
Astin Bulletin (2023), 53, pp. 213–232
doi:10.1017/asb.2023.15

RESEARCH ARTICLE

The use of autoencoders for training neural networks with
mixed categorical and numerical features
Łukasz Delong1 and Anna Kozak2

1SGH Warsaw School of Economics, Institute of Econometrics, Warsaw, Poland and 2Faculty of Mathematics and Information
Science, Warsaw University of Technology, Warsaw, Poland
Corresponding author: Łukasz Delong; Email: lukasz.delong@sgh.waw.pl

Received: 21 December 2022; Revised: 15 March 2023; Accepted: 20 March 2023; First published online: 24 April 2023

Keywords: Autoencoders; representation learning; categorical and numerical features; embeddings; initialization of
neural networks

Abstract
We focus on modelling categorical features and improving predictive power of neural networks with mixed categor-
ical and numerical features in supervised learning tasks. The goal of this paper is to challenge the current dominant
approach in actuarial data science with a new architecture of a neural network and a new training algorithm. The key
proposal is to use a joint embedding for all categorical features, instead of separate entity embeddings, to determine
the numerical representation of the categorical features which is fed, together with all other numerical features,
into hidden layers of a neural network with a target response. In addition, we postulate that we should initialize the
numerical representation of the categorical features and other parameters of the hidden layers of the neural network
with parameters trained with (denoising) autoencoders in unsupervised learning tasks, instead of using random
initialization of parameters. Since autoencoders for categorical data play an important role in this research, they
are investigated in more depth in the paper. We illustrate our ideas with experiments on a real data set with claim
numbers, and we demonstrate that we can achieve a higher predictive power of the network.

1. Introduction
In this paper, we deal with the following three important problems of training neural networks with
mixed categorical and numerical features in supervised learning tasks:

• How to construct a numerical representation of categorical features which is fed, together with
the numerical features, into the hidden layers of a neural network,

• Which architecture of a neural network we should build, in particular, how we should treat
(concatenate) features of different types (in our case categorical and numerical features),

• How we should initialize the weights and the bias terms of a neural network to guide the network
towards a point in the surface of parameters where the network has a high predictive power and
good generalization properties.

There are many possible approaches to these problems. We present an approach inspired by
autoencoders.

Neural networks have recently gained a lot of attention in actuarial science. In particular, Noll et al.
(2019) and Ferrario et al. (2020) were among the first to discuss applications of neural networks to
actuarial non-life insurance pricing problems and compared neural networks with generalized linear
models. The current approach to supervised learning tasks in actuarial data science is to build a neural
network where entity embeddings for categorical features are used. Entity embeddings were intro-
duced by Guo and Berkhahn (2016) in the machine learning literature to help neural networks to deal

C© The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association. This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/asb.2023.15

214 Łukasz Delong and Anna Kozak

with sparse categorical data of high dimension. They were first promoted by Richman (2021), Noll
et al. (2019) and Ferrario et al. (2020) in actuarial data science and they were further developed by
Blier-Wong et al. (2021), Kuo and Richman (2021) and Shi and shi (2022). An entity embedding, as
part of a neural network for a supervised learning task, is learned separately for each categorical fea-
ture and allows us to derive a real-value representation of a categorical feature in a low-dimensional
space. The numerical representations of the categorical features are concatenated with the numerical
features and they are fed together as input into hidden layers of a neural network. The weights of the
entity embeddings are learned together with all other parameters of the neural network, and the objec-
tive is to minimize a loss appropriate for a target response. All weights and bias terms of the network
are initialized with random values from uniform distributions, and the back propagation algorithm is
used to learn the parameters of the network. To the best of our knowledge, the architecture of a neural
network described above is the only architecture of a neural network investigated to date for actuarial
applications. In particular, other numerical representations of categorical features have not been tested
as inputs to neural networks. In addition, advances in training algorithms for neural networks have not
been discussed in actuarial data science. The only distinct training algorithm was proposed by Merz and
Wüthrich (2019) and Schelldorfer and Wüthrich (2019) who promoted the Combined Actuarial Neural
Network (CANN). The goal of this paper is to challenge the current dominant approach to supervised
learning tasks in actuarial data science with a new architecture of a neural network, in particular, with a
new numerical representation of categorical features and with a new training algorithm.

