏𝑥, 𝛿

〉

𝜖 𝑞𝑑0 𝜖

〈
𝜓2𝑑+2𝑏𝑥, 𝛿 , 𝑏𝑥, 𝛿

〉

 𝑞𝑑0 𝜖

𝑑0−4∫
0

𝑞 (𝑑0−𝑑)/2〈𝜒𝑑+2𝑏𝑥, 𝛿 , 𝑏𝑥, 𝛿

〉
𝑑𝑑
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 𝑞𝑑0 𝜖

𝑑0−4∫
0

𝑞 (𝑑0−𝑑)/2𝑵(Γ𝑁 , 𝑑 + 4, 𝑥)𝑑𝑑


 𝑞𝑑0 𝜖 𝑀

𝑑0−4∫
0

𝑞 (𝑑0−𝑑)/2𝑞𝑑/2𝑑𝑑


 𝑀𝑞𝑑0 𝜖 𝑞𝑑 ≤ 𝑀𝑞𝑑0 𝜖 𝑞𝑑0/2.

Now, for 𝑑1 ≥ 0, we use the inequality

𝜒𝑑0+𝑑1+2(𝑔) 
 (𝜒𝑑 ∗ 𝜒𝑑1+4 ∗ 𝜒𝑑) (𝑔),

to deduce

𝑵(Γ, 𝑑0 + 𝑑1, 𝑥) 

〈
𝜒𝑑0+𝑑1+2𝑏𝑥, 𝛿 , 𝑏𝑥, 𝛿

〉



〈
𝜒𝑑 ∗ 𝜒𝑑1+4 ∗ 𝜒𝑑𝑏𝑥, 𝛿 , 𝑏𝑥, 𝛿

〉
=
〈
𝜒𝑑1+4 ∗ 𝜒𝑑𝑏𝑥, 𝛿 , 𝜒𝑑𝑏𝑥, 𝛿

〉
≤
��𝜋(𝜒𝑑1+4)

����𝜒𝑑𝑏𝑥, 𝛿

��2
2


𝜖 𝑞𝑑1 (1+𝜖 )��𝜒𝑑𝑏𝑥, 𝛿

��2
2


 𝑞 (𝑑0+𝑑1) 𝜖 𝑀𝑞𝑑0/2+𝑑1 . �

Lemma 5.2 allows us to slightly modify the definition of the weak injective radius property. In
particular, the following two claims are equivalent to each other and the weak injective radius property
with parameter 𝛼, for C some fixed constant (say 𝐶 = 100):

◦ For every 𝑑0 ≤ 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]) − 𝐶, 𝜖 > 0,

1
[Γ1 : Γ𝑁 ]

∑
𝑥∈Γ𝑁 \Γ

𝑵(Γ𝑁 , 𝑑0, 𝑥)𝑑𝑥 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑞𝑑0/2.

◦ For every 𝑑0 ≤ 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]) + 𝐶, 𝜖 > 0,

1
[Γ1 : Γ𝑁 ]

∑
𝑥∈Γ𝑁 \Γ

𝑵(Γ𝑁 , 𝑑0, 𝑥)𝑑𝑥 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑞𝑑0/2.

It also implies the following proposition, which should be compared with [58, Conjecture 2]:

Proposition 5.3. Let (Γ𝑁 ) be a sequence of lattices. Assume that the weak injective radius property
holds with parameter 𝛼 = 1, that is, for every 0 ≤ 𝑑0 ≤ 2 log𝑞 ([Γ1 : Γ𝑁 ]), 𝜖 > 0,

1
[Γ1 : Γ𝑁 ]

∑
𝑦∈Γ𝑁 \Γ1

𝑵(Γ𝑁 , 𝑑0, 𝑦) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑞𝑑0 (1/2+𝜖 ) .

Then for every 𝑑0 ≥ 0, 𝜖 > 0 it holds that

1
[Γ1 : Γ𝑁 ]

∑
𝑦∈Γ𝑁 \Γ1

𝑵(Γ𝑁 , 𝑑0, 𝑦) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑞𝑑0 𝜖 ( 𝑞𝑑0

[Γ1 : Γ𝑁 ] + 𝑞𝑑0/2).
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Proof. It is sufficient to prove that for 𝑑1 ≥ 0, 𝑑0 = 2 log𝑞 ([Γ1 : Γ𝑁 ]), it holds that

1
[Γ1 : Γ𝑁 ]

∑
𝑦∈Γ𝑁 \Γ1

𝑵(Γ𝑁 , 𝑑0 + 𝑑1, 𝑦) 
𝜖 𝑞 (𝑑0+𝑑) 𝜖 𝑞𝑑0/2+𝑑1 .

This follows from Lemma 5.2. �

We can now present the proof of Proposition 3.3, in the following slightly more general claim.

Corollary 5.4. Let (Γ𝑁 ) be a sequence of cocompact lattices, and 0 < 𝛼 ≤ 1. The following are
equivalent:

1. For every 𝑑0 ≤ 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), 𝜖 > 0,

tr 𝜒𝑑0 |𝐿2 (𝑋𝑁 ) =
∫

Γ𝑁 \𝐺

∑
𝛾∈Γ𝑁

𝜒𝑑0 (𝑥−1𝛾𝑥)𝑑𝑥 
𝜖 [Γ1 : Γ𝑁 ]1+𝜖 𝑞𝑑0 (1/2+𝜖 ) .

2. The weak injective radius property with parameter 𝛼 – for every 𝑑0 ≤ 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), 𝜖 > 0,

1
[Γ1 : Γ𝑁 ]

∑
𝑥∈Γ𝑁 \Γ

𝑵(Γ𝑁 , 𝑑0, 𝑥)𝑑𝑥 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑞𝑑0 (1/2+𝜖 ) .

3. For every ℎ ∈ 𝐶𝑐 (𝐺) self-adjoint and satisfying ℎ(𝑔) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖𝜓𝑑 (𝑔) for
𝑑 = 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), it holds that

tr ℎ|𝐿2 (𝑋𝑁 ) 
𝜖 [Γ1 : Γ𝑁 ]1+𝜖 𝑞𝑑 (1/2+𝜖 ) � [Γ1 : Γ𝑁 ]1+𝛼+𝜖 . (5.2)

4. For 𝑑 = 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), it holds that

tr𝜓𝑑 |𝐿2 (𝑋𝑁 ) 
𝜖 [Γ1 : Γ𝑁 ]1+𝜖 𝑞𝑑 (1/2+𝜖 ) � [Γ1 : Γ𝑁 ]1+𝛼+𝜖 .

Proof. (3) obviously implies (4), and the fact that (4) implies (3) is a result of Lemma 4.21.
Since Γ1 is cocompact, it has a finite diameter D. It implies that the balls of radius D around points

in Γ𝑁 \Γ1 cover the entire space Γ𝑁 \𝐺. Moreover, if two points 𝑥, 𝑦 are of distance d apart, then∑
𝛾∈Γ𝑁

𝜒𝑑0−2𝑑−1 (𝑥−1𝛾𝑥) ≤
∑

𝛾∈Γ𝑁

𝜒𝑑0 (𝑦−1𝛾𝑦) ≤
∑

𝛾∈Γ𝑁

𝜒𝑑0+2𝑑+1 (𝑥−1𝛾𝑥).

Using equation (5.1), we deduce that if 𝐵𝑥0 ,𝐷 is the ball of radius D around 𝑥0 ∈ Γ𝑁 \Γ1, then for
every 𝑑0, ∫

𝐵𝑥0 ,𝐷

∑
𝛾∈Γ𝑁

𝜒𝑑0−2𝐷−2(𝑥−1𝛾𝑥)𝑑𝑥 ≤ 𝑵(Γ𝑁 , 𝑑0, 𝑥) ≤
∫

𝐵𝑥0 ,𝐷

∑
𝛾∈Γ𝑁

𝜒𝑑0+2𝐷+2(𝑥−1𝛾𝑥)𝑑𝑥.

Summing over 𝑥0 ∈ Γ𝑁 \Γ1 and using the discussion after Lemma 5.2 to change 𝑑0 by a constant
allows us to deduce the equivalence between (1) and (2).

To show that (4) implies (1), note that for 𝑑0 ≤ 𝑑 = 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), it holds that 𝜒𝑑0 

𝑞 (𝑑0−𝑑)/2𝜓𝑑 (𝑔). Then if (4) holds, then
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tr 𝜒𝑑0 |𝐿2 (𝑋𝑁 ) 
 𝑞 (𝑑0−𝑑)/2 tr𝜓𝑑 |𝐿2 (𝑋𝑁 )


 𝑞 (𝑑0−𝑑)/2 [Γ1 : Γ𝑁 ]1+𝜖 𝑞𝑑 (1/2+𝜖 )


 [Γ1 : Γ𝑁 ]1+𝜖 𝑞𝑑0 (1/2+𝜖 ) .

Finally, we prove that (1) implies (4). Note that for every 𝑔 ∈ 𝐺,

𝜓𝑑 (𝑔) 

𝑑∫

0

𝑞 (𝑑−𝑑0)/2𝜒𝑑0 (𝑔)𝑑𝑑0.

Then if (1) holds for every 𝑑0 ≤ 𝑑, we have

tr𝜓𝑑 

𝑑∫

0

𝑞 (𝑑−𝑑0)/2 tr 𝜒𝑑0 |𝐿2 (𝑋𝑁 )𝑑𝑑0


𝜖 [Γ1 : Γ𝑁 ]1+𝜖

𝑑∫
0

𝑞 (𝑑−𝑑0)/2𝑞𝑑0 (1/2+𝜖 )𝑑𝑑0

= [Γ1 : Γ𝑁 ]1+𝜖 𝑑𝑞𝑑 (1/2+𝜖 )


𝜖 [Γ1 : Γ𝑁 ]1+𝜖 𝑞𝑑 (1/2+𝜖 ) . �

Another simple property of the weak injective radius is:

Proposition 5.5. Let (Γ𝑁 ) be a sequence of lattices. If 𝛼 is the weak injective radius parameter of the
sequence, then 𝛼 ≤ 1.

Proof. For simplicity, we assume that the lattices (Γ𝑁 ) are cocompact, so we can use equation (5.2).
The arguments can change to deal with the nonuniform case as well.

Note that Corollary 5.4 did not assume that 𝛼 ≤ 1. It is therefore enough to prove that for every 𝛼 > 1
equation (5.2) from Corollary 5.4 does not hold for 𝛼.

Let 𝑑0 = 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), 𝑑1 = 𝑑0/2 − 1 and 𝑐𝑑1 = 𝜒𝑑1 ∗ 𝜒𝑑1 . By Lemma 4.18, 𝑐𝑑1 
𝜖 [Γ1 :
Γ𝑁 ] 𝜖𝜓𝑑0 (𝑔), so the condition before equation (5.2) holds, and

tr 𝑐𝑑1 |𝐿2 (𝑋𝑁 ) 
𝜖 [Γ1 : Γ𝑁 ]1+𝛼+𝜖 .

Since 𝜒𝑑1 is self-adjoint, tr 𝜋(𝑐𝑑1 ) ≥ 0 for every 𝜋 ∈ Π(𝐺), so

tr 𝑐𝑑1 |𝐿2 (𝑋𝑁 ) ≥ tr(𝜋triv (𝑐𝑑0 )),

where 𝜋triv is the trivial representation. On the other hand, it holds that

tr(𝜋triv (𝑐𝑑0 )) =
∫
𝐺

𝑐𝑑1 (𝑔)𝑑𝑔 =
���
∫
𝐺

𝜒𝑑1𝑑𝑔
���

2

� 𝑞2𝑑1 � [Γ1 : Γ𝑁 ]2𝛼 .

As 𝛼 > 1, we get a contradiction for [Γ1 : Γ𝑁 ] big enough. �

We can now prove Proposition 3.9:

Proof. Recall that we assume that the sequence (Γ𝑁 ) of cocompact lattices satisfies the weak injective
radius property with parameter 𝛼, let 𝑑0 = 𝛼 log𝑞 ([Γ1 : Γ𝑁 ]) and let 𝑓𝑑0 from the definition of a good
family.
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By Corollary 5.4, the trace of 𝑓𝑑0 on 𝐿2 (Γ𝑁 \𝐺) satisfies

tr 𝑓𝑑0 |𝐿2 (Γ𝑁 \𝐺) 
𝜖 [Γ1 : Γ𝑁 ]1+𝛼+𝜖 .

