London Mathematical Society ISSN 1461-1570

COMPUTING IN UNIPOTENT AND REDUCTIVE
ALGEBRAIC GROUPS
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Abstract

The unipotent groups are an important class of algebraic
groups. We show that techniques used to compute with finitely
generated nilpotent groups carry over to unipotent groups. We
concentrate particularly on maximal unipotent subgroups of
split reductive groups and show how this improves computa-
tion in the reductive group itself.

1. Introduction

A linear algebraic group is wunipotent if its elements are unipotent (that is, the
elements only have eigenvalue one in every representation). Unipotent groups play
a prominent role in the theory of algebraic groups. In this paper, we present algo-
rithms for efficient element operations in unipotent groups. Since unipotent groups
are nilpotent, we adapt methods used for computing in finitely generated nilpotent
groups. A PC group provides a unique computer representation for the elements
of nilpotent groups (see, for example, [7]). Collection gives algorithms for multi-
plication and inversion of group elements. We modify these concepts to work with
a large class of unipotent groups defined over a field. This class contains all uni-
potent groups if the field has characteristic zero. It also contains the full unipotent
subgroup of every split reductive group.

Steinberg [18] gives a presentation for split reductive algebraic groups. A word in
this presentation requires less memory than a matrix representation (except for type
A,, where the memory usage is asymptotically the same). An additional advantage is
that there is a normal form for elements (the Bruhat decomposition) which reflects
the Lie theoretic structure of the group, thus facilitating the use of Lie theoretic
techniques. Algorithms for element operations in split reductive groups, using the
Steinberg presentation, are given in [3]. Computations in the unipotent subgroup
make the largest single contribution to the time taken by these algorithms. This
was the main impetus for the current paper, in which we prove:

THEOREM 1.1. Let F be a field with effective algorithms for the basic element oper-
ations. Let G be a split reductive algebraic group over F with rank n. Then there is a
normal form for elements of G(IF). The word problem for elements in normal form
requires O(n?) field operations, and multiplying or inverting them requires O(n?)
field operations.

This theorem is a great improvement over the analysis of [3], where we proved
that the operations are polynomial time, but did not compute the exponent. This
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Computing in unipotent groups

result is optimal in the sense that the timings are asymptotically the same as the
straightforward methods for matrices. Note that the normal form for group elements
involves O(n?) field elements, so the time for the word problem is linear in the input.

In Section 2, we construct FC group schemes, which give normal forms for ele-
ments of unipotent groups. We adapt two basic collection strategies in Section 3.
We have developed two new algorithms for the full unipotent subgroup of a split
reductive algebraic group: The first is a new collection strategy called collection
from the outside (Section 4). The second is a direct method for computing prod-
ucts and inverses in classical groups using standard representations (Section 5).
Section 6 gives the asymptotic analysis and the proof of Theorem 1.1. Section 7
compares practical timings for the various methods considered and describes the
default method used in MAGMA [1] from version 2.13.

2. Umpotent groups and presentations

Throughout this paper, F is a field and E is a commutative unital algebra over F.
We assume that we have effective algorithms for the basic element operations in
F and E. We find it convenient to use the scheme-theoretic definition of algebraic
groups. So an algebraic group defined over F is a functor from the category of
all commutative unital algebras over F to the category of groups, satisfying the
appropriate additional conditions [4, 20]. If G is an algebraic group, then G(E) is
an abstract group, called the rational point group of G over E. For example, the
additive group G, has rational point group G,(E) = ET.

We define an F-unipotent group to be an algebraic group defined over F with a
normal series in which every quotient is F-isomorphic to G,. This is analogous to
the definition of an F-soluble algebraic group in [4].

PROPOSITION 2.1. Quer a perfect field F, every connected unipotent group is F-
unipotent. Quver a field F of characteristic zero, every unipotent group is F-unipotent.

Proof. The first statement follows from [15, Proposition 5, Corollary 2]. The second
follows from the first using the standard fact that all unipotent groups are connected
in characteristic zero. O

The group o, defined in [20] over fields of characteristic p > 0, is unipotent but
not F-unipotent.

Let U be an F-unipotent group. Fix a central series
U=U1>Us> - >Uns1 =1,

such that each U,./U, 1 is F-isomorphic to G,. The projection U, — U, /U,11 = G,
splits as an F-morphism of schemes by [17, Theorem 16.2.6]. Fix splitting maps
zy : Gy — U,. Clearly U is parametrised by N-dimensional affine space:

AN - U, (a1,...,an) — x1(a1) - zn(an).
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Multiplication and inversion in U(E) are given by polynomials. To be precise

N

N
er(aT)er( T H:,Cr al,...,aN7b17...,bN))7 (1)

r=1

N
(H xr(ar)> Hzr r(ar,...,an)), (2)
r=1

where all products are written in ascending order, each F,. is a polynomial in 2NV
indeterminates, and each G, is a polynomial in N indeterminates. The F,. and G,
are called Hall polynomials [5]. These polynomials have coefficients in F, but tend
to be very large and unwieldy. In order to do practical computations in U, we need
a more concise description.

