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Non-ideal gases refer to deformable substances in which the speed of sound can
decrease following an isentropic compression. This may occur near a phase transition
such as the liquid–vapour critical point due to long-range molecular interactions.
Isentropes can then become locally concave in the pressure/specific-volume phase
diagram (e.g. Bethe–Zel’dovich–Thompson (BZT) gases). Following the pioneering
work of Bethe (Tech. Rep. 545, Office of Scientific Research and Development, 1942)
on shocks in non-ideal gases, this paper explores the refraction properties of stable
compression shocks in non-reacting but arbitrary substances featuring a positive
isobaric volume expansivity. A small-perturbation analysis is carried out to obtain
analytical expressions for the thermo-acoustic properties of the refracted field normal
to the shock front. Three new regimes are discovered: (i) an extensive but selective
(in upstream Mach numbers) amplification of the entropy mode (hundreds of times
larger than those of a corresponding ideal gas); (ii) discontinuous (in upstream Mach
numbers) refraction properties following the appearance of non-admissible portions
of the shock adiabats; (iii) the emergence of a phase shift for the generated acoustic
modes and therefore the existence of conditions for which the perturbed shock does
not produce any acoustic field (i.e. ‘quiet’ shocks, to contrast with the spontaneous
D’yakov–Kontorovich acoustic emission expected in 2D or 3D). In the context
of multidimensional flows, and compressible turbulence in particular, these results
demonstrate a variety of pathways by which a supplied amount of energy (in the form
of an entropy, vortical or acoustic mode) can be redistributed in the form of other
entropy, acoustic and vortical modes in a manner that is simply not achievable in
ideal gases. These findings are relevant for turbines and compressors operating close
to the liquid–vapour critical point (e.g. organic Rankine cycle expanders, supercritical
CO2 compressors), astrophysical flows modelled as continuum media with exotic
equations of state (e.g. the early Universe) or Bose–Einstein condensates with small
but finite temperature effects.

Key words: compressible flows, gas dynamics, shock waves

1. Introduction
Dense vapours are single-phase gases featuring large heat capacities relative to their

molecular weights. Examples are hydrocarbons, perfluorocarbons or siloxanes. They
are of practical interest in energy-conversion cycles operating on low-temperature heat
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sources such as organic Rankine cycles (ORCs), where the expansion process may be
performed in just one stage. Part of the expansion occurs close to the thermodynamic
critical point (TCP), where the sound speed substantially decreases, making the
expander flow highly supersonic (around Mach 3) and causing shockwaves to form
in the expander. In the dense-vapour regime, close to the liquid–vapour equilibrium,
the classical ideal-gas assumption has to be reconsidered to take into account the
thermodynamic critical point and the so-called associated non-ideal-gas effects. This
change of equation of state can have dramatic consequences on the hyperbolic part
of the equations governing the motion of such fluids, giving rise to the formation of
nonlinear waves which would be non-admissible (e.g. violating the entropy increase)
in classical gas dynamics governed by an ideal-gas equation of state. The early
works of Bethe (1942), Zel’dovich (1946), Landau & Lifshitz (1959), Thompson
(1971) and Thompson & Lambrakis (1973) set the theoretical basis for the conditions
under which such non-classical effects can be observed in a single-phase fluid (often
referred to as BZT fluid). The governing parameter to be used to address the question
of non-classical gas dynamics is the so-called fundamental derivative of gas dynamics,
first introduced by Hayes (1960),

Γ (ϑ, s)≡ 1+ ρ
c

(
∂c
∂ρ

)
s

= ϑ3

2c2

(
∂2p
∂ϑ2

)
s

, (1.1)

where ϑ , ρ, s, p and c are the specific volume, the density, the specific entropy,
the pressure and the isentropic speed of sound of the fluid. Classical gas dynamics
occurs when Γ > 0; the isentropes in the (p, ϑ)-diagram are then convex and the only
shockwaves satisfying the entropy-increase condition are compression shockwaves.
Isentropic fans are then necessarily of expansion type. This classical nonlinear gas
dynamics is sometimes referred to as positive nonlinearity and is found for every fluid
in its ideal-gas limit. When Γ < 0 (negative nonlinearity), the isentropes are concave
in the (p, ϑ)-diagram and the only admissible shockwaves are rarefaction shockwaves,
also called expansion shockwaves, and the isentropic fans are of compression type.
The shock-formation process is much more complex for fluids featuring both Γ > 0
and Γ < 0 regions (mixed nonlinearity): in addition to compression shockwaves and
rarefaction shockwaves, sonic shocks of compression or expansion type can form
(the downstream velocity in the reference frame of the shock is then equal to the
local sound speed) as well as double-sonic shocks for which both the upstream and
downstream flows are sonic (see Cramer & Kluwick 1984; Cramer & Sen 1986,
1987). Moreover, nonlinear waves can be of composite type, featuring two or three
of these elementary waves. Thus, the Riemann problem for the Euler equations in
the context of non-ideal gases is richer and much more complex than for ideal gases
(Quartapelle et al. 2003). A comprehensive study of this problem can be found in
Menikoff & Plohr (1989).

A fundamental outcome from the studies of Bethe (1942), Zel’dovich (1946)
and Thompson (1971) is the possibility to observe a domain of finite size in
the (p, ϑ)-diagram featuring a Γ < 0 in the vapour region surrounding the
thermodynamical critical point (the BZT region). A sufficient condition of existence
is that the dimensionless ratio between the specific heat capacity and the gas constant,
cv/R (measured in the dilute ideal-gas limit), is greater than a critical value which
depends on the equation of state. Some molecules (e.g. siloxanes) feature cv/R values
as large as 102 (Thompson & Lambrakis 1973; Guardone & Argrow 2005), and
have attracted interest for a better understanding of gas dynamics in BZT fluids.
Starting from the 1980s, significant effort has been made to extend the classical
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gas dynamics theory to BZT fluids. Most of these studies have focused on the
mixed-nonlinearity effects on wave formation in idealised inviscid flow conditions
(without any boundaries), yet have revealed significant departure from classical theory.
Non-classical effects of progressively increasing interest for practical applications have
been demonstrated, e.g. a shock-compression-strength limitation induced by an inviscid
shock-splitting effect (Cramer 1989), a suppression of separation in viscous–inviscid
shock boundary layer interactions (Cramer & Park 1999) and a shock-free turbine
blade in ORC turbines (Brown & Argrow 2000). Theoretical studies of the viscous
shock structure also revealed strong non-classical effects close to Γ = 0, e.g. the
occurrence of local extrema in Mach number and entropy in the shock structure
and a non-monotonic behaviour of the shock thickness with respect to the shock
strength even with constant transport coefficients (Cramer & Kluwick 1984; Cramer
& Crickenberger 1991). With the development of numerical methods, the possibility
of taking advantage of non-classical gas dynamics effects on problems from classical
aerodynamics has been investigated (see Brown & Argrow 1997, 2000; Cinnella &
Congedo 2007, 2008; Guardone, Parsani & Vigevano 2007; Kluwick & Meyer 2011).

Non-ideal-gas effects are also of potential importance in the stability problem of
shock fronts subjected to small perturbations. D’yakov (1954) and Kontorovich (1957)
were the first to systematically investigate the response of an isolated shock to a
small perturbation of its front for an arbitrary equation of state. Using a normal-mode
decomposition, they confirmed the unconditional linear stability of isolated shock
fronts under the assumption of the ideal-gas model. They built a one-parameter
criterion, based on the equation of state, to address the question of stability. They
showed that for a non-ideal-gas equation of state, there exist shocks that are linearly
unstable to incoming perturbations. Remarkably, they demonstrated the existence of
conditions under which a non-ideal-gas shock can sustain small perturbations of its
front with no damping or growth of the initial disturbance. This regime is abusively
called the ‘D’yakov–Kontorovich (DK) instability’ or regime of spontaneous acoustic
emission (because of the emitted acoustic waves in the unperturbed flow, which is
subsonic in the shock reference frame).

Since these early studies, non-ideal-gas effects on the linear stability of shocks
have been investigated with modern and analytical methods (Erpenbeck 1962; Bates
2004). Deriving an equation for the Laplace transform of the shock-ripple amplitude,
Bates (2004, 2007) provided a convenient way of computing its time evolution for
an arbitrary equation of state. He showed that in the stable-shock regime, a small
corrugation of the front decreases with t−3/2, as for an ideal gas. While agreement
with the D’yakov and Kontorovich theoretical results is achieved for the ‘isolated
planar shockwave’ problem, Bates (2012, 2015) also showed that the stability limits
(expressed in terms of the D’yakov parameter) have to be reconsidered when a finite
physical domain is taken into account (e.g. a moving piston). In particular, the ‘DK
instability’ regime can simply disappear.

In most flows of interest, shockwaves travel through inhomogeneous fields such
as turbulence. Despite the inherent nonlinear nature of such interactions, the linear
framework is a powerful tool to address the fundamental question of the interaction
of a shockwave with a turbulent flow. The linear interaction of waves with normal or
oblique shocks has been studied primarily in ideal gases by Moore (1954) and Ribner
(1954, 1987), using a normal-mode decomposition (of plane sound waves and/or
vorticity waves) of the small perturbation, in the context of acoustic generation.
Ribner has demonstrated how turbulence intensities as low as 0.1 % could turn
into a 120 dB noise level downstream of the shock. As aero-acoustic forcing in
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turbomachinery is a significant source of premature turbine-blade fatigue, this result
showed the importance of shock/turbulence interaction and how the linear interaction
analysis (LIA) is relevant in studying it, the most recent version of which may
be found in Wouchuk, Huete & Velikovich (2009) and Quadros, Sinha & Larsson
(2016a,b). This relevance has grown recently with favourable comparisons against
state-of-the-art numerical simulations of the fully nonlinear interaction (Larsson &
Lele 2009; Donzis 2012; Sinha 2012; Larsson, Bermejo-Moreno & Lele 2013; Ryu
& Livescu 2014; Quadros et al. 2016a,b). Lee, Lele & Moin (1997), Larsson &
Lele (2009), Larsson et al. (2013) and Ryu & Livescu (2014) demonstrated the
ability of LIA to accurately predict the post-shock turbulent kinetic energy, which
opened the way for turbulence modelling based on LIA. An exact analytical model
of the interaction based on a closed form of several turbulent quantities extracted
from the LIA was proposed by Wouchuk et al. (2009). Sinha (2012) formed a k–ε
model from the LIA formulation, improving the current modelling capabilities for
both isotropic turbulence and complex flows with shockwaves. The LIA formulation
of the shock interacting with oblique waves for an arbitrary equation of state was
derived by McKenzie & Westphal (1968). They provided an exact analytical formula
for the acoustic generation/amplification factor through a shock impinged by an
entropy/acoustic wave but without commenting on potential non-ideal-gas effects.
Both analytical and numerical efforts towards the understanding of shock/turbulence
interactions in non-ideal gases seem far behind what has been achieved for ideal gases.
To the best of the authors’ knowledge, there does not exist any study of non-ideal-gas
effects on the unsteady problem of a shock interacting with a perturbed flow field.

