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Simplicial (Co)-homology of ℓ1(Z+)
Yasser Farhat and Frédéric Gourdeau

Abstract. We consider the unital Banach algebra ℓ1(Z+) and prove directly, without using cyclic
cohomology, that the simplicial cohomology groupsHn

(ℓ1(Z+), ℓ1(Z+)∗) vanish for all n ⩾ 2. his
proceeds via the introduction of an explicit bounded linear operatorwhich produces a contracting ho-
motopy for n ⩾ 2. his construction is generalised to unital Banach algebras ℓ1(S),whereS = G∩R+
and G is a subgroup of R+.

1 Introduction

In a series of papers, [2, 5, 7, 8], the authors used the Connes–Tzygan exact sequence
[9] to help determine the simplicial cohomology groups of various classes of Banach
algebras. he proofs generally proceed by an identiûcation of the cyclic cohomology
groups that either vanish, are one-dimensional, or are clearly identiûed, which leads
to a determination of the simplicial cohomology groups, using the Connes–Tzygan
exact sequence.

Looking for a method enabling one to explain the simplicial cohomology groups
directly always seemed desirable. For instance, a direct methodmay shedmore light
on the existence of a bi-projective resolution or lead to easier generalizations (with
other modules, for instance). It is the purpose of this paper to provide such a direct
approach for the Banach algebra ℓ1(Z+). In Section 4, this is extended to some other
discrete semigroup algebras. hiswork forms part of the ûrst author’s Ph.D. thesis [4],
although the presentation and the structures of the proofs have been considerably
reworked.

In this paper, ℓ1(Z+) is the unital Banach algebra,with convolution product, given
by {∑n∈Z+ cnδn ∶ cn ∈ C,∑n∈Z+ ∣cn ∣ < ∞}, where δn is the Dirac function on Z+,
i.e., δn(m) = 1 if n = m, and δn(m) = 0 if n ≠ m. his Banach algebra is not
weakly amenable; a proof can be obtained by suitably adapting the proof of [1,heo-
rem 2.3] or by noting that ℓ1(Z+) has a non zero bounded point derivation given by
∑n∈Z+ cnδn → c1. However, in [3,heorem 3.2] and [6], itwas shown thatHn(ℓ1(Z+),
ℓ1(Z+)∗) is zero for n = 2 and n = 3, respectively. In [5, heorem 4.9], the authors
were ûnally able to prove thatHn(ℓ1(Z+), ℓ1(Z+)∗) is zero for all n ≥ 2. In this paper,
the authors ûrst proved that cyclic cohomology groups of odd degrees vanish, and that
those of even degrees are one-dimensional. Using [5, Corollary 4.8], [6, Proposition
2.1], and the Connes–Tzygan exact sequence, they then deduced the vanishing of the
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simplicial cohomology groups for n ≥ 2. In this paper we will give an explicit con-
tracting homotopy for the simplicial cochain complex in degrees 2 and above. his
avoids use of the Connes–Tzygan exact sequence and cyclic cohomology.

2 Background and Definitions

We now brie�y establish our notation and recall some deûnitions. For a Banach alge-
braA, we regardA∗, the topological dual space ofA, as a BanachA-bimodule in the
usual way.
For n ≥ 1, we denote the Banach space of bounded n-linear operators from

An
∶= A × ⋅ ⋅ ⋅ ×A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

toA∗ byCn(A,A∗). We deûne the boundaryoperator∆n ∶Cn(A,A∗)→Cn+1(A,A∗)
as the bounded linear operator given by

(∆nT)(a1 , . . . , an+1)(an+2) = T(a2 , . . . , an+1)(an+2a1)

+
n

∑
j=1

(−1) jT(a1 , . . . , a ja j+1 , . . . , an+1)(an+2)

+ (−1)n+1T(a1 , . . . , an)(an+1an+2),

where T ∈ Cn(A,A∗).
By convention, for n = 0, we have Cn(A,A∗) ∶= A∗, and ∆0 ∶ C0(A,A∗) →

