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1. Introduction. The study of bounded distributive lattices endowed with an addi-
tional dual homomorphic operation began with a paper by J. Berman [3]. On the one
hand, this class of algebras simultaneously abstracts de Morgan algebras and Stone algebras
while, on the other hand, it has relevance to propositional logics lacking both the
paradoxes of material implication and the law of double negation. Subsequently, these
algebras were baptized distributive Ockham lattices and an order-topological duality
theory for them was developed by A. Urquhart [13]. In an elegant paper [9], M. S.
Goldberg extended this theory and, amongst other things, described the free algebras and
the injective algebras in those subvarieties of the variety 0 of distributive Ockham
algebras which are generated by a single finite subdirectly irreducible algebra. Recently,
T. S. Blyth and J. C. Varlet [4] explicitly described the subdirectly irreducible algebras in
a small subvariety MS of 0 while in [2] the order-topological results of Goldberg were
applied to accomplish the same objective for a subvariety JCXI of 0 which properly
contains MS. The aim, here, is to describe explicitly the injective algebras in each of the
subvarieties of the variety MS. The first step is to draw the Hasse diagram of the lattice
AMS of subvarieties of MS. Next, the results of Goldberg are applied to describe the
injectives in each of the join irreducible members of AMS. Finally, this information, in
conjunction with universal algebraic results due to B. Davey and H. Werner [8], is applied
to give an explicit description of the injectives in each of the join reducible members of
AMS.

2. Preliminaries. A distributive Ockham algebra is an algebra (L, v, A, °, 0,1) of
type (2, 2, 1, 0, 0) such that (L, v, A, 0, 1) is a bounded distributive lattice and ° is a unary
operation defined on L such that, for all x, y e L,

(xAy)° = x°vy0, (xvy)° = x°Ay0, 0°= l , l° = 0.

The class of all distributive Ockham algebras is a variety, henceforth denoted by 0. The
subvariety of 0 defined by the identity x A X00 = x is denoted by MS and its members are
called MS- algebras. The subvariety of MS defined by the identity x = x00 is denoted by M
and its members are de Morgan algebras.

Let K be a class of (similar) algebras. An algebra IeK is said to be (weak) injective in
K if, for any algebra A e K, any (onto) homomorphism from any subalgebra of A to / can
be extended to a homomorphism from A to I. K is said to have enough injectives if each
of its members can be embedded into an injective in K. As usual, I(K), H(K), S(K) and
P(K) will denote the classes of isomorphic copies, homomorphic images, subalgebras and
products of the members of K, respectively. If K and M are classes of algebras (both of the
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same type) having the property that each member of K is isomorphic to a member of M
and visa-versa, we shall sometimes abuse conventional notation and write K = M. In
particular, we will always identify K with I(K). For all other unexplained lattice theoretic
and universal algebraic terminology and notation we refer the reader to [1] or [10]. We
also assume basic familarity with the Stone-Priestley duality for bounded distributive
lattices, as developed in [11] and [12], at least in the finite case. For our present needs, it
will be enough to refer to the fragment of the duality for the class of finite distributive
Ockham algebras presented in [2], although for the entire picture we refer the reader to
[9] and [13]. 0(X) will denote the dual algebra of an Ockham space (X; g) and S (̂A) will
denote the dual space of an Ockham algebra A. For integers m > n s= 0, mn will denote
the Ockham space (m, 7n) consisting of the discretely ordered set m = { 0 , 1 , . . . , m —1}
and the mapping yn : m —> m defined by

yn(k)= k + 1, whenever 0=£fc<m — 1
and

yn(m-l)=n

The Ockham space mn may be visualized as in Fig. 1. In [9], M. S. Goldberg shows that
any order on mn with respect to which yn is order reversing gives rise to the dual
space of a subdirectly irreducible distributive Ockham algebra and, conversely, all dual
spaces of finite subdirectly irreducible distributive Ockham algebras arise in this manner.
Therefore, Figure 1 is typical of the diagram of the dual space X of a finite subdirectly
irreducible distributive Ockham algebra in which the order relation has been suppressed.
The pair consisting of the subposet L = {n, n + 1 , . . . , m — 1} together with the restriction
of yn to L is called the loop of X.