The aim of this paper is to investigate the response of a shockwave travelling
into a perturbed dense gas modelled with a non-ideal equation of state. The study
is carried out by the LIA of a simple one-dimensional shockwave so as to focus on
non-ideal-gas effects on the interaction. The first part is a derivation of the general
Rankine–Hugoniot (RH) conditions, with a special discussion on the admissibility
problem in the dense-gas region. In the second part, base flows satisfying the RH
relations are used in a small-perturbation analysis. The response of shocks to an
incoming supersonic entropy-mode perturbation is derived in the spirit of Ribner’s
pioneering work. Explicit formulae are formulated in terms of thermodynamic
properties. The amplification of entropy across the shock is commented on in
§ 4 and the generated acoustic field in § 5. A critical-point anomaly is found in
the limiting case of cv/R→+∞. Strong non-ideal-gas effects on the unsteady shock
perturbation problem are demonstrated for the first time with potentially large extrema
of transmission factors (for large values of cv/R). Two distinct classes of non-ideal-gas
effects are reported: near-critical-point and BZT effects. A convenient and new
representation of the ‘D’yakov–Kontorovich instability’ locus in the (p, ϑ)-diagram is
provided, emphasising the importance of critical-point effects in the dense-gas regime.
The new classes of unsteady non-ideal-gas effects, including the ‘DK instability’, are
then assessed using the most accurate thermodynamic models for the siloxane D6
and toluene, providing a first insight towards the possibility of their experimental
observation (§ 7).

2. Admissibility of compression shockwaves in non-ideal gases
This section recalls some well-known results on the shock-formation process

in dense gases (Cramer & Kluwick 1984; Menikoff & Plohr 1989; Zamfirescu,
Guardone & Colonna 2008). An effort is made to formulate mathematical statements
with geometric representations in the (p, ϑ)-diagram in order to facilitate comments
on the refraction properties introduced in the next section.
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2.1. Jump conditions and shock adiabats
We consider an infinitely long shock tube in which a normal shockwave is propagating
at constant velocity ūs in a gas modelled with an arbitrary equation of state. We
assume a pressure and temperature field to be defined from a canonical equation
of state of the form es(s, ϑ), where es is the specific internal energy of the fluid
(Menikoff & Plohr 1989). For simplicity, however, we will express the specific
internal energy in terms of the pressure and the specific volume throughout the
paper, i.e. e(p, ϑ). We are interested in the effect of a non-ideal equation of state
on the refraction properties of the compression shockwaves emanating from the
one-dimensional Euler equations. The integral form of these equations leads to the
well-known Rankine–Hugoniot relations, satisfied across every discontinuity,

u1/ϑ1 = u2/ϑ2,

p1 + u1
2/ϑ1 = p2 + u2

2/ϑ2,

e(p2, ϑ2)− e(p1, ϑ1)= (p2 + p1)(ϑ1 − ϑ2)/2,

 (2.1)

where the subscripts (·)1 and (·)2 stand for the uniform upstream and downstream
states around the shock observed in a reference frame moving with the shock. The
last equation has been obtained by combining both the momentum-balance and mass-
conservation principles into the energy equation. Let us define a function f such that
f (ϑ1, p1, ϑ2, p2) = e(p2, ϑ2) − e(p1, ϑ1) − (p2 + p1)(ϑ1 − ϑ2)/2. From the implicit
function theorem, we know that if ∂f /∂p2(ϑ1, p1, ϑ2, p2) 6= 0, there exists a regular
function ph such that p2= ph(ϑ2, ϑ1, p1). The existence condition can be expressed as

∂e
∂p
(p2, ϑ2)− 1

2
(ϑ1 − ϑ2) 6= 0. (2.2)

Introducing the Grüneisen parameter G≡ ϑ (∂p/∂e)ϑ , the condition becomes

G2 6= −2ϑ2/JϑK, (2.3)

where JϑK ≡ ϑ2 − ϑ1 is the jump of specific volume across the discontinuity and
G2 is the post-shock Grüneisen parameter. This condition defines the usual vertical
asymptote of the Hugoniot curves in a single-phase gas for which the pressure
goes to positive infinity in the (p, ϑ)-diagram (see Cramer 1989). For a perfect
gas, this singularity occurs at ϑ2 = ϑ1(γ − 1)/(γ + 1). In what follows, we study
shocks described by the right-hand-side branch of this vertical asymptote (defined by
G2 + 2ϑ2/JϑK > 0). Introducing the mass flow rate j ≡ u1/ϑ1 = c1M1/ϑ1 = c2M2/ϑ2
(where c and M are the local sound speed and Mach number), the solution of (2.1)
can then be expressed for a given upstream state as the intersection between the
Rayleigh line (R-line) and the Hugoniot line (H-line), defined in the (p, ϑ)-diagram
respectively as

p2 = p1 − j2(ϑ2 − ϑ1),

p2 = ph(ϑ2, ϑ1, p1).

}
(2.4)

These two curves have a simple interpretation in the (p, ϑ)-diagram. For a given
upstream state, the Hugoniot curve is the locus of all downstream thermodynamic
states reachable via a discontinuity across which the total enthalpy can be conserved.
For a given upstream state and Mach number, the R-line is the locus of all
downstream thermodynamic states satisfying the mass-conservation and momentum-
balance principles. The slope of the Hugoniot curve on its right-hand-side branch is
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FIGURE 1. (Colour online) Admissibility problem of classical and non-classical gas
dynamics discussed in the (p, ϑ)-diagram.

always negative for single-phase gases with G > 0 (Cramer 1989). The hypothesis
that G > 0 will be made throughout this paper; this is representative of a substance
that expands upon isobaric heating and is relevant for most of the single-phase gas
behaviour of interest here. An important outcome is that isentropes do not cross
each other in the (p, ϑ)-diagram and entropy increases towards higher pressures
(Menikoff & Plohr 1989). For weak shocks, the curvature of the H-line in the
(p, ϑ)-diagram is given by the local sign of Γ (Cramer 1989). Graphical solutions of
the RH relations, read in the (p, ϑ)-diagram, can then be obtained (see figure 1). In
most cases, there exist multiple weak solutions for a given upstream Mach number,
and additional admissibility criteria must be expressed to select the waves that
will not degenerate from the initial-value problem (scale-invariant initial data). This
scale-invariant property is of fundamental importance in view of the perturbation
analysis performed below. In the process of finding such a solution, the curvature
of the H-line plays a key role (Cramer & Kluwick 1984; Menikoff & Plohr 1989;
Zamfirescu et al. 2008).

2.2. Geometrical formulation of the admissibility problem in dense gases
Zamfirescu et al. (2008) have demonstrated the uniqueness of the Riemann problem
in the context of dense gases using theoretical results from the general theory of
conservation laws (Liu 1975). In what follows, we detail the admissibility selection
process for compression shockwaves in dense gases. We consider a gas with positive
coefficient of thermal expansion, which implies G > 0, and arbitrary sign of Γ . For
classical gas dynamics (positive nonlinearity), the H-lines are convex and the selection
of self-similar solutions (only functions of x/t) between weak solutions of the Euler
equations is operated by the use of the Lax (1957) characteristic criterion (equivalent
to the entropy-increase criterion), which also implies the Landau stability constraint
on the wave orientation (i.e. M2 6 16M1). This criterion is still sufficient in the case
of negative nonlinearity (the Hugoniot curves are then concave everywhere). However,
when a finite region of mixed nonlinearity exists in the (p, ϑ)-diagram and is crossed
by the Hugoniot locus, there usually are multiple solutions satisfying both the Landau
and Lax conditions (Menikoff & Plohr 1989). The formulation of admissibility criteria
for weak solutions of systems involving mixed nonlinearities has been studied in the
context of general conservation laws; the corresponding wave solutions are then called
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locally linearly degenerated (Oleinik 1959; Liu 1976). The resulting criterion states
that a shock is admissible if and only if its speed in the laboratory reference frame is
greater than or at least equal to the speed of the fastest shock located on the Hugoniot
branch joining the upstream thermodynamic state and the tested final state on the
H-line. The Liu–Oleinik condition is a necessary condition for a dissipative structure
to exist (Liu 1976). It was used by Menikoff & Plohr (1989) and Zhao et al. (2011)
in the context of mixed nonlinearities in BZT fluids. Another admissibility criterion
was also formulated by Lax (1971) (Lax’s generalised entropy condition) and used by
Cramer (1989) and Cramer & Crickenberger (1991) for dense gases. This condition
asks for the segment of the R-line connecting the upstream and downstream states of
the shock to lie entirely above (compression shocks) or below (expansion shocks) the
H-line. It is straightforward to see the equivalence between the two conditions in the
context of shocks in BZT fluids.

Remarkably, all admissibility criteria can be conveniently read in the (p, ϑ)-diagram.
A useful relationship between the ratio of the slopes of the Hugoniot and Rayleigh
lines at the downstream state and the downstream Mach number provides a way
of graphically checking the Landau evolution criterion. This relation is obtained by
combining a differentiation along the H-line at constant upstream conditions with the
Gibbs thermodynamic identity (Cramer 1989),

∂p2

∂ϑ2
− JpK

JϑK
= j2

M2
2

M2
2 − 1(

1+ JϑK
2ϑ2

G2

) . (2.5)

Therefore, on the right-hand-side branch of the H-line (where 1+ JϑKG2/(2ϑ2) > 0
from earlier assumptions), the post-shock Mach number is subsonic if the slope of the
H-line is smaller (steeper down) than the slope of the R-line and supersonic if it is
greater. A sonic post-shock state is reached when the two curves are tangent. Figure 1
gives a picture of the admissibility problem for weak solutions of compression shocks
(with upstream condition on point 1 ) considered on Hugoniot curves representative
of classical and non-classical gas dynamic. For the positive nonlinearity with convex
H-line (or the negative nonlinearity with concave H-line), the compression shocks
starting at 1 (or expansion shock starting at 2 ) are the only discontinuities satisfying
the entropy-increase criteria (and thus Landau’s wave orientation stability constraint);
see figure 1(i). When a mixed nonlinearity is involved (see figure 1(ii–iii)), which
is typical for dense gases near the TCP (Thompson & Lambrakis 1973; Cramer &
Kluwick 1984; Cramer & Sen 1986), Lax’s entropy criterion is no longer guaranteed
by the convexity property of the H-line. Let us consider the admissibility problem
of compression shocks from upstream states with Γ > 0 (point 1 in figure 1(iii)),
from which the H-lines cross a Γ < 0 region and have their convexity changed.
Two different situations may occur. If there is no sonic point on the H-line, then
all compression shocks are admissible. If there exists a sonic point on the concave
part of the H-line (point a in figure 1(iii) for which Γ < 0), there exists a branch
(from a to b) that violates Landau’s evolution criterion (the slope of the R-line being
steeper down than that of the H-line). This branch corresponds to unstable waves
that will not remain scale invariant. At b, the post-shock condition is again sonic.
Branch b to c corresponds to compression shocks that satisfy the entropy-increase
criterion (classical Lax criterion) and therefore Landau’s stability criterion but are still
inadmissible by failure to fulfil the Liu–Oleinik criterion (or equivalently the general
Lax criterion, see Lax 1971). The solution of the Riemann problem with initial data
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taken on this branch is found to degenerate into a non-classical composite wave of
type sonic shock/compression fan/shock (Cramer 1989) and is therefore not a suitable
base flow. Branches 1 to a and c to the highest pressure limit are admissible and
remain scale invariant. A limiting case is found when a sonic point with Γ = 0
exists on the H-line, in which case all compression shocks are still admissible (see
figure 1(ii)).