It is known that in order to achieve a high predictive power of a neural network, the input to the
network should contain the most important information for the supervised learning task under consid-
eration. A highly informative input can be effectively pre-processed in hidden layers of the network
to provide good predictions of the response. It has been shown in the machine learning literature that
non-linear autoencoders, in particular, denoising autoencoders, built with neural networks, can capture
the main factors of variation in the input and detect key characteristics of the multivariate and high-
dimensional distribution of the input. As a result, representations of features derived using (denoising)
autoencoders, learned in unsupervised learning tasks, can improve the predictive power of regression
models if these representations are used as inputs to neural networks to predict the response, see for
example Vincent et al. (2008) and (2010).

Autoencoders without noise for numerical data have been investigated in actuarial data science. The
benefits of autoencoders without noise in supervised and unsupervised learning tasks have been demon-
strated by Gao and Wüthrich (2018), Hainaut (2018), Rentzmann and Wüthrich (2019), Blier-Wong
et al. (2021, 2022), Miyata and Matsuyama (2022) and Grari et al. (2022). To the best of our knowledge,
autoencoders for categorical features are less common in actuarial data science. The only exception we
are aware of is the paper by Lee et al. (2019) in which the authors discuss how to build word embeddings,
which are similar to but are not exactly autoencoders for categorical data in the meaning investigated in
this paper.

The first contribution of this paper is that we investigate different types of autoencoders for categorical
data. We demonstrate that we can benefit from non-linear autoencoders built with neural networks when
the purpose is to derive informative representations of categorical features. We show that an autoen-
coder for categorical features should be of a different type than an autoencoder for numerical features.
Most importantly, we deduce that the best autoencoder for categorical features, which extracts the most
important information from the vector of categorical features, implies a different numerical representa-
tion of categorical features than the representation from entity embeddings currently used in supervised
learning tasks in actuarial data science. From our experiments, we conclude that we should learn one
numerical representation for all categorical features, rather than multiple representations for each sepa-
rate feature, to build a more robust and informative representation of the categorical data. The other, and
our main contribution, is that we use a joint numerical representation of categorical features, together
with all other numerical features, as the input to the hidden layers of a neural network trained to predict a

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 215

target response. In other words, we introduce a new architecture of a neural network with mixed categor-
ical and numerical features for the supervised learning tasks. The change in the architecture compared to
the current approach is that all one-hot encoded categorical features are transformed with one embedding
into a real-value representation in a low-dimensional space and the joint representation of the categorical
features is then concatenated with the numerical features. Finally, we fine-tune the numerical represen-
tation of the categorical features from a proper autoencoder by training its weights together with all
other parameters of the neural network. Hence, the autoencoder for the categorical data is only used
to derive an initial representation of the categorical features. This approach is known in the machine
learning literature as pre-training of layers with autoencodeders, see Vincent et al. (2008), Erhan et al.
(2010, 2009) and Vincent et al. (2010). Hence, we pre-train the joint embedding for categorical features
in a neural network for a supervised learning task with our autoencoder for categorical data. From Erhan
et al. (2009) and (2010), we know that pre-training other layers of the neural network is also beneficial,
and this can be achieved with an autoencoder for numerical data. We use both autoencoders, without
noise and denosing autoencoders, in this research.

The benefits of using (denosing) autoencoders for pre-training layers of neural networks have been
demonstrated in the literature (see the papers referred to above). In comparison to these papers:

• We perform our experiments with categorical data, instead of binary data, which means that
we use a different autoencoder and a different type of a corruption process for the denoising
autoencoder,

• We perform our experiments with Poisson distributed data and the Poisson deviance loss, which
is the most common loss function in actuarial data science, instead of the mean square loss and
the cross-entropy loss commonly used in the machine learning literature,

• We propose and validate a new architecture of a neural networks, with a joint embedding for
all categorical features, for the supervised learning tasks. This has not been considered to date
in actuarial data science,

• We propose to scale appropriately the representation of the categorical features from an autoen-
coder for categorical data before an autoencoder for numerical data is built to pre-train the
first hidden layer of a neural network. This improves significantly the approach to supervised
learning tasks with our new architecture,

• We compare various initialization techniques and we show that pre-training of layers of a neu-
ral network with non-linear and over-complete/denoising autoencoders produces much better
results than applications of classical linear and under-complete autoencoders without noise
(MCA, PCA),

• We investigate the balance property, the bias and the stability of the predictions which are
crucial for actuarial pricing.

The main conclusion of this paper is that we can improve the current approach to modelling cate-
gorical features in supervised learning tasks, which uses separate entity embeddings, and the training
algorithm, which randomly initializes the parameters of the neural network. The proposal is to change
the architecture of the network by using a different numerical representation of the categorical features,
learned with a joint embedding, and initialize the layers of the network, in particular, the joint embedding
and the first hidden layer, with representations learned with (denosing) autoencoders in unsupervised
learning tasks.