3. The lattice of subvarieties of MS. We begin with the following key result of B.
Davey [7] which is based on consequences of Jonsson's lemma and the Stone-Priestley
duality.

THEOREM 1. Let K be a congruence distributive variety generated by a finite set of finite
algebras and let Si(K) denote the set consisting of precisely one algebra from each of the
isomorphism classes of the subdirectly irreducible algebras in K. Then the relation < defined

YH)

Figure 1
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on Si(K) by

is a partial ordering and the lattice 0(Si(K)) of order ideals of (Si(K);=s) is isomorphic to the
lattice AK of subvarieties of K in such a way that the principal order ideal of (Si(K); ^ )
generated by A e Si(K) corresponds to the subvariety A of K generated by A.

The above theorem will be applied in conjunction with the description of the
subdirectly irreducible MS-algebras, due to Blyth and Varlet [4], to draw the Hasse
diagram of AMS. In the notation of [2] and [4], there are nine non-isomorphic subdirectly
irreducible algebras in MS: T, B, S, K, Ku K2, K3, M, M,.

The following simple observation simplifies the construction of (Si(MS); =£) and is
crucial to our subsequent discussion of injectivity.

LEMMA 2. If X E S K M S ) and X is the subvariety of MS generated by X, then
Si(X) = S({X}) = HS({X}).

Proof. First, observe that Si(X) £ HS({X}) is a well known consequence of Jonsson's
lemma. Let Z be a homomorphic image of a subalgebra Y of XeSi(MS). By inspection of
the Hasse diagrams in [2] or [4], Y is subdirectly irreducible and so S({X}) s Si(X). Using
the results and notation in [2] or [4], we have Z = Y/6, for some congruence Be{<o, 4>, t},
so that Z must be isomorphic to T, Y or Y00 and therefore ZeS({Y})cS({X}). Thus,
HS({X}) c S({X}) and the proof is complete.

Obviously MS is congruence distributive, finitely generated by M, and, in view of
Lemma 2, the partial order ^ on Si(MS) is given by

It is now straightforward to verify that Figs 2 and 3 are Hasse diagrams of (Si(MS); =£)
and AMS, respectively.

REMARK. The Hasse diagram for AMS along with equational bases for each of its
members have been obtained independently by T. S. Blyth and J. C. Varlet [5].

T •

Figure 2
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Figure 3

4. Injectives in the subvarieties of AMS. We begin by alluding to a fundamental
universal algebraic construction. Let B be a Boolean algebra whose dual space is B* and
let A be an arbitrary algebra. Then the Boolean power of A by B, denoted A[B], is the
subalgebra of the direct power AB* consisting of all continuous functions from J3* into A
endowed with the discrete topology. Two elementary properties of this construction which
will be needed are: A[2] = A, A[BQ]x. A[Bt] = A[Box.BJ. For these and other properties
we refer the reader to [6].

In [9], M. S. Goldberg completely described the structure of the injectives in any
subvariety of 0 generated by a single finite subdirectly irreducible algebra in 0 in terms of
products of Boolean powers of certain algebras in the subvariety by complete Boolean
algebras. That part of his theorem which is of particular relevance in the present context may
be stated as follows:

THEOREM 3. Let X be a finite subdirectly irreducible algebra in 0 and let X be the
subvariety of 0 generated by X. If Si(X) = S({X}), then AeX is injective in X if and only if
there are complete Boolean algebras Bo and Bx such that

A=X[Bo]x0(Lx)[B1],

where Lx is the loop of the dual space of X.

Note that, since X[1] = T (the trivial algebra) and X[2] = X, both X and 0(Lx) are
injective in X. Since we observed in Lemma 2 that Si(X) = S({X}) whenever X e Si(MS), it
is now purely routine to characterize the injectives in any subvariety X of MS generated
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TABLE 1

I
0(1*)

187

K

M

M,

o
o

B

B

K

M

M

by a single subdirectly irreducible algebra XeMS; that is, in any join irreducible member
of AMS. We tabulate our calculations in Table 1.