C1(A,A∗) is given by ∆0(T)(a1)(a2) = T(a2a1) − T(a1a2).
For T ∈ Cn(A,A∗), we say that T is an n-cocycle if ∆nT = 0 and we say that T

is an n-coboundary if T = ∆n−1S, for some S ∈ Cn−1(A,A∗). Let Zn(A,A∗) be the
subspace of n-cocycles, and Bn(A,A∗) the subspace of n-coboundaries. he n-th
simplicial cohomology group ofA is the spaceHn(A,A∗) ∶= Zn(A,A∗)

Bn(A,A∗) .
Elements of Cn(A,A∗) may be regarded as bounded linear functionals on the

space Cn(A,A) ∶= A⊗̂n+1, the (n + 1)-fold completed projective tensor product of
A. he bounded linear operator ∆n ∶ Cn(A,A∗) → Cn+1(A,A∗) is then the adjoint
of the bounded linear operator dn ∶ Cn+1(A,A) → Cn(A,A) deûned on elementary
tensors X = a1 ⊗ a2 ⊗ ⋅ ⋅ ⋅ ⊗ an+2 ∈ Cn+1(A,A) by dn(X) = ∑

n+1
i=0 dn

i (X), where

dn
0 (X) ∶= a2 ⊗ ⋅ ⋅ ⋅ ⊗ an+1 ⊗ an+2a1 ,

dn
i (X) ∶= (−1)ia1 ⊗ ⋅ ⋅ ⋅ ⊗ a ia i+1 ⊗ ⋅ ⋅ ⋅ ⊗ an+2 , i = 1, . . . , n + 1.

he n-th simplicial homology group of A is the space Hn(A,A) ∶=
Zn(A,A)
Bn(A,A) , where

Zn(A,A) = Ker(dn−1) andBn(A,A) = Im(dn).

3 An Explicit Formula for the Contracting Homotopy in ℓ1(Z+)

In this section A denotes the Banach algebra ℓ1(Z+). We let X denote

δp1 ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1 ∈ Cn(A,A),
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and call these elementary tensors. As Cn(A,A) is isometrically isomorphic to
ℓ1((Z+ × ⋅ ⋅ ⋅ × Z+)) (with n + 1 copies of the semigroup Z+), these elementary ten-
sors form a copy of the standard basis of this ℓ1, and we can deûne a bounded linear
map by appropriately specifying its values on these elementary tensors; we will do
this without further mention. We denote by NX the value p1 + ⋅ ⋅ ⋅ + pn+1 that will be
called the degree of X. It is crucial to note that degree is not changed by the boundary
operator, that is, NX = Ndn

i (X), i = 0, . . . , n + 1.
Itwill be useful to distinguish the elementary tensor δ0⊗ δ0⊗⋅ ⋅ ⋅⊗ δ0 ∈ Cn(A,A),

which will be denoted by Xn
0 . hus Xn

0 is the n + 1-fold tensor product of the identity
ofA.
For n ≥ 0 and 1 ≤ k ≤ n + 1, we deûne a bounded linear operator snk ∶ Cn(A,A) →

Cn+1(A,A) by

snk(X) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(−1)k
NX
∑

pk−1
j=0 δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δpk−1 ⊗ δpk− j ⊗ δ j ⊗ δpk+1 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1

if pk ≠ 0,
0 if pk = 0.

It is important to note that the degree of each of the terms in the sum is NX .
Finally,we let sn ∶ Cn(A,A)→ Cn+1(A,A) be the bounded linear operatordeûned

by sn(Xn
0 ) = Xn+1

0 , and sn(X) = ∑
n+1
k=1 snk(X) if NX ≠ 0.

he deûnition of sn is based on [5, §5]. We now wish to analyse precisely how
far the map (sn−1dn−1 + dnsn) is from the identity. It is easily seen that (sn−1dn−1 +

dnsn)(Xn
0 ) = Xn

0 . (We note that the value of an empty sum is the zero of the appro-
priate space.) First, we write sn−1dn−1 + dnsn as

n−1

∑
k=1

(sn−1
k dn−1

0 + dn
0 s

n
k+1) + ∑

1≤ j<k≤n
(sn−1

k dn−1
j + dn

j s
n
k+1)

+ ∑
1≤k< j≤n

(sn−1
k dn−1

j + dn
j+1s

n
k) + (sn−1

n dn−1
0 + dn

n+1s
n
n+1 + d

n
0 s

n
1 + d

n
0 s

n
n+1)

+
n

∑
i=1

(sn−1
i dn−1

i + dn
i s

n
i + d

n
i s

n
i+1 + d

n
i+1s

n
i ).

he next lemma is very close to [8, Lemma 3.4]. It shows that the ûrst three sums
above all vanish, as terms cancel in pairs.