We now construct a presentation for the rational point group U(E). Since the
series U(E) = U1 (E) > Us(E) > --- > Un(E) > Un41(E) =1 is central, we have

zr(a)z,(b) €  z(a+b)U+1(E),
zr(a)™h € zr(—a)Ur41(E),
rs(b)zr(a) € zr(a)rs(b)Ust1(E),

for a,b € E and 1 <7 < s < N. Hence we have relations

N
zr(@)z,(b) = zp(a+b) ] @(firla,0)), (3)
t=r+1
zp(a)” ! =2, (— H z(gre(a (4)
t=r+1
N
zs(b)zr(a) = z,(a)zs(b) H zi(hrst(a, b)), (5)
t=s+1

where f,+, grt, and h,.s are polynomials defined over F. We note that many of these
relations are redundant (including (4) for all ), but the extra relations are useful
for computation.

THEOREM 2.2. Let U be an F-unipotent group and let E be a commutative F-
algebra. Let U(IE) be the group with generators x,(a), fora € E, r=1,...,N, and
relations (3), (4), and (5), for a,b € E, 1 < r < s < N. Then the natural map
U(E) — U(E) is an isomorphism of abstract groups.

Proof. Since the given relations hold in U(E), the map is well defined. The map
is onto because U(E) is generated by the images of the generators of U(E). Every
element of U(E) is a word with terms of the form x,.(a) or x,.(a)~*. This word can
be collected into a product Hiv:l 2r(a,). This is achieved by first eliminating all
inverses using (4), then putting the terms in order by the subscripts using (5) and
removing multiple terms with the same subscript using (3). If the words Hr 1 Zr(ay)
and Hivzl 2, (b,) are equal in U(E), then a, = b, for all r, and so these words are
also equal in U(FE). Hence the map is injective and we are done. O

We say that the group scheme U is presented by U.
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Now suppose we are given an arbitrary system of F-polynomials f,.;(a,b) and
grt(a,b), for 1 <r <t < N;and hyg(a), for 1 <r < s <t < N. Define the group
functor U by taking U(E) to be the abstract group given by generators x,(a), for
a€E,r=1,...,N, and relations (3), (4), and (5). We call U an FC group functor
over F. FC stands for field-commutator, since the relations involve field operations
and commutators, just as the PC presentation of a nilpotent group involves powers
and commutators. We call U consistent if the map

EN - U(E), (a1,...,an) v z1(a1) - zx(an)

is injective for every commutative F-algebra [E. Theorem 2.2 implies that every F-
unipotent group is presented by a consistent FC group functor. We now prove the
converse:

THEOREM 2.3. Every consistent FC group functor defined over F is an F-unipotent
group.

Proof. Let U be the consistent FC group functor. Ignoring the multiplication, we
can consider U to be the N-dimensional affine scheme. Using collection, as in the
proof of Theorem 2.2, we can find polynomials F, and G, such that equations (1)
and (2) are satisfied in U(E). So U is an F-algebraic group scheme, since F, and G,
are clearly defined over F. Finally define algebraic subgroups U, = chv:'r‘ im(z,).
These give a normal series for U in which every quotient is isomorphic to G,, and
so U is an F-unipotent group. O

Let U be an F-unipotent group. Suppose the projection U, — G, splits as a
homomorphism of F-group schemes, not just as a morphism of F-schemes. Then we
can take x, : G, — U, to be a homomorphism, and so replace (3) and (4) by

xr(a)x,(b) = x.(a + b). (6)
It follows immediately that
xr(a)fl = z,(~a), (7)

and so all the polynomials f,; and g,; are zero. If x, is a homomorphism for r =
1,..., N, we call the corresponding FC group functor split.

THEOREM 2.4. If F is a field of characteristic zero, then every unipotent group
defined over F is presented by a split FC group functor over F.

Proof. Since F has characteristic zero, every unipotent group U defined over F
is F-unipotent by Proposition 2.1. By induction, we can assume that U/Uy is
presented by a split FC group functor. Fix maps y, : G, — U/Uy, for r =
1,...,N — 1, defining this functor. By [16, Proposition VIL.8], Ext(G,,G,) = 0.
Hence Ext(U/Un,G,) = 0, by repeated application of the long exact sequence for
Hom(o,G,). So there exists a homomorphism y : U/Uy — U splitting the pro-
jection U — U/Up. Define z, = yoy, for r = 1,...,N — 1. Take 2y to be the
F-injection G, = Uy — U. These maps clearly define a split FC group functor
presenting U. O

If F has positive characteristic, then the Witt-vector groups [16] provide examples
of F-unipotent groups which cannot be presented by split FC group functors. The
full unipotent subgroup of a split reductive group is always presented by a split FC
group functor, as we show in Proposition 4.1 below.
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3. Collection and symbolic collection

We now extend some of the standard collection strategies for PC groups to
FC group functors. The precise order in which the relations are applied has a huge
impact on the speed of collection. Many strategies have been suggested, and we have
not attempted to extend them all to FC group functors. We have implemented two
fundamental techniques: collection from the left [10, 19]; and a slightly improved
version of collection to the left [6] (we collect the rightmost rather than the leftmost
occurrence of the least uncollected letter).

Let U be an FC group functor over F, and let E be a commutative F-algebra.
The algorithms in this section operate on a word w € U(E). This word is always
equal to Hﬁ1 zr,(a;)%, that is, the parameters M € N, a; € E, &; = £1, and
r; € {1,..., N} are automatically modified when w is. Algorithm 1 describes the
basic step of collection. When we say “apply a certain relation to a subword”, we
mean match the subword with the left hand side of the relation, and replace it by
the right hand side. COLLECTSUBWORD looks at the term at position j in the word
w, and either removes an inverse (if ; = —1) or ensures that r;_; < r;. In addition
to the modified word w, it returns indices j; and jo.