REMARK. At this point, it is worthwhile pointing out that if Bo is a Boolean algebra
then B[B0] = B0 and S[B0] = B0 * S, where Bo* S is the free product of Bo and S in the
category of bounded distributive lattices (see, for example, [1], Chapter 7).
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There still remains the problem of characterizing the injectives in the join reducible
members of AMS. By inspection of Fig. 3 there are eleven of them, namely KvS, K,vS,
MvS, MvKf (i = l,2,3), I^vKj , K2vK3, MvKjvS, MvKxvK2, MvK2vK3. In order
to pave the way for the statement of two theorems, which are tailor-made for our needs
and due to B. Davey and H. Werner [8], we first present a definition.

Let K be a class of algebras and, for each A e K, let dA (a, b) denote the principal
congruence of A collapsing a pair a, be A. Then a simplicity formula for K is a 3V
conjunct of equations

a(u, v) = (3x)(Vy)| & pf(x, y, u, v) = qt(x, y, u, v) \

such that, for each AeK, a(u, v) holds in A O 6(u, u)e{<o, i}.
Now we can state the theorems from Davey and Werner [7].

THEOREM 4. Let K be a congruence distributive variety generated by finitely many finite
algebras. If there is a simplicity formula for the maximal subdirectly irreducible algebras in

K, then the injectives in K are precisely those algebras of the form fl A.j[Bj], where
i = 1

{A,-; 1 =£ / =£ n} is the set of all subdirectly irreducible algebras in K which are injective in K
and Bj is a complete Boolean algebra for each j , l = £ / ^ n .

The above theorem in conjunction with the next makes achievement of our goal a
practicality.

THEOREM 5. Let K = SP(A) for some finite set A of finite algebras. If K is congruence
distributive and every member of A is either subdirectly irreducible or weak injective in K,
then A e A is injective in K if and only if it is injective in A.

Obviously, every member V of AMS is congruence distributive, and, by the subdirect
product theorem, V = SP(Si(V)). Since Goldberg [9] has shown that there is a simplicity
formula for the class of all subdirectly irreducibles in 0, Theorems 4 and 5 tell us that the
injectives in each (join reducible) member V of AMS are completely determined once the
injectives in Si(V) are known.

Let X, YeSi(MS). Subsequently, when describing subalgebras of X and extensions to
X of homomorphisms from them into Y, we shall use the same labelling of the elements
of X and Y as that on the corresponding Hasse diagrams of X and Y which may be found
in [2] and [4]. We will also make use of another consequence of Jonsson's lemma, namely
that Si(XvY) = Si(X)USi(Y) and so Si(XvY) = S({X})US({Y}), by Lemma 2.

LEMMA 6. K is the only non-trivial injective in Si(KvS).

Proof. A glance at Fig. 2 confirms that Si(KvS) = {T, B, S, K}. Now observe that
neither B nor S is injective in Si(KvS). Indeed, the homomorphism from the subalgebra
B of K into either B or S cannot be extended to K, since homomorphisms must map fixed
points of the unary operation ° to fixed points, and, while K has a fixed point, B and S
have none. To see that K is injective in Si(KvS) it is enough, by reference to Fig. 2 and
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the fact that K is injective in K, to show that any homomorphism from any subalgebra of S
into K extends to S. But S({S}) = {T, B, S} and the homomorphism from the subalgebra B
of S into S can be extended to S by mapping a to 1.

LEMMA 7. K and JC, are the only non-trivial injectives in Si(K]VS).

Proof. Clearly, SKK, v S) = {T, B, S, K, Kt}. B and S are not injective in SKKjvS),
since they are not in Si(KvS) and Si(KvS)<=Si(K, VS). That K is injective in Si(K,vS)
follows on referring to Fig. 2 and using the fact that K is injective in both K^ and
Si(KvS). To see that K, is injective in SKI^vS) it is sufficient, on referring to Fig. 2 and
using the fact that Kt is injective in Ku to show that any homomorphism from any
subalgebra of S into K, extends to S. But S({S}) = {T, B, S} and the homomorphism from
the subalgebra B of S into X, can be extended to S by mapping a to 1.