Lemma 3.1 With the deûnitions as above, we have

sn−1
k dn−1

0 + dn
0 s

n
k+1 = 0, 1 ≤ k ≤ n − 1,

sn−1
k dn−1

j + dn
j s

n
k+1 = 0, 1 ≤ j < k ≤ n,

sn−1
k dn−1

j + dn
j+1s

n
k = 0, 1 ≤ k < j ≤ n.

Proof he results are immediate if X = Xn
0 . For X ≠ Xn

0 , the proof closely resembles
that of [8, Lemma 3.4]. However, the setting is slightly diòerent (because of the need
to take into account the normalisation factor NX) and so the result cannot be invoked
directly. Wewill prove only the ûrst assertion as all proofs are direct. Let 1 ≤ k ≤ n− 1.
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If pk+1 = 0, then dn
0 snk+1(X) = 0. Moreover,we have sn−1

k dn−1
0 (X) = sn−1

k (δp2⊗⋅ ⋅ ⋅⊗

δpn ⊗ δpn+1+p1). By the deûnition of sn−1
k , we get sn−1

k dn−1
0 (X) = 0.

If pk+1 ≠ 0, we get

sn−1
k dn−1

0 (X) =
(−1)k

Ndn−1
0 (X)

×

pk+1−1

∑
j=0

δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpk ⊗ δpk+1− j ⊗ δ j ⊗ δpk+2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1+p1 .

Recalling that NX = Ndn−1
0 (X), we easily see that it is equal to −dn

0 snk+1(X). ∎

he next two lemmas will enable us to complete our task.

Lemma 3.2 For X ≠ Xn
0 , (sn−1

n dn−1
0 + dn

n+1snn+1 + dn
0 sn1 + dn

0 snn+1)(X) is given by

pn+1

NX
X −

1
NX

p1−1

∑
j=0
δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δp(n+1)+p1− j

+
(−1)n

NX

p1−1

∑
j=0
δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δp(n+1)+p1− j ⊗ δ j .

Proof We have

dn
n+1s

n
n+1(X) =

pn+1

NX
X ,

dn
0 s

n
1 (X) =

−1
NX

dn
0 (

p1−1

∑
j=0
δp1− j ⊗ δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1)

=
−1
NX

p1−1

∑
j=0
δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ,

dn
0 s

n
n+1(X) =

(−1)n+1

NX
dn
0 (

pn+1−1

∑
j=0

δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1− j ⊗ δ j)

=
(−1)n+1

NX

pn+1−1

∑
j=0

δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1− j ⊗ δ j+p1 ,

sn−1
n dn−1

0 (X) = sn−1
n (δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1)

=
(−1)n

NX

pn+1+p1−1

∑
j=0

δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ j

=
(−1)n

NX

p1−1

∑
j=0
δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ j

+
(−1)n

NX

pn+1−1

∑
j=0

δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1− j ⊗ δ j+p1 .

As the last sum cancels with dn
0 snn+1(X), the result follows. ∎
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Lemma 3.3 Let 1 ≤ i ≤ n and X ≠ Xn
0 . hen

(sn−1
i dn−1

i + dn
i s

n
i + d

n
i s

n
i+1 + d

n
i+1s

n
i )(X) =

p i

NX
X .