Admissibility criteria for compression shockwaves are readily checked when plotting
the post-shock Mach number against the pre-shock Mach number (see figure 1). Let us
assume a positive value of the fundamental derivative of gas dynamics at the pre-shock
state. For low enough pre-shock Mach number M1, the post-shock state is still with
Γ > 0 and the post-shock Mach number M2 is a decreasing function of M1 (classical
behaviour). If there exists a finite section on the Hugoniot curve with Γ < 0, it is
possible to observe a non-monotonic variation of the post-shock Mach number with
increasing shock strength, for post-shock states that lie after the first inflexion point on
the H-line, see (2.5) (non-ideal-gas effect). The non-admissible branches a–b and b–c
from figure 1(iii) are part of a loop in M2(M1), which is consistent with the expression
of the Liu–Oleinik maximum wave speed criterion (for each point on the b–c branch
there exists an intermediate point on the H-line with higher wave speed). In fact, it is
the consequence of a change of variation of the R-line slope (i.e. the mass flow rate
j) when the post-shock state point is moving from sonic condition on the non-convex
part of the H-line in the (p, ϑ)-diagram (red segment in figure 1(iii)). For the limiting
case when a post-shock sonic state is reached for Γ2= 0, the post-shock Mach number
reaches a maximum of one with no inadmissible loop.

These different scenarios are illustrated in figure 2 using a van der Waals model
of the PP10 gas for which cv/R = 78.2 (see appendix A). Pre-shock states at
critical temperature but different upstream pressures are investigated. A behaviour
in agreement with that of an ideal gas is obtained at low Mach numbers for low
pressures (e.g. p1/pc=0.13). A progressive departure from the ideal-gas-law behaviour
is observed when the post-shock state reaches the TCP region. The divergence occurs
at lower shock speeds (M1) when the pre-shock state is brought closer to the TCP,
corresponding to higher p1/pc values on the critical isotherm (e.g. p1/pc = 0.65). A
local maximum in M2(M1) emerges above a given upstream pressure p1/pc (due to
the mixed nonlinearity along the H-line) but does not necessarily imply the existence
of a sonic post-shock state (see p1/pc = 0.45 in figure 2b). When a non-admissible
path is found on the H-line (thin lines in figure 2b), the post-shock Mach number
M2 becomes a discontinuous function of M1. Sonic-shock formation in van der
Waals gases has been derived analytically in Cramer & Sen (1987) and has been
shown to be a direct consequence of the occurrence of states with Γ < 0 on the
H-line. A line joining all double-sonic rarefaction pre-shock states has been derived
for an arbitrary equation of state by Zamfirescu et al. (2008). Their discussion is
restricted to rarefaction shockwaves which are very different as far as the admissibility
problem is concerned. Indeed, double-sonic compression shocks are not admissible
in general in single-phase gases with positive Grüneisen index (decreasing H-line in
(p, ϑ)-diagram); they fail to fulfil the Liu–Oleinik admissibility condition (Kluwick
1993); while double-sonic rarefaction shocks are admissible. Therefore, post-shock
sonic states necessarily occur when M1 6= 1. Thus, the picture given by the four
selected reduced pressures is representative of the general evolution of the post-shock
Mach number for compression shockwaves with pre-shock states approaching the
TCP. Thus, for a given upstream thermodynamic condition with H-line featuring a
discontinuous admissible path, there exists a mass flow rate for which the post-shock
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FIGURE 2. Non-ideal-gas effects on the post-shock Mach number (for which T1 = Tc)
(a) and detailed view of the Mach number range up to 1.5 (b). The equivalent ideal-gas
configuration is shown by dashed lines. The thin lines indicate the non-admissible paths.

conditions (e.g. in a nozzle) change abruptly for arbitrarily small changes in upstream
conditions.

Scale-invariant admissible compression shocks originating from point 1 in figure 1
are used in the next section as the base flow in a small-perturbation analysis. As is
first inferred here, a discontinuous admissible Hugoniot locus is a typical feature of
non-ideal-gas dynamics and will have a significant impact on the refraction properties
of shocks in non-ideal gases (e.g. BZT fluids).

2.3. Isothermal-shock limit
This paper makes frequent references to a hypothetical infinitely dense gas (i.e. a
fluid with cv/R→ +∞). This section provides a few comments relating to such a
limit. For simplicity, fluids with constant isochoric heat capacities (polytropic gas) are
considered.

Let us assume that a finite change of internal energy is supplied, for instance
through a shockwave (i.e. equal to the work done by the average pressure), to a
‘fluid’ parcel modelled with a theoretical infinite cv/R value (such a ‘fluid’ would
be made of molecules with an infinite number of active degrees of freedom). It is
clear from the definition cv ≡ (∂e/∂T)ϑ that a necessary condition for the internal
energy to remain finite is that such change be following an isothermal process.
Hence, the shock becomes an isothermal process. It should be noted that we recover
the unphysical isothermal shockwave theoretical model of Stokes (1848) (with the
noticeable difference that the speed of sound in arbitrary media may change even
at constant temperature). It is also well known that, in this limiting case, isentropes
converge towards the isotherms in the (p, ϑ)-diagram (Thompson & Lambrakis 1973;
Cramer 1989). Thus, such ‘fluids’ have their H-lines coinciding with the isotherms,
which are also the isentropes, in the (p, ϑ)-diagram.

Of course, isentropic or isothermal compression shocks have no physical meaning
(Rankine 1870), and the limits should be seen as qualitatively inferring the behaviour
of shocks for large and finite values of cv/R for which the entropy increases along the
Hugoniot paths. A similar asymptotic argument was used by Thompson & Lambrakis
(1973) to infer the existence of a negative Γ region in the vapour-phase near-critical
conditions for fluids with large molecular heat capacities.
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3. Compression-shock refraction properties in dense gases
Following Ribner’s analysis (Ribner 1954), we first derive a small perturbation of

the Euler equations for an arbitrary equation of state. A convenient basis suitable
for analysis in the (p, ϑ)-diagram is used here. The resulting eigenvector basis is
then used to project small-amplitude waves in a linear interaction analysis with an
admissible compression shockwave. It provides the refraction amplification/generation
coefficients.

3.1. Small perturbation of 1D inviscid flows with arbitrary equations of state
The eigenmode basis of the Euler equations was first derived by Kovásznay (1953)
in the context of weak turbulence generated in a supersonic flow modelled with an
ideal-gas equation of state. Small perturbations were found to propagate along an
entropy mode, two acoustic (irrotational) modes and a divergence-free vortical mode.
This idealised picture was used by many authors (Ribner 1954; Lee et al. 1997;
Larsson & Lele 2009; Sinha 2012) to address the question of compressibility effects
on turbulence. A weakly nonlinear formulation of these interactions has also been
provided (Chu & Kovásznay 1958).

For simplicity, a uniform one-dimensional flow is assumed here. A consequence
is that no vortical mode will be considered and most of our attention focuses on
non-ideal-gas effects on the generation of the acoustic field and the amplification of
entropy waves at the shock. A small perturbation (ε� 1) is added to the piecewise
uniform base flow (µ̄),

µ(x, t)= µ̄+ εµ′(x, t)+ o(εµ̄). (3.1)

The flow perturbation satisfies the one-dimensional linearised Euler equations in
non-dimensional form. Reference thermodynamic variables are taken at the TCP (see
appendix A) and the velocity scale is chosen in accordance (u∗ref ≡

√
p∗c/ρ∗c ), while a

characteristic length scale is provided by the flow perturbation (λ∗), resulting in

∂µ′

∂t
+ Ā

∂µ′

∂x
= 0+ o(µ̄ε), where µ′ ≡

ρ ′u′
p′

 , Ā≡
ū ρ̄ 0

0 ū 1/ρ̄
0 ρ̄c̄2 ū

 . (3.2)

Solutions to (3.2) are sought in the form of plane travelling waves,

µ′(x, t)= [ξρ, ξu, ξp]T exp[i(kx−ωt)], (3.3)

where k = 2π/λ is the wavenumber and ω is a prescribed constant angular velocity
(see § 3.2). Equation (3.2) reduces to the eigenvalue problem

Ā · µ′ = σµ′, (3.4)

with σ = ω/k the eigenvalues of Ā. Each eigenvalue will have an associated unit
eigenvector, denoted e,σs = ū, es =

1
0
0

 ,

σa± = ū± c̄, ea± = 1√
1+ c̄2(c̄2 + 1/ρ̄2)

 1
±c̄/ρ̄

c̄2

 .

(3.5a,b)
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FIGURE 3. (Colour online) Dense-gas degeneracy of the eigenmode basis close to
the TCP.

We recognise Kovásznay’s entropy eigenmode denoted by (·)s and the right/left
running acoustic eigenmodes (·)a± . The general wave solution of (3.2) can be
represented as any linear combination of these three modes. The dependence on
the equation of state is embedded in the speed of sound. It is of particular interest to
notice that for fluids with molecules featuring a high number of degrees of freedom
(typical for dense gas), the speed of sound decreases along an isentropic compression
in the dense-gas region, down to a very low value near the TCP (Thompson &
Lambrakis 1973). This may come with a degeneracy of the basis, in which case a
strong bias towards density fluctuation is expected. This is illustrated in figure 3,
which represents the evolution of the unit eigenmode basis (es, ea+, ea−) expressed
in terms of the primitive variables (ρ, u, p) for an isentropic process following the
critical isentrope (the quarter unit sphere is represented for convenience). Thompson &
Lambrakis (1973) have demonstrated the convergence of isentropes towards isotherms
for large values of cv/R. In figure 3, both the critical isentrope and isotherm lines
are represented for the PP10 gas with cv/R = 78.2, using a van der Waals equation
of state (see appendix A). For an isentropic process in the dilute-gas limit (i.e. high
specific volume) along the critical isentrope, the speed of sound is low (it vanishes
for infinite specific volume) and the acoustic eigenvectors tend to be aligned with
[0, ±u, 0]. Thus, in the limit of infinite specific volume, the basis degenerates. The
pressure and density fluctuations are then expected to be negligible compared with
the velocity fluctuations. For an isentropic process in the high-pressure limit along
the critical isentrope, the acoustic eigenvectors tend to align towards [0, 0, p] and
the velocity and density fluctuations are expected to be negligible compared with the
pressure fluctuations. The basis also degenerates. These two limits are found in every
equation of state; they match their ideal-gas asymptotic limits. For a dense gas close
to the TCP where the sound speed is very small, the acoustic eigenvectors tend to
align towards [ρ, 0, 0] and both the pressure and velocity fluctuations are negligible
relative to the density fluctuations. Once again, the eigenmode basis degenerates (for
cv/R→+∞) but with a triple-valued eigenvalue which is not possible in ideal gases.
The black thick lines in figure 3 (right) illustrate paths of the eigenmode basis along
the critical isentrope (from the dilute-gas to the high-pressure limit) for PP10. The
linear interaction of these modes with a shockwave is investigated in the next section.
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 0 0
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Shock path

t

x
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FIGURE 4. (Colour online) Sketch of the entropy-mode refraction configuration. A one-
dimensional shock travels at constant speed ūs through a fluid at rest (uR= 0) on which a
periodic perturbation (in space, with periodicity λs1 ) is superimposed. The shock path ζ (t)
oscillates around the mean shock position ūst. The reference frame attached to the mean
shock is denoted η(t), and the actual shock position in that reference frame is denoted ηs.
(a) Spatio-temporal (x–t) diagram and (b) density profile in the reference frame moving
with the mean shock position. The refracted density profile is the sum of entropic (with
periodicity λs2 ) and downstream-propagating acoustic (with periodicity λa+2 ) perturbations.