Let us calculate the spectral side of the trace. From the second and first properties of a good family,

tr 𝑓𝑑0 |𝐿2 (Γ𝑁 \𝐺) ≥
∑
𝜋∈𝐴

𝑚(𝜋, Γ𝑁 ) tr 𝜋( 𝑓𝑑0)

�𝜖 ,𝐴

∑
𝜋∈𝐴

𝑚(𝜋, Γ𝑁 )𝑞𝑑0 (1−1/𝑝 (𝜋)−𝜖 )

=
∑
𝜋∈𝐴

𝑚(𝜋, Γ𝑁 ) [Γ1 : Γ𝑁 ]2𝛼(1−1/𝑝 (𝜋)−𝜖 )

≥ 𝑀 (𝐴, Γ𝑁 , 𝑝) [Γ1 : Γ𝑁 ]2𝛼(1−1/𝑝−𝜖 ) .

We deduce that for every N, 𝑝 > 2, 𝜖 > 0,

𝑀 (𝐴, Γ𝑁 , 𝑝) 
𝐴,𝜖 [Γ1 : Γ𝑁 ]1−𝛼(1−2/𝑝)+𝜖 ,

as needed. �

6. The weak injective radius property implies the optimal lifting property

In this section, we prove Theorem 1.5.

6.1. Reduction to a spectral argument

Recall that assuming the weak injective radius property and spectral gap, we should prove that for every
𝜖 > 0, for every 𝑎 ∈ 𝐴+ with 𝑙 (𝑎) ≥ (1 + 𝜖) log𝑞 (𝜇(𝑋𝑁 )),

#
{
(𝑥, 𝑦) ∈ (Γ1/Γ𝑁 )2 : ∃𝛾 ∈ Γ1 s.t. 𝜋𝑁 (𝛾)𝑥 = 𝑦,

��𝑎𝛾 − 𝑎
��
𝔞 < 𝜖 ‖𝑎‖𝔞

}
= (1 − 𝑜𝜖 (1)) [Γ1 : Γ𝑁 ]2.

(6.1)

For (𝑥, 𝑦) ∈ (Γ1/Γ𝑁 )2, 𝑎 ∈ 𝐴+ and 𝜖 > 0, we say that 𝛾 ∈ Γ1 is good for (𝑥, 𝑦, 𝑎, 𝜖) if 𝜋𝑁 (𝛾)𝑥 = 𝑦
and

��𝑎𝛾 − 𝑎
��
𝔞 < 𝜖 ‖𝑎‖𝔞 .

Lemma 6.1. Let (𝑥, 𝑦) ∈ (Γ1/Γ𝑁 )2, and assume that there is no good 𝛾 ∈ Γ1 for (𝑥, 𝑦, 𝑎, 𝜖). Identify
𝑥, 𝑦 with elements 𝑥, 𝑦 ∈ 𝑋𝑁 = Γ𝑁 \𝐺/𝐾 . Let 𝑓𝑎 ∈ 𝐿1 (𝐺) be a function supported on the set{
𝑔 ∈ 𝐺 :

��𝑎𝑔 − 𝑎
��
𝔞 < 𝜖/2‖𝑎‖𝔞

}
, and for 𝛿 small enough with respect to 𝜖 ‖𝑎‖𝔞 let 𝑏𝑥, 𝛿 as in Subsection

4.8. Then

𝑓𝑎𝑏𝑥, 𝛿 (𝑦) = 0.

Moreover, for every 𝑦′ ∈ 𝐵𝛿 (𝑦) it holds that

𝑓𝑎𝑏𝑥, 𝛿 (𝑦′) = 0.

Proof. We think of 𝑓𝑎𝑏𝑥, 𝛿 as a left Γ𝑁 -invariant function on G, and identify 𝑥, 𝑦 with some lifts of
them in Γ1 ⊂ 𝐺. The support of 𝑓𝑎𝑏𝑥, 𝛿 = 𝑏𝑥, 𝛿 ∗ 𝑓𝑎 is contained in the set{

𝑦′ ∈ 𝐺 : ∃𝛾 ∈ Γ𝑁 , 𝑥
′ ∈ 𝐺, 𝑓𝑎 (𝑦′−1𝛾𝑥 ′) > 0, 𝑑 (𝑥, 𝑥 ′) ≤ 𝛿

}
.

Assume by contradiction that 𝑦′ ∈ 𝐵𝛿 (𝑦) is in the support of 𝑓𝑎𝑏𝑥, 𝛿 , and let 𝛾 ∈ Γ𝑁 , 𝑥 ′ ∈ 𝐺 be such
that 𝑓𝑎 (𝑦′−1𝛾𝑥 ′) > 0, 𝑑 (𝑥, 𝑥 ′) ≤ 𝛿. By the assumption on the support of 𝑓𝑎,��𝑎𝑦′−1𝛾𝑥′ − 𝑎

��
𝔞
< 𝜖/2‖𝑎‖𝔞 .
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Look at

𝛾′ = 𝑦−1𝛾𝑥 ∈ Γ1.

Then 𝑎𝛾′ = 𝑎𝑦−1𝛾𝑥 , and if 𝛿 is small enough with respect to 𝜖 ‖𝑎‖𝔞 , then
��𝑎𝑦−1𝛾𝑥 − 𝑎𝑦′−1𝛾𝑥′

��
𝔞
<

𝜖/2‖𝑎‖𝔞 . Therefore, ��𝑎𝛾′ − 𝑎
��
𝔞 < 𝜖 ‖𝑎‖𝔞 ,

and

𝜋𝑁 (𝛾′)𝑥 = 𝑥𝛾′−1 = 𝛾𝑦.

Since 𝛾 ∈ Γ𝑁 , it says that 𝛾′ sends 𝑥 ∈ Γ𝑁 \Γ1 to 𝑦 ∈ Γ𝑁 \Γ1, as needed. �

Let 𝜋 ∈ 𝐿2 (𝑋𝑁 ) be the uniform probability distribution, that is, 𝜋(𝑥) = 1
𝜇 (𝑥𝑁 ) .

Lemma 6.2. Equation (6.1) holds if for every 𝜖 > 0, for every 𝑎 ∈ 𝐴+ with 𝑙 (𝑎) > (1 + 𝜖) log𝑞 ([Γ1 :
Γ𝑁 ]), there exists a probability function 𝑓𝑎 ∈ 𝐶∞

𝑐 (𝐺) supported on
{
𝑔 ∈ 𝐺 :

��𝑎𝑔 − 𝑎
��
𝔞 < 𝜖 ‖𝑎‖𝔞

}
such

that ∑
𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋
��2

2 = 𝑜𝜖 (1). (6.2)

Proof. We assume that equation (6.2) holds and want to prove that equation (6.1) holds.
Let 𝜖 > 0. For 𝑥, 𝑦 ∈ (Γ1/Γ𝑁 )2, by Lemma 6.1, if there is no good 𝛾 for (𝑥, 𝑦, 𝑎, 𝜖/2), then for 𝑦′

in the 𝛿-neighborhood of y it holds that


( 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋) (𝑦′)



 = 𝜋(𝑦′) = 1
𝜇 (𝑋𝑁 ) � [Γ1 : Γ𝑁 ]−1. Therefore,

for a fixed 𝑥 ∈ Γ1/Γ𝑁 each y without good 𝛾 contributes �𝛿 [Γ1 : Γ𝑁 ]−2 to
�� 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋

��2
2. Moreover,

the contributions are distinct for 𝑦, 𝑦′ whose image in 𝑋𝑁 = Γ𝑁 \𝐺/𝐾 is different.
Therefore,

#
{
(𝑥, 𝑦) ∈ (Γ1/Γ𝑁 )2 : There is no good 𝛾 for (𝑥, 𝑦, 𝑎, 𝜖/2)

}



∑
𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋
��2

2 [Γ1 : Γ𝑁 ]2

= [Γ1 : Γ𝑁 ]2
∑

𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋
��2

2

= 𝑜([Γ1 : Γ𝑁 ]2),

where we used equation (6.2) in the last step. This implies equation (6.1) for 𝜖/2. �

The following lemma explains where spectral gap is used.

Lemma 6.3. Equation (6.1) follows from the following two conditions:

1. Spectral gap holds for (Γ𝑁 ).
2. For every 𝜖 > 0, for some 𝛿 > 0, for every 𝑎 ∈ 𝐴+ with 𝑙 (𝑎) ≥ (1 + 𝜖) log𝑞 ([Γ1 : Γ𝑁 ]), there exists

a probability function 𝑓𝑎 ∈ 𝐶∞
𝑐 (𝐺) supported on

{
𝑔 ∈ 𝐺 :

��𝑎𝑔 − 𝑎
��
𝔞 < 𝜖 ‖𝑎‖𝔞

}
, such that for every

𝜖1 > 0, ∑
𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿

��2
2 
𝜖 , 𝜖1 𝑞

𝜖1𝑙 (𝑎) . (6.3)
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Proof. First, we note that ‖𝜋‖2
2 =

∫
𝑋𝑁

𝜇(𝑋𝑁 )−2𝑑𝑥 = 𝜇(𝑋𝑁 )−1 � [Γ1 : Γ𝑁 ]−1. Therefore, if equation
(6.3) holds, then also∑

𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋
��2

2 ≤
∑

𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿

��2
2 +

∑
𝑥∈Γ1/Γ𝑁

‖𝜋‖2
2 
𝜖 , 𝜖1 𝑞

𝜖1𝑙 (𝑎) ,

which is similar to equation (6.2), but 𝑜(1) is replaced with 𝑂 𝜖 , 𝜖1 (𝑞 𝜖1𝑙 (𝑎) ).
Let 𝜖 ′ > 0, and let 𝑎 ∈ 𝐴+ be such that 𝑙 (𝑎′) = 𝜖 ′𝑙 (𝑎). Let 𝑓 ′𝑎 = 𝐴𝑎′ ∗ 𝑓𝑎. Assuming 𝜖 ′ is small

enough, 𝑓 ′𝑎 is supported on {
𝑔 ∈ 𝐺 : 𝑔 ∈ 𝐺 :

��𝑎𝑔 − 𝑎
��
𝔞 < 2𝜖 ‖𝑎‖𝔞

}
.

We will show that equation (6.2) holds for 𝑓 ′𝑎.
Notice that 𝐴𝑎′𝜋 = 𝜋 and 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋 ⊥ 𝜋. By the spectral gap assumption and Corollary 4.14, for

some 𝑝′ < ∞, �� 𝑓 ′𝑎𝑏𝑥, 𝛿 − 𝜋
��

2 =
��𝐴𝑎′ ( 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋)

��
2


 𝑞−𝜖 ′𝑙 (𝑎)/𝑝′�� 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋
��

2.

Therefore, ∑
𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎′𝑏𝑥, 𝛿 − 𝜋
��2

2 
 𝑞−𝜖 ′𝑙 (𝑎)/𝑝′ ∑
𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿 − 𝜋
��2

2


𝜖 , 𝜖1 𝑞
−𝜖 ′𝑙 (𝑎)/𝑝′

𝑞 𝜖1𝑙 (𝑎) .

If we choose 𝜖1 small enough, this is 𝑜(1) and equation (6.2) holds. Applying Lemma 6.2, we get that
equation (6.1) holds as well. �

6.2. Completing the proof of Theorem 1.5

Recall that Theorem 1.5 states that spectral gap and the weak injective radius property imply the optimal
lifting property. In Lemma 6.3, we reduced it to some spectral statement, equation (6.3). We now
claim:

Lemma 6.4. Assume that the weak injective radius property holds for a sequence (Γ𝑛). Then for every
𝜖 > 0 sufficiently small, for some 𝛿 > 0, for every 𝑎 ∈ 𝐴+ with 𝑙 (𝑎) ≥ log𝑞 ([Γ1 : Γ𝑁 ]), there is a
probability function 𝑓𝑎 ∈ 𝐶∞

𝑐 (𝐺) supported on
{
𝑔 ∈ 𝐺 :

��𝑎𝑔 − 𝑎
��
𝔞 < 𝜖

}
such that∑

𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿

��2
2 
𝜖 , 𝜖1 𝑞

𝜖1𝑙 (𝑎) .

Notice the function 𝑓𝑎 in Lemma 6.4 satisfies slightly stronger conditions than required by Lemma 6.3,
so together they imply Theorem 1.5.