Proof For 1 ≤ i ≤ n, we have the following. First

dn
i s

n
i (X) = dn

i (
(−1)i

NX

p i−1

∑
j=0
δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i− j ⊗ δ j ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1) =

p i

NX
X .

he next two terms cancel out the fourth, as we have

dn
i s

n
i+1 = d

n
i (

(−1)i+1

NX

p i+1−1

∑
j=0

δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i+1− j ⊗ δ j ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1)

=
−1
NX

p i+1−1

∑
j=0

δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i+p i+1− j ⊗ δ j ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1 ,

dn
i+1s

n
i = d

n
i+1(

(−1)i

NX

p i−1

∑
j=0
δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i− j ⊗ δ j ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1)

=
−1
NX

p i−1

∑
j=0
δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i− j ⊗ δ j+p i+1 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1 ,

while

sn−1
i dn−1

i = sn−1
i ((−1)iδp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i+p i+1 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1)

=
1

NX

p i+p i+1−1

∑
j=0

δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i+p i+1− j ⊗ δ j ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1

=
1

NX

p i+1−1

∑
j=0

δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i+p i+1− j ⊗ δ j ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1

+
1

NX

p i−1

∑
j=0
δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δp i− j ⊗ δ j+p i+1 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1 ,

he proof is complete. ∎

he three lemmas enable us to deduce directly the following proposition.

Proposition 3.4 Let n ≥ 1 and X = δp1 ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1 ∈ Cn(A,A).
(i) If X = Xn

0 , then (sn−1dn−1 + dnsn)(X) = X .
(ii) If X ≠ Xn

0 , then

(sn−1dn−1
+ dnsn)(X) = X −

1
NX

p1−1

∑
j=0

δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1+p1− j

+
(−1)n

NX

p1−1

∑
j=0

δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ j .

Proof As stated, the result follows immediately from Lemmas 3.1, 3.2, and 3.3. ∎
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If we can modify themap sn in such a way that the terms

(−1)n

NX

p1−1

∑
j=0
δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ j

and

−1
NX

p1−1

∑
j=0
δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1+p1− j

are cancelled (for X ≠ Xn
0 ), then we will have a contracting homotopy for simplicial

homology.
We can, in fact, do precisely this for n ≥ 2. We note that the deûnition uses the fact

that the algebra is unital.

Deûnition 3.5 Let n ≥ 1. We deûne a bounded linear operator

rn ∶ Cn(A,A)Ð→ Cn+1(A,A)

by rn(Xn
0 ) ∶= 0 and, for X ≠ Xn

0 , by

rn(X) =
(−1)n+1

NX

p1−1

∑
j=0
δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ0 .

We now evaluate rn−1dn−1 + dnrn(X).

heorem 3.6 Let n ≥ 2 and X ∈ Cn(A,A), X ≠ Xn
0 . hen

(rn−1dn−1
+ dnrn)(X) =

1
NX

p1−1

∑
j=0
δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1+p1− j

+
(−1)n+1

NX

p1−1

∑
j=0
δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ j .

Proof Let n and X be as in the statement of the theorem. We can write rn−1dn−1 +

dnrn as
n

∑
k=2

(rn−1dn−1
k + dn

k r
n
) + (rn−1dn−1

0 + rn−1dn−1
1 + dn

1 r
n
) + (dn

0 r
n
+ dn

n+1r
n
).

It is readily checked that

dn
0 r

n
(X) =

(−1)n+1

NX

p1−1

∑
j=0
δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ j ,

dn
n+1r

n
(X) =

1
NX

p1−1

∑
j=0
δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1+p1− j .
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We claim that for n ≥ 2, (rn−1dn−1
0 + rn−1dn−1

1 + dn
1 rn)(X) = 0. his is proved by

direct computation. We have

rn−1dn−1
0 (X) = rn−1

(δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1+p1)

=
(−1)n

NX

p2−1

∑
j=0
δ j ⊗ δp3 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1+p2− j ⊗ δ0 .

Next we have

dn
1 r

n
(X) = dn

1 (
(−1)n+1

NX

p1−1

∑
j=0
δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ0)

=
(−1)n

NX

p1−1

∑
j=0
δ j+p2 ⊗ δp3 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ0 .