COLLECTSUBWORD := function(U, w = Hiﬂil X, (@)%, )
if ¢;, = —1 then
apply (4) to the subword z,, (a;) !
Jii=J, J2i=1]
elseif j > 1 and r;_; =r; then
apply (3) to the subword ., (a;_1)x,,(a;)
Jii=7—1, ja:=gi+#{t: fre(aj-1,a;) # 0}
else if j > 1 and 7,_; > r; then
apply (5) to the subword x,,_, (a;—1)x,,(a;)

J1:=75—-1
if j1 >1and r;,_; <rj;, then
J2 =01
else
j2 = ]1 + 1 + #{t : thijlt(ajf].?aj) # 0}
end if
else
J1:=J, Jje=j+1
end if

return w, ji, jo
ALGORITHM 1: Collect subword

Collection to the left (Algorithm 2) works by collecting all terms z1(a), followed
by all terms z2(a), and so on. This uses the index j;, which gives the new largest
J such that r; = r. Collection from the left (Algorithm 3) goes through the word
from left to right, correcting each term that is out of position. This uses the index
J2, which gives the next term which is potentially out of position.

Symbolic collection is a standard method for improving the efficiency of el-
ement multiplication in a PC group. This depends on the observation that we
can collect a generic product, and then substitute into polynomials for subsequent
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Input: An FC group functor U and a word w = vail X, (@)%
Output: A product Hi,v:l x,(b,) that is equal to w as an element of U(E).
for r:=1to N do
let 7 be the largest ¢ such that r; =r
while j > r do
w, 1, j2 := COLLECTSUBWORD(U, w, j), j:=ji
end while
end for
return w

ALGORITHM 2: Collection to the left

Input: An FC group functor U and a word w = vail T, (@)%
Output: A product Hivzl x,(b,) that is equal to w as an element of U(E).
j:=1
while j < M do
w, 1, j2 := COLLECTSUBWORD (U, w, j), j := jo
end while
return w

ALGORITHM 3: Collection from the left

collections. This is particularly easy in the case of FC group functors: simply take
E =Flay,as9,...,an,b] and do N collections in U(E) to get relations

( 1 o0 o) = 2,0 1 ) )

s=r+1 s=r+1

where c¢,¢ is a polynomial in b and a,41,...,ay. Now, taking arbitrary E again,
we can multiply two collected words Hfil z;(a;) and Hfil z;(b;) by substituting
values from E into the (N —1)N/2 polynomials ¢, in the obvious manner. A similar
method can be used to compute inverses.

The advantage of symbolic collection is that each operation is faster. The dis-
advantage is that more preprocessing time and memory are required. In order to
save memory, we represent our polynomials as straight-line programs (see [12] for
a description of straight-line programs for group elements; the implementation for
polynomials is due to Allan Steel). This means that the polynomials are basically
just the collection preserved in amber, so the collection method used is still impor-
tant. We note that there is another common symbolic collection algorithm, called
Deep Thought [11, 13], but we have not implemented it for unipotent groups.

4.  Collection in the full unipotent subgroup

We now describe a new collection strategy for the full unipotent subgroup of
a reductive group. Let G be an F-split reductive algebraic group [17]. Fix a split
maximal torus 7" in GG, and a Borel subgroup B containing T". Let U be the unipotent
radical of B. Since U is unique up to G-conjugacy, we refer to U as the full unipotent
subgroup of G. Let ® be the root system of G with respect to T, and let &+ C ®
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be the positive roots with respect to B.

Write @+ = {a1, aa,...,ay} with the roots in an order compatible with height,
that is, ht(c,.) < ht(as) implies r < s. For each a € T, there is a subgroup X, of U
isomorphic to G,. Write x, for the isomorphism G, — X,,.. Then U, = Hiv:r X,
for r = 1,...,N + 1, defines a central series for U. The corresponding FC group
functor has relations (6) and

z(0)r,(a) = zp(@ws () [[  @(Cijara,a'V), (9)
ar=ta,+jos,
i,j>0

where the constants Cija, o, are defined as in [2]. Recall that these constants depend
on the combinatorics of ®, and on the choice of a sign for each nonsimple positive
root. In [3], a method for computing these constants is given which is efficient for
small rank groups. For large ranks, we outline a new method in Section 5. We now
have:

PROPOSITION 4.1. The full unipotent subgroup of a split reductive group is presented
by a split FC group functor.

Note that most of the polynomials h,s from (5) of Section 2 are zero in this
case. This gives us much greater flexibility in how we collect words. The ordering
of the roots is of vital importance in this section. We specify an ordering in terms
of subscripts: aq, ..., ay. The subscripts on the injections z,. : G, — U are always
kept in agreement with the root ordering under discussion.

Words in U need not be collected into an order compatible with height. In fact,
the algorithms of the previous section work for all orderings a1, as,...,an of ®F
with the property that a, + oy = a4 implies ¢ > r and t > s. We call such an
ordering left-additive.

An ordering oy, a, ..., an of ®T is called additive if o, + g = oy implies ¢ lies
between r and s (that is, r <t < s or s < t < r). Additive orderings reflect more of
the combinatorial structure of the root system than left-additive orderings do. The
existence and construction of additive orderings is considered in [14] (see Section 6
below for more details).

