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The complexity of higher Chow groups
Genival Da Silva Jr and James D. Lewis

Abstract. Let X/C be a smooth projective variety. We consider two integral invariants, one of which
is the level of the Hodge cohomology algebra H∗(X ,C) and the other involving the complexity of the
higher Chow groups CH∗(X , m;Q) for m ≥ 0. We conjecture that these two invariants are the same
and accordingly provide some strong evidence in support of this.

1 Introduction

Let X/C be a smooth projective variety of dimension n. Associated with X are the
Chow groups CHr(X) = CHn−r(X) of algebraic cycles on X of codimension r (resp.
dimension n − r), modulo rational equivalence. Historically, there are two cycle class
maps, namely the fundamental cycle class map [ ] ∶ CHr(X) → H2r(X ,Z) and the
Abel–Jacobi map on CHr

hom(X) = ker[ ], the latter being a certain membrane integral
generalizing the classical elliptic integral. It was once thought that CHr(X) could be
characterized by these two aforementioned maps. However, that myth was debunked
by the seminal works of Mumford [11] and Griffiths [3], where both the kernel and
image of the Abel–Jacobi map are very complicated in general. These seminal works
resulted in a turning point in the subject of algebraic cycles. One point of view is
that there should be higher cycle class maps “explaining” the kernel of the previous
map, giving rise to a descending filtration on CHr(X ,Q) ∶= CHr(X) ⊗Q,1 an idea
which originally goes back to Bloch. Such a filtration can be seen as a measure of the
“complexity” of Chow groups. Subsequent to this was Beilinson’s fortification, that the
graded pieces of such a filtration should be described in terms of extension datum
involving a conjectural category MM(C) of mixed motives. Moving toward the
latter part of the twentieth century, we have the higher Chow groups CHr(W/k, m)
invented by Bloch [2] (see Definition 1.3), where W is quasi-projective over a field
k, the case m = 0 recovers the original Chow groups. As in the case m = 0, one
conjectures that there should be a descending filtration

CHr(X/C, m;Q) = F0 ⊃ F 1 ⊃ ⋯,
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whose graded pieces Grν
F can be described in terms of extension datum. Of course,

this was formulated for smooth projective X over a field k. A generalization of
Beilinson’s formula is then

Grν
F CHr(X/k, m;Q) ≃ Extν

MM(k)(Sp(k), h2r−m−ν(X)(r)),

where Beilinson’s formulation involved the case m = 0 and where conjecturally speak-
ing, h●(−)(r) is motivic cohomology. It is then reasonably clear that the existence of
such a filtration (called the conjectural Bloch–Beilinson filtration) is pivotable with
regard to issues of complexity. With this in mind, we begin with the following.

Definition 1.1 Let X/C be a smooth projective variety, with Hodge cohomology
H∗(X ,C) = ⊕p,qH p,q(X). We define2

Level(H∗(X ,C)) = max{p − q ∣ H p,q(X) ≠ 0}.

Level(CH∗(X , m;Q)) = maxr{Level(CHr(X , m;Q))},

where Level(CHr(X , m;Q)) = 0 for r < m, otherwise for r ≥ m, Level
(CHr(X , m;Q)) =

min{μ ≥ 0 ∣ CHr(X , m;Q) → CHr(X/Y , m;Q)) is zero,

Y ↪ X closed, codimX Y = r − μ −m}.

The3 expected relationship between these invariants is the following conjecture.

Conjecture 1.2 For all m ≥ 0,

Level(H∗(X ,C)) = Level(CH∗(X , m;Q)).

Based on conjectural assumptions, an outline of a proof of Conjecture 1.2 in the
case where m = 0 appeared in [8, Corollary 15.64]. In this paper, we provide the full
details for all m ≥ 0; the case m > 0 requires some new ingredients which should be
of interest to the reader. Finally, we exhibit a class of examples involving complete
intersections, based on new ideas from [10].