Proof. Let 𝜖 > 0 be sufficiently small. By a standard argument, there is a smooth probability function
𝑓𝑎 ∈ 𝐶∞

𝑐 (𝐺) supported on
{
𝑔 ∈ 𝐺 :

��𝑎𝑔 − 𝑎
��
𝔞 < 𝜖

}
and satisfies 𝑓𝑎 (𝑥) 
 𝑞−𝑙 (𝑎) 𝜒𝑙 (𝑎)+1(𝑥).

https://doi.org/10.1017/fms.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.40


34 K. Golubev and A. Kamber

Therefore, by the Convolution Lemma 4.18 and Lemma 5.1,�� 𝑓𝑎𝑏𝑥, 𝛿

��2
2 
𝜖 𝑞−2𝑙 (𝑎)��𝜒𝑙 (𝑎)+1𝑏𝑥, 𝛿

��2
2 = 𝑞−2𝑙 (𝑎) 〈𝜒𝑙 (𝑎)+1𝑏𝑥, 𝛿 , 𝜒𝑙 (𝑎)+1𝑏𝑥, 𝛿

〉
= 𝑞−2𝑙 (𝑎) 〈𝜒𝑙 (𝑎)+1 ∗ 𝜒𝑙 (𝑎)+1𝑏𝑥, 𝛿 , 𝑏𝑥, 𝛿

〉

𝜖1 𝑞

−2(1−𝜖1)𝑙 (𝑎)
〈
𝜓2(𝑙 (𝑎)+2)𝑏𝑥, 𝛿 , 𝑏𝑥, 𝛿

〉

 𝑞−2(1−𝜖1)𝑙 (𝑎)

2(𝑙 (𝑎)+2)∫
0

𝑞 (2𝑙 (𝑎)−𝑑0)/2〈𝜒𝑑0𝑏𝑥, 𝛿 , 𝑏𝑥, 𝛿

〉
𝑑𝑑0.


 𝑞−2(1−𝜖1)𝑙 (𝑎)
2(𝑙 (𝑎)+2)∫

0

𝑞 (2𝑙 (𝑎)−𝑑0)/2𝑁 (𝑥, Γ𝑁 , 𝑑0 + 2)𝑑𝑑0.

Therefore, applying Proposition 5.3, we get

∑
𝑥∈Γ1/Γ𝑁

�� 𝑓𝑎𝑏𝑥, 𝛿

��2
2 
𝜖1 𝑞

−2(1−𝜖1)𝑙 (𝑎)
2(𝑙 (𝑎)+2)∫

0

𝑞 (2𝑙 (𝑎)−𝑑0)/2(𝑞𝑑0 + 𝑞𝑑0/2 [Γ1 : Γ𝑁 ])𝑑𝑑0


𝜖1 𝑞
𝑙 (𝑎) 𝜖1 (1 + 𝑞−𝑙 (𝑎) [Γ1 : Γ𝑁 ]).

Since 𝑙 (𝑎) ≥ log𝑞 ([Γ1 : Γ𝑁 ]), this is 𝑂 (𝑞𝑙 (𝑎) 𝜖1 ) as needed. �

7. The spectral to geometric direction

7.1. Some technical calculations

For ease of reference, we give here a couple of technical bounds.

Lemma 7.1. Let G be non-Archimedean or rank 1. The following are equivalent for a sequence (Γ𝑁 ):

1. The spherical density hypothesis with parameter 𝛼: For every 𝜖 > 0 and 𝑝 > 2

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝) 
𝜖 [Γ1 : Γ𝑁 ]1−𝛼(1−2/𝑝)+𝜖 .

2. For every 𝜖 > 0 ∑
𝜋∈Π (𝐺)sph , 𝑝 (𝜋)>2

[Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝 (𝜋))𝑚(𝜋, Γ𝑁 ) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 .

Proof. The fact that (2) implies (1) is simple and is left to the reader.
The fact that (1) implies (2) follows from a standard trick of integration by parts ([31, Theorem 421]):∑

𝜋∈Π (𝐺)sph , 𝑝 (𝜋)>2
[Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝 (𝜋))𝑚(𝜋, Γ𝑁 )

= lim
𝑝→2, 𝑝>2

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝) [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝)

+
∞∫

2

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝)
𝜕

𝜕𝑝
([Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝) )𝑑𝑝

= lim
𝑝→2, 𝑝>2

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝) [Γ1 : Γ𝑁 ]−1
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+
∞∫

2

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝)2𝑝−2𝛼 ln([Γ1 : Γ𝑁 ]) [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝)𝑑𝑝


𝜖 [Γ1 : Γ𝑁 ] 𝜖 ���1 +
∞∫

2

𝑝−2𝑑𝑝
��� � [Γ1 : Γ𝑁 ] 𝜖 . �

For the higher-rank Archimedean case we have:

Lemma 7.2. Let G be Archimedean. The following are equivalent for a sequence (Γ𝑁 ):

1. The spherical density hypothesis with parameter 𝛼: for some 𝐿 > 0 large enough and for every
𝜆 ≥ 0, 𝑁 ≥ 1, 𝑝 > 2, 𝜖 > 0,

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝, 𝜆) 
𝜖 (1 + 𝜆)𝐿 [Γ1 : Γ𝑁 ]1−𝛼(1−2/𝑝)+𝜖

2. For some 𝐿 ′ > 0 large enough and every 𝜖 > 0,∑
𝜋∈Π (𝐺)sph , 𝑝 (𝜋)>2

[Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝 (𝜋)) (1 + 𝜆(𝜋))−𝐿′
𝑚(𝜋, Γ𝑁 ) 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 . (7.1)

Proof. The fact that (2) implies (1) is again simple and is left to the reader.
The fact that (1) implies (2) is again done by integration by parts, with two variables. Let us state

it formally. If ((𝑝𝑖 , 𝜆𝑖))∞𝑖=1 ⊂ (2,∞) × (0,∞) is a sequence of values without limit points, 𝑓 (𝑝, 𝜆)
is a nonnegative smooth function, and 𝑀 ′(𝑝, 𝜆) = #{𝑖 : 𝑝𝑖 ≥ 𝑝, 𝜆𝑖 ≤ 𝜆} then whenever everything
absolutely converges,

∑
𝑖

𝑓 (𝑝𝑖 , 𝜆𝑖) = lim
𝑝→2

lim
𝜆→∞

𝑀 ′(𝑝, 𝜆) 𝑓 (𝑝, 𝜆) − lim
𝑝→2

∞∫
0

𝑀 ′(𝑝, 𝜆) 𝜕
𝜕𝜆

𝑓 (𝑝, 𝜆)𝑑𝜆

+ lim
𝜆→∞

∞∫
2

𝑀 ′(𝑝, 𝜆) 𝜕

𝜕𝑝
𝑓 (𝑝, 𝜆)𝑑𝑝

−
∞∫

0

∞∫
2

𝑀 ′(𝑝, 𝜆) 𝜕
𝜕𝜆

𝜕

𝜕𝑝
𝑓 (𝑝, 𝜆)𝑑𝑝𝑑𝜆.

Applying the integration by parts formula to the left-hand side of equation (7.1), with 𝑀 ′(𝑝, 𝜆) =
𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝, 𝜆), 𝑓 (𝑝, 𝜆) = [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝) (1 + 𝜆)−𝐿′ , we get

𝐿.𝐻.𝑆 = lim
𝑝→2

lim
𝜆→∞

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝, 𝜆) [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝) (1 + 𝜆)−𝐿′

+ lim
𝑝→2

∞∫
0

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝, 𝜆) [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝)𝐿 ′(1 + 𝜆)−𝐿′−1𝑑𝜆

+ lim
𝜆→∞

∞∫
2

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝, 𝜆)2𝛼𝑝−2 ln([Γ1 : Γ𝑁 ]) [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝) (1 + 𝜆)−𝐿′
𝑑𝑝 (7.2)

+
∞∫

0

∞∫
2

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝, 𝜆)2𝛼𝑝−2 ln([Γ1 : Γ𝑁 ]) [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝)𝐿 ′(1 + 𝜆)−𝐿′−1𝑑𝑝𝑑𝜆.
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Note that by the spherical density hypothesis,

lim
𝑝→2

𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝, 𝜆) 
𝜖 [Γ1 : Γ𝑁 ]1+𝜖 (1 + 𝜆)𝐿 .

A similar and more precise bound may be derived directly from Weyl’s law ([18])). Note also that
we may assume that 𝐿 ′ > 𝐿 + 10.

Therefore, the first summand in equation (7.2) is bounded by


𝜖 lim
𝜆→∞

[Γ1 : Γ𝑁 ]1+𝜖 [Γ1 : Γ𝑁 ] (1 + 𝜆)𝐿 (1 + 𝜆)−𝐿′
= 0.

The second summand is bounded similarly by


𝜖

∞∫
0

[Γ1 : Γ𝑁 ]1+𝜖 [Γ1 : Γ𝑁 ]−1(1 + 𝜆)𝐿𝐿 ′(1 + 𝜆)−𝐿′−1𝑑𝜆 
 [Γ1 : Γ𝑁 ] 𝜖 .

The third summand is bounded by


𝜖 lim
𝜆→∞

∞∫
2

(1 + 𝜆)𝐿 [Γ1 : Γ𝑁 ]1−𝛼(1−2/𝑝)+𝜖 2𝛼𝑝−2 ln([Γ1 : Γ𝑁 ]) [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝) (1 + 𝜆)−𝐿′
𝑑𝑝


 lim
𝜆→∞

(1 + 𝜆)𝐿−𝐿′
∞∫

2

[Γ1 : Γ𝑁 ] 𝜖 𝑝−2𝑑𝑝 = 0.

The final summand is bounded by


𝜖

∞∫
0

∞∫
2

(1 + 𝜆)𝐿 [Γ1 : Γ𝑁 ]1−𝛼(1−2/𝑝)+𝜖 2𝛼𝑝−2 ln([Γ1 : Γ𝑁 ]) [Γ1 : Γ𝑁 ]−1+𝛼(1−2/𝑝)𝐿 ′(1 + 𝜆)−𝐿′−1𝑑𝑝𝑑𝜆


 [Γ1 : Γ𝑁 ] 𝜖

∞∫
0

𝐿 ′(1 + 𝜆)𝐿−𝐿′−1𝑑𝜆

∞∫
2

𝑝−2𝑑𝑝 
 [Γ1 : Γ𝑁 ] 𝜖 .

By combining all the bounds we get equation (7.1). �

7.2. Proof of Theorem 1.6

In this subsection, we prove Theorem 1.6, or more explicitly we prove that the spherical density
hypothesis with parameter 𝛼 implies the weak injective radius property with parameter 𝛼. The most
natural proof of the claim is to analyze the spectral side of the pretrace formula for the function 𝜒𝑑0 . We
will instead discretize and prove directly the weak injective radius property.

Proof. Recall that we should prove that for every 𝑑0 ≤ 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]), 𝜖 > 0,

1
[Γ1 : Γ𝑁 ]

∑
𝑥∈Γ1/Γ𝑁

𝑵(Γ𝑁 , 𝑑0, 𝑥)𝑑𝑥 
𝜖 [Γ1 : Γ𝑁 ] 𝜖 𝑞𝑑0 (1/2+𝜖 ) .

For 𝑥 ∈ Γ𝑁 \Γ1, let 𝑏𝑥, 𝛿 ∈ 𝐿2 (𝑋𝑁 ) as in Subsection 4.8.
Recall from Lemma 5.1 that

𝑵(𝑋𝑁 , 𝑑0, 𝑥) 

〈
𝑏𝑥, 𝛿 , 𝜒𝑑0+2𝑏𝑥, 𝛿

〉
.
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Let {𝜋𝑖}𝑇𝑖=1 be an orthogonal basis of irreducible subrepresentations of 𝐿2 (Γ𝑁 \𝐺) with K-fixed
vectors and 𝑝(𝜋𝑖) > 2 (T is finite in the p-adic or real rank 1 case, otherwise T may be ∞). Recall that
the set of K-invariant vectors of each irreducible representation 𝜋𝑖 is a one-dimensional vector space.
Let 𝑢𝑖 ∈ 𝐿2 (𝑋𝑁 ) be a K-invariant vector in 𝜋𝑖 with ‖𝑢𝑖 ‖ = 1. Let 𝑝0 = 2, and let 𝑉0 the orthogonal
complement of span{𝜋} ⊕ (⊕𝑖 span{𝑢𝑖}) in 𝐿2 (𝑋𝑁 ) (𝜋 here is the uniform probability function on 𝑋𝑁 ).
Note that the G-representation generated by 𝑉0 is (2-)tempered.