In order to collect a word into the additive ordering, we replace relation (9) with

re@ =@ [ alCumad0)) a0, 0
ap=iortjos,
i,j>0
which can be proved by applying (9) to z,(a)xs(—b). We then use collection from the
outside (Algorithm 4), which is a modified version of collection from the left. The
basic idea is to run collection from both sides simultaneously, until we meet in the
middle. The two collections could easily be run in parallel, but we alternate between
them. The subroutine COLLECTSUBWORD from Algorithm 3 is slightly modified for
both collections (COLLECTSUBWORDL and COLLECTSUBWORDR). The returned
value L is the increase in the word length and k is the index of the next term
potentially out of position.
Finally we note that symbolic collection works with collection from the outside,
with the obvious minor modifications.
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COLLECTSUBWORDL := function(U,w = Hﬁl X, (a;), )
if ¢, = —1 then
apply (7) to the subword ,, (a;) !
k=3, L:=0
else if j > 0 and r;_; =r; then
apply (6) to the subword ., (a;_1)x,, (a;)
k=j53—-1, L:=-1
else if j > 0 and 7,_; > r; then
apply (10) to the subword z,, , (a;_1)z,;(a;)
k:=j—1, L:=#{t:o =kay, +loy,_, for k,1 >0}
else
k=341, L:=0
end if
return w, k, L

COLLECTSUBWORDR := function(U,w = Hﬁl T, (a;), )
if ¢, = —1 then
apply (7) to the subword ,, (a;) !
k=3, L:=0
else if j < M and r; = ;41 then
apply (6) to the subword x,, (a;)z,,(a;41)
k=3, L:=-1
else if j < M and r; > r;j;; then
apply (10) to the subword ., (a;)z,, , (aj41)
L:=#{t:a; = ko, , +lay, for k,1 >0}, k:=j+1+1L
else
k=j5—-1, L:=0
end if
return w, k, L

Input: An FC group functor U and a word w = Hﬁl T, (@)%
Output: A product [, z,(b,) that is equal to the input as an element of U(E).

i:=1, j:=M
while i < j do
w, k, L := COLLECTSUBWORDL (U, w, ), i:=k, M:=M+L, j:=j+1L
if ©+ < j then
w, k, L :== COLLECTSUBWORDR(U, w, j), j:=k, M:=M+L
end if
end while
return w

ALGORITHM 4: Collection from the outside
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5. The full unipotent subgroup of a classical group

In this section, we present an alternative to collection which is much more efficient
when G has large semisimple rank. We derive formulas for the defining polynomials
of the full unipotent subgroup U of a split classical group G. This allows us to write
code that implicitly applies the defining polynomials of U without having to store
them explicitly in memory. We do not consider exceptional groups here, because
their semisimple rank is at most 8.

The rough outline of our method is as follows: We index the roots by pairs
of integers. We then construct a minimal degree matrix representation of G. We
take the basis for the representation consisting of weight vectors, ordered according
to the dominance ordering on the corresponding weights [8]. We then order the
roots by going down each column of this matrix representation, and seeing where
the parameters corresponding to each root appear. We call this the representation
ordering. Note that the representation ordering is also an additive ordering, except
in Cartan type Cy, where it gives an additive ordering on the coroots.

The representation of roots by pairs of integers can also be used to compute the
constants Cjja, s, For large classical groups, this is much more efficient than the
method given in [3]. We omit the details since this is a technical but straightforward
application of formulas in [2].

We consider each classical type in Subsections 5.1 to 5.4. In each subsection, we
fix a particular isogeny type and particular extraspecial signs [17]. The choice of
isogeny class is irrelevant, since the structure of the unipotent subgroup is indepen-
dent of isogeny. We can easily transform between different choices of extraspecial
signs using Theorem 29 of [18].

5.1.  Cartan type Ay: Linear of degree £ + 1

Let G = SL;4; and let U be the algebraic subgroup of all lower unitriangular
matrices. The root system of G has Cartan type A,. Let V = R*! with basis
€1,...,e¢+1. Then the roots are

aij = €; —ej

fori,j=1,...,£+1 with ¢ # j. The simple roots are a; ;41 fori =1,...,¢. A root
oy; is positive if, and only if, ¢ < j. Roots add by the formulas o;j + @jm = Qim,
and aj; + g, = 0 unless j =k or i = m.

Define the map z;; : Go — G by z;;(a) = I + aFE};. The representation order on
the roots is simply the lexicographic order on the corresponding pairs of integers.
We label the coordinates of A(+1¢/2 by the root pairs in this order, that is, a €
AEHDY2(R) has the form

a = (a127a137-~-7a1,£+17 @23, ..., A2 0415 - -y ae,e+1)-

We can now define a parametrisation ¢ : ACHDY/2 U7 by

1
041 0+1 ai2 1
pla):=]] ] =ijlai) = a3 a3 1
i=1j=i+1 . . .
1,641 Q2441 --- Gpey1 1
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We now get p(a)p(b) = ¢(c) where
Cij = ij + Z bikak; + bij.
i<k<j
Also ¢(a)~! = ¢(d) where
dij = —Qj; — Z dikakj
i<k<j

The formulas for inversion are defined recursively and are computed in reverse
representation order. We note that it is easy to derive a direct formula for d;;, but
the recursive version can be evaluated with fewer operations.