3.2. Linear shock-refraction properties with arbitrary equations of state
Let us consider a base flow consisting of an isolated one-dimensional compression
shock whose compressed state is taken on the admissible branch defined in § 2
(upstream state µ̄1 with M1 > 1 and downstream state µ̄2 with M2 6 1). The shock
is moving at a constant speed ūs in the laboratory reference frame. Its position
at time t is set by the unique parameter xs(t) = ūst (assuming xs(0) = 0). For
simplicity, we introduce a new coordinate axis attached to the mean shock position
η= x− xs and work in the reference frame attached to the moving shock. The uniform
uncompressed side of the shock is perturbed with a prescribed small-amplitude wave,
projected on the aforementioned eigenmode basis, which propagates through the
shock discontinuity in the chosen reference frame. The compressed side and the shock
front are therefore both perturbed. The fluctuating flow field satisfies the linearised
Rankine–Hugoniot relations at the perturbed shock front. The linear-wave/shock
interaction problem is solved by considering the most widely accepted methodology
(D’yakov 1954; Kontorovich 1957; McKenzie & Westphal 1968; Bates 2004; Tumin
2008), which consists of taking as independent linear modes the incoming mode
(entropy, upstream-propagating acoustic or downstream-propagating or acoustic), the
refracted linear modes (one entropy and one downstream-propagating acoustic mode)
and the unsteady shock displacement. The classical linearised Rankine–Hugoniot
relations are solved at the shock front without additional surface tension terms
(originated from inertial effects), as suggested by Lubchich & Pudovkin (2004).

The Rankine–Hugoniot conditions (2.1) are expressed at the shock position in the
reference frame moving with the shock. A perturbation of this base flow (denoted with
.̄) is now performed (with characteristic length scale λ). The instantaneous flow field
is defined by parts as

µ1(η, t)= µ̄1(η)+ εµ′1(η, t)+ o(εµ̄1(η)), η ∈ ] −∞, ηs(t) [,
µ2(η, t)= µ̄2(η)+ εµ′2(η, t)+ o(εµ̄2(η)), η ∈ ] ηs(t),+∞ [,

ηs(t)= εη′s(t)+ o(ελ),

 (3.6)

and µ̄1 and µ̄2 are solutions to the algebraic system of (2.1).
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In what follows, the shock is perturbed by an entropy mode (density fluctuations
without velocity and pressure fluctuations) and a boundary value problem is solved
at the shock front. This approach is different from the linear stability analysis of
the shock front (D’yakov 1954; Kontorovich 1957; Bates 2004) in the literature.
Here, the linear refraction properties (wave transmission coefficients) of compression
shocks are solved when the shocks are continuously forced with an entropy mode of
prescribed angular velocity (ω is real and constant). The shock is considered to be
a true discontinuity and to be continuously forced, consistent with the choice of a
constant ω value. The general form of the problem can be summarised as follows.

(i) On the upstream supersonic side of the shock lies the continuous forcing by a
unitary entropy mode,

µ′1 =µ′s1
=
1

0
0

 ei(ks1η−ωt) (η > ηs), with ks1 =
ω

ū1
. (3.7)

(ii) On the downstream subsonic side of the shock lie both the post-shock entropy
and acoustic modes leaving the shock,

µ′2 =µ′s2
+µ′+2

= χs

1
0
0

 ei(ks2η−ωt) + χa+

 1
c̄2/ρ̄2

c̄2
2

 ei(k+2η−ωt) (η < ηs),

with ks2 =
ω

ū2
, k+2 =

ω

ū2 + c̄2
. (3.8)

(iii) The velocity of the shock oscillations is given by

u′s ≡
dη′s
dt
= δe−iωt. (3.9)

The boundary conditions at the shock front are used to obtain analytic expressions
for both the entropy-mode amplification χs and the acoustic-mode generation χa+
coefficients for a general equation of state (see appendix B).

4. Post-shock amplification of an incoming entropy mode
Dense-gas effects on the shock-induced entropy-mode amplification are analysed

here. Solving a boundary value problem at the shock front gives the expression for
the entropy-mode amplification coefficient for an arbitrary equation of state (see
appendix B),

χs =
[
ϑ̄1

ϑ̄2

]2 j2 +M2
2
∂ p̄2

∂ϑ̄2
+ ∂ p̄2

∂ϑ̄1
(M2 + 1)2

j2 − ∂ p̄2

∂ϑ̄2
(2M2 + 1)

. (4.1)

4.1. Dense-gas shocks with an infinite cv/R value
It can be shown that the value of χs for a post-shock state at the critical point (with
cv/R→ +∞) goes to positive infinity (see appendix C). It is conjectured that for
finite and large values of cv/R, compression shocks with near-TCP post-shock states
featuring finite and large values of χs can exist. This is illustrated hereafter using a
van der Waals model. It is important to stress that this limiting case has no physical
meaning. The question of shock admissibility must be addressed before commenting
on the post-shock transmission coefficients. For cv/R→+∞, the horizontal tangent
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point at the TCP on the isothermal H-line cannot be a Landau-admissible compression
post-shock state as the post-shock Mach number is then singular (due to the vanishing
sound speed as a result of the isentropes coinciding with the isotherms). A subset of
(arbitrarily) large but finite values of χs is instead expected in the subset of admissible
shocks with post-shock states near the critical point when cv/R is made larger and
larger.

The sensitivity of χs to near-critical post-shock conditions when the limit
cv/R → +∞ is reached is provided for a van der Waals gas (see figure 5). The
diagrams represent contour plots of χs obtained for shocks with low (figure 5a) and
higher (figure 5b) upstream reduced pressures. Hugoniot lines (black lines) are drawn
for shocks with a constant upstream reduced pressure, set to p1/pc = 0.13 (figure 5a)
and p1/pc = 0.55 (figure 5b), and for different reduced specific volumes starting
from the critical temperature to supercritical temperatures. Isolines of upstream Mach
numbers are also shown. They correspond to the required shock speed to reach the
corresponding post-shock thermodynamic state on the H-lines. All H-lines (which
coincide with the isotherms here) start from the horizontal M1 = 1 line for the two
given upstream pressures. For large values of the upstream specific volume, the linear
isotherms in the (log p, log ϑ)-diagram for the ideal-gas model are recovered. Along
these dilute-gas isotherms, χs is a monotonically increasing function of M1 (for this
range of upstream Mach numbers). A large local maximum of χs is then observed
along every isotherm when the post-shock states reach near-TCP conditions. The value
of the local maximum along each isotherm increases with lower pre-shock pressures
and can be made arbitrarily large in the infinitely dense gas limit. The upstream
Mach numbers (M1) corresponding to these local maxima in χs decrease for increasing
upstream pressures. For p1/pc=0.55, large entropy-amplification coefficients are found
for relatively weak shocks (M1 ≈ 1.3). For both reduced pressures, χs is singular at
the TCP; the maximum values obtained in the subset of admissible post-shock states
(points not enclosed by the green line) are of order 103 and 101 respectively.

The use of the van der Waals analytical equation of state (EOS) in the isothermal
infinitely dense gas limit is convenient to isolate the TCP compressibility effects
from other TCP behaviours (e.g. large change of heat capacities). Indeed, it is
clear from figure 5 that the stronger the local deformation of the isotherm in
the (p, ϑ)-diagram is the higher the entropy-amplification factor is. At the TCP,
the critical isotherm eventually features a saddle point and the transmission factor
diverges. This plateauing of the isotherms close to the TCP, and thus of the isentropes,
indicates a decrease of the speed of sound (eventually vanishing at the TCP in this
limit). This typical dense-gas compressible property comes with a tendency towards
degeneracy of the linearised Kovásznay eigenmode basis (see the general discussion
in § 3.1). Figure 6 illustrates the ‘trajectory’ of normalised slow and fast post-shock
acoustic eigenvectors in a quarter unit sphere representation for increasing pre-shock
Mach numbers along the critical isotherm. The two upstream pressures (blue lines)
from figure 5 are considered together with the equivalent ideal-gas ‘trajectories’
(black). The non-admissible post-shock region is indicated in light blue. A larger
non-admissible part is expected as the upstream state is approaching the TCP and
the negative-Γ region. The singularity for which the eigenbasis degenerates towards
a density-fluctuation orientation is found at the TCP, as expected. The ideal-gas
eigenmode basis only degenerates towards velocity (for low upstream reduced
pressures) and pressure (for post-shock pressures going to infinity) fluctuations.
Once again, these two singularities are also recovered for a non-ideal gas considered
in the same limits. Finally, the eigenmode basis corresponding to a pre-shock Mach
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FIGURE 5. (Colour online) The divergence of the entropy-amplification factor at the TCP;
(p, ϑ)-diagram of χs isocontours and H-lines (solid black lines) for cv/R→+∞ using
the van der Waals model (appendix A). Upstream Mach numbers (M1) indicating the
shock speed needed to reach the corresponding thermodynamic state on the H-lines are
represented by the black dashed lines with labels. Ideal-gas H-lines (thick grey lines) are
represented in the dilute-gas limit. The Γ = 0 and T = Tc isolines are represented with
thick orange and thick blue lines respectively. The near-TCP non-admissible region is
enclosed within the region delimited by the green line. Strong non-ideal-gas amplifications
of the incoming entropy modes are found for realistic pre-shock Mach numbers (M1<3.0).
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FIGURE 6. (Colour online) Post-shock normalised Kovásznay eigenmode basis evolution
along the critical H-line for cv/R→+∞ using the van der Waals model. The admissible
path is shown in dark blue while the non-admissible path is represented in light blue. The
corresponding ideal-gas eigenmode basis evolution is shown in black.

number that brings the post-shock state close to a maximum of χs on the admissible
part of the H-lines is illustrated for the two upstream pressures. These results are
investigated for finite values of the parameter cv/R in the following two sections.

4.2. Dense-gas shocks with finite cv/R values
Results for a van der Waals gas with a large value of cv/R= 78.2 (corresponding to
the PP10 gas) are reported for H-lines featuring at most one or two sonic points.
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4.2.1. Hugoniot lines with at most one sonic point: a selectivity effect
A key feature of the result obtained in the infinite dense-gas limit is the plateauing

of the H-line in the (p, ϑ)-diagram when the post-shock state approaches the TCP.
In this diagram, the local changes of both the H-line slope and the post-shock Mach
number (which appear explicitly in the amplification coefficient, see (4.1)) are indeed
directly linked to the sound speed.

For a given ideal gas (e.g. a given γ ), the density, velocity and pressure jumps can
be parametrised by the upstream Mach number M1 without any other dependence with
respect to the upstream conditions. As a result, H-lines drawn in the (log p, log ϑ)-
diagram for a given upstream pressure and different upstream specific volumes are
deduced one from another simply by a translation along the log ϑ-axis. When a non-
ideal equation of state is used instead, the jump properties are not simply functions of
M1 but also depend on the upstream thermodynamic state, making the H-lines a two
degrees of freedom map in this diagram (see figure 7a). For high upstream specific
volumes, when the gas is in its ideal-gas asymptotic limit, the van der Waals H-lines
match those obtained for the equivalent ideal gas (i.e. with γ = 1.013 for PP10). For
post-shock states near the TCP region, the H-lines lean towards the critical isotherm
(depicted with a thick blue line passing through the TCP) and depart from the ideal-
gas H-lines (this is expected for large cv/R values). The main consequence of this
deformation of the H-lines is that results obtained in the infinitely dense-gas limit
are recovered even at finite cv/R values, i.e. χs has a local maximum along H-lines
passing near the TCP.