Decompose 𝑏𝑥, 𝛿 = 𝜋 + 𝑣0,𝑥 + 𝑣1,𝑥 + ..., according to the decomposition 𝐿2 (𝑋𝑁 ) = span{𝜋} ⊕ 𝑉0 ⊕
span 𝑢1 ⊕ ..., that is, for 𝑖 = 1, 2, ..., 𝑇 , 𝑣𝑖,𝑥 = 〈𝑢𝑖 , 𝑏𝑥, 𝛿〉𝑢𝑖 . Then,∑

𝑥∈Γ1/Γ𝑁

〈
𝑏𝑥, 𝛿 , 𝜒𝑑0+1𝑏𝑥, 𝛿

〉
=

∑
𝑥∈Γ1/Γ𝑁

〈
𝜋, 𝜒𝑑0+1𝜋

〉
+ (7.3)

∑
𝑥∈Γ1/Γ𝑁

〈
𝑣0,𝑥 , 𝜒𝑑0+1𝑣0,𝑥

〉
+

∑
𝑥∈Γ1/Γ𝑁

𝑇∑
𝑖=1

〈
𝑣𝑖,𝑥 , 𝜒𝑑0+1𝑣𝑖,𝑥

〉
.

The first summand in equation (7.3) equals

𝜆triv(𝜒𝑑0+𝐶 ) [Γ1 : Γ𝑁 ]‖𝜋‖2
2 
𝜖 𝑞𝑑0 (1+𝜖 ) [Γ1 : Γ𝑁 ]𝜇−1 (𝑋𝑁 ) 
 𝑞𝑑0 (1+𝜖 )


 𝑞𝑑0 (1/2+𝜖 ) [Γ1 : Γ𝑁 ],

where 𝜆triv(𝜒𝑑0+𝐶 ) is the trivial eigenvalue of 𝜒𝑑0+𝐶 , and we used the fact that 𝑑0 ≤ 2𝛼 log𝑞 ([Γ1 : Γ𝑁 ]).
Since 𝑉0 spans a tempered representation, by Corollary 4.14 the second summand in equation (7.3)

is bounded by


𝜖 𝑞𝑑0 (1/2+𝜖 )
∑

𝑥∈Γ1/Γ𝑁

��𝑣0,𝑥

��2
2 
 𝑞𝑑0 (1/2+𝜖 ) [Γ1 : Γ𝑁 ]

��𝑏𝑥, 𝛿

��2
2 
 𝑞𝑑0 (1/2+𝜖 ) [Γ1 : Γ𝑁 ] .

To analyze the final summand in equation (7.3), we first assume that G is p-adic or rank 1. By
Lemma 4.22,

∑
𝑥∈Γ1/Γ𝑁

��𝑣𝑖,𝑥

��2
2 
𝛿 1. Write 𝑑0 = 2𝛼′ log𝑞 ([Γ1 : Γ𝑁 ]), for 𝛼′ ≤ 𝛼. Then using

Corollary 4.14,

∑
𝑥∈Γ1/Γ𝑁

𝑇∑
𝑖=1

〈
𝑣𝑖,𝑥 , 𝜒𝑑0+1𝑣𝑖,𝑥

〉

𝜖

∑
𝑥∈Γ1/Γ𝑁

𝑇∑
𝑖=1

𝑞𝑑0 (1−1/𝑝 (𝜋𝑖)+𝜖 )��𝑣𝑖,𝑥

��2
2



𝑇∑
𝑖=1

𝑞𝑑0 (1−1/𝑝 (𝜋𝑖)+𝜖 )



∑

𝜋∈Π (𝐺)sph , 𝑝 (𝜋)>2
𝑚(𝜋, Γ𝑁 )𝑞𝑑0 (1−1/𝑝 (𝜋)+𝜖 )

=
∑

𝜋∈Π (𝐺)sph , 𝑝 (𝜋)>2
𝑚(𝜋, Γ𝑁 ) [Γ1 : Γ𝑁 ]2𝛼′ (1−1/𝑝 (𝜋)+𝜖 ) .

Applying Lemma 7.1 (for 𝛼′ ≤ 𝛼) and arranging, we get


𝜖 [Γ1 : Γ𝑁 ]1+𝛼′+𝜖 = 𝑞𝑑0 (1/2+𝜖 ) [Γ1 : Γ𝑁 ] .

This finishes the proof of the non-Archimedean and the rank 1 case.
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For the Archimedean high-rank case, by Lemma 4.22, for L large enough∑
𝑥∈Γ1/Γ𝑁

��𝑣𝑖,𝑥

��2
2 
𝐿 (1 + 𝜆(𝜋𝑖))−𝐿 .

The rest of the argument is as above, but using Lemma 7.2 instead of Lemma 7.1. �

Remark 7.3. The proof of Theorem 1.6 for hyperbolic spaces actually works for noncompact quotients
as well. The reason is that the entire continuous spectrum is tempered, that is, contained in 𝑉0 ([46]).
For more general results about hyperbolic surfaces, see [28].

7.3. A strong version of Theorem 1.5, assuming the spherical density hypothesis

The goal of this subsection is to prove the following theorem:
Theorem 7.4. Let (Γ𝑁 ) be a sequence satisfying the spherical density hypothesis (with parameter
𝛼 = 1) and spectral gap. Then for every 𝜖 > 0, for every 𝑎 ∈ 𝐴+ with 𝑙 (𝑎) ≥ (1 + 𝜖) log𝑞 (𝜇(𝑋𝑁 )),

#
{
(𝑥, 𝑦) ∈ (Γ1/Γ𝑁 )2 : ∃𝛾 ∈ Γ1 s.t. 𝜋𝑁 (𝛾)𝑥 = 𝑦,

��𝑎𝛾 − 𝑎
��
𝔞 < 1

}
= (1 − 𝑜𝜖 (1)) [Γ1 : Γ𝑁 ]2.

The result of Theorem 7.4 is stronger than in Theorem 1.5 – here, we determine the 𝐴+-component
of the Cartan decomposition of 𝛾 in far greater precision. In the non-Archimedean case, it says that we
may choose 𝑎 ∈ 𝐴+ precisely.

Proof. As before, let 𝜋 ∈ 𝐿2 (𝑋𝑁 ), be the uniform probability distribution, that is, 𝜋(𝑥) = 1
𝜇 (𝑥𝑁 ) .

Using the same arguments as in Lemma 6.2, to prove Theorem 7.4 it suffices to prove under its
assumptions that for 𝑎 ∈ 𝐴+ with 𝑙 (𝑎) > (1 + 𝜖) log𝑞 ([Γ1 : Γ𝑁 ])∑

𝑥∈Γ1/Γ𝑁

��𝐴𝑎𝑏𝑥, 𝛿 − 𝜋
��2

2 = 𝑜𝜖 , 𝛿 (1). (7.4)

Let us first show that equation (7.4) is immediate if 𝑀 (Π(𝐺)sph, Γ𝑁 , 𝑝) = 0 for 𝑝 > 2 (the Ramanujan
case). If 𝑙 (𝑎) > (1+ 𝜖) log𝑞 ([Γ1 : Γ𝑁 ]) and then 𝑞−𝑙 (𝑎) 
 [Γ1 : Γ𝑁 ]−(1+𝜖 ) . Then if we apply Corollary
4.14, for 𝜖 ′ sufficiently small,��𝐴𝑎𝑏𝑥0 , 𝛿 − 𝜋

��2
2 =

��𝐴𝑎 (𝑏𝑥0 , 𝛿 − 𝜋)
��2

2 
𝜖 ′ 𝑞−𝑙 (𝑎) (1+𝜖 ′)��𝑏𝑥0 , 𝛿

��2
2 (7.5)


 [Γ1 : Γ𝑁 ]−(1+𝜖 ) (1−𝜖 ′) = 𝑜([Γ1 : Γ𝑁 ]−1).

Summing over 𝑥 ∈ 𝜌−1
𝑁 (𝑥0), we get the required bound. As a matter of fact, we proved the stronger

result that if 𝑀 (𝑋𝑁 , 𝑝) = 0 for 𝑝 > 2 then for every 𝑥 ∈ Γ1/Γ𝑁

#
{
𝑦 ∈ Γ1/Γ𝑁 : ∃𝛾 ∈ Γ1 s.t. 𝜋𝑁 (𝛾)𝑥 = 𝑦,

��𝑎𝛾 − 𝑎
��
𝔞 < 𝛿

}
= (1 − 𝑜𝜖 , 𝛿 (1)) [Γ1 : Γ𝑁 ] .

The proof in the general case is basically the same as the proof of Theorem 1.6 in the previous
subsection. Let us quickly give the differences in the proofs, while using the same notations.

The decomposition of 𝑏𝑥, 𝛿 is the same, but instead of bounding∑
𝑥∈Γ1/Γ𝑁

〈
𝑏𝑥, 𝛿 , 𝜒𝑑0+1𝑏𝑥, 𝛿

〉
,

we bound for 𝑙 (𝑎) > (1 + 𝜖) log𝑞 ([Γ1 : Γ𝑁 ])∑
𝑥∈Γ1/Γ𝑁

��𝐴𝑎 (𝑏𝑥0 , 𝛿 − 𝜋)
��2

2.
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We get in the same way

∑
𝑥∈Γ1/Γ𝑁

��𝐴𝑎 (𝑏𝑥0 , 𝛿 − 𝜋)
��2

2 

∑

𝑥∈Γ1/Γ𝑁

��𝐴𝑎𝑣0,𝑥

��2
2 +

∑
𝑥∈Γ1/Γ𝑁

𝑇∑
𝑖=1

��𝐴𝑎𝑣𝑖,𝑥

��2
2. (7.6)

Instead of using the bound on 𝜒𝑑0 , we use the bound on 𝐴𝑎, which is very similar.
For 𝜖 ′ small enough, the first summand of equation (7.6) is bounded by∑

𝑥∈Γ1/Γ𝑁

��𝐴𝑎𝑣0,𝑥

��2
2 
𝜖 ′

∑
𝑥∈Γ1/Γ𝑁

𝑞−𝑙 (𝑎) (1−𝜖 ′)��𝑣0,𝑥

��2
2


 [Γ1 : Γ𝑁 ]−(1+𝜖 ) (1−𝜖 ′) [Γ1 : Γ𝑁 ]
= 𝑜(1).

The second summand of equation (7.6) is bounded in the p-adic or rank 1 case by

∑
𝑥∈Γ1/Γ𝑁

𝑇∑
𝑖=1

��𝐴𝑎𝑣𝑖,𝑥

��2
2 
𝜖 ′

∑
𝑥∈Γ1/Γ𝑁

𝑇∑
𝑖=1

𝑞−𝑙 (𝑎) (2/𝑝 (𝜋𝑖)−𝜖 ′)��𝑣𝑖,𝑥

��2
2



𝑇∑
𝑖=1

[Γ1 : Γ𝑁 ]−(1+𝜖 ) (2/𝑝 (𝜋𝑖)−𝜖 ′) [Γ1 : Γ𝑁 ]


 [Γ1 : Γ𝑁 ]−𝜖 (2/𝑝′−𝜖 ′)
∑

𝜋∈Π (𝐺)sph , 𝑝 (𝜋)>2
𝑚(𝜋, Γ𝑁 ) [Γ1 : Γ𝑁 ] (1−2/𝑝 (𝜋)+𝜖 ′) ,

where 𝑝′ satisfies 𝑝(𝜋𝑖) ≤ 𝑝′ for every i, by the spectral gap assumption. Using Lemma 7.1 we get for
𝜖 ′ > 0 small enough relative to 𝜖 ,

∑
𝑥∈Γ1/Γ𝑁

𝑇∑
𝑖=1

��𝐴𝑎𝑣𝑖,𝑥

��2
2 
𝜖 ′ [Γ1 : Γ𝑁 ]−𝜖 (2/𝑝′−𝜖 ′) [Γ1 : Γ𝑁 ] 𝜖 ′

= 𝑜(1),

as needed.
The proof of the Archimedean high-rank case is also similar. �

8. The Bernstein theory of nonbacktracking operators

The results of this section are the main technical contribution of this work. We restrict to the case of a
non-Archimedean field, and we base our work on the results of [3].

Let 𝐾 ′ ⊂ 𝐾 be a compact open subgroup. For 𝑔 ∈ 𝐺, it holds that 𝜇(𝐾𝑔𝐾) [𝐾 : 𝐾 ′]−2 ≤ 𝜇(𝐾 ′𝑔𝐾 ′) ≤
𝜇(𝐾𝑔𝐾), and therefore 𝜇(𝐾 ′𝑔𝐾 ′) �𝐾 ′ 𝜇(𝐾𝑔𝐾) � 𝑞𝑙 (𝑔) .