5.2.  Cartan type By: Orthogonal of degree 20 + 1
Let F,,, be the m x m matrix over F of the form

0 ... 01
0 ... 10
1 ... 00

We assume, for this subsection only, that F has odd characteristic. Since the group
of type By is isomorphic to the group of type Cy in characteristic 2, this restriction
is not critical. Let G = SOqg41 be the special orthogonal group of the orthogonal
form with matrix

0 0 Fp
0 2 0
F, 0 0

Let U be the group of all lower unitriangular matrices in G. The root system of G
has Cartan type By. Let V = R? with basis e1, ..., eg. The roots are

Ositj = se; —te; and g0 = Sey,

for i,5 = 1,...,f with i # j and s,t = +1. For the sake of readability, we write
7 instead of —7 in subscripts, eg, as _3 is denoted ay3. Note that a;; = oy for all
i,7 = *1,..., £l The simple roots are o; 41, fori =1,...,£ -1, and ay,g. A root
o5 for i, 7 > 0 is positive if, and only if, i < j; a root ay; o is positive if, and only
if, s = +1.

Define the root maps by

zij(a) =1+ a(Ej — Ear—ivo20—jy2),

rig(a) = I +a(Bae—ji2i — Ear—itaj),

zio(a) = I+ a(2Ep41,i — Eig41) — a*Eo—it2,, and
zi0(a) = I+ a(Bap—ito,041 — 2Ee41,20—i12) — a*Fiop_ito.

Let J; be the sequence of integers [i+1,i4+2,...,0,0,—¢,...,—(i+2),—(i+1)]. Let
J! := J; \ {0}. The representation order on the positive roots is the lexicographic
order on pairs, with the integers ordered as in Jy. Label the coordinates of A? by

https://doi.org/10.1112/51461157000000632 Published online by Cafj9?idge University Press


https://doi.org/10.1112/S1461157000000632

Computing in unipotent groups

the root pairs in this order. Now define a parametrisation ¢ : A S U by

[
o(a) =[] [T =i(aij)
i=1j€J;
1
a2 1
Qaiy ‘e ap—1.0 1
— 2@10 . 2ag,1}0 20,@0 1
_ _ 1" /
g - OGp_1g @y Qg0 1
/ !/
Gp_17 G—1,0 Ge-10
ajs ay : : : |
1 !/ / !/ / /
ay  ajs . ay; ayg ajy, ... ajp 1

where

" 2 / /
a; = —2a;0° — E ik Q4L ;0 = —aj0 — § Aik Ao,

i<k<l i<k<t
r_ z : /
aij - _aij - aikakj,
i<k<j
A5 = —agj E AikQlg — QijQj 2a;0a40 E ik Q-
i<k<j keJJ'.

Now p(a)p(b) = ¢(c) where

cio = @io + bio + Z bikako, Cij = aij + bij + Z bikak;,

i<k<t i<k<j
1" / /
Ci; = a5 + bij + E bikakj + a; bij + 2bi0aj0 + E bikaﬂ;.
i<k<j keJ;

And ¢(a)™t = ¢(d) where

dip = —a — E dixaro, dij = —aij — E dixag;,

i<kl i<k<j
5= —Qi; — dikag; — a’ldij — 2d;pa’, — dira’;
ij — 1] ik Ukj 5 Yig 1050 ik jk*
i<k<j keJ;

All of these equations are recursive and are computed in reverse representation
order.

5.3.  Cartan type C: Symplectic
Let G = Spy, be the symplectic group of the symplectic form with matrix

0 F
-, 0
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Let U be the group of all lower unitriangular matrices in G. The root system of G
has Cartan type Cy. Let V = R? with basis e1, ..., es. The roots are

Uity = S€; — t€j7

for i,7 = 1,...,¢ with ¢ # j, and s,t = 1. Once again a;; = oy for all 7,5 =
0,%1,...,%¢. The simple roots are o ;41 for i =1,...,¢ — 1, and o,z A root a4
is positive if, and only if, 7 < j.

Define the root maps by

zij(a) = I+ a(Ej — Exy—it1,20—j+1),
zi(a) =1+ a(Bay—jy1, + Eog—iv15), and
xi(a) =1+ aFap_it1,.

The representation order on the positive roots is the lexicograpzhic order on pairs,
with the integers ordered as in JJ. Label the coordinates of A" by the root pairs

in this order. Now define a parametrisation ¢ : A S U by

41
)= 1] IT (i)

i=1jeJ!
1
ai12 1
ate Gp—1.¢ 1

- ayg Ap_17 CLZ 1 ’
' Tz Yy

a13 a’z' : 1
ai als alz al, ay, 1

where

= Q47 — § A j Az = Q5 — E azkakj7

1<j<t i<k<j
a 5= Qj5 — E alkakj a;ja J E sign(k alkajk
1<k<j keJ;

Now ¢(a)p(b) = p(c) where

1 /! !/
Cij = aij + bij + E bik ;s Ca = a; + by + E CikCify + E bika;g

i<k<j i<k<t keJ!
1" /
Ci; = a5 + bij + E bikakj +a; bij + E bikaj,;
i<h<j ke,
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And ¢(a)~t = ¢(d) where

dij = —ai; — Z dika;, din = _a’;l + Z dindy, — Z dikai%?

i<k<j i<k<t keJ!
" li
di = —aiz — E dikay; — a;dij — E diray,
i<k<j keJ}

5.4. Cartan type D: Even-degree orthogonal

Let G = SOy be the orthogonal group of the orthogonal form with matrix Fby.
Let U be the group of all lower unitriangular matrices in G. The root system of G
has Cartan type Dy. Let V = R¢ with basis eq, ..., ep. The roots are