Before stating our main result, it is important to include some background. We
will assume the (Grothendieck amended) general Hodge conjecture (GHC), which
is discussed in [8, Chapter 7]. We will also assume that the reader is familiar with
the category of Q mixed Hodge structures MHS, as well as a description of the
Abel–Jacobi map in terms of extension classes of MHS. Again, all of this appears in
Lewis (op. cit.) as well as in [9, Definition 3.11]; however, the latter (viz., extension
classes) is explicitly described in [6]. Let A ⊆ R be a subring. The Tate twist is given
byA(r) = (2πi)r ⋅A. It is a mixed Hodge structure of pure weight−2r and Hodge type
(−r,−r). H●(X ,A) represents Betti cohomology and H●(X ,A(r)) ∶= H●(X ,A) ⊗
A(r). For our purposes, we only need real Deligne cohomology in one instance,

2Note that H p,q(X) = Hq , p(X). Hence, this is the same as ∣p − q∣.
3One can extend this definition to subspaces and subquotients of CH∗(X , m;Q).
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namely Hm
D(X ,R(m)) ≃ Hm−1(X ,R(m − 1)). We only need the following abridged

definition of Bloch’s higher Chow groups. Let

Δm ∶= Sp(C[t0 , . . . , tm]
1 −∑m

j=0 t j
)

be the standard m-simplex. Furthermore, let zr(X , m) be the codimension r cycles in
X × Δm which meet all faces defined by {t i1 = 0, . . . , t iq = 0, q < n} properly. Asso-
ciated with zr(X , m) are ith face maps ∂ i ∶ zr(X , m) → zr(X , m − 1), i = 0, . . . , m,
defined by t i = 0. One then has the boundary operator ∂ = ∑m

i=0(−1)i ∂ i ∶ zr(X , m) →
zr(X , m − 1) satisfying ∂2 = 0.

Definition 1.3 CHr(X , m) = H∂
m(zr(X , ●)).

As in the case m = 0, there is a cycle class map [ ] ∶ CHr(X , m) → H2r−m(X ,Z(r))
with torsion image for m > 0 (due to a Hodge theoretic argument). We put
CHr(X , m;Q) = CHr(X , m) ⊗Q. It is clear that CHr

hom(X , m;Q) = CHr(X , m;Q)
for m > 0.

Our main result is the following theorem.

Theorem 1.4 Assume that:
●1 The GHC holds.
●2 For any smooth projective variety Y defined over Q, the Abel–Jacobi map

Φr ,m ∶ CHr
hom(Y/Q, m;Q) → Ext1

MHS(Q(0), H2r−m−1(Y(C),Q(r)))
is injective.
●3 Either m ≤ 2, or for a given m ≥ 3, there exists a smooth projective variety B/C of

dimension m − 1 and a class γ ∈ Hm−1(B,R(m − 1))with (Hodge component) γm−1,0 ≠
0 in the image of the real regulator map rD ∶ CHm(B,Q(m)) ⊗R→ Hm

D(B,R(m)) ≃
Hm−1(B,R(m − 1)).

Then, for any smooth projective X/C,

Level(H∗(X ,C)) = Level(CH∗(X , m;Q)).

2 More background

(i) To re-iterate and unless otherwise stated, we assume that X/C is a smooth
projective variety of dimension n.

(ii) A full explanation of the Hodge conjecture, the GHC, and the hard Lefschetz
conjecture appear in [8, Chapters 7 and 15]. For the reader with pressing obligations,
here is an abridged description. Corresponding to a projective embedding X ⊂
PN is a hyperplane class HX and corresponding operator LX = HX ⌣∶ H●(X ,Q) →
H●+2(X ,Q). Iterating this is the hard Lefschetz theorem: for i ≤ n, Ln−i

X ∶ H i(X ,Q) →
H2n−i(X ,Q) is an isomorphism. The hard Lefschetz conjecture states that the inverse
map H2n−i(X ,Q) → H i(X ,Q) is algebraic cycle induced. For a complete clarification
of cycle induced, the reader can consult [8, Chapter 7]. The reader may find it
helpful to know that the Hodge conjecture implies the hard Lefschetz conjecture
[8, Chapter 15].
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(iii) {N pH i(X ,Q)}p≥0 is the coniveau filtration as defined in [8, Chapter 7].
Succinctly,

N pH i(X ,Q) = ker(H i(X ,Q) → lim
�→

V⊂X
H i(X/V ,Q)),

as V runs through all codimension ≥ p closed algebraic subsets of X. This can be
compared to another filtration,

F p
H H i(X ,Q) = maximal Hodge structure contained in F pH i(X ,C) ∩H i(X ,Q).

Indeed, one knows that N pH i(X ,Q) ⊆ F p
H H i(X ,Q) and the GHC states that the

inclusion is an equality (op. cit.).
(iv) Given a family of varieties {Xt}t∈S , where S is a base variety, a general member

of this family refers to an Xt , t ∈ U , where U ⊂ S is a nonempty Zariski open subset,
determined by certain “generic” properties, such as Xt nonsingular.

3 Proof of Theorem 1.4

We introduce our first key ingredient.