Finally we have

rn−1dn−1
1 (X) = −rn−1

(δp1+p2 ⊗ δp3 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1)

=
(−1)n+1

NX

p1+p2−1

∑
j=0

δ j ⊗ δp3 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1+p2− j ⊗ δ0

=
(−1)n+1

NX

p2−1

∑
j=0
δ j ⊗ δp3 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1+p2− j ⊗ δ0

+
(−1)n+1

NX

p1−1

∑
j=0
δ j+p2 ⊗ δp3 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ0

= −(rn−1dn−1
0 + dn

1 r
n
)(X),

which proves our claim.
Next we claim that (rn−1dn−1

k + dn
k r

n)(X) = 0, for 2 ≤ k ≤ n. Consider the case
k ≠ n. We have

rn−1dn−1
k (X) = (−1)krn−1

(δp1 ⊗ ⋅ ⋅ ⋅ ⊗ δpk+pk+1 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1)

=
(−1)k+n

NX

p1−1

∑
j=0
δ j ⊗ ⋅ ⋅ ⋅ ⊗ δpk+pk+1 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1+p1− j ⊗ δ0 ,

while

dn
k r

n
(X) =

(−1)n+1

NX
dn

k (

p1−1

∑
j=0
δ j ⊗ δp2 ⊗ ⋅ ⋅ ⋅ ⊗ δpn ⊗ δpn+1+p1− j ⊗ δ0)

=
(−1)n+1+k

NX

p1−1

∑
j=0
δ j ⊗ ⋅ ⋅ ⋅ ⊗ δpk+pk+1 ⊗ ⋅ ⋅ ⋅ ⊗ δpn+1+p1− j ⊗ δ0

= −rn−1dn−1
k (X).

he case k = n is proved similarly, and the proof is complete. ∎

From Proposition 3.4 andheorem 3.6 we have the following.

Corollary 3.7 For n ≥ 2,Hn(A,A) = 0.
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Proof It follows from Proposition 3.4 andheorem 3.6 that for n ≥ 2 and all X, we
have I − ((sn−1 + rn−1)dn−1 + dn(sn + rn)) = 0. As the linear span of these is dense in
Cn(A,A), we have the result. ∎

To move from simplicial homology to simplicial cohomology is fairly direct. On
one hand, the dual of (sn−1 + rn−1) is a bounded linear operator from (Cn(A,A))∗ to
(Cn−1(A,A))∗. On the other hand, in a canonical way, (Cn(A,A))∗ is isometrically
isomorphic to Cn(A,A∗). herefore we can consider the dual of (sn−1 + rn−1) as a
map fromCn(A,A∗) toCn−1(A,A∗). he explicit deûnition of thismap is as follows.

Deûnition 3.8 For n ≥ 2, let Γn−1 ∶ Cn(A,A∗) → Cn−1(A,A∗) be the bounded
linear map deûned, for T ∈ Cn(A,A∗) and X ≠ Xn

0 , by

Γn−1
(T)(δp1 , . . . , δpn−1)(δpn)

=
1

NX

n

∑
k=1

(−1)k
pk−1

∑
j=0

T(δp1 , . . . , δpk− j , δ j , . . . , δpn−1)(δpn)

+
(−1)n

NX

p1−1

∑
j=0

T(δ j , δp2 , . . . , δpn+p1− j)(δ0),

and by Γn−1(T)(Xn
0 ) = 0.

If we take the dual of [I − ((sn−1 + rn−1)dn−1 + dn(sn + rn))] in Corollary 3.7, we
obtain the following.

Corollary 3.9 For n ≥ 2,Hn(A,A∗) = 0.

Proof It follows, either by duality (as explained above) or by almost identical proofs
to those leading to Corollary 3.7, that for n ≥ 2,

(∆n−1Γn−1
+ Γn∆n

)(T) = T ,

for all T ∈ Cn(A,A∗). In particular, if T ∈ ker∆n , then ∆n−1(Γn−1(T)) = T . ∎

It should be noted that we now have an explicit map such that, for T ∈ ker∆n , we
have S = Γn−1(T) such that ∆n−1(S) = T . In the next section,we generalize this result
to some other semigroups.