Qsitj = sei — tey,
fori,j = 1,...,¢ with ¢ # j and s,t = +1. The simple roots are a; 41, for i =
1,...,0—1,and a,,_; 5. A root a;; for ,j5 > 0 is positive if, and only if, 7 < j.
Define the root maps by

wij(a) = I +a(Ej; — Ea—it1,20-5+1) and
ziz(a) =1+ a(Ea—jy1, — Far—iv1,j)-
The representation order on the positive roots is the lexicographic order on pairs,

with the integers ordered as in Jj. Label the coordinates of A=1/2 by the root
pairs in this order. Now define a parametrisation ¢ : A‘“—1/2 _ [ by

4
a):= [T II #:(a)

i=1jeJy
1
ai12 1

12

where

/ /
E G557, Aj; = —Qij — E Aik Qs

1<j<L i<k<j
a— E alka,w a a” E aikaj,;.
i<k<j kelJ!
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Now ¢(a)p(b) = ¢(c) where

cij = a5 + by + Z birayj,

i<k<j
" /
Ci5 = Q35 + bij + E bikakj + a; bij + E bikaj,;.
i<k<j keJ]’.

And ¢(a)~! = ¢(d) where

dij = —a;; — g dikarj,

i<k<j
E : " E : /
dij = —Qi5 — dikakj — CLj dij — dikajl}'
i<k<j keJ]’.

6. Analysis and reductive groups

We can now give precise asymptotic timings for operations in reductive groups
and their full unipotent subgroups. We give our analysis in terms of the number
of basic operations in the algebra E: addition, negation, multiplication, and testing
equality. Once again let G be an F-split reductive algebraic group, with split max-
imal torus T', and Borel subgroup B containing T'. Let U be the unipotent radical
of B. Let W = Ng(T)/T be the Weyl group and let ® be the root system. The
reflection in W corresponding to the root « is denoted s,. Let ®T be the positive
roots with respect to B.

First we give an analysis for element operations in U(E).

THEOREM 6.1. Let F be a field and let E be a commutative unital F-algebra. Let
U be the full unipotent subgroup of a split reductive linear algebraic group G over
F. Let ¢ be the semisimple rank of G. Then there is a normal form for elements
of U(E). The word problem for elements in normal form requires O((?) algebra
operations, and multiplying or inverting them requires O(£3) algebra operations.

Proof. The normal form is a collected word, so the timing for the word problem
follows from the fact that N = |®T| is O(¢?). We can assume that G is simple, since
U is a direct sum of the full unipotent subgroups of the simple components of G.

If G is classical, the formulas of Section 5 require O(¢3) field operations.

If G is exceptional, then ¢ is bounded. In this case we use symbolic collection.
The Hall polynomials of the full unipotent subgroup of a split reductive group are
independent of the algebra [, since split reductive groups can be constructed as
Z-schemes. So the number of algebra operations required for inversion or multipli-
cation is independent of the choice of E. O

In the rest of this section, we take E to be an extension field of F and we
add inversion to the list of basic operations in E. We are primarily interested in
computing in U(E) because it allows us to compute in G(E) with the algorithms of
[3, Section 5]. Recall that G(E) has a Steinberg presentation with generators x4 (a),
for a € ® and a € E; n,, for a € ®; and t € T(E). Note that the generator z,(a) of
Section 4 can be identified with the generator z,,. (a) of the Steinberg presentation.
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Every element g € G(E) can be written uniquely in Bruhat form:
g = utin/,

for

u € U(E) stored as a collected word;
t € T(E) stored as in [3];

® W ="y, - Ng,, , Where sq, -+ Sq

is a reduced expression for w € W; and

m

u’ € Uy, (E) as a collected word, where U, is the subgroup of U generated by
the terms z4(a), for a in @, :={a € ®F | aw™! ¢ T}

Given two elements in Bruhat form, we need to find the Bruhat form of their
product. The usual element operations in U(E) are not sufficient for this purpose.
There are two difficult steps, each of which requires a new operation in U. We now
describe these operations and show how to carry them out with the methods of the
previous sections.

6.1. Single-term separation

One difficult step is multiplying ¢ = utwu’ by n, for some a € ®. This is
achieved with Algorithm 3 of [3], which uses the following operation: write u’ =
[sca, x8(ap) in the form z4(aa)v where v = [[scq,\ (o) 28(bg). We call this
operation single-term separation.

This is easily done by collection: simply collect the term x,, (an) to the front of the
product as in collection to the left, then put v in the required form with collection
from the outside. No extra terms of the form z,(b) can appear in v because only
terms corresponding to roots higher than « are created. We can also do single term
separation symbolically as in Section 3.

Alternatively, for classical groups, we can compute v as the product z,(—aqs)u
using the formulas of Section 5. If & = a5, then the only possible nonzero constants
in p(a) are a;;, a;;, and a}’. Hence at most O(¢) of the formulas for ¢;; are nontrivial.
Each such formula has at most a constant number of nonzero terms. We now have:

/

PROPOSITION 6.2. Single-term separation in U(E) requires O(¢) field operations.

Proof. Use formulas for classical components and symbolic collection for excep-
tional components. O

Note that, when both of the elements being multiplied are in Bruhat form,
Algorithm 3 of [3] only uses single-term separation for a simple. We have considered
nonsimple roots as well, because they will be useful in the next subsection.

6.2. Weyl separation

The other difficult step for multiplication in G is computing the product of g € G
and v € U. Write ¢ in Bruhat form utwu’. Then multiply «’ and v, and decompose
the product into the form v”/v’ where

v = H To(by) and o = H To(ba)-
QEDT\ Dy, Q€D
We call this operation Weyl separation. We now get the Bruhat form

//)ﬁ;*lt*l]twv/

gv = [u(v
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where (v")%" 't is in U since o € &+ \ &, implies aw ! is positive.