Consider the Hecke algebra 𝐻𝐾 ′ = C𝑐 (𝐾 ′\𝐺/𝐾 ′). For 𝑔 ∈ 𝐾 ′\𝐺/𝐾 ′, denote ℎ𝐾 ′,𝑔 = 1
𝜇 (𝐾 ′)𝐾

′𝑔𝐾 ′,
and let 𝑞𝐾 ′,𝑔 = 𝜇(𝐾 ′𝑔𝐾 ′)𝜇−1(𝐾 ′) be the number of right (or left) 𝐾 ′ cosets in 𝐾 ′𝑔𝐾 ′. It holds that
𝑞𝐾 ′,𝑔 �𝐾 ′ 𝑞𝑙 (𝑔) . By the representation theory of p-adic groups ([10]), given a smooth representation V
of G, the Hecke algebra 𝐻𝐾 ′ acts on the 𝐾 ′-fixed vectors 𝑉𝐾 ′ of V.

We first discuss the Iwahori–Hecke algebra. Let 𝐼 ⊂ 𝐾 be the Iwahori–Hecke subgroup, that is, the
pointwise stabilizer of a chamber in the Bruhat–Tits building of G. Let W be the affine Weyl group of
the root system of G (relative to the maximal k-torus T) and �̂� the extended affine Weyl group. By the
Iwahori decomposition, we have 𝐺 = 𝐼�̃� 𝐼, where 𝑊 ⊂ �̃� ⊂ �̂� is some intermediate subgroup. For
𝑤 ∈ �̃� , denote 𝑞𝑤 = 𝜇(𝐼𝑤𝐼)/𝜇(𝐼) which is a natural number. Let 𝐻 = 𝐶𝑐 (𝐼\𝐺/𝐼) be the Iwahori–
Hecke algebra of G and ℎ𝑤 ∈ 𝐻 be the element 1

𝜇 (𝐼 ) 𝐼𝑤𝐼.
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Let 𝛽1, ..., 𝛽𝑟 ∈ �̃� (𝑟 = rank𝐺) be some fixed multiples of the simple coweights of the root system
of W (the simple coweight themselves belong to �̂� , so we cannot us them directly). Then ℎ𝛽𝑖 satisfies
that ℎ𝑚

𝛽𝑖
= ℎ𝛽𝑚

𝑖
, that is, ℎ𝛽𝑖 is a nonbacktracking operator (when acting on the building B of G, it is

indeed a nonbacktracking operator, or ‘collision free’ in the notions of [47]). Then it holds that:

Theorem 8.1 (See [38, Theorem 22.1]). There exist two finite sets 𝐴, 𝐵 ⊂ �̃� such that each 𝑤 ∈ �̃�
can be written uniquely as 𝑤 = 𝑎𝛽𝑚1

1 · .... · 𝛽𝑚𝑟
𝑟 𝑏 with 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑚𝑖 ≥ 0, and moreover

𝑙�̃� (𝑤) = 𝑙�̃� (𝑎) +
∑𝑟

𝑖=1 𝑚𝑖 𝑙�̃� (𝛽𝑖) + 𝑙�̃� (𝑏), where 𝑙�̃� : �̃� → N is the length function of the group �̃� as
(an extended) Coxeter group.

As a corollary, it holds that in the Iwahori–Hecke algebra,

ℎ𝑤 = ℎ𝑎ℎ
𝑚1
𝛽1

· .... · ℎ𝑚𝑟

𝛽𝑟
ℎ𝑏 .

Let us now generalize this theorem to arbitrarily small compact open subgroups 𝐾 ′ ⊂ 𝐺. The
following theorem is based on the results of [3] (see also [4, Chapter II, Section 2]).

Theorem 8.2 (Bernstein’s decomposition). There exist arbitrarily small compact open subgroups 𝐾 ′

such that for each 𝐾 ′ there exist two finite sets 𝐴, 𝐵 ⊂ 𝐾 ′\𝐺/𝐾 ′ and 𝛽1, ..., 𝛽𝑟 ∈ 𝐾 ′\𝐺/𝐾 ′, 𝑟 = rank𝑘 𝐺,
such that:

1. For each 1 ≤ 𝑖 ≤ 𝑟 and 𝑚 ≥ 0, ℎ𝑚
𝐾 ′,𝛽𝑖

= ℎ𝐾 ′,𝛽𝑚
𝑖

.
2. The operators ℎ𝐾 ′,𝛽𝑖 , 1 ≤ 𝑖 ≤ 𝑟 , commute.
3. For each 𝑔 ∈ 𝐺, there exist 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴 and 𝑚𝑖 ≥ 0 such that

ℎ𝐾 ′,𝑔 = ℎ𝐾 ′,𝑎ℎ
𝑚1
𝐾 ′𝛽1

· .... · ℎ𝑚𝑟

𝐾 ′,𝛽𝑟
ℎ𝐾 ′,𝑏 . (8.1)

Remark 8.3. Equation (8.1) is equivalent to the double coset decomposition

𝐾 ′𝑔𝐾 ′ = 𝐾 ′𝑎𝐾 ′𝛽𝑚1
1 𝐾 ′ · ...𝐾 ′𝛽𝑚𝑟

𝑟 𝐾 ′𝑏𝐾 ′ = 𝐾 ′𝑎𝛽𝑚1
1 · ... · 𝛽𝑚𝑟

𝑟 𝑏𝐾 ′.

Unlike in Theorem 8.2, there is no uniqueness in the claim.

Proof. We follow [4, Chapter II, Section 2]. Start from the Cartan decomposition 𝐾𝐴+𝐾 , where 𝐴+ ⊂ 𝑃
are the dominant elements in the lattice 𝑀/(𝑀 ∩ 𝐾) (𝐴+ is denoted Λ+ in [4]). Let 𝛽1, ..., 𝛽𝑟 ∈ 𝐴+ be
generators of a free semigroup �̃�+ in 𝐴+ (they may be chosen so that their lift to M commute, not just as
elements in 𝑀/(𝑀 ∩ 𝐾)). Let 𝜇1, . . . , 𝜇𝑙 ∈ 𝐴+ be elements such that 𝐴+ = ∪𝑙

𝑖=1 �̃�+𝜇𝑖 , the union being
disjoint.

By Bruhat’s theorem in [4], there exist arbitrary small compact open subgroups 𝐾 ′ ⊂ 𝐾 such that:

◦ 𝐾 ′ is normal in K.
◦ For every 𝑎, 𝑏 ∈ 𝐴+, it holds that ℎ𝐾 ′,𝑎ℎ𝐾 ′,𝑏 = ℎ𝐾 ′,𝑎𝑏 , that is,

𝐾 ′𝑎𝐾 ′𝑏𝐾 ′ = 𝐾 ′𝑎𝑏𝐾 ′. (8.2)

Let 𝑥1, ..., 𝑥𝑚 ∈ 𝐾 be representatives of right cosets of 𝐾 ′ in K. Since 𝐾 ′ is normal in K they are
also representatives of left cosets. Let 𝐴 = {𝑥1, ..., 𝑥𝑟 }, and let 𝐵 =

{
𝜇𝑖𝑥 𝑗 : 𝑖 = 1, . . . , 𝑙, 𝑗 = 1, . . . , 𝑟

}
.

By the Cartan decomposition for each 𝑔 ∈ 𝐺 there exist 𝑥 ∈ 𝐴, 𝜇𝑥′ ∈ 𝐵 and 𝑚1, ..., 𝑚𝑟 such that
𝐾 ′𝑔𝐾 ′ = 𝐾 ′𝑥𝛽𝑚1

1 · ... · 𝛽𝑚𝑟
𝑟 𝜇𝑥 ′𝐾 ′. It remains to show that

𝐾 ′𝑥𝐾 ′𝛽𝑚1
1 𝐾 ′ · ... · 𝛽𝑚𝑟

𝑟 𝐾 ′𝜇𝑥 ′𝐾 ′ = 𝐾 ′𝑥𝛽𝑚1
1 · ... · 𝛽𝑚𝑟

𝑟 𝜇𝑥 ′𝐾. (8.3)

Since 𝛽1, ..., 𝛽𝑚, 𝜇 ∈ 𝐴+, 𝐾 ′𝛽𝑚1
1 𝐾 ′ · ... · 𝛽𝑚𝑟

𝑟 𝐾 ′𝜇𝐾 ′ = 𝐾 ′𝛽𝑚1
1 · ... · 𝛽𝑚𝑟

𝑟 𝜇𝐾 ′ by equation (8.2). Finally,
since 𝐾 ′ is normal in K and 𝑥, 𝑥 ′ ∈ 𝐾 , 𝐾 ′𝑥 = 𝑥𝐾 ′ and 𝐾 ′𝑥 ′ = 𝑥 ′𝐾 ′. Applying those equalities, we get
equation (8.3). �
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8.1. Nonbacktracking operators and temperedness

We may now deduce:

Theorem 8.4. Let (𝜋,𝑉) be a unitary irreducible representation of G, let 𝑉𝐾 ′ the 𝐾 ′-fixed vectors and
assume that 𝑉𝐾 ′

≠ {0}. Consider the action of 𝐻𝐾 ′ = 𝐶𝑐 (𝐾 ′\𝐺/𝐾 ′) on 𝑉𝐾 ′ . Then 𝜋 is p-tempered if
and only if, for every 1 ≤ 𝑖 ≤ 𝑟 , for every eigenvalue 𝜆 of 𝜋(ℎ𝐾 ′,𝛽𝑖 ) on 𝑉𝐾 ′ it holds that |𝜆 | ≤ 𝑞1−1/𝑝

𝐾 ′,𝛽𝑖
.

Proof. First, note that V is p-tempered if and only if for every 0 ≠ 𝑣0 ∈ 𝑉𝐾 ′ and 𝑝′ > 𝑝,∫
𝐺

|〈𝑣0, 𝜋(𝑔) · 𝑣0〉|𝑝
′
𝑑𝑔 =

∑
𝑔∈[𝐾 ′\𝐺/𝐾 ′ ]

𝜇(𝐾 ′𝑔𝐾 ′)
(
|〈𝑣0, 𝜋(𝐾 ′𝑔𝐾 ′)𝑣0〉|

𝜇(𝐾 ′𝑔𝐾 ′)

) 𝑝′

=
∑

𝑔∈[𝐾 ′\𝐺/𝐾 ′ ]
(𝜇(𝐾 ′𝑔𝐾 ′))1−𝑝′ (𝜇(𝐾 ′)



〈𝑣0, 𝜋(ℎ𝐾 ′,𝑔)𝑣0
〉

) 𝑝′

�
∑

𝑔∈[𝐾 ′\𝐺/𝐾 ′ ]
(𝑞𝐾 ′,𝑔)1−𝑝′ (



〈𝑣0, 𝜋(ℎ𝐾 ′,𝑔)𝑣0
〉

) 𝑝′

< ∞.

The ‘only if’ part is easier and does not require Bernstein’s decomposition. For 𝑝 = 2, it is essentially
the main result of [47].

Assume that some eigenvalue 𝜆 of ℎ𝐾 ′,𝛽𝑖 satisfies |𝜆 | > 𝑞1−1/𝑝
𝐾 ′,𝛽𝑖

. Let 𝑣0 ∈ 𝑉𝐾 be an eigenvector of
ℎ𝐾 ′,𝛽𝑖 with eigenvalue 𝜆. Then, for 𝑝′ > 𝑝 such that |𝜆 | ≥ 𝑞1−1/𝑝′

𝐾 ′,𝛽𝑖
,∫

𝐺

|〈𝑣0, 𝜋(𝑔) · 𝑣0〉|𝑝
′
𝑑𝑔 �

∑
𝑔∈[𝐾 ′\𝐺/𝐾 ′ ]

(𝑞𝐾 ′,𝑔)1−𝑝 (


〈𝑣0, 𝜋(ℎ𝐾 ′,𝑔)𝑣0

〉

) 𝑝

≥
∞∑

𝑚=0
(𝑞𝐾 ′,𝛽𝑚

𝑖
)1−𝑝 (



〈𝑣0, 𝜋(ℎ𝐾 ′,𝛽𝑚
𝑖
)𝑣0

〉

) 𝑝

=
∞∑

𝑚=0
(𝑞𝐾 ′,𝛽𝑖 )𝑚(1−𝑝) (



〈𝑣0, 𝜋(ℎ𝐾 ′,𝛽𝑖 )𝑚𝑣0
〉

) 𝑝

=
∞∑

𝑚=0
(𝑞𝐾 ′,𝛽𝑖 )𝑚(1−𝑝) ( |𝜆 |𝑚‖𝑣0‖2) 𝑝

≥ ‖𝑣0‖2𝑝
∞∑

𝑚=0
(𝑞𝐾 ′,𝛽𝑖 )𝑚( (1−𝑝)+𝑝 (1−1/𝑝)) = ‖𝑣0‖2𝑝

∞∑
𝑚=0

1 = ∞,

and V is not p-tempered.
We now prove the ‘if’ part. One should prove that for 𝑝′ > 𝑝, the matrix coefficients are in 𝐿 𝑝′ (𝐺).