This paper is structured as follows. In Section 2, we present the general setup for neural networks and
our numerical experiments. In Section 3, we discuss autoencoders for categorical and numerical features.
In Section 4, we focus on training neural networks with mixed categorical and numerical features. Details
of our experiments and some additional results are presented in the Online Supplement. The R codes for
training our categorical autoencoders are available on https://github.com/LukaszDelong/Autoencoders.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://github.com/LukaszDelong/Autoencoders
https://doi.org/10.1017/asb.2023.15

216 Łukasz Delong and Anna Kozak

2. General setup
We assume that we have a data set consisting of (yi, xi)n

i=1 where yi describes the one-dimensional
response for observation i and xi = (x1,i, .., xj,i, ..., xd,i)′ is a d-dimensional vector of features which
characterizes the observation. We may omit the index i, which indicates the observation, and simply
use (y, x). The vector x consists of mixed categorical and numerical features. We assume that we have c
categorical features and d − c numerical features.

The categorical features are first one-hot encoded. Let xj denote a categorical feature with mj

different labels
{

aj
1, ..., aj

mj

}
. This categorical feature is transformed into a mj-dimensional vector of

zeros and one:

xj �→ xcat
j = (

xj1 , ..., xjmj

)′ = (
1{xj = aj

1}, ..., 1{xj = aj
mj

})′ ∈R
mj .

The dimension of the vector of features x = (
(xcat)′, (xnum)′)′ = (

(xcat
1)′, ..., (xcat

c)′, xc+1, ..., xd

)′ becomes∑c
j=1 mj + d − c. As far as the numerical features are concerned, we assume that each numerical feature

takes its values from [−1, 1], that is min–max scaler transformations are applied to the numerical
features on the original scale.

In general, we use neural networks with M ∈N hidden layers and qm ∈N neurons in each hidden layer
m = 1, . . . , M. The network layers are defined with the mappings:

z ∈R
qm−1 �→ θm(z) = (

θm
1 (z), . . . , θm

qm
(z)

)′ ∈R
qm , m = 1, . . . , M, (2.1)

z ∈R
qm−1 �→ θm

r (z) = χm
(
bm

r + 〈wm
r , z〉), r = 1, . . . , qm, (2.2)

where χm : R→R denotes an activation function, wm
r ∈R

qm−1 denotes the network weights, bm
r ∈R

denotes the bias term, and 〈·, ·〉 denotes the scalar product in R
qm−1 . By q0 we denote the dimension

of the input vector to the network. The mapping:

z ∈R
q0 �→�M+1(z) = (

�M+1
1 (z), . . . ,�M+1

qM+1
(z)

)′ ∈R
qM+1 , (2.3)

with a composition of the network layers θ 1, . . . , θM, and the components:

z �→ �M+1
r (z) = bM+1

r +
〈
wM+1

r ,
(
θM ◦ · · · ◦ θ 1

)
(z)

〉
, r = 1, . . . , qM+1,

gives us the prediction from the network in the output layer M + 1 of dimension qM+1 based on the
input vector z. The output (2.3) returns the prediction with the linear activation function, and this pre-
diction can be transformed with appropriate non-trainable and non-linear mapping if this is required
for an application. If we set M = 0 in (2.1)–(2.2), then we assume that the input vector is just linearly
transformed to give the prediction in the output layer of dimension q1 and, in this case, the components
in (2.3) are given by

z �→ �1
r (z) = b1

r + 〈
w1

r , z
〉
, r = 1, . . . , q1.

In our numerical experiments, we use the data set freMTPL2freq, which is included in the R package
CASdatasets. The data set has 678,013 observations from insurance policies. The response Y describes
the number of claims per policy. Each policy has nine features and an exposure: (x, Exp). This data set
is extensively studied by Noll et al. (2019), Schelldorfer and Wüthrich (2019) and Ferrario et al. (2020)
in the context of applications of generalized linear models and neural networks to modelling the number
of claims. We perform the same data cleaning and feature pre-processing as in these papers. For the
purpose of our experiments, we work with the features presented in Table 1.

We consider a supervised learning task where the goal is to predict the number of claims for a poli-
cyholder characterized by (x, Exp) by estimating the regression function E[Y|x, Exp]. The prediction is
constructed with the neural network described above and the one-dimensional output from the network
(2.3) is transformed with the non-trainable and the non-linear exponential transformation:

E[Y|x, Exp] = elog (Exp)+�M+1
1 (x). (2.4)

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 217

Table 1. Features used in our experiments.