4 Other Ordered Discrete Semigroups

In [5, §6] the authors generalized the results obtained for the semigroup Z+ to semi-
groups S = G ∩ R+, where G is a subgroup of R. In this section, we show how to
generalize our results to this case.

LetB ∶= ℓ1(S). Wewish to deûne λn ∶ Cn+1(B,B∗)→ Cn(B,B∗). In the degener-
ate case, let λnT(δ0 , δ0 , . . . , δ0)(δ0) = T(δ0 , δ0 , . . . , δ0)(δ0). We note that with this
deûnition,

[(I − (∆n−1λn−1
+ λn∆n

))(T)](δ0 , δ0 , . . . , δ0)(δ0) = 0,
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andwe therefore do not need to consider the degenerate case in the remainder of this
section.

In the non-degenerate case, let v = (a1 , a2 , . . . , an+1) ∈ Sn+1 be ûxed. We deûne
λnT(δa1 , . . . , δan)(δan+1) as follows.

Let N = a1+⋅ ⋅ ⋅+an+1 ≠ 0, and let SN be the amenable group G
⟨N⟩ ,with an invariant

meanmN . Note thatwe can identifySN with {s ∈ S ∶ 0 ≤ s < N}with additionmodulo
N , and we will do so from now on, where S is an intersection between a subgroup of
R and R+.
For a vector v(x) = (a1 , . . . , ak − x , x , . . . , an+1) ∈ Sn+2

N that depends on x (and
even if v = v(x) is constant), we let T[v(x)] denote

T(δa1 , . . . , δak−x , δx , . . . , δan)(δan+1),

where T ∈ Cn+1(B,B∗). We deûne T[v(x)]ba ∈ ℓ∞(SN) by

T[v(x)]ba(s) =
⎧⎪⎪
⎨
⎪⎪⎩

T[v(s)] if a ≤ s < b,
0 otherwise,

where it is assumed that 0 ≤ a ≤ N , 0 ≤ b ≤ N .
Finally, for y ∈ SN , let χy be the characteristic function of {s ∈ SN ∶ s < y} and let

χN be the characteristic function of SN , seen as elements of ℓ∞(SN).
For 1 ≤ k ≤ n + 1, we deûne the bounded linear operator λn

k ∶ Cn+1(B,B∗) →
Cn(B,B∗) by

λn
kT(δa1 , . . . , δan)(δan+1) ∶= (−1)kmN(T[a1 , a2 , . . . , ak − x , x , . . . , an+1]

ak
0 ).

We deûne λn by λn ∶= ∑
n+1
k=1 λn

k . his construction was given in [5, §6].
With this deûnition, we can now generalize our results. First, we consider the

analogue of Lemmas 3.1, 3.2, 3.3, and Proposition 3.4.

Lemma 4.1 Let n ≥ 1 and let the notation and setting be as above. hen

∆n−1
0 λn−1

k + λn
k+1∆

n
0 = 0, 1 ≤ k ≤ n − 1,

∆n−1
j λn−1

k + λn
k+1∆

n
j = 0, 1 ≤ j < k ≤ n,

∆n−1
j λn−1

k + λn
k∆

n
j+1 = 0, 1 ≤ k < j ≤ n.

Proof he proof is essentially identical to that of Lemma 3.1, and we only give an
outline of the ûrst case. For T ∈ Cn(B,B∗), and 1 ≤ k ≤ n − 1, we have

∆n−1
0 (λn−1

k T)(δa1 , . . . , δan)(δan+1)

= (λn−1
k T)(δa2 , . . . , δan)(δan+1+a1)

= (−1)kmN(T[a2 , . . . , ak+1 − x , x , . . . , an , an+1 + a1]ak+1
0 )

and

λn
k+1(∆

n
0T)(δa1 , . . . , δan)(δan+1)

= (−1)k+1mN((∆n
0T)[a1 , . . . , ak+1 − x , x , . . . , an+1)]

ak+1
0 ) .

he conclusion follows directly from the deûnition of T[v(x)]. ∎
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Lemma 4.2 With the notation as above,

((∆n−1
0 λn−1

n + λn
n+1∆

n
n+1 + λn

1 ∆
n
0 + λn

n+1∆
n
0)T)(δa1 , . . . , δan)(δan+1)

is given by

mN(χan+1) ⋅ T(δa1 , . . . , δan)(δan+1)

−mN(T[x , a2 , . . . , an , an+1 + a1 − x]a10 )

+ (−1)nmN(T[a2 , . . . , an , an+1 + a1 − x , x]a10 ) .