LEMMA 8. M is the only non-trivial injective in Si(V) for any proper subvariety V of
MS containing M.

Proof. To show that M is injective in Si(MvS) and Si(MvKj), for i = 1,2,3, it
suffices to show that M is injective in Si(MvKi) for i = 2 and 3, since Si(MvS) and
SKMvKO are contained in Si(MvK3). If we consult Fig. 2 and recall that M is injective in
M we see that it is only necessary to show that any homomorphism from any subalgebra
of Ki into M extends to Kt for i = 2 and 3. Observe that S({K2}) = {T, B, S, K, K2}. Clearly,
the homomorphism from the subalgebra B of K2 into M can be extended by mapping a
to a and b to 1. There are precisely two homomorphisms into M from the subalgebra K
of K2, namely 0>-»0, a>-*a, 1>-»1 and 0>-»0, a*-*b, 1>-»1, both of which can be extended
to K2 by mapping b to 1. There is one homomorphism into M from the subalgebra S of
K2, namely 0>-»0, b*->l, 1>-»1, and this can be extended to K2 by mapping a to a. Thus,
M is injective in Si(MvK2). Next, observe that S({K3}) = {T,B, K,S, KUK3}. The
homomorphism into M from the subalgebra B of K3 can be extended by mapping a and c
to a and b to 1. There are two homomorphisms into M from the subalgebra K of K3,
namely 0>-»0, a>-+a, 1>-»1, which can be extended to K3 by mapping c to a and b to 1,
and 0>-»0, a>—*b, 1>-»1, which can be extended to K3 by sending c to b and b to 1. There
is only one homomorphism into M from the subalgebra S of K3, namely 0i-»0, b*-*l,
1>-*1, and this can be extended to K3 by sending a and c to a. Finally, there are two
homomorphisms into M from the subalgebra K, of K3, namely 0>->0, a>-+a, c*-^*a, 1>-»1
and 0i-»0, a*-»b, c>-»fr, 1>-»1, both of which can be extended by mapping b to 1. Thus, M
is injective in Si(MvK3).

In order to show that M is the only non-trivial injective in Si(MvS) and Si(MvKj)
for i = l ,2 , 3, first observe that if Le{K, Ku K2,K3} and Le^2Si (M) , where .stfc
Si(MS), then L is not injective in si. Indeed, any extension h of the homomorphism from
the subalgebra B of M into L must satisfy h(a) = h(b) = a so that l = h(l) = h(avb) =
h{a)vh(b) = a, which is absurd. Now, Si(MvS) = {T, B, S, K, M], K is not injective in
Si(MvS) and B and S fail to be injective in Si(MvS), since they fail to be injective in
Si(KvS). Therefore, M is the only non-trivial injective in Si(MvS). Observe that

K,) = {T,B,K,K:1,M}, Si(MvK2) = {T, B, K,M, S, K2} and Si(MvK3) =

https://doi.org/10.1017/S0017089500005607 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005607


190 R. BEAZER

{T, B, K, M, S, Ku K3}. K and Kx are not injective in SiCMvKj) and B is not, because the
homomorphism from the subalgebra B of K into B obviously has no extension to K. K
and K2 are not injective in Si(MvK2) and none of K, K^, K3 is injective in Si(MvK3). In
addition, B and S are not injective in Si(MvKj) for i = 2 and 3, since they are not in
Si(MvS). Thus, M is the only non-trivial injective in Si(MvKf), for i = 1, 2, 3. It is now
straightforward to see that M is the only non-trivial injective in Si(MvKjvS), SKMvK} v
K3) and Si(MvK2vK3).

LEMMA 9. K, Ku K2 are the only non-trivial injectives in Si(K1vK2).