If we take the elements of &+ \ ®,, in an order compatible with height, followed
by the elements of ®,, in an order compatible with height, we get a left-additive
ordering on ®*. So the algorithms of Section 3 can also be used for separation.
But note that (v”)% "t will need to be collected again, since the image of the left
additive ordering on ®* \ ®,, under w~! need not be left additive.

We can also use collection from the outside for Weyl separation. We need the
following classification of additive orderings from [14]:

THEOREM 6.3. Let w be an element of the Weyl group W. Let sg, ---sg, be a
reduced expression for w. Then

61552 U SBNy e 61\7—2551\7_1551\[7 BN—lSBNv ﬁN

s an additive ordering on ®.,. All additive orderings on ®,, arise from reduced
expressions in this manner.

Now let wg be the longest word in W and fix a reduced expression sq, - Say
for wp (in practice, we use the lexicographically least reduced expression, but this
is not necessary). We use the additive ordering on ®T corresponding to this reduced
expression as the fixed order for collection. Now let w be a Weyl group element. If we
restrict the fixed ordering to ®,, we get an additive ordering, with corresponding
reduced expression sg, ...sg, = w. Similarly we restrict to get an ordering on
P yow-1 = (@7 \ @, )w™! and a corresponding reduced expression s, ... Sy, =
wow ™. Now wo = S4, ... Syy .86, - - - Sa,, is reduced. The corresponding ordering
is: our fixed ordering restricted to ®* \ @,, and transformed by w, followed by our
fixed ordering restricted to ®,,. This is precisely the ordering we need for separation.
Finally we analyse Weyl separation:

PROPOSITION 6.4. Weyl separation in U requires O(£3) field operations.

Proof. For classical components, we apply single-term separation for each root in
®,,. By Proposition 6.2, this takes O(N{) = O(f3) operations. For exceptional
components use symbolic collection. O

In the exceptional case, this proposition assumes we have a system of symbolic-
collection polynomials for every Weyl element. Although this is polynomial time,
the memory required to store all these polynomials is prohibitive. In practice, it is
much faster to use collection from the outside for Weyl separation in exceptional
groups.

6.3.  Operations in reductive groups
We now prove the following result on computation in G:

THEOREM 6.5. Let F be a field and let E be an extension of F. Let G be a split
reductive linear algebraic group over the field F. Let £ be the semisimple rank of G
and let n be the reductive rank. Then there is a normal form for elements of G(E).
The word problem for elements in normal form requires O(n + €?) field operations,
and multiplying or inverting them requires O(ntf?) field operations.
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Proof. We use the Bruhat decomposition to store g € GG in the normal form g =
uhwu'. Here u, ', and  are words of length at most NV, while h has length n. Once
again the timing for the word problem is clear. Now G is a central product of simple
algebraic groups and a central torus of dimension at most n. Multiplying a toral
element by an element in a simple component is done as in Subsection 5.5 of [3], and
takes time O(nf?). So it suffices to show that multiplication and inversion in a simple
group G requires O(¢3) operations. The algorithms for multiplication and inversion
given in [3] require a constant number of multiplications or inversions in U(E),
together with a constant number of Weyl separations and at most O(¢?) single-
term separations. The theorem now follows from Theorem 6.1, Proposition 6.2, and
Proposition 6.4. O

Theorem 1.1 is an immediate consequence of this result and the fact that ¢ < n.

7. Implementation and timings

A number of heuristic improvements are built into our implementations of the
algorithms described. Most of them are either obvious or were suggested by our
profiling of the code. We restrict ourselves here to a brief description of the basic
data types used. Representations of elements of the field F or algebra [E are taken
care of by the MAGMA computer algebra system [1]. Most of our code is written in
traditional C [9] and incorporated into the MAGMA core. Less time-critical code is
written in the MAGMA language itself.

A collected product Hi,v:l xr(a,) is stored as a sequence [ay, . .., ay]. While doing
the collection, we represent a term z,-(a) as a pair (7, a) of an integer and an element
of E. Note that pairs (r,0) are trivial — they are always eliminated as soon as they
occur. A word Hlj\il xr, (a;)% is represented as a doubly linked chain. That is, every
root element in the chain contains a reference to its predecessor and successor,
which is a null-reference if the element is the first (resp. last) in the chain:

—0S 0SS ...- S o0 —

We use this data structure because inserting and deleting terms in the word when
applying relations (3)—(5) can be done in constant time. For sequences, insertion
and deletion would be more expensive, since the tail of the sequence has to be
copied in memory. The chain is doubly linked, since we need both the predecessor
and the successor of a term in the word for the COLLECTSUBWORD functions.

In our tables we use the following abbreviations for collection algorithms:

CTL: Collection to the left, Section 3.

CFL: Collection from the left, Section 3.

CFO: Collection from the outside, Section 4.

SCFL: Symbolic collection from the left, Section 3.
SCFO: Symbolic collection from the outside, Section 4.

We have two different implementations of the method of Section 5:

D Modified matriz multiplication. For given a, b, we use formulas of Section 5 to
compute ¢(a) and the significant part of p(b) (we do not use b}; and, except
in types B (even characteristic) and C, we do not use b}). Then the product of
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the two matrices is computed using algorithms implemented in the MAGMA
computer algebra system [1]. The resulting matrix agrees with ¢(c¢) in the
entries ¢;; and in the entries ¢; (where they are needed). Thus we can recover
the product ¢ = ab from the resulting matrix by formulas of Section 5.