By Bernstein decomposition,∫
𝐺

|〈𝑣0, 𝜋(𝑔) · 𝑣0〉|𝑝
′
𝑑𝑔 �

∑
𝑔∈[𝐾 ′\𝐺/𝐾 ′ ]

(𝑞𝐾 ′,𝑔)1−𝑝′ (


〈𝑣0, 𝜋(ℎ𝐾 ′,𝑔)𝑣0

〉

) 𝑝′

≤
∑

𝑎∈𝐴,𝑏∈𝐵

∑
𝑚1≥0,...,𝑚𝑟 ≥0

(𝑞𝐾 ′,𝑎𝑞
𝑚1
𝐾 ′,𝛽1

· ... · 𝑞𝑚𝑟

𝐾 ′,𝛽𝑟
𝑞𝐾 ′,𝑏)1−𝑝′

· (



〈𝜋(ℎ𝐾 ′,𝑎)∗𝑣0, 𝜋(ℎ𝑚1

𝐾 ′,𝛽1
· .... · ℎ𝑚𝑟

𝐾 ′,𝛽𝑟
)𝜋(ℎ𝐾 ′,𝑏)𝑣0

〉


) 𝑝′


𝐾 ′

∑
𝑎∈𝐴,𝑏∈𝐵

(𝑞𝐾 ′,𝑎𝑞𝐾 ′,𝑏)1−𝑝′��𝜋(ℎ𝐾 ′,𝑎)
��𝑝′��𝜋(ℎ𝐾 ′,𝑏)

��𝑝′
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·
∑

𝑚1≥0,...,𝑚𝑟 ≥0
(𝑞𝑚1

𝐾 ′,𝛽1
· ... · 𝑞𝑚𝑟

𝐾 ′,𝛽𝑟
)1−𝑝′ ·

���𝜋(ℎ𝑚1
𝐾 ′,𝛽1

· ... · ℎ𝑚𝑟

𝐾 ′,𝛽𝑟
)
���𝑝′


𝐾 ′ (
∑

𝑚1≥0
𝑞𝑚1 (1−𝑝′)

𝐾 ′,𝛽1

���𝜋(ℎ𝑚1
𝐾 ′,𝛽1

)
���𝑝′

) (
∑

𝑚2≥0
𝑞𝑚2 (1−𝑝′)

𝐾 ′,𝛽2

���𝜋(ℎ𝑚2
𝐾 ′,𝛽2

)
���𝑝′

)

· ... · (
∑

𝑚2≥0
𝑞𝑚𝑟 (1−𝑝′)

𝐾 ′,𝛽2

���𝜋(ℎ𝑚𝑟

𝐾 ′,𝛽𝑟
)
���𝑝′

).

Since all the eigenvalues of 𝜋(ℎ𝐾 ′,𝛽𝑖 ) are bounded by 𝑞1−1/𝑝
𝐾 ′,𝛽𝑖

, it follows from the theory of matrix
norms that the sum converges (note that 𝜋(ℎ𝐾 ′,𝛽1) is usually not unitary or self-adjoint, so one should
be a bit careful here). �

For 𝑑0 ∈ R≥0, choose 𝑚𝑖 , so that 𝑞𝑚𝑖−1
𝛽𝑖

≤ 𝑞𝑑0/2 ≤ 𝑞𝑚𝑖

𝛽𝑖
and denote 𝑓𝑑0 =

∑𝑟
𝑖=1(ℎ

𝑚𝑖

𝛽𝑖
)∗ℎ𝑚𝑖

𝛽𝑖
, where

𝑓 ∗(𝑔) = 𝑓 (𝑔−1) for a function 𝑓 : 𝐺 → C. The following theorem proves Theorem 3.11

Theorem 8.5. The functions 𝑓𝑑0 ∈ 𝐻𝐾 ′ are a good family for the set Π(𝐺)𝐾 ′−sph:

1. For every (𝜋,𝑉) ∈ Π(𝐺) with a nontrivial 𝐾 ′-invariant vector, it holds that

𝑞𝑑0 (1−1/𝑝 (𝜋)) 
𝐾 ′ tr(𝜋( 𝑓𝑑0)).

2. For every (𝜋,𝑉) ∈ Π(𝐺) without a nontrivial 𝐾 ′-invariant vector, it holds that

tr(𝜋( 𝑓𝑑0 )) = 0.

3. It holds that 𝑓𝑑0 (𝑔) 
𝜖 𝑞𝑑0 𝜖𝜓𝑑0 (𝑔).

Proof. The second condition is obvious since if there is no nontrivial 𝐾 ′-invariant vector, then
𝜋( 𝑓𝑑0 ) = 0.

The fact that 𝑓𝑑0 (𝑔) 
𝜖 𝑞𝑑0 𝜖𝜓𝑑0 (𝑔) follows from Lemma 4.18, as ℎ𝑚𝑖

𝛽𝑖
(𝑔) 
 𝜒𝑑0/2.

It remains to prove the first condition. Since 𝜋( 𝑓𝑑0) is nonnegative and self-adjoint it is diagonalizable
on 𝑉𝐾 ′ and all its eigenvalues are nonnegative.

On the other hand, tr 𝜋( 𝑓𝑑0) ≥
��𝜋( 𝑓𝑑0)

�� (as a matter of fact, by uniform admissibility ([3]),
dim𝑉𝐾 ′ 
𝐾 ′ 1, so tr 𝜋( 𝑓𝑑0 ) �

��𝜋( 𝑓𝑑0 )
��. It holds that

𝑟max
𝑖=1

���ℎ𝑚𝑖

𝛽𝑖

���2
≤
��𝜋( 𝑓𝑑0)

��.
Since V is not 𝑝′-tempered for 𝑝′ < 𝑝, by Theorem 8.4, for some 1 ≤ 𝑖 ≤ 𝑟 we have an eigenvalue 𝜆 of

ℎ𝛽𝑖 with |𝜆 | ≥ 𝑞1−1/𝑝
𝐾 ′,𝛽𝑖

. Therefore, ℎ𝑚𝑖

𝛽𝑖
has an eigenvalue𝜆𝑚𝑖 with |𝜆𝑚𝑖 | ≥ 𝑞𝑚𝑖 (1−1/𝑝)

𝐾 ′,𝛽𝑖
�𝐾 ′ 𝑞𝑙 (𝛽𝑖 )𝑚𝑖 (1−1/𝑝) �

𝑞𝑑0/2(1−1/𝑝) . Therefore,
��𝜋( 𝑓𝑑0)

�� ≥ ���ℎ𝑚𝑖

𝛽𝑖

���2
� 𝑞𝑑0 (1−1/𝑝) , as needed. �

9. Lower Bounds on Matrix Coefficients for a Specific Representation

In this section, we prove Theorem 3.10. We assume that G is Archimedean and (𝜋,𝑉) is an irreducible
unitary representation of G.

We will prove that {𝜋} has a good family of functions. Let 𝑣 ∈ 𝑉 𝜏 , ‖𝑣‖ = 1, belong to a fixed 𝜏-type
of K, that is, K acts on𝑈0 = span{𝐾𝑣} as a K-irreducible representation 𝜏. In particular, v is K-finite. Let

𝑔𝑑0/2(𝑔) = 𝜒𝑑0/2(𝑔)𝑞𝑙 (𝑔) 𝑝 (𝜋)−1 〈𝑣, 𝜋(𝑔)𝑣〉,
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and let

𝑓𝑑0 = 𝑔∗𝑑0/2 ∗ 𝑔𝑑0/2.

We claim that 𝑓𝑑0 satisfies the condition of Definition 3.7 for {𝜋}. We first verify conditions (2) and
(3). Since 𝑓𝑑0 is self-adjoint and nonnegative, (2) follows.

By the theory of leading exponents (which is described below), |〈𝑣, 𝜋(𝑔)𝑣〉| 
𝜋,𝑣,𝜖 𝑞−𝑙 (𝑔) (1/𝑝 (𝜋)+𝜖 ) ,
so



𝑔𝑑0/2 (𝑔)


 
 𝑞𝑑0 𝜖 𝜒𝑑0/2(𝑔). It follows that also




𝑔∗𝑑0/2 (𝑔)



 
 𝑞𝑑0 𝜖 𝜒𝑑0/2(𝑔). By Lemma 4.18,

 𝑓𝑑0 (𝑔)



 
𝜖 𝑞𝑑0 𝜖𝜓𝑑0+2(𝑔).
It remains to prove (1), which will concern the rest of this section. We note that since 𝑓𝑑0 is self-

adjoint and nonnegative

tr(𝜋( 𝑓𝑑0 )) �
��𝜋( 𝑓𝑑0)

�� = ��𝜋(𝑔𝑑0/2)
��2
.

Now, 〈
𝑣, 𝜋(𝑔𝑑0/2)𝑣

〉
=
∫
𝐺

𝑔𝑑0/2(𝑔)〈𝑣, 𝜋(𝑔)𝑣〉

=
∫
𝐺

𝜒𝑑0/2(𝑔)𝑞𝑙 (𝑔) 𝑝 (𝜋)−1 〈𝑣, 𝜋(𝑔)𝑣〉〈𝑣, 𝜋(𝑔)𝑣〉𝑑𝑔

≥
∫

𝑙 (𝑑) ≤𝑑0/2

𝑞𝑙 (𝑔) 𝑝 (𝜋)−1 |〈𝑣, 𝜋(𝑔)𝑣〉|2𝑑𝑔,

and conclude that √
tr(𝜋( 𝑓𝑑0)) �

∫
𝑙 (𝑔) ≤𝑑0/2

𝑞𝑙 (𝑔) 𝑝 (𝜋)−1 |〈𝑣, 𝜋(𝑔)𝑣〉|2𝑑𝑔.

Therefore, to prove that tr(𝜋( 𝑓𝑑0 )) �𝜖 𝑞𝑑0 (1−1/𝑝 (𝜋)−𝜖 ) , one should prove (after changing 𝑑0 and 𝑑0/2)∫
𝑙 (𝑔) ≤𝑑0

𝑞𝑙 (𝑔) 𝑝 (𝜋)−1 |〈𝑣, 𝜋(𝑔)𝑣〉|2𝑑𝑔
!
�𝜋,𝜖 𝑞𝑑0 (1−𝑝 (𝜋)−1−𝜖 ) . (9.1)

So far, our proof is essentially the same as (part of) the proof of [58, Theorem 3], which only concerns
rank 1.

We start by simplifying the left-hand side of equation (9.1).
Applying the Cartan decomposition we get∫

𝑙 (𝑔) ≤𝑑0

𝑞𝑙 (𝑔) 𝑝 (𝜋)−1 |〈𝑣, 𝜋(𝑔)𝑣〉|2𝑑𝑔 =
∫
𝐾

∫
𝐾

∫
𝑎∈𝐴+ ,𝑙 (𝑎) ≤𝑑0

𝑞𝑙 (𝑎) 𝑝 (𝜋)−1
𝑆(𝑎) |〈𝑣, 𝜋(𝑘𝑎𝑘 ′)𝑣〉|2𝑑𝑘𝑑𝑘 ′𝑑𝑎.

Using the logarithm map, we identify 𝐴+ ⊂ 𝔞, and give 𝑎 ∈ 𝐴+ coordinates (𝑥1, ..., 𝑥𝑟 ), 𝑥𝑖 ≥ 0 by
(𝑥1, ..., 𝑥𝑟 ) →

∑𝑟
𝑖=1 𝑥𝑖𝜔𝑖 , where 𝜔1, ..., 𝜔𝑟 are the fundamental coweights. Recall that for 𝑎 ∈ 𝐴+,

𝑙 (𝑎) = 2𝜌(𝑎). For 𝜅 > 0, denote by 𝐴𝜅
+ ⊂ 𝐴+ the set of 𝑎 ∈ 𝐴+ with 𝑥𝑖 > 𝜅). Then for 𝑎 ∈ 𝐴𝜅

+ it holds
that 𝑆(𝑎) �𝜅 𝑞𝑙 (𝑎) = 𝑞2𝜌(𝑎) . Then:
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𝐾

∫
𝐾

∫
𝑎∈𝐴+ ,𝑙 (𝑎) ≤𝑑0

𝑞𝑙 (𝑎) 𝑝 (𝜋)−1
𝑆(𝑎) |〈𝑣, 𝜋(𝑘𝑎𝑘 ′)𝑣〉|2𝑑𝑘𝑑𝑘 ′𝑑𝑎

�𝜅

∫
𝐾

∫
𝐾

∫
𝑎∈𝐴𝜅

+ ,𝑙 (𝑎) ≤𝑑0

𝑞2𝜌(𝑎) (1+𝑝 (𝜋)−1) |〈𝑣, 𝜋(𝑘𝑎𝑘 ′)𝑣〉|2𝑑𝑘𝑑𝑘 ′𝑑𝑎,

so we should prove that for some 𝜅 > 0,∫
𝐾

∫
𝐾

∫
𝑎∈𝐴𝜅

+ ,𝑙 (𝑎) ≤𝑑0

𝑞2𝜌(𝑎) (1+𝑝 (𝜋)−1) |〈𝑣, 𝜋(𝑘𝑎𝑘 ′)𝑣〉|2𝑑𝑘𝑑𝑘 ′𝑑𝑎
!
�𝜖 𝑞𝑑0 (1−𝑝 (𝜋)−1−𝜖 ) . (9.2)

9.1. Leading exponents

We recall the Casselman–Harish Chandra–Milicic theory of Leading Exponents. We follow [43, Chapter
VIII].