The same trend towards degeneracy as that for infinitely dense gases is seen for
the eigenmode basis along the critical H-line (see figure 7b). For this finite value
of cv/R, the local maximum of χs on the critical H-line matches the point on the
quarter unit sphere for which the basis is the most density-oriented. Interestingly, there
exists another local maximum of χs in the dilute-gas limit. Its value is reached for
a large value of the pre-shock Mach number (M1 = 12) and matches the pre-shock
Mach number for which the equivalent ideal-gas eigenmode basis is the most oriented
towards density fluctuations.

For dense gases, the local changes of shock adiabat near the TCP are the result
of both the high number of degrees of freedom in the gas molecules (which implies
high values of cv/R which in turn brings the H-line close to the isotherm) and the
increase of inter-molecular interactions between particles near the TCP (the saddle
point of the isotherm at the TCP being a consequence of these interactions). However,
the present results are not fundamentally restricted to dense-gas dynamics, and any
additional source term in the energy equation that may create a similar deformation
of the Hugoniot path can potentially reproduce the conditions observed here for dense
gases close to the TCP (e.g. ionisation, see Griffiths, Sandeman & Hornung 1976).

Dense-gas effects on the entropy-mode amplification are made clear from figure 8,
which represents the evolution of χs along the critical H-line (T1= Tc) for increasing
upstream Mach numbers. The non-ideal-gas value of χs is similar to the corresponding
ideal-gas value for small values of the upstream Mach number, which is expected
at low upstream reduced pressure and critical temperature. It is in agreement with
the results from figure 7, which illustrates the weak dependence of the eigenmode
basis with respect to the equation of state at low Mach number for those upstream
conditions. When the downstream state reaches near-TCP conditions, the non-ideal-gas
value of χs can be one order of magnitude higher than the ideal-gas value (for this
choice of cv/R and upstream pressure and temperature). This large isolated value of
χs will have an influence on the (linear) interaction of shocks with arbitrary incoming
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FIGURE 7. (Colour online) Strong near-critical entropy-mode amplification coefficient for
p1/pc=0.13. (a) The χs isocontours and H-lines (solid black lines) for the PP10 gas using
the van der Waals model (appendix A). The M1 values needed to reach the corresponding
thermodynamic state on the H-lines are represented by the black dashed lines with labels.
Ideal-gas H-lines in the dilute-gas limit are represented by thick grey lines. The Γ = 0
and T = Tc isolines are represented with thick orange and thick blue lines respectively.
(b) Acoustic eigenmode ‘trajectories’ along the H-line with T1= Tc. The vectors represent
the basis when M1 = 3.10. The corresponding ideal-gas path is shown in black.

perturbations. Indeed, in the linear framework, small fluctuations are expected to be
strongly amplified by dense-gas shocks with unperturbed Mach number close to the
local maximum in figure 8 (i.e. around M1 = 3.1). However, for a small change in
the base flow (e.g. by modification of the nozzle geometry), any small perturbation
would be significantly less amplified due to the sharp drop of χs around this local
maximum. The resulting refracted perturbed flow can then be strongly selected from
the incoming perturbed flow based on a small change in the base flow. This one-
dimensional dense-gas selectivity effect is likely to have a significant impact even at
higher dimensions, as the one-dimensional results set the behaviour of shock-normal
perturbations regardless of the dimension considered (in the linear regime). This non-
ideal-gas effect is to be added to the degeneracy of the post-shock eigenmode basis,
which forces the post-shock energy to be propagating along a direction more aligned
with density fluctuations in the (ρ, u, p) space.

It is worth mentioning that large extrema of χs come with strong contractions in
wavelengths (see figure 8b). This contraction effect can be much stronger than the
usual contraction observed in ideal gases. The higher values of χs also suggest that
nonlinear interactions may be more important than in ideal gases. This may have
significant consequences on the evolution of the turbulence kinetic energy behind the
shock near the TCP. With the decrease of the post-shock characteristic length scales,
viscous effects play a greater role in the post-shock evolution of the turbulent kinetic
energy, indirectly promoting kinetic energy dissipation.

4.2.2. Hugoniot lines with two sonic points: discontinuous discontinuities
In this section, we investigate the mixed-nonlinearity effects on the evolution of χs.

Near-TCP upstream pressures are thus considered. Figure 9 illustrates how the H-lines
starting at p1/pc= 0.55 and T1=Tc depart from their dilute ideal-gas limit towards the
dense-gas isothermal limit close to the TCP. Discrepancies with the ideal-gas model
are seen for low supersonic Mach numbers M1 ∈ [1, 2], as expected (see § 2.2). The
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FIGURE 8. (Colour online) The TCP effects on the refracted entropy-mode properties
(p1/pc = 0.13, T1 = Tc and cv/R = 78.2). Ideal gas is shown by dashed lines. The thick
lines indicate the range of Mach numbers for which the DK instability is expected (to be
discussed later).

importance of the critical-point vicinity of the upstream pressure in the discussion
of non-admissibility can be appreciated by comparing the two isothermal limits for
low upstream pressures (see figure 5a) and near-critical-point upstream pressures
(see figure 5b). A larger non-admissible region is obtained for near-critical upstream
pressures for which the H-line is more likely to feature a sonic point (Zamfirescu
et al. 2008), which is fundamental in the discussion of the admissibility problem (see
§ 2). In particular, the p1/pc = 0.55 and T1 = Tc H-line crosses a region of mixed
nonlinearity, which produces two sonic points and consequently a non-admissible
path (see figure 9b). Therefore, a jump in refraction properties is expected on the
admissible part of this H-line. This is illustrated with the jump on the quarter unit
sphere operated by the post-shock Kovásznay eigenmode basis (see figure 9b).

The main consequence on the entropy-amplification factor is the corresponding
discontinuity of χs with respect to M1 when the admissible part of the H-line
is considered. This can be seen in figure 10(a,b), where a jump in the entropy-
amplification factor is seen for different upstream pressures at M1 = 1.29 and
M1=1.16 respectively. Thus, for pre-shock conditions close enough to the TCP for the
H-line to feature two sonic points, there exists a critical mass flow rate for which a
negligible change in operating conditions would lead to significant modifications of the
refracted-flow properties. As was shown previously (see figure 2), the discontinuity of
the refraction coefficients occurs at lower upstream Mach number M1 as the reduced
pressure p1/pc approaches the critical point, and the corresponding discontinuity
can become larger (corresponding to a larger jump in the density coordinate of
the acoustic eigenmode basis). A consequence is that for near-critical conditions, a
non-classical selective behaviour is expected for weak shocks. The difference between
the classical ideal-gas entropy mode and the non-classical non-ideal-gas one is striking
for those weak shocks for which the ideal-gas scenario hardly amplifies incoming
entropy waves. This result could have potentially great impact on the transmission
properties of eddy shocklets commonly found in weakly compressible turbulent flows,
considering that near the TCP, entropy wave/shock interactions are more likely to
occur as density perturbations dominate over pressure fluctuations.
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FIGURE 9. (Colour online) Discontinuous entropy-mode amplification factor for p1/pc =
0.55. (a) The χs isocontours and H-lines (solid black lines) for the PP10 gas using the
van der Waals model (appendix A). The M1 values needed to reach the corresponding
thermodynamic state on the H-lines are represented by the black dashed lines with labels.
Ideal-gas H-lines in the dilute-gas limit are represented by thick grey lines. The Γ = 0
and T = Tc isolines are represented with thick orange and thick blue lines respectively.
The near-TCP non-admissible region is delimited with a green line. (b) Eigenmode
basis ‘trajectory’ along the critical H-line (T1 = Tc) with vectors for M1 = 1.30. The
non-admissible path is shown in light blue. The corresponding ideal-gas path is shown
in black.
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FIGURE 10. (Colour online) Discontinuous entropy-mode amplification factor for T1 =
Tc. The equivalent ideal-gas configuration is shown with dashed lines. The non-admissible
path is shown in light blue. The thick lines indicate the range of Mach numbers for which
the DK instability is expected (to be discussed later).

5. Post-shock acoustic generation from an incoming entropy mode
The post-shock acoustic-generation coefficient obtained from the refraction of an

incoming entropy mode is recalled here (see appendix B):

χa+ =−
[
ϑ̄1

ϑ̄2

]2

M2
2

∂ p̄2

∂ϑ̄2
+ ∂ p̄2

∂ϑ̄1

j2 − ∂ p̄2

∂ϑ̄2
(2M2 + 1)

. (5.1)
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FIGURE 11. (Colour online) The χa+ isocontours and H-lines (solid black lines) for
cv/R→+∞ using the van der Waals model (appendix A). Upstream Mach numbers (M1)
indicating the shock speed needed to reach the corresponding thermodynamic state on the
H-lines are represented by the black dashed lines with labels. Ideal-gas H-lines (thick grey
lines) are represented in the dilute-gas limit. The Γ =0 and T=Tc isolines are represented
with thick orange and thick blue lines respectively. The near-TCP non-admissible region
is enclosed within the region delimited by the green line.

5.1. Dense-gas shocks with an infinite cv/R value
Following the same reasoning as for the asymptotic limit of χs, it can be shown
that the value of χa+ at the critical point goes to negative infinity. The same
precaution as the one taken near the singularity of χs has to be considered for
the admissibility problem of shocks near the TCP. The isothermal limit suggests
two main non-ideal-gas effects on the post-shock acoustic emission produced from
incoming entropy perturbations. The first one is a similar selective effect to the one
observed in the entropy-mode amplification case. This can be seen in figure 11(a),
where large variations of χa+ are expected for post-shock states near the TCP. The
second one is the negative value of the limit, which suggests an anti-correlation
(phase shift of π) of the post-shock acoustic emitted field and the post-shock entropy
mode (density/temperature fluctuations) at the shock front. This effect is present for
both low and high upstream pressure (see figure 11a,b), but affects a wider area in
the (p, ϑ)-diagram near the TCP when the pre-shock state is closer to the TCP.

5.2. Selective acoustic emission
Results for finite values of cv/R are now considered (see figure 12). A good agreement
with the theoretical infinitely dense-gas limit can be obtained for the van der Waals
equation with cv/R = 78.2 (PP10 gas). The local maxima of χa+ along the H-lines
starting at p1/pc= 0.13 are indeed very similar to their ‘isothermal’ limits apart from
the loss of the anti-correlation region and the non-admissible region. For the near-TCP
upstream state, however (see figure 12b), there exist both a non-admissible region
(due to the presence of two sonic points on the H-lines when approaching the TCP)
and an anti-correlation region. As was observed with the evolution of χs for different
upstream pressures, non-ideal-gas effects are related to weaker shocks if the upstream
pressure is increased from p1/pc = 0.13 to p1/pc = 0.55 and are more pronounced at
critical temperature (i.e. T1 = Tc) for single-phase flows.
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FIGURE 12. (Colour online) Non-ideal selective acoustic emission; χa+ isocontours
and H-lines (solid black lines) for cv/R = 78.2 using the van der Waals model
(appendix A). Upstream Mach numbers (M1) indicating the shock speed needed to reach
the corresponding thermodynamic state on the H-lines are represented by the black dashed
lines with labels. Ideal-gas H-lines (thick grey lines) are represented in the dilute-gas limit.
The Γ = 0 and T = Tc isolines are represented with thick orange and thick blue lines
respectively. The near-TCP non-admissible region is enclosed within the region delimited
by the green line.