SD Compute the polynomials of (8) in Section 3, using the formulas instead of
collection.

Method D outperforms SD in most cases, since asymptotically fast algorithms are
used for matrix multiplication. But SD is faster for fields with very rapid blow-up
of terms, such as multivariate rational function fields. All timings were run on an
AMD Opteron 150 Processor with 2393 MHz.

Table 1 gives times and memory consumption for creating the reductive groups
and precomputing all constants. For symbolic algorithms, this also includes time
taken to compute the polynomials. Note that all constants and polynomials are
independent of the field, and are computed on a per-root-datum basis. This means
that preprocessing time is nearly zero if a group with the same root datum has
already been created in the same MAGMA session. We used a workspace of 4 giga-
bytes — when this is insufficient we do not give a time and write > 4GB in the
memory column. In columns D and SD, the constants are computed as they are
needed and not stored in memory.

Table 2 gives average times for multiplying and inverting random elements of
full unipotent groups over the field with 17 elements. The average is taken over 100
multiplications. The same random elements are used for different algorithms. If a
single multiplication required more than 2 gigabytes of memory, we write > 2G B
instead of a time. We did not attempt those cases where the preprocessing took
more than 4 gigabytes of memory.

Table 3 gives similar times for multiplying and inverting random elements of
the reductive group itself. Each such operation involves a number of collections.
Computing random elements in a reductive group can be time consuming, but this
is not included in our timings.

Table 4 gives average times for multiplying and inverting random elements of full
unipotent groups of reductive groups over different fields. Over the field of rational
numbers, the random field elements are chosen by taking a random numerator and
a random denominator of size up to the given number of bits and a random sign.
Similar random elements were used for the Gaussian integers Q(i) and for Q(p),
which is the splitting field of a random irreducible polynomial of degree 6 with
integral coefficients in the range 1 to 10. The field R is the multivariate rational
function field over Q with 10 variables. Random field elements over R were taken
to be random invariates. In Bgg(R) the coefficient blowup is so large that over
2 gigabytes of memory was needed in some cases (see entries in the table).

Finally, in Table 5, we compare the total degrees of the polynomials used for
different kinds of symbolic collection. The last column contains limy_, ., avg{deg(p) :
p € P}, where P is the set of polynomials used for symbolic collection. This goes
a long way towards explaining why collection from the outside works so well. Since
the polynomials are multivariate in 2N = 2|®T| variables, we still can have large
polynomials. We printed the largest of the polynomials in type Bis as a string and
measured its size in bytes. Using collection from the outside, the size is 9226 bytes;
using collection from the left, the size is about 297 megabytes.
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Group Multiply Invert

CFO SCFO D SD CFO SCFO D SD
A20(2) 0.021 0.030 0.020 0.031 0.005 0.017 0.003 0.015
A20(17) 0.029 0.031 0.020 0.032 0.012 0.018 0.003 0.017
A0 (Q), 32 bits | 0.045 0.038 0.024 0.038 0.051 0.109 0.213 0.135
Az (Q), 64 bits | 0.049 0.041 0.028 0.041 0.086 0.195 0.736 0.265
A2 (Q), 128 bits | 0.056 0.047 0.039 0.047 0.177 0.394 2.877 0.611
A20(Q(2)), 32 bits | 0.074 0.052 0.047 0.049 0.080 0.143 0.048 0.117
A20(Q(p)), 32 bits | 0.108 0.069 0.062 0.062 0.122 0.265 0.068 0.214
A20(R) 0.049 0.038 0.025 0.038 6.868 2.562 0.594 1.609
B20(2) 0.056 0.589 0.047 0.303 0.023 0.590 0.015 0.282
Boo(17) 0.174 0.592 0.049 0.309 0.125 0.596 0.017 0.289
B20(Q), 32 bits | 0.420 0.811 0.254 1.901 0.986 2.630 2.625 5.169
B2o(Q), 64 bits | 0.534 0.960 0.630 3.594 2.205 5.111 11.937 12.567
Bso(Q), 128 bits | 0.798 1.269 1.865 8.058 5.575 11.475 50.818 34.318
B2o(Q(7)), 32 bits | 0.680 0.972 1.078 2.124 1.270 2.654 1.344 3.874
Bso(Q(p)), 32 bits 1.092 1.362 1.410 3.864 2.276 4.542 2.053 7.212
Bao(R) 0.589 0.777 >2GB  31.884 >2GB  >2GB  >2GB > 2GB
Es(2) 0.012 0.028 - - 0.003 0.022 - -
Eg(17) 0.016 0.029 - - 0.007 0.023 - -
Es(Q), 32 bits | 0.047 0.125 — - 0.061 0.283 - -
Es(Q), 64 bits | 0.075 0.206 - - 0.118 0.526 - -
Es(Q), 128 bits | 0.141 0.390 - - 0.262 1.099 - -
Es(Q(7)), 32 bits | 0.077 0.162 - - 0.094 0.310 - -
Es(Q(p)), 32 bits | 0.113 0.291 - - 0.146 0.621 - -
Es(R) 0.315 0.349 — — 0.904 1.166 — —

Table 4: Operations for random elements of the full unipotent group over different
fields

CFL CFO
max avg max lim avg
Ay 14 (¢+2)/3 2 2
By 20— 1 20+ 3 — 4)/3 4 4
Cy 20— 1 20+ 32— 4)/3 3 3
D, 20— 3 (2¢0—-1)/3 3 3

Table 5: Total degrees of Hall polynomials
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