Theorem 3.1 [7] Let X be a projective algebraic manifold. Assume the following:
(i) The hard Lefschetz conjecture holds.
(ii) Either m ≤ 2, or for a given m ≥ 3, there exists a projective algebraic manifold B

of dimension m − 1 and a class γ ∈ Hm−1(B,R(m − 1)) with γm−1,0 ≠ 0 in the image of
the regulator map rD ∶ CHm(B, m;Q) ⊗R→ Hm

D(B,R(m)) ≃ Hm−1(B,R(m − 1)).
Then,

Level(N r−μ H2r−μ−m(X ,Q)) = μ −m ⇒ Level(CHr(X , m;Q)) ≥ μ −m.

Corollary 3.2 Let us assume the GHC and Theorem 3.1. Then,

Level(H∗(X ,C)) ≤ Level(CH∗(X , m;Q)).

Proof Let � = Level(H∗(X ,C)). Then, for some i, we have

Level(H i(X ,C)) = � = q − p, where p + q = i , q ≥ p, F pH i(X ,C) = H i(X ,C).

Now, for fixed m ≥ 0, we need only find (r, μ) such that 2r − μ −m = i and p = r − μ.
Solving for (r, μ) gives r = i +m − p and μ = r − p = � +m. By Theorem 3.1, it follows
that Level(CH∗(X , m;Q)) ≥ � and we are done. ∎

Next, let V/Q be a smooth quasi-projective variety defined over Q. Based on a
Bloch–Beilinson conjecture assumption in the case m = 0, it is conjectured in [5] that:

Conjecture 3.3 The Abel–Jacobi map

Φr ,m ∶ CHr
hom(V/Q, m;Q) → Ext1

MHS(Q(0), H2r−m−1(V/C,Q(r)))

is injective.
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Remark 3.4 One can show [5] using a weight filtered spectral sequence together
with the Hodge conjecture, that one need to only verify Conjecture 3.3 for smooth
projective V/Q.

Now we need to establish the reverse inequality, viz.,

Theorem 3.5 Let us assume the GHC and Conjecture 3.3. Then, for any integer m ≥ 0,

Level(H∗(X ,C)) ≥ Level(CH∗(X , m;Q)).

Proof Using [1] together with the GHC and Conjecture 3.3, there is for any smooth
projective variety X/C a descending filtration {FνCHr(X , m;Q)}r

ν=0 with:
●0 F0 = CHr(X , m;Q).
●1 F 1 = CHr

hom(X , m;Q) for m = 0, F0 = F 1 = CHr
hom(X , m;Q) for m ≥ 1.

●2 F2 ⊆ ker Φr ,m ∶ CHr
hom(X/C, m;Q) → Ext1

MHS(Q(0), H2r−m−1(X ,Q(r))).
●3 Fν1 CHr1(X , m1;Q) ⌣ Fν2 CHr2(X , m2;Q) ⊂ Fν1+ν2 CHr1+r2(X , m1 +m2;Q).4
●4 {Fν}ν≥0 is functorial with respect to correspondences between smooth projec-

tive varieties.
●5 Factorization through the Grothendieck motive: Namely, if

[ΔX] = ⊕
p+q=2n

[ΔX(p, q)] ∈ H2n(X × X ,Q)

is the Künneth decomposition with [ΔX(p, q)] ∈ H p(X ,Q) ⊗Hq(X ,Q) algebraic,
then [ΔX(p, q)] acts on the graded pieces Grν

F CHr(X , m;Q) and in particular

[ΔX(2n − 2r + ν +m, 2r − ν −m)]∗Grk
F CHr(X , m;Q) = δν ,k ⋅ Id.

[Explanation. Any correspondence induced by Z ∈ CH●(X × X;Q) on
Grν

F CHr(X .m;Q) depends only on the cohomology class [Z] ∈ H2●(X × X ,Q).
This is immediate from the previous ●’s.]
●6 F r+1 = 0.
Note that if we view CHn(X × X;Q) as the ring of correspondences on X, under

composition, then by the above ●’s, F 1CHn(X × X;Q) is a nilpotent two-sided ideal
of CHn(X × X;Q). One has a Künneth decomposition of idempotents:

[ΔX] = ⊕
p+q=2n

[ΔX(p, q)] ∈ CHn(X × X;Q)
F 1CHn(X × X;Q) ⊂ H2n(X × X ,Q).