Equation (9.2) is very similar to [43, Theorem 8.48, (b) implies (a)], which is one of the more technical
parts of the theory. We will follow the same proof closely while deriving an explicit expression. A side
benefit is that the proofs below somewhat simplify the proof of [43, Theorem 8.48, (b) implies (a)].

By the theory of leading exponents, we may associate with an irreducible unitary representation
(actually, to any irreducible admissible representation) (𝜋,𝑉) a finite subset called leading exponent
F ⊂ 𝔞∗

C
such that the following two theorems hold:

Theorem 9.1 ([43, Theorem 8.47]). The following are equivalent:

◦ For 𝜈0 : 𝑎 → R a real character, every K-finite matrix coefficient 〈𝑣, 𝑎𝑣〉 for 𝑎 ∈ 𝐴+ is bounded in
absolute value by 
𝜋,𝑣 𝑒 (𝜈0−𝜌) (𝑎) 𝑙 (𝑎)𝑁 , where N is some constant.

◦ For every 𝜈 ∈ F , and every fundamental weight 𝜔𝑖 , 1 ≤ 𝑖 ≤ 𝑟 , Re 𝜈(𝜔𝑖) ≤ 𝜈0(𝜔𝑖).

Theorem 9.2 ([43, Theorem 8.48]). The following are equivalent:

◦ Every K-finite matrix coefficient 𝜙(𝑔) = 〈𝑣, 𝜋(𝑔)𝑣〉 is in 𝐿 𝑝 (𝐺).
◦ For every 𝜈 ∈ F and every fundamental weight 𝜔𝑖 , 1 ≤ 𝑖 ≤ 𝑟 , Re 𝜈(𝜔𝑖) < (1 − 2

𝑝 )𝜌(𝜔𝑖).

Note that the second theorem implies that

𝑝(𝜋) = min
{
𝑝 : ∀𝜈 ∈ F , 1 ≤ 𝑖 ≤ 𝑟, Re 𝜈(𝜔𝑖) ≤ (1 − 2

𝑝
)𝜌(𝜔𝑖)

}
and that some matrix coefficient is not in 𝐿𝑝 (𝜋) (𝑔).

To state the main theorem about leading exponents, let us set some notations. Assume that 0 ≠ 𝑣 ∈ 𝑉
is K-finite, and let 𝐸0 : 𝑉 → 𝑈0 be a projection onto a finite-dimensional K-invariant subspace 𝑈0 ⊂ 𝑉
such that 𝑣 ∈ 𝑈0. We define 𝐹 : 𝐴+ → EndC(𝑈0) by 𝐹 (𝑎) = 𝐸0𝜋(𝑎)𝐸0.

We denote by HEnd𝑈0 the set of holomorphic functions 𝑓 : 𝐷𝑟 → End(𝑈0), where 𝐷 =
{𝑧 ∈ C : |𝑧 | < 1} is the open unit ball. Each such function has a convergent multiple power series,
which is absolutely and uniformly convergent on compact subsets of 𝐷𝑟 .

As before, we identify 𝑎 ∈ 𝐴+ ⊂ 𝔞 with coordinates (𝑥1, ..., 𝑥𝑟 ), 𝑥𝑖 ≥ 0 by (𝑥1, ..., 𝑥𝑟 ) →
∑𝑟

𝑖=1 𝑥𝑖𝜔𝑖 .
We say that 𝜈, 𝜈′ ∈ 𝔞∗

C
are integrally equivalent if their difference 𝜈 − 𝜈′ in an integral combination

of simple roots. If the difference is a nonnegative integral combination of simple roots, we write 𝜈′ ≤ 𝜈.

Theorem 9.3 [43, Theorem 8.32]. There exist 𝑛0 ∈ N and a finite set F ′ satisfying:

1. F ⊂ F ′.
2. Each 𝜈′ ∈ F ′ satisfies 𝜈′ ≤ 𝜈 for some 𝜈 ∈ F .
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3. It holds that for 𝑥1 > 0, . . . , 𝑥𝑟 > 0,

𝐹 (𝑎) = 𝐹 (𝑥1, ..., 𝑥𝑟 ) =
∑
𝜈∈F ′

∑
1≤𝑛1≤𝑛0...1≤𝑛𝑟 ≤𝑛0

𝐺𝜈,𝑛1 ,...,𝑛𝑟 (𝑥1, ..., 𝑥𝑟 )𝑒 (𝜈−𝜌) (𝑥1 ,...,𝑥𝑟 )𝑥𝑛1
1 · · · · · 𝑥𝑛𝑟

𝑟

(9.3)

such that for 𝜈 ∈ F ′, 1 ≤ 𝑛𝑖 ≤ 𝑛0, 𝐺𝜈,𝑛1 ,...,𝑛𝑟 : (0,∞)𝑟 → EndC(𝑈0) are functions given by
𝐺𝜈,𝑛1 ,...,𝑛𝑟 (𝑥1, ..., 𝑥𝑟 ) = 𝑓𝜈,𝑛1 ,...,𝑛𝑟 (𝑒−𝑥1 , ..., 𝑒−𝑥𝑟 ), where 𝑓𝜈,𝑛1 ,...,𝑛1 ∈ HEnd𝑈0 .

Moreover, if 𝑓𝜈,𝑛1 ,...,𝑛𝑟 ≠ 0, then 𝑓𝜈,𝑛1 ,...,𝑛𝑟 (0, . . . , 0) ≠ 0 and for each 𝜈 ∈ F ′ there exist
𝑛1, . . . , 𝑛𝑟 with 𝑓𝜈,𝑛1 ,...,𝑛𝑟 ≠ 0.

Proof. The theorem follows from [43, Theorem 8.32] and the discussion following it. Let us explain:
By [43, Theorem 8.32], F has a decomposition like equation (9.3) for a certain set F ′. If
𝑓𝜈,𝑛1 ,...,𝑛𝑟 (0, ..., 0) = 0, we may use its power series expansion to replace 𝜈 by other elements in 𝔞∗

C
,

which are integrally equivalent to it.
It remains to prove that F ⊂ F ′ and that each 𝜈′ ∈ F ′ has 𝜈 ∈ F with 𝜈′ ≤ 𝜈. By power series

expansion, we have a unique decomposition (see [43, Equation 8.52])

𝐹 (𝑥1, ..., 𝑥𝑟 ) =
∑
𝜈∈𝔞∗

C

𝐹𝜈−𝜌 (𝑥1, . . . , 𝑥𝑟 )

𝐹𝜈−𝜌 (𝑥1, . . . , 𝑥𝑟 ) =
∑

1≤𝑛1≤𝑛0 ,...,1≤𝑛𝑟 ≤𝑛0

𝑐𝜈,𝑛1 ,...,𝑛𝑟 𝑒
(𝜈−𝜌) (𝑥1 ,...,𝑥𝑟 )𝑥𝑛1

1 · · · · · 𝑥𝑛𝑟
𝑟 ,

for some 𝑐𝜈,𝑛1 ,...,𝑛𝑟 ∈ End𝑈0. Each term 𝐹𝜈−𝜌 can be calculated from 𝐺𝜈′,𝑛1 ,...,𝑛𝑟 , for 𝜈 ≤ 𝜈′. The
set of leading exponents is the set of maximal elements relative to ≤ for 𝜈 ∈ F with 𝐹𝜈−𝜌 ≠ 0. This
immediately implies that F ⊂ F ′. Moreover, each 𝜈′′ ∈ 𝔞∗

C
with 𝐹𝜈′′−𝜌 ≠ 0 satisfies 𝜈′′ ≤ 𝜈 for some

𝜈 ∈ F , which says that each 𝜈′ ∈ F ′ satisfies 𝜈′ ≤ 𝜈 for some 𝜈 ∈ F . �

We remark that Theorem 9.3 does not directly imply the upper bound given in Theorem 9.1 since it
does not give bounds for 𝑥𝑖 → 0. Such bounds are available using asymptotic expansion near the walls
([43, Chapter VIII, Section 12]).

9.2. Some technical lemmas

Lemma 9.4 (Compare [43, Lemma B.24]). Let 𝑓 : R → C be a function defined as 𝑓 (𝑥) =
𝑒𝛽𝑥 ∑𝑘

𝑖=1 𝑐𝑖𝑒
−𝛼𝑖 𝑥𝑥𝑛𝑖 with 𝛼𝑖 , 𝑐𝑖 ∈ C, Re(𝛼𝑖) ≥ 0, 𝛽 ∈ R, 𝛽 ≥ 0, 𝑛𝑖 ∈ N.

Assume that there is 0 ≤ 𝑖 ≤ 𝑘 such that Re(𝛼𝑖) = 0, 𝑐𝑖 ≠ 0, and let

𝑛0 = max
1≤𝑖≤𝑘

{𝑛𝑖 : Re(𝛼𝑖) = 0 and 𝑐𝑖 ≠ 0}.

Then for T large enough,

𝑇∫
0

| 𝑓 (𝑥) |𝑑𝑥 � 𝑓 𝑒𝛽𝑇𝑇𝑛0 .

Moreover, if we assume that 𝑛0 = max1≤𝑖≤𝑘 {𝑛𝑖 : Re(𝛼𝑖) = 0}, then the underlying lower bound on T
and the constants are continuous for small perturbations of the 𝑐𝑖 .

Remark 9.5. The condition on 𝑛0 in the ‘moreover part’ comes to deal with the case that after a small
perturbation, some 𝑐𝑖 = 0 becomes nonzero.
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Proof. During the proof, � may depend on f. Fix M large enough, depending on f, to be chosen later.
Then

𝑇∫
0

| 𝑓 (𝑥) |𝑑𝑥 ≥
𝑇∫

𝑇 −𝑀

| 𝑓 (𝑥) |𝑑𝑥.

Let 𝛼0 = min1≤𝑖≤𝑘 {Re(𝛼𝑖) : Re(𝛼𝑖) ≠ 0}, 𝑁 = max1≤𝑖≤𝑘 {𝑛𝑖}.
After rearranging the summands, write 𝑓 = 𝑓0 + 𝑓1, with 𝑓0(𝑥) = 𝑒𝛽𝑥 ∑𝑙

𝑖=1 𝑐𝑖𝑒
−𝛼𝑖 𝑥𝑥𝑛0 , 𝑓1 =

𝑒𝛽𝑥 ∑𝑘
𝑖=𝑙+1 𝑐𝑖𝑒

−𝛼𝑖 𝑥𝑥𝑛𝑖 , where the summands 1 ≤ 𝑖 ≤ 𝑙 contain all factors with Re(𝛼𝑖) = 0 and 𝑛𝑖 = 𝑛0.
Moreover, we may assume that all the 𝛼𝑖 , 1 ≤ 𝑖 ≤ 𝑙 are different.

Then for 𝜖 > 0 small enough and T large enough,

𝑇∫
𝑇 −𝑀

| 𝑓1(𝑥) |𝑑𝑥 ≤ 𝑀 max
𝑇 −𝑀 ≤𝑥≤𝑇

{ 𝑓1(𝑥)} 
 ((𝑒 (𝛽−𝛼0) (𝑇 −𝑀 ) + 𝑒 (𝛽−𝛼0)𝑇 )𝑇𝑁 + 𝑒𝛽𝑇𝑇𝑛0−1) = 𝑜(𝑒𝛽𝑇𝑇𝑛0 ).