Figure 13(a) illustrates the evolution of χa+ for increasing Mach number for a pre-
shock state at p1/pc = 0.13 and T1 = Tc. The value of χa+ is plotted alongside the
value of the generated acoustic wavelength. The local maximum of χa+ matches the
local maximum of the acoustic wavelength compression ratio (see figure 13b). The
generated acoustic wavelengths are then more likely to be sensitive to wave steepening
than their ideal-gas counterparts (for the same value of M1), which could have a great
impact on compressibility effects in turbulent flows. However, these short wavelengths
are more prone to viscous damping.

As was seen for χs at higher upstream pressure, shocklets can exhibit discontinuous
refraction properties with respect to M1. This is also the case as far as the acoustic
generation is concerned (see figure 14a). Another important aspect of near-TCP
shocklets is the appearance of an anti-correlation region (χa+ < 0), and the generated
acoustic mode is thus beating out of phase (phase shift of π, see (3.8)) with the
refracted entropy mode at the front, making the corresponding shocklets very different
from their ideal-gas counterparts, for which χa+ is always positive. Once again,
the admissible path along a given Hugoniot is very important to comment on the
refraction properties, and can complicate the evolution of the refraction coefficients.
An example of this non-intuitive evolution can be seen for the shocks at p1/pc= 0.65,
for which the resulting χa+ discontinuity is small (see figure 14b) despite a significant
jump in χs (see figure 10b).

5.3. On the possibility of ‘silent’ interactions normal to the shock front
The sign change of the acoustic-generation coefficient for some of the H-lines
considered implies that there exist mass flow rates (or M1 values) for which χa+ = 0.
Therefore, shocks with no generated acoustic waves following an entropy-mode
refraction are possible. This result contrasts with that of ideal gases (for which
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FIGURE 13. (Colour online) Acoustic-generation coefficient and wavelength (obtained
from the k+2/ks1 ratio) for p1/pc= 0.13, T1= Tc. The equivalent ideal-gas configuration is
shown with dashed lines. The thick lines indicate the range of Mach numbers for which
the DK instability is expected (to be discussed later).
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FIGURE 14. (Colour online) Discontinuous acoustic-generation coefficients (T1= Tc). The
equivalent ideal-gas configuration is shown with dashed lines. The non-admissible path is
shown in light blue. The thick lines indicate the range of Mach numbers for which the
DK instability is expected (to be discussed later).

perturbations normal to the shock front always generate an acoustic field) and could
significantly affect shock/turbulence interaction properties. In most cases, for a given
upstream pressure, two values of the upstream Mach number can give χa+ = 0 (see
figure 15). A broader view is provided by figure 15, in which the effect of the
thermodynamic upstream state is investigated by increasing the upstream temperature
at constant upstream pressure following the same methodology as for the previous
(p, ϑ)-diagram analysis. The subdomain of the (p, ϑ)-diagram inside which H-lines
feature at least one shock with χa+ = 0 is considered. Upstream Mach numbers are
indicated only for this subdomain. The post-shock values corresponding to vanishing
χa+ are represented on a line coloured with the local value of ∂χa+/∂M1 (low values
in light blue, high values in red). The post-shock state giving the maximum value
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FIGURE 15. (Colour online) On the possibility of silent shocks; the χa+ = 0 line
coloured by the magnitude of ∂χa+/∂M1 (high value in red, low value in light blue).
The line joining the maximum value of χs is also shown (white dashed line). Upstream
Mach numbers (M1) indicating the shock speed needed to reach the corresponding
thermodynamic state on the H-lines starting at p1/pc = 0.55 (a) and p1/pc = 0.65 (b) are
represented by the thin green lines with labels. The near-TCP non-admissible region is
enclosed within the region delimited by the thick green line. The contours represent the
local speed of sound normalised by its TCP value (cv/R= 78.2). The Γ = 0 and T = Tc
isolines are represented with thick orange and thick blue lines respectively.

of χs is also represented with a dashed white line. As expected from § 4, the local
maximum of χs is closely related to the local minimum of the sound speed, which
in turn strongly deforms the Kovásznay eigenmode basis towards density perturbation.
Regions of low values of ∂χa+/∂M1 on the isoline of vanishing χa+ can be identified
for both upstream pressures (for instance at M1≈1.5 and ϑ1/ϑc≈4.0 for p1/pc=0.55).
These shockwaves may be of interest for practical applications aiming at reducing
the generation of noise induced by the refraction of a density perturbation (e.g. ORC
turbine expanders).

6. About the D’yakov and Kontorovich criteria and potential 2D effects

The previous sections were aimed at presenting the peculiar properties of the
one-dimensional shock-refraction problem for dense gases in the (p, ϑ)-diagram,
which is found to be convenient to represent non-ideal-gas effects induced by the
TCP. In this section, known two-dimensional stability results in non-ideal gas are
presented in this diagram along with the importance of admissibility. The initial-value
problem of linear stability of shocks subjected to a prescribed perturbation of their
front has been conveniently expressed by D’yakov and Kontorovich (D’yakov 1954;
Kontorovich 1957; Swan & Fowles 1975) for an arbitrary equation of state by using
the unique scalar parameter

h= j2

(
∂ p̄2

∂ϑ̄2

)−1

. (6.1)

They showed that shocks are stable if

−1< h< 1+ 2M2. (6.2)
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Another important result from their linear stability analysis is the occurrence of
undamped acoustic waves from the perturbed front when

hc ≡ 1−M2
2(ϑ̄1/ϑ̄2 + 1)

1+M2
2(ϑ̄1/ϑ̄2 − 1)

< h< 1+ 2M2. (6.3)

This last relation is never fulfilled for an ideal gas (Bates 2000) but can be
satisfied when a non-ideal EOS is used. Although the theoretical prediction of this
neutrally stable acoustic emission was derived in 1954, the first attempt to observe it
numerically was provided by Bates (2000), who intended to produce a shock radiating
undamped acoustic waves from its front (using a van der Waals EOS). Apart from
a possible experimental observation in ionising blast waves (Nilson et al. 2009), to
the best of authors’ knowledge, there has been no experimental evidence of DK
acoustic emission, especially in single-phase gases. Even though the expression for
the condition of occurrence is rather simple provided that H-lines can be extracted
from the EOS, a practical representation of these conditions for single-phase non-ideal
gases would be valuable and is currently missing in the literature.

Figure 16 represents a set of H-lines originating at a constant upstream pressure
(p1/pc = 0.13 in figure 16a and p1/pc = 0.80 in figure 16b) and for different
increasing upstream temperatures starting at T1 = Tc. The H-lines are plotted in
the (p, ϑ)-diagram together with the liquid–vapour two-phase region for a van der
Waals gas (see appendix A). At each downstream point on a given H-line, the
DK parameter (6.1) is computed and the points that fulfil the acoustic emission
condition (6.3) are coloured in dark blue in figure 16. The DK acoustic emission
is expected to occur close to the TCP where the equation of state departs from
the dilute ideal-gas limit. With this representation in the (p, ϑ)-diagram, the effect
of the TCP is clearly seen for both upstream pressures. Indeed, the DK acoustic
emission regime is found for shocks whose post-shock states are in the supercritical
region close to the TCP. The shocks with low upstream pressures (see figure 16a)
feature a larger ‘DK area’ than the shocks with near-critical upstream pressures,
which may not be intuitive. Remarkably, the ‘DK area’ covers a large portion of the
H-lines with one-dimensional non-ideal-gas effects commented on in the previous
sections. The dynamic response of shocks under incoming supersonic perturbation
in this region is far from the ideal-gas response. Furthermore, a significant portion
of the ‘DK area’ is found to be non-admissible at high upstream pressure (the
inadmissible part being the area enclosed by the magenta line). This is a consequence
of the H-line crossing the BZT region. The BZT effects thus result in a narrower
observable ‘DK area’, which could make any attempt to observe it experimentally very
difficult.

7. Towards experimental observations
In the previous sections, the van der Waals cubic equation of state is used to

illustrate the one-dimensional shock-refraction properties near the TCP. Analytical
expressions for the transmission factors are then obtained. While the dense-gas
region is known to be qualitatively well captured by the van der Waals model,
stronger limitations are expected in the vicinity of the TCP where analytic EOSs
fail to predict the qualitatively correct behaviour of the fluid. Nevertheless, the
current theoretical framework does not depend on a specific choice of EOS. The
peculiar shock-refraction properties near the TCP are indeed found to result from
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FIGURE 16. (Colour online) The (p, ϑ)-diagram with the DK regions (dark blue) around
the critical point plotted on the Hugoniot locus (black lines). The region enclosed by
the magenta line in (b) indicates the non-admissible portions of the adiabats. Upstream
Mach numbers (M1) indicating the shock speed needed to reach the corresponding
thermodynamic state on the H-lines are represented by the green lines with labels. The
Γ = 0 and T = Tc isolines are represented with thick orange and thick blue lines
respectively.

(i) the sound-speed reduction along isentropic compressions (resulting in a peculiar
deformation of Kovásznay’s eigenmode basis) and (ii) the occurrence of a negative-Γ
region in the vapour phase (producing jumps of transmission factors along H-lines
featuring non-admissible paths). These properties are well reproduced by predictive
thermodynamic models.

In this section, a step towards the experimental observation of the current theoretical
findings is carried out. Shock-refraction properties are computed for siloxane D6
and toluene. Fluids of the siloxane family are identified as promising fluids for
experimental observation of non-ideal-gas compressible fluid dynamics near the
TCP (Colonna, Guardone & Nannan 2007) and have recently been targeted as
working fluids in newly designed experimental facilities aiming at reproducing these
conditions (Guardone, Spinelli & Dossena 2013; Spinelli et al. 2015; Head et al.
2016). Toluene has a simpler molecular complexity (lower value of cv/R in the
ideal-gas limit) compared with siloxane D6 and is currently used as a working
fluid in ORC turbines (Colonna et al. 2015; Rinaldi, Pecnik & Colonna 2016).
The thermodynamic model considered here is the 12-parameter Span–Wagner (SW)
(Span 2000) functional form EOS developed for siloxanes by Colonna, Nannan &
Guardone (2008) and for toluene by Lemmon & Span (2006). It is among the most
accurate thermodynamic models for these fluids and it was used in the design process
of the experimental facilities mentioned above. A well-known practical limitation
of near-TCP experimental observations of complex fluid dynamics is the thermal
degradation of the corresponding molecules close to the critical temperature (Colonna
et al. 2008). For this reason, the isotherm corresponding to experimental estimates
of the thermal stability limits for the two previously mentioned fluids is represented
in the following results. For both the siloxane D6 and the toluene this limit is set to
673 K (Angelino & Invernizzi 1993; Colonna et al. 2008).