Proof Recall that we assume that N ≠ 0 (so that we are not in the degenerate case).
he term mN(χan+1) ⋅ T(δa1 , . . . , δan)(δan+1) is obtained from λn

n+1δn
n+1; the last term

results from λn
1 δn

0 , while themiddle one is obtained through the partial cancellation
of δn−1

0 λn−1
n with λn

n+1δn
0 . Here, wemake the simple but crucial use of the fact that the

mean is translation invariant. Details are le� to the reader, as the proof is entirely anal-
ogous to the proof of Lemma 3.2, the invariant mean playing the role of the averaging
and the argument being at the dual level. ∎

he analogue of Lemma 3.3 is as follows.

Lemma 4.3 With the notation as above and for 1 ≤ i ≤ n,

((∆n−1
i λn−1

i + λn
i ∆

n
i + λn

i+1∆
n
i + λn

i ∆
n
i+1)T)(δa1 , . . . , δan)(δan+1)

is given by mN(χa i ) ⋅ T(δa1 , . . . , δan)(δan+1).

Proof he result follows from the cancellation of λn
i+1∆n

i + λn
i ∆n

i+1 with ∆n−1
i λn−1

i ,
once again using translation invariance of themean, and the remaining term is given
by λn

i ∆n
i . Details are le� to the reader as the proof is entirely analogous to the proof

of Lemma 3.3, the invariant mean playing the role of the averaging and the argument
being at the dual level. ∎

As Proposition 3.4 was only a restatement of the lemmas preceding it, we do not
state its generalization here; let us simply note that ∑n+1

i=1 mN(χa i ) = 1, so that we
get T by summing terms obtained in Lemmas 4.2 and 4.3. We deûne the map that
generalizes themap introduced in Deûnition 3.5.

Deûnition 4.4 Let n ≥ 1 and let the notation be as above. Let

µn
∶ Cn+1

(B,B∗
)Ð→ Cn

(B,B∗
)

be the bounded linear operator deûned by

µn
(T)(δa1 , . . . , δan)(δan+1) ∶= (−1)n+1mN(T[x , a2 , . . . , an , an+1 + a1 − x , 0]a10 ) .

As we indicated at the beginning of the section, µn(T) is deûned as being zero in the
degenerate case (N = 0).

With this new map, we can state the required generalization of heorem 3.6 and
deduce the simplicial cohomology ofB for n ≥ 2.
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heorem 4.5 Let n ≥ 2 and let the notation be as above. hen
(∆n−1µn−1

+ µn∆n
)T(δa1 , . . . , δan)(δan+1)

= (−1)n+1mN(T[a2 , . . . , an , an+1 + a1 − x , x]a10 )

+mN(T[x , a2 , . . . , an , an+1 + a1 − x]a10 ) .

Proof he proof ofheorem 3.6 can be easily adapted to obtain the result. ∎

Corollary 4.6 With the notation as above,Hn(B,B∗) = 0, for n ≥ 2.

Proof Let n ≥ 2. It follows directly from the previous theorem together with the
preceding lemmas that ∆n−1(λn−1 + µn−1) + (λn + µn)∆n = I. In particular, if
T ∈ ker∆n , then ∆n−1((λn−1 + µn−1)(T)) = T . ∎

Remark 4.7 he ideas introduced in this paper for ℓ1(Z+) and ℓ1(S), where S
is an intersection between a subgroup of R and Z+, can be adapted to other set-
tings. Extensions to band semigroup algebras and to the Cuntz semigroup algebra
(as deûned in [2, 8]) form part of the ûrst author’s Ph.D. thesis [4].
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