Now,

𝑇∫
𝑇 −𝑀

| 𝑓0(𝑥) |𝑑𝑥 =

𝑇∫
𝑇 −𝑀

𝑥𝑛0𝑒𝛽𝑥






 𝑙∑
𝑖=1

𝑐𝑖𝑒
−𝛼𝑖 𝑥






𝑑𝑥
≥ (𝑇 − 𝑀)𝑛0𝑒𝛽 (𝑇 −𝑀 )

𝑇∫
𝑇 −𝑀






 𝑙∑
𝑖=1

𝑐𝑖𝑒
−𝛼𝑖 𝑥






𝑑𝑥.
Note that



∑𝑙
𝑖=1 𝑐𝑖𝑒

𝛼𝑖 𝑥


 � 

∑𝑙

𝑖=1 𝑐𝑖𝑒
−𝛼𝑖 𝑥



2 =
∑𝑙

𝑖=1 |𝑐𝑖 |2 +
∑

1≤𝑖≠ 𝑗≤𝑙 𝑐𝑖𝑐 𝑗𝑒
(𝛼𝑖−𝛼𝑗 )𝑥 since this value is

bounded.

𝑇∫
𝑇 −𝑀






 𝑙∑
𝑖=1

𝑐𝑖𝑒
𝛼𝑖 𝑥






𝑑𝑥 �
𝑇∫

𝑇 −𝑀

���
𝑙∑

𝑖=1
|𝑐𝑖 |2 +

∑
1≤𝑖≠ 𝑗≤𝑙

𝑐𝑖𝑐 𝑗𝑒
(𝛼𝑖−𝛼𝑗 )𝑥���𝑑𝑥

≥ 𝑀

(
𝑙∑

𝑖=1
|𝑐𝑖 |2

)
−

∑
1≤𝑖≠ 𝑗≤𝑙





 𝑐𝑖𝑐 𝑗

𝛼𝑖 − 𝛼 𝑗






� 𝑀 −𝑂 (1).

For M large enough, the last value is � 1, so

𝑇∫
𝑇 −𝑀

| 𝑓0(𝑥) |𝑑𝑥 � 𝑒𝛽𝑇𝑇𝑛0

and

𝑇∫
0

| 𝑓 (𝑥) |𝑑𝑥 ≥
𝑇∫

𝑇 −𝑀

| 𝑓 (𝑥) |𝑑𝑥 ≥
𝑇∫

𝑇 −𝑀

| 𝑓0 (𝑥) |𝑑𝑥 −
𝑇∫

𝑇 −𝑀

| 𝑓1(𝑥) |𝑑𝑥 � 𝑒𝛽𝑇𝑇𝑛0 .

For the ‘moreover part’, one follows the proof carefully and notices that it remains true for small
perturbations in the 𝑐𝑖 . �
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Remark 9.6. For 𝛽 > 0, our lower bound agrees with a similar upper bound. For 𝛽 = 0 it is no longer
true, but a similar proof will give the right lower bound 𝑇𝑛0+1.

Lemma 9.7. Let M be an open subset of a smooth Riemannian manifold (e.g., a Lie group), 𝐹 :
𝑀 × [𝑅,∞) a function defined by

𝐹 (𝑚, 𝑥) =
𝑘∑

𝑖=1
𝑒𝑠𝑖 𝑥𝑥𝑛𝑖𝐹𝑖 (𝑚, 𝑥), (9.4)

such that: 𝑠𝑖 ∈ C, 𝑛𝑖 ∈ N and 𝐹𝑖 (𝑚, 𝑥) = 𝑓𝑖 (𝑚, 𝑒−𝑥) for some function 𝑓𝑖 (𝑚, 𝑧) real analytic on 𝑀×𝐷𝑒−𝑅 ,
where 𝐷𝑟 ⊂ C is the closed ball of radius r, and holomorphic in the second variable. Assume also that
for each 1 ≤ 𝑖 ≤ 𝑘 there is 𝑚 ∈ 𝑀 with 𝑓𝑖 (𝑚, 0) ≠ 0. Let 𝑠0 = max1≤𝑖≤𝑘 Re 𝑠𝑖 , and assume that 𝑠0 ≥ 0.

Then for T large enough ∫
𝑀

𝑇∫
𝑅

|𝐹 (𝑠, 𝑟) |𝑑𝑟 � 𝑒𝑠0𝑇 .

Proof. By restriction to a compact subset, we may assume that the closure of M is compact.
Decompose 𝑓𝑖 (𝑚, 𝑧) = 𝑐(𝑚) + 𝑔𝑖 (𝑚, 𝑧)𝑧, where 𝑔𝑖 (𝑚, 𝑧) in also holomorphic in |𝑧 | ≤ 𝑒−𝑅. Then

𝐹𝑖 (𝑚, 𝑟) = 𝑐𝑖 (𝑚) + 𝑒−𝑟𝐺𝑖 (𝑚, 𝑟),

where 𝐺𝑖 (𝑚, 𝑟) is bounded for 𝑚, 𝑟 ∈ 𝑀 × [𝑅,∞). Therefore,

𝐹 (𝑚, 𝑟) =
𝑘∑

𝑖=1
𝑒𝑠𝑖𝑟𝑟𝑛𝑖 𝑐𝑖 (𝑚) +

𝑘∑
𝑖=1

𝑒 (𝑠𝑖−1)𝑟𝑟𝑛𝑖𝐺𝑖 (𝑚, 𝑟). (9.5)

Without loss of generality, Re(𝑠1) = 𝑠0 and 𝑛1 = max{𝑛𝑖 : Re(𝑠𝑖) = 𝑠0}. Let 𝑚0 ∈ 𝑀 be a point with
𝑓1(𝑚0, 0) ≠ 0. Choose a small enough neighborhood 𝑀0 ⊂ 𝑀 of 𝑚0. We have∫

𝑀

𝑇∫
𝑅

|𝐹 (𝑚, 𝑟) |𝑑𝑟𝑑𝑚 �
∫
𝑀0

𝑇∫
𝑅

|𝐹 (𝑚, 𝑟) |𝑑𝑟𝑑𝑚.

Since 𝐺𝑖 (𝑚, 𝑟) is bounded on 𝑀0, for T large enough the second summand of equation (9.5) satisfies∫
𝑀0

𝑇∫
𝑅






 𝑘∑
𝑖=1

𝑒 (𝑠𝑖−1)𝑟𝑟𝑛𝑖𝐺𝑖 (𝑚, 𝑟)






𝑑𝑟 = 𝑜(𝑒𝑠0𝑇 ).

As for the first summand of equation (9.5), by Lemma 9.4 and the fact that 𝑐1 (𝑚0) ≠ 0, it holds that∫
𝑀0

𝑇∫
𝑅






 𝑘∑
𝑖=1

𝑒𝑠𝑖𝑟𝑟𝑛𝑖 𝑐𝑖 (𝑚)






𝑑𝑟 � 𝑇𝑛1𝑒𝑠0𝑇

and we are done. �

We can finally prove equation (9.2).

Proof. Recall that we chose 𝑣 ∈ 𝑉 , ‖𝑣‖ = 1 to span a representation 𝜏 of K. We choose in Theorem 9.3
𝑈0 = span𝐾𝑣.
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Using Theorem 9.2, choose 𝜈0 ∈ F ′ and 1 ≤ 𝑖 ≤ 𝑟 such that Re 𝜈0(𝜔𝑖) = (1 − 2
𝑝 (𝜋) )𝜌(𝜔𝑖).

Without loss of generality 𝑖 = 1. Moreover, we assume that among all 𝜈 ∈ F ′ satisfying this con-
dition, 𝜈0 has maximal 0 ≤ 𝑁1 ≤ 𝑛0 such that for some constants 𝑧2, ..., 𝑧𝑙 ≠ 0, 0 ≤ 𝑛2, ..., 𝑛𝑟 ≤
𝑛0,lim𝑧1→0 𝑓𝜈,𝑁1 ,...,𝑛𝑘 (𝑧1, 𝑧2, . . . , 𝑧𝑟 ) ≠ 0, where 𝑓𝜈,𝑁1 ,...,𝑛𝑘 (𝑧1, 𝑧2, . . . , 𝑧𝑟 ) is taken from Theorem 9.3
(notice that 𝜈0 may belong to F ′ − F), so it may not be a leading exponent).

By Theorem 9.3, if we let 𝑀 = 𝐾 × (0,∞)𝑟−1 × 𝐾 , we identify 𝑚 ∈ 𝑀 with 𝑚 = (𝑘1, 𝑥2, ..., 𝑥𝑟 , 𝑘2),
and let 𝐺 : 𝑀 × (0,∞) → ∞ be

𝐺 (𝑚, 𝑥1) = 〈𝑣, 𝜋(𝑘1𝑎(𝑥1, ...., 𝑥𝑟 )𝑘2)𝑣〉,

then 𝐺 (𝑚, 𝑥1) has the form of equation (9.4), with 𝑠1 = (𝜈0 − 𝜌) (𝜔1) = − 2
𝑝 (𝜋) 𝜌(𝜔1), 𝑛1 = 𝑁1. Note

that 𝐺2(𝑚, 𝑥1) also has this form, with 𝑠1 = − 4
𝑝 (𝜋) 𝜌(𝜔1). We Let

𝐹 (𝑚, 𝑥1) = 𝑒2𝜌(𝜔1) (1+𝑝 (𝜋)−1)𝑥1𝐺2 (𝑚, 𝑥1),

and F also has a similar form, with 𝑠1 = 2𝜌(𝜔1) (1 − 𝑝(𝜋)−1). Let 𝑚0 = (𝑘1, 𝑥2, ..., 𝑥𝑟 , 𝑘2) be a point
where the condition of Lemma 9.7 holds. By Lemma 9.7, for a small neighborhood 𝑀0 of 𝑚0, it holds
for 𝑑0 large enough and some constant C

∫
𝑀0

(𝑑0−𝐶)/2𝜌(𝜔1)∫
1

|𝐹 (𝑚, 𝑥1) |𝑑𝑥1𝑑𝑚 � 𝑒𝑑0 (1−𝑝 (𝜋)−1)

Finally, for 𝑀0, 𝜅 small enough, for each 𝑚 = (𝑘1, 𝑥2, ..., 𝑥𝑟 , , 𝑘2) ∈ 𝑀0 and 1 ≤ 𝑥1 ≤ (𝑑0 −𝐶)/2𝜌(𝜔1),
it holds that 𝑎 = (𝑥1, ..., 𝑥𝑟 ) ∈ 𝐴𝜅

+ and 𝑙 (𝑎) ≤ 𝑑0. Therefore,∫
𝐾

∫
𝐾

∫
𝑎∈𝐴𝜅

+ ,𝑙 (𝑎) ≤𝑑0

𝑞2𝜌(𝑎) (1−𝑝 (𝜋)−1) |〈𝑣, 𝜋(𝑘𝑎𝑘 ′)𝑣〉|2𝑑𝑘𝑑𝑘 ′𝑑𝑎

�
∫
𝑀0

(𝑑0−1)/2𝜌(𝜔1)∫
0

|𝐹 (𝑚, 𝑥1) |𝑑𝑥1𝑑𝑚

� 𝑒𝑑0 (1−𝑝 (𝜋)−1)

as needed in equation (9.2). �

Index

The following notations appear throughout the paper.

◦ k – a local field.
◦ q – if k is Archimedean 𝑞 = 𝑒. Otherwise, q is the size of the quotient field of k,
◦ G – the k-rational points of a semisimple algebraic group over k.
◦ Γ – a lattice in G. If there is a sequence (Γ𝑁 ) of lattices, then Γ𝑁 is a finite index subgroup of Γ1,

with [Γ1 : Γ𝑁 ] → ∞.
◦ K – a good maximal compact subgroup of G.
◦ X – the locally symmetric space Γ\𝐺/𝐾 .
◦ Π(𝐺) – the set of equivalence classes of irreducible unitary representations of G. A representation is

usually denoted by (𝜋,𝑉).
◦ 𝑝(𝜋) – the minimal p such that all K-finite matrix coefficients of (𝜋,𝑉) are in 𝐿𝑝+𝜖 (𝐺).
◦ 𝜆 – an eigenvalue of the Casimir operator. Appears only in the Archimedean case.
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◦ 𝑙 : 𝐺 → R≥0 – a length function on G. A length is usually denoted 𝑑0.
◦ 𝜒𝑑0 – a smooth approximation for the characteristic set {𝑔 ∈ 𝐺 : 𝑙 (𝑔) ≤ 𝑑0}.
◦ 𝜓𝑑0 – a smooth approximation for 𝑞 (𝑑0−𝑙 (𝑔))/2𝜒𝑑0 .
◦ 𝑏𝑥0 , 𝛿 – for 𝑥 ∈ Γ\𝐺/𝐾 , 𝛿 ∈ R>0. In the non-Archimedean case, it is the characteristic function of

{𝑥}. In the Archimedean case, it is a smooth approximation for the characteristic function of a ball of
radius 𝛿 around x.
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