The well-established program REFPROP (Lemmon, Huber & McLinden 2013)
is used to compute the thermodynamic properties of the fluids. The computation
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FIGURE 17. (Colour online) Shock-transmission-factor isocontours and H-lines (solid
black lines) for p1/pc = 0.13. Upstream Mach numbers (M1) indicating the shock speed
needed to reach the corresponding thermodynamic state on the H-lines are represented by
the black dashed lines with labels. Ideal-gas H-lines (thick grey lines) are represented in
the dilute-gas limit. The fluid is the siloxane D6 modelled using the 12-parameter SW
functional form EOS developed by Colonna et al. (2008). The isotherm corresponding to
the thermal stability limit (Angelino & Invernizzi 1993; Colonna et al. 2008) is indicated
by a thick red line. The Γ = 0 and T = Tc isolines are represented with thick orange and
thick blue lines respectively.

of H-lines is performed through numerical integration of the nonlinear system of
(2.1), and the derivatives needed in the computation of the transmission factors are
evaluated numerically. The results for the post-shock entropy-mode amplification and
acoustic-mode generation factors are reported in figure 17 for the siloxane D6 with
p1/pc= 0.13. As suggested by the asymptotic analysis (appendix C), for this complex
fluid with a large isochoric heat capacity (cv/R ≈ 170 near the TCP), both the
entropy-mode amplification and the acoustic-mode generation factors feature a large
extremum along H-lines for post-shock states near the TCP. The picture provided by
the van der Waals model is found to be robust, and within the thermal stability limit
of the fluid, when compared with the predictive SW model from Colonna et al. (2008).
For the conditions considered, the extreme amplification of entropy modes is in fact
stronger for the siloxane D6 modelled with the SW EOS than for the PP10 modelled
with the van der Waals EOS. The different cv/R values, together with differences in
the isotherm maps close to the TCP, result in H-lines that are more affected by the
TCP for the siloxane D6 than what the van der Waals model captures. This can be
appreciated with the evolution of Kovásznay’s eigenmode basis on the quarter unit
sphere (figure 18), from which a stronger tendency towards degeneracy is observed for
the siloxane D6 modelled with the SW EOS than when modelled with the analytical
EOS (resulting in a stronger amplification factor, see figure 18a). This observation is
also consistent with the existence of a non-ideal region of negative χa+ values (see
figure 17b) close to the TCP, a feature observed at higher upstream pressure for the
PP10 modelled with the van der Waals EOS. The non-ideal selective behaviour of the
compression shockwave is therefore stronger when the SW model is used. While it is
well known that the van der Waals model overestimates the negative-Γ region in the
(p, ϑ)-diagram and therefore the BZT effects, the new class of non-ideal properties
considered in this study can be stronger for predictive models. The discontinuous
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FIGURE 18. (Colour online) Comparison of technical and analytical EOS refraction
properties. (a) Evolution of the entropy-mode amplification factor with pre-shock Mach
numbers. The thick line indicates the range of Mach numbers for which the DK instability
is expected. (b) Eigenmode basis evolution along the H-line. The pre-shock state is fixed
to p1/pc= 0.13 and T1/Tc= 0.94 in both panels. The blue line represents the data obtained
for the siloxane D6 modelled with the SW EOS while the light blue and black lines
represent the results obtained for the corresponding van der Waals and ideal-gas models
respectively, with the same pre-shock conditions and cv/R= 102. The vectors correspond
to pre-shock conditions with M1 = 2.81 for which the χs value for the siloxane D6 is
approximately equal to 350.

refraction properties (‘discontinuous discontinuities’) are intrinsically linked to the
negative-Γ region. Although theoretically observable (see figure 19), their practical
observation is expected to be as challenging as the observation of BZT effects. Finally,
the selective behaviour of shockwaves is also recovered for fluids with molecules with
moderate numbers of active degrees of freedom and therefore featuring larger thermal
stability limits (see χs and χa+ for toluene in figure 20).

Another important class of results illustrated with the van der Waals model is
the non-ideal acoustic-generation properties. As shown in figure 21, good qualitative
agreement is found between the siloxane D6 modelled with the SW model and
the PP10 results modelled with the van der Waals EOS. Both the ‘DK spontaneous
acoustic emission’ and the silent shock property are found within the thermal stability
limit of the molecules, opening the way to their potential experimental observations.

8. Summary

A small-perturbation analysis of one-dimensional compression shockwaves subjected
to incoming entropy waves has been performed for gases modelled with a non-ideal
EOS. A general formalism that does not depend on a specific choice of EOS has been
used. The discussion has focused primarily on molecularly complex fluids (featuring
large values of cv/R), brought near their vapour–liquid critical point (TCP), and for
which the isentrope and shock-adiabat maps converge towards the isotherm map in
the (p, ϑ)-diagram. Although this convergence leads to well-known non-classical gas
dynamics (BZT fluids), it was shown here that peculiar shock-refraction properties
may also be expected.
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FIGURE 19. (Colour online) Discontinuous transmission factors in the siloxane D6 for
H-lines crossing the negative-Γ region (p1/pc= 0.800, T1/Tc= 0.986). The non-admissible
path is shown in light blue. The thick line indicates the range of Mach numbers for
which the DK instability is expected. The fluid is modelled with the 12-parameter SW
functional form EOS developed by Colonna et al. (2008). The corresponding ideal-gas
model (cv/R= 102) is represented by dashed black lines.
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FIGURE 20. (Colour online) The χs (a) and χa+ (b) isocontours and H-lines (solid
black lines) for p1/pc = 0.20 in toluene. Upstream Mach numbers (M1) indicating the
shock speed needed to reach the corresponding thermodynamic state on the H-lines are
represented by the black dashed lines with labels. Ideal-gas H-lines (thick grey lines)
are represented in the dilute-gas limit. The fluid is modelled with the 12-parameter SW
functional form EOS developed by Lemmon & Span (2006). The isotherm corresponding
to the thermal stability limit (Angelino & Invernizzi 1993; Colonna et al. 2008) is
indicated by a thick red line. The Γ = 0 and T = Tc isolines are represented with thick
orange and thick blue lines respectively.

Entropy (density) fluctuations are found to be extremely and selectively amplified
by shocks whose post-shock states lie in the supercritical region close to the TCP.
Amplification ratios hundreds of times larger than for the corresponding (i.e. same
cv/R and upstream Mach number) ideal gas are demonstrated using both the van
der Waals EOS and the SW EOS for the siloxane D6. This is due to a tendency
of Kovásznay’s acoustic eigenmode vectors to lean towards the entropy eigenvector
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FIGURE 21. (Colour online) Non-ideal acoustic generation in the siloxane D6 (p1/pc =
0.55). Upstream Mach numbers (M1) needed to reach the corresponding thermodynamic
state on the H-lines are represented by the light blue lines (a) and light green lines (b)
with labels. The fluid is the D6 siloxane modelled with the 12-parameter SW functional
form EOS developed by Colonna et al. (2008). The isotherm corresponding to the thermal
stability limit (Angelino & Invernizzi 1993; Colonna et al. 2008) is indicated by a thick
red line. The Γ = 0 and T = Tc isolines are represented with thick orange and thick blue
lines respectively. (a) The ‘DK regions’ are shown by thick blue lines along the H-lines
(thin black lines). (b) The χa+ = 0 line coloured by the magnitude of ∂χa+/∂M1 (high
value in red, low value in light blue). The line joining the maximum value of χs is also
shown (dashed white line). The contours represent the local speed of sound.

near the TCP (as a consequence of a local minimum in the speed of sound). Similar
results are obtained for the generated acoustic mode. The near degeneracy of the
eigenmode basis is very local in the (p, ϑ)-diagram, making both the post-shock
entropy amplification and the acoustic generation from entropy waves very sensitive
to any change in the incoming mass flow rate (or, equivalently, the incoming
Mach number M1). This provides the corresponding shockwaves with selective
refraction properties with respect to the incoming fluctuating Mach number. It
should be noted that these selective amplification properties are not restricted to
BZT fluids (Γ < 0 region) and also apply to convex shock adiabats, including
ideal gases under extreme (but non-physical) conditions (e.g. Mach 15 in figure 7).
The proximity of a critical point (non-ideal-gas effect) exacerbates and shifts this
phenomenon to low and attainable supersonic conditions which are relevant to ORC
turbines.

Most of the paper focuses on impinging entropy modes, which are more relevant
to ORC turbines. The flow is indeed close to the critical point only near the nozzle
throat, where the near degeneracy of the eigenmode basis can produce large density
fluctuations, which can then be convected through the expansion and interact with
the fishbone (oblique) shock pattern forming at the trailing edge of the nozzle, with
the end result (refracted field) then sent into the turbine blade. Such shocks are
around the Mach 2 mark with similar pre-shock states (p1/pc ≈ 0.5 and near-critical
temperature) to the ones studied here. Therefore, these results demonstrate that
strong density fluctuations coming out from the fishbone shocks are a possibility
in real applications, and can impart unsteady loads to the downstream turbine
blades.
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With respect to locally non-convex shock adiabats (e.g. BZT fluids), the admissibility
problem takes a non-classical form and gives rise to discontinuous admissible
paths in the phase diagram. Consequently, all of the shock-refraction properties are
discontinuous functions of the upstream Mach number M1. This applies, in particular,
to both the entropy-amplification and acoustic-generation coefficients (following the
impingement of the shock by an entropy mode). The presence of jumps in the
shock-refraction properties is a unique feature of locally non-convex shock adiabats,
and translates in practice to major modifications of the refracted-field properties
in response to a minute change in the upstream conditions (i.e. Mach number).
This was shown to occur in low supersonic regimes and could be relevant to both
dense-gas nozzle flows and energy transfers in compressible turbulent flows featuring
compression eddy shocklets (e.g. mixing layers, jets).

Finally, shocks with their downstream state in close proximity to the TCP were
shown to exhibit unusual acoustic properties. Unlike ideal gases, negative generation
coefficients were found to be physically possible (indicative of an out-of-phase
beating with the entropy mode). Remarkably, this sign change was shown to offer
the possibility of finding ‘silent’ shocks for which no post-shock acoustic field is
produced (following a perturbation normal to the shock front). This is to contrast
to the so-called ‘D’yakov–Kontorovich spontaneous acoustic emission’ expected
to occur in two or three dimensions but not yet observed experimentally. One
difficulty in observing the spontaneous acoustic emission was shown to relate to the
observation that the required conditions can be those of non-admissible shocks, with
low subcritical pressures and near-critical temperatures offering more opportunities to
observe this phenomenon.

The new class of non-ideal shock properties reported here has also been assessed
with predictive thermodynamic models (SW EOS), giving a first insight towards their
possible experimental observation. While the use of an analytical EOS (van der Waals
model) may overestimate BZT effects, it can, on the contrary, severely underpredict
unsteady non-ideal-gas effects close to the TCP.

While the above discussion is limited to dense gases in the vapour region close to
the TCP, the theoretical results derived in this paper are general and are applicable to
any EOS through the properties of both the shock-adiabat map in the (p, ϑ)-diagram
and the speed of sound. In particular, substances with locally non-convex shock
adiabats are expected to mirror the above results, as for instance with shocks entering
the vapour–liquid equilibrium region where negative nonlinearities are known to
occur.