As Beilinson observed, such a decomposition lifts to an idempotent decomposition

ΔX = ⊕
p+q=2n

ΔX(p, q) ∈ CHn(X × X;Q),

called a Chow–Künneth decomposition in the sense of [12]. Let � = Level(H∗(X ,C)).
One can easily argue that � ≤ n. Note that

CHr(X , m;Q) = ⊕
p+q=2n

ΔX(p, q)∗CHr(X , m;Q).

4Not specifically stated in [1], but proved in [4].
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It will suffice, via Proposition 3.6, to determine the level of ΔX(p, q)∗CHr(X , m;Q),
for a fixed algebraic cohomological representative ΔX(p, q) of [ΔX(p, q)].
Case p ≤ �. Then q = 2n − p ≥ n. By the hard Lefschetz theorem, Hq(X ,Q) =
Ln−p

X H p(X ,Q); hence, we may assume that the support ∣ΔX(p, q)∣ ⊂ X × V , where
codimX V = n − p. It follows that

Level(ΔX(p, q)∗CHr(X , m;Q)) ≤ (r − n −m) + p ≤ p ≤ �,

where by dimension reasons alone we use the fact that CHr>n+m(X , m) = 0.

Case � < p ≤ n. Thus, p = � + k, where k ≥ 1. Note that Level(H p(X ,Q)) =∶ �′ ≤ �.
Replacing � by �′, we can write p = �′ + k. From Hodge theory, k has to be even.
Specifically, �′ = p − 2M, where M is maximal subject to F M ∩H p(X) = H p(X).
Thus, k = 2M. It follows that H p(X ,Q) = F k/2 ∩H p(X ,Q) = N k/2H p(X ,Q), where
the latter equality is due to the GHC. Thus, we can assume that ∣ΔX(p, q)∣ ⊂ Y × V ,
where codimX V = n − p + k/2 and codimX Y = k/2. However, CHr(Y , m;Q) = 0 for
r > n − k/2 +m. Accordingly, r ≤ (n − k/2) +m. Thus, μ ≤ p − k = �′ ≤ �.

Case p > n. Thus, q < n and again by hard Lefschetz Ln−q
X Hq(X ,Q) = H p(X ,Q).

Let us first assume that q ≤ � ≤ n. Then ∣ΔX(p, q)∣ ⊂ V × X, where codimX V = n − q.
However, CHr(V , m;Q) = 0 for r > q +m. Thus, we can assume that r ≤ q +m. We
already know that from the definition of level, r − μ −m ≥ 0; hence,

μ ≤ r −m ≤ (q +m) −m = q ≤ �.

Finally, we now assume that � < q < n. Thus, by the GHC,

Hq(X ,Q) = N k/2Hq(X ,Q),

where as in the previous case we have k > 0 is an even integer. Thus,

∣ΔX(p, q)∣ ⊂ V × Y ,

where codimX V = n − q + k/2 (because Ln−q
X Hq(X ,Q) = H p(X ,Q)) and codimX Y =

k/2. Thus, CHr(V , m;Q) = 0 for r > q +m − k/2. Therefore, we can assume that
r ≤ q +m − k/2. From the definition of level, we have k/2 ≤ r − μ −m. Hence,

μ ≤ r −m − k/2 ≤ q − k = �. ∎

Now for the details on how to reduce to the graded pieces Gr●FCHr(X , m;Q). What
we have is the following. Consider another Künneth decomposition

[Δ] = ⊕
p+q=2n

[Δ(p, q)′],

where Δ(p, q)′ are algebraic. Thus,

Δ′ ∶= ⊕p+q=2n Δ(p, q)′ ∼hom Δ.

We are reduced to the following proposition.

Proposition 3.6 Let Ξ ∈ CHn
hom(X × X;Q). Then,

Level(Ξ∗CHr(X , m;Q)) ≤ �.
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Restatement. For any cycle ξ ∈ CHn(X × X;Q), the statement Level(ξ∗CH●(X ,
m;Q)) ≤ � depends only on the cohomology class of ξ.

Proof Let Fν ∶= FνCHr(X , m;Q). Note that F r = Grr
F CHr(X , m;Q). Since

CHn
hom(X × X;Q) = F 1CHn(X × X;Q), then Ξ∗F r = 0. Consider the short exact

sequence

0 → F r → F r−1 → Grr−1
F → 0.

Then Ξ∗F r−1 ↦ 0 ∈ Grr−1
F ; hence, Ξ∗F r−1 ⊂ F r , where we know that Level(F r) ≤ �.

Proceeding by downward induction, consider the short exact sequence

0 → Fν → Fν−1 → Grν
F → 0.