Proof. Note that Si(K, vK2) = {T, B, K, S, Ku K2} and that B and S are not injective
in Si(K,vK2), since they are not injective in Si(KvS)<=Si(K1 vK2). Referring to Fig. 2
and recalling that K is injective in both Kj and K2, we see that K is injective in
Si(K! vK2). To show that K^ is injective in Si(K, vK2) it is enough, since KA is injective in
Ki, to show that any homomorphism into K, from any member of S({K2}) extends to K2.
Clearly, the homomorphism into Kx from the subalgebra B of K2 can be extended by
mapping a to a and fa to 1. There is exactly one homomorphism into K, from the
subalgebra K of K2, namely 0t-»0, a>-^a, 1>-»1, which can be extended to K2 by mapping
fa to 1, and there is exactly one homomorphism into Kt from the subalgebra S of K2,
namely 0>-»0, b*-*l, 1 •—* 1, which can be extended to K2 by mapping a to a. It remains to
show that K2 is injective in Si(KivK2). Since K2 is injective in K2, it is enough to show
that any homomorphism into K2 from any member of S({KX}) can be extended to K,.
Clearly, the homomorphism into K2 from the subalgebra B of K, can be extended by
mapping both a and b to a. There is exactly one homomorphism into K2 from the
subalgebra K of Ku namely 0>-»0, a>-^a, 1>-»1, and this can be extended by mapping b
to a.

LEMMA 10. K is the only non-trivial injective in Si(K2vK3).

Proof. Observe that Si(K2vK3) = {T, B, K, S, Ku K2, K3} and that neither B nor S is
injective in Si(K2vK3), since they are not injective in Si(K,vK2). Kl is not injective in
Si(K2vK3) because the homomorphism into Kt from the subalgebra K^ of K3 given by
0>-»0, a>-»a, c-^fa, li-»l cannot be extended to K3. Indeed, any such extension h must
satisfy 1 = h(l) = h(avb) = h(a)vh(b) = avh(b), so that h(b) = l, and then b = h(c) =
h{a/\b) = h{a)/\h{b) = a, which is absurd. That K2 fails to be injective in Si(K2vK3)
follows from the observation that the homomorphism into K2 from the subalgebra S of K3

given by 0>-»0, b>-*b, 1>-»1 has no extension to K3; any such extension h must satisfy
h(a) = a so that 1 = h(l) = h(avb) = h(a)vh(b) = avb = fa. K3 also fails to be injective in
Si(K2vK3) because the homomorphism into K3 from the subalgebra S of K2 given by
0>-»0, b>-*b, 11—»1 does not extend to K2; any such extension h must satisfy h(a) = a so
that b = h(b) = h(avb) = h(a)vh(b) = avb = l. Finally, K is injective in Si(K2vK3),
since it is injective in both K2 and K3.

In order to be economical in summarizing our results, we adopt the following
notation. 58 will stand for the class of all complete Boolean algebras. If VeAMS then
Inj(V) will denote the class of all injective algebras in V.
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THEOREM 11. The injective algebras in each of the twenty subvarieties of the variety MS
are as follows:

(1)
(2)
(3) Inj(S) = {BoxS[B1];Bo,B1effl},
(4) Inj(K) = Inj(KvS) = Inj(K2vK3) = {K[B0]; Boe®},
(5) Inj(K,) = Inj(K, vS) = {K[B0]x ^ [ B , ] ; Bo, Bx e ®},
(6) Inj(K2) = {K[B0] x K^B,]; Bo, B, e »} ,
(7) Inj(K3) = {K[B0]xK^B,]; Bo, B,e®},
(8) Inj(M,) = {M[B0]xM^BJ; Bo,B, e $} ,
(9) Inj(K, vK2) = {K[B0]x ^ [ B J x K2[B2]; Bo, B,, B2e »} ,

(10) if V is a proper subvariety of MS containing M then Inj(V) = {M[B0], Boe38}.

COROLLARY 12. All join irreducibles in AMS have enough injectives but K ,vK 2 is the
only join reducible in AMS having enough injectives.

The injectives in all subvarieties of M have been described already in the literature
(see [9] and the references therein). An equivalent structure theorem for the injectives in
S, the variety of Stone algebras, was first obtained by R. Balbes and G. Gratzer (see [1] or
[10] and the references therein).
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