The general one-dimensional framework provided in this paper has led to the
identification of a new class of non-ideal-gas shock/perturbation interaction properties
near the TCP. However, important multidimensional aspects have not been taken into
account (vorticity mode, directivity effects and non-propagative post-shock acoustic),
and will be thoroughly commented on in an upcoming paper.
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Appendix A. The van der Waals model
Throughout the paper, the refraction properties of compression shocks are illustrated

by using a van der Waals EOS. This thermodynamic model is a prototypical choice to
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model a TCP. It can be seen as a simple model to take into account particles of finite
size and with long-range interactions. In the van der Waals polytropic gas model, the
complexity of the molecules constituting the gas is only taken into account by the
parameter cv/R (Guardone & Argrow 2005). In non-dimensional form, the EOS is
given by

p= 8T
3ϑ − 1

− 3
ϑ2

(A 1)

and the internal energy by

e= 8
3

cv
R

T − 3
ϑ
, (A 2)

where p, T , ϑ and e are non-dimensional quantities (p= p∗/p∗c , T =T∗/T∗c , ϑ =ϑ∗/ϑ∗c
and e= e∗/(p∗cϑ

∗
c ), where (·)∗ are dimensional quantities).

Appendix B. Shock-refraction eigenvalue problem

The Rankine–Hugoniot relations in the laboratory reference frame are

−us

t
ρ
ρu
ρet

|

+
t

ρu
ρu2 + p
(ρet + p)u

|

= 0, (B 1)

where us is the shock speed in the laboratory reference frame, et is the total energy
(i.e. et ≡ e + u2/2) and Jf K ≡ f (ζ+, t) − f (ζ−, t) (with ζ the shock position in time).
Moving to the reference frame attached to the shock, equation (B 1) becomes (after
some re-arrangement)

(uL − us)/ϑ2 = (uR − us)/ϑ1,

p2 + (uL − us)
2/ϑ2 = p1 + (uR − us)

2/ϑ1,

p2 = ph(ϑ2, ϑ1, p1),

 (B 2)

where ϑ1 and p1 are the specific volume and pressure in front of the shock (in
the reference frame attached to the shock, i.e. ϑ1 = 1/ρ(ζ+, t) and p1 = p(ζ+, t) in
(B 1)), and ϑ2 and p2 are the specific volume and pressure behind the shock (in the
reference frame attached to the shock, i.e. ϑ2 = 1/ρ(ζ−, t) and p2 = p(ζ−, t) in (B 1),
see figure 4). The last equation in (B 2) stipulates that the post-shock pressure p2

must be on the shock adiabat ph. The variables uR and uL represent the fluid velocity
in the laboratory reference frame upstream and downstream of the discontinuity (i.e.
uR = u(ζ+, t) and uL = u(ζ−, t) in (B 1)). It should be noted that the reference frame
attached to the shock is not inertial and a body force should be added. However,
the shock in this work is viewed as a true discontinuity, making it massless, and
is unaffected by inertial effects. This precludes the use of a modified pressure as
suggested by Lubchich & Pudovkin (2004).

We now wish to distinguish the actual shock position ζ (t) from the one it would
have in the absence of perturbations xs(t). Denoting the shock speed in the absence
of a perturbation by ūs, and assuming it to be constant with xs(0)= 0, then xs(t)= ūst.
For any given time t, the perturbed shock is a distance ηs away from the position it
assumes in the absence of the perturbation; hence, ζ = xs + ηs and us = ūs + dηs/dt=
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ūs + η̇s. Following the small-perturbation analysis introduced in (3.6), equation (B 2)
becomes

(u2 − η̇s)/ϑ2 = (u1 − η̇s)/ϑ1,

p2 + (u2 − η̇s)
2/ϑ2 = p1 + (u1 − η̇s)

2/ϑ1,

p2 = ph(ϑ2, ϑ1, p1),

 (B 3)

where u1 = uR − ūs and u2 = uL − ūs.
The perturbation (3.1), initially written in the laboratory reference frame, can be

written about the shock position at a given time t following a series expansion of µ
around η≡ x− xs = 0,

µ(η±s , t) = µ̄(0±, t)+ εµ′(0±, t)+ ε
[(

∂µ̄

∂η

)
t

∣∣∣∣
η=0±,t

+
(
∂µ′

∂η

)
t

∣∣∣∣
η=0±,t

ε

]
+ o(µ̄(0±, t)ε2), (B 4)

where all ± stand for the left/right values of the discontinuous quantities at the shock
front. For the assumed piecewise uniform base flow (∂µ̄/∂η|0±,t = 0), the linearised
Rankine–Hugoniot jump conditions can be expressed at η = 0 (instead of η = ηs)
without missing first-order terms.

Injecting (3.6) into (B 3) and retaining only first-order terms in ε gives the linearised
version of the Rankine–Hugoniot conditions to be satisfied by linear waves across
discontinuities for an arbitrary medium,

Ā2µ
′
2 + Ā2

 0
−u′s

0

= Ā1µ
′
1 + Ā1

 0
−u′s

0

 , (B 5)

with

Ā2 =


ū2 1/ϑ̄2 0

ū2
2 2ū2/ϑ̄2 1

ϑ̄2
2
∂ p̄2

∂ϑ̄2
0 1

 Ā1 =


ū1 1/ϑ̄1 0

ū2
1 2ū1/ϑ̄1 1

−ϑ̄1
2 ∂ p̄2

∂ϑ̄1
0

∂ p̄2

∂ p̄1

 . (B 6a,b)

The waves in (3.7)–(3.8) have to satisfy the boundary conditions at η= 0, namely
the linearised Rankine–Hugoniot conditions (B 5). Taking into account a change of
variables from (ρ, u, p) to (ϑ, u, p), the resulting linear system expressed in the
eigenmode basis is

ū2 −Jρ̄K ū2 + c̄2

ū2
2 0 (ū2 + c̄2)

2

ϑ̄2
2 ∂ p̄2

∂ϑ̄2
0 c̄2

2 + ϑ̄2
2 ∂ p̄2

∂ϑ̄2


︸ ︷︷ ︸

L

 χs

δ

χa+

=


ū1

ū2
1

−ϑ̄1
2 ∂ p̄2

∂ϑ̄1

 . (B 7)

The problem has a unique solution if and only if ∆= det(L) 6= 0, i.e.

∆= Jρ̄Kc̄4
2M2

2

[
1− 1

j2

∂ p̄2

∂ϑ̄2
(2M2 + 1)

]
. (B 8)
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Introducing the D’yakov parameter h ≡ j2/(∂ p̄2/∂ϑ̄2), we find that the system has a
solution if and only if

h 6= 2M2 + 1, (B 9)

which is satisfied in a single-phase flow with G> 0. Indeed, the slope of the H-line in
the (p, ϑ)-diagram (∂ p̄2/∂ϑ̄2) is then always negative (Cramer 1989) and 2M2+ 1> 0.
We can then invert the system and obtain the entropy-mode amplification factor (χs)
and the acoustic-mode generation factor (χa+),

χs =
[
ϑ̄1

ϑ̄2

]2 j2 +M2
2
∂ p̄2

∂ϑ̄2
+ ∂ p̄2

∂ϑ̄1
(M2 + 1)2

j2 − ∂ p̄2

∂ϑ̄2
(2M2 + 1)

,

χa+ =−
[
ϑ̄1

ϑ̄2

]2

M2
2

∂ p̄2

∂ϑ̄2
+ ∂ p̄2

∂ϑ̄1

j2 − ∂ p̄2

∂ϑ̄2
(2M2 + 1)

.


(B 10)

Following the same methodology, one can obtain the entropy-mode generation factor
(χ±s ) and the acoustic-mode amplification factor (χ±a+) originating from an upstream
acoustic perturbation by simply introducing the corresponding upstream acoustic mode
in (B 5). The corresponding system, expressed in the eigenmode basis, is

ū2 −Jρ̄K ū2 + c̄2

ū2
2 0 (ū2 + c̄2)

2

ϑ̄2
2 ∂ p̄2

∂ϑ̄2
0 c̄2

2 + ϑ̄2
2 ∂ p̄2

∂ϑ̄2


χ

±
s

δ

χ±a+

=


ū1 ± c̄1

(ū1 ± c̄1)
2

−ϑ̄1
2 ∂ p̄2

∂ϑ̄1
+ c̄2

1
∂ p̄2

∂ p̄1

 , (B 11)

where ± stand for the fast (+) or slow (−) upstream acoustic mode. Inverting the
system of (B 11) gives

χ±s =
[
ϑ̄1

ϑ̄2

]2
1

M2
1

(M1 ± 1)2
(

j2 +M2
2
∂ p̄2

∂ϑ̄2

)
− (M2 + 1)2

(
j2 ∂ p̄2

∂ p̄1
−M2

1
∂ p̄2

∂ϑ̄1

)
j2 − ∂ p̄2

∂ϑ̄2
(2M2 + 1)

,

χ±a+ =−
[
ϑ̄1

ϑ̄2

]2
1

M2
1

(M1 ± 1)2 M2
2
∂ p̄2

∂ϑ̄2
−M2

2

(
j2 ∂ p̄2

∂ p̄1
−M2

1
∂ p̄2

∂ϑ̄1

)
j2 − ∂ p̄2

∂ϑ̄2
(2M2 + 1)

.


(B 12)

Appendix C. The isothermal limits at the TCP
The transmission coefficients diverge towards singular values for the post-shock

state at the TCP when the hypothetical isothermal-shock limit is considered. In this
appendix, asymptotic expansions of the transmission coefficients are derived in terms
of powers of 1/c̄2 (with c̄2→ 0 at the TCP in the isothermal-shock limit), and the
aforementioned singular limits are deduced.
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The case of incoming entropy perturbation is considered here. Given (B 10) and the
isentropic limit of H-lines in the (p, ϑ)-diagram (for which c̄2

2 =−ϑ̄2
2∂ p̄2/∂ϑ̄2), one

can deduce that at the TCP,

χs ∼
cv/R→+∞

ϑ̄2
1
∂ p̄2

∂ϑ̄1

1
c̄2

2
,

χa+ ∼
cv/R→+∞

−ϑ̄2
1
∂ p̄2

∂ϑ̄1

1
c̄2

2
,

 (C 1)

where c̄2 → 0 at the TCP. The isothermal nature of H-lines further provides a
relationship between ∂ p̄2/∂ϑ̄1 and ∂ p̄T

2/∂T̄2, where p̄T
2 (T̄2, ϑ̄2) is the isotherm map in

the (p, ϑ)-diagram,

(
∂ p̄2

∂ϑ̄1

)
ϑ̄2,p̄1

(ϑ̄2, ϑ̄1, p̄1)=

(
∂ p̄T

2

∂T̄2

)
ϑ̄2

(T̄2, ϑ̄2)(
∂ϑ̄1

∂T̄1

)
p̄1

(T̄1, p̄1)

. (C 2)

It is well known that the derivative ∂ p̄T
2/∂T̄2 is finite and positive at the TCP

(Zappoli, Beysens & Garrabos 2015). The derivative ∂ϑ̄1/∂T̄1 is also finite and
positive (for a positive coefficient of thermal expansion, see § 2.2). Therefore, at
the TCP, the asymptotic limits of the entropy-mode amplification factor and the
acoustic-mode generation factor originating from an incoming entropy mode are

χs →
cv/R→+∞

+∞,
χa+ →

cv/R→+∞
−∞.

 (C 3)
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