By induction, Level(Fν) ≤ � and Ξ∗Fν−1 ↦ 0 ∈ Grν−1
F . Thus, Level(Ξ∗Fν−1) ≤ �, and

this completes the induction step. ∎

4 An explicit example

Let X/C ⊂ Pn+r be a general complete intersection of multidegree (d1 , . . . , dr), let
ΩX(k) ∶= {Pk ’s⊂ X} be its Fano variety of k-planes, and suppose X = Z ∩ Pn+r , where
Z ⊂ Pn+r+1 is a general complete intersection of multidegree (d1 , . . . , dr). The geomet-
ric properties of such complete intersections are explored elsewhere ([10], [8, Chap-
ter 13]). In particular, ΩX(k) is smooth. Set δ ∶= (k + 1)(n + r − k) −∑r

j=1 (
d j+k

k ),
l = k(n + 1 + r − k) + r −∑r

j=1 (
d j+k

k ) and assume δ ≥ n − 2k ≥ 0. Observe that δ =
n − 2k + l . Indeed, δ = dim ΩX(k) and through a generic point of Z passes an
l-dimensional family ofPk ’s. Let ΩZ be the subvariety of ΩZ(k) obtained by the inter-
section of l general hyperplane sections. By Bertini’s theorem, and a dimension count,
ΩZ is smooth and irreducible of dimension n + 1 − k. If we set ΩX = ΩZ ∩ΩX(k),
then ΩX is smooth of pure dimension n − 2k. There is the following diagram [10]:

P(X) X

X̃ Z

P(Z)

ΩX ΩZ

ρX

j

πX

i

ρ

j1

π

ρZ

πZ

i0

,(1)

where P(X) and P(Z) are Pk-bundles, X̃ = π−1
Z (X), and all the maps depicted are

natural projections, except i0 , i , j which are inclusions.

https://doi.org/10.4153/S0008439522000509 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000509


910 G. Da Silva Jr and J. D. Lewis

Proposition 4.1 [8, Corollary 13.42] Assume that δ ≥ n − 2k ≥ 0. Then the cylinder
homomorphism

Φ∗ ∶= πX ,∗ ○ ρ∗X ∶ Hn−2k(ΩX ,Q) → Hn(X ,Q)

is surjective.

Set Y = πX(P(X)). Then Y ⊂ X is a subvariety of codimension k. We conclude the
following.

Corollary 4.2 The natural map Hn(Y ,Q) → Hn(X ,Q) is surjective. Hence, cycles
on X are supported on a subvariety of codimension k.

This corollary gives an instance of the GHC.

Corollary 4.3

F k ∩Hn(X ,Q) = Hn(X ,Q) = N k Hn(X ,Q).

Next, let us write X = V(F1 , . . . , Fr) ⊂ Pn+r , for generic choice of {F1 , . . . , Fr}, and
W = V(F1 , . . . , Fr−1) ⊂ Pn+r , with inclusion j ∶ X ↪ W .

Theorem 4.4 [10] Assume that δ ≥ n − 2k ≥ 0. Then the cylinder map

ΦX ,∗ ∶ CHr−k(ΩX , m;Q) → CHr(X , m;Q)/ j∗CHr(W , m;Q)

is surjective.

Now, observe that r > n +m − k ⇒ r − k > n − 2k +m = dim ΩX +m; hence,
CHr−k(ΩX , m;Q) = 0 by dimension reasons alone. Thus, we can assume that
r ≤ n +m − k. Choose k such that Level(H∗(X ,Q)) = n − 2k and assume that
δ ≥ n − 2k. Furthermore, put

ν ∶= Level(CHr(X , m;Q)/ j∗CHr(W , m;Q)).

By definition of ν, observe that ν ≤ r − codimX Y −m = r − k −m. However, r ≤ n +
m − k, and hence ν ≤ n − 2k. Finally, W is of a lower order (viz., multidegree) than X
and one can argue via an inductive argument, that Level( j∗CHr(W , m;Q)) ≤ n − 2k.
From Corollaries 3.2 and 4.3 and Theorem 3.1, we deduce the following corollary.

Corollary 4.5 If X is a general complete intersection satisfying δ ≥ n − 2k ≥ 0, where
k ≥ 0 is given such that Level(H∗(X ,Q)) = n − 2k, then

Level(H∗(X ,C)) ≥ Level(CH∗(X , m;Q)),

and we have an equality in the case m < 3.

Proof The only remaining issue involves replacing the assumption in Theo-
rem 3.1(i) by Proposition 4.1. The details of this can be found in [7, Section 5]. ∎
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