6 categorical features 2 numerical features 1 binary feature
Area — 6 levels BonusMalus (caped at 150) VehGas
VehPower — 6 levels log-Density
VehAge — 3 levels
DrivAge — 7 levels
VehBrand — 11 levels
Region — 22 levels

The parameters of the network are trained by minimizing the Poisson deviance loss function, see for
example Noll et al. (2019), Schelldorfer and Wüthrich (2019) and Ferrario et al. (2020). Our supervised
learning task is solved with the help of unsupervised learning tasks where autoencoders are used.

3. Autoencoders
Let x denote a vector of (categorical, numerical, mixed) features of dimension p. An autoencoder
consists of two functions:

ϕ : Rp �→R
l, and ψ : Rl �→R

p.

The mapping ϕ is called the encoder, and ψ is called the decoder. The mapping x �→ ϕ(x) from the
encoder gives an l-dimensional representation of the p-dimensional vector x. The mapping z �→ψ(z)
from the decoder tries to reconstruct the p-dimensional vector x from its l-dimensional representation
z = ϕ(x). We define the reconstruction function as

π =ψ ◦ ϕ : Rp �→R
p.

For a data set with observations (xi)n
i=1, the goal is to find the functions ϕ and ψ such that the

reconstruction error as
1

n

n∑
i=1

L(π (xi), xi),

measured with a loss function L, is minimized. If we can find an autoencoder for which the reconstruction
error is small, then we can claim that the encoder extracts the most important information from a multi-
dimensional vector of features. Consequently, we can use the representation ϕ(x), instead of x, as input
to predict the response in our supervised learning task. The observed response y is not used in this
approach when we train an autoencoder. We train autoencoders in a fully unsupervised fashion, but we
will improve the representation based on the target y when we solve the supervised learning task.

Linear autoencoders are well-known in statistics. By a linear autoencoder, we mean an autoen-
coder where both the functions ϕ and ψ are linear. Classical examples of linear autoencoders include
autoencoders built with Principal Component Analysis for numerical data and Multiple Correspondence
Analysis for categorical data. We refer for example to Chapter 6.2 in Dixon et al. (2020) for the equiva-
lence between the linear autoencoder built by minimizing the mean square reconstruction loss function
and the representation built with the PCA algorithm. For MCA and its relation to PCA, we refer for
example to Pagès (2015) and Chavent et al. (2017).

In this paper, we are interested in non-linear autoencoders where at least one of the functions ϕ or
ψ is non-linear. We use the notation (2.1)–(2.2) from the previous section. To build an autoencoder
for the input x, we use a neural network with one hidden layer, that is M = 1. The dimension of the
single hidden layer is set to q1 = l, and the dimensions of the input and the output are set to q0 = q2 = p.
The activation function for the hidden layer depends on the type of data and is discussed in the sequel.
The vector (θ 1

1 (x), ..., θ 1
l (x))′ gives us the representation of the input x from the encoder. The vector

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

218 Łukasz Delong and Anna Kozak

(�2
1(x), ...,�2

p(x))′, transformed with a non-trainable and non-linear function if required for the data,
gives us the reconstruction of the input x predicted with the decoder. This means that ψ also includes a
non-trainable and non-linear transformation of the output (2.3) from the network if such a transformation
is required for application. Clearly, we could also build deep autoencoders with more hidden layers, but
shallow autoencoders with one hidden layer are sufficient for our main application in Section 4.

If l< p, we construct under-complete autoencoders and we reduce the dimension of the input x.
Linear autoencoders built with the PCA and MCA algorithms are examples of under-complete autoen-
coders. If we choose l = p, then we can achieve a zero reconstruction error by learning the identity
mapping. Interestingly, we can also learn over-complete autoencoders with l> p, and denoising autoen-
coders are examples of over-complete autoencoders. In order to construct a denoising autoencoder with
l> p, we corrupt the input for the network. The objective for training a denoising autoencoder is to find
the functions ϕ and ψ such that the reconstruction error:

1

n

n∑
i=1

L(π (x̃i), xi),

measured with a loss function L, is minimized. This time, the input x̃ is corrupted input x which is con-
structed by adding a noise to x. It has been demonstrated in the machine-learning literature that denosing
autoencoders are very good at extracting the most important information from a multi-dimensional vec-
tor of features, see for example Vincent et al. (2008) and (2010). We can also construct over-complete
autoencoders using data without noise if a low number of epochs is used for training the autoencoder
built with a neural network.

In the next two sections, we discuss autoencoders for numerical and categorical features.

3.1. Autoencoders for numerical features
As discussed in Introduction, autoencoders without noise for numerical features have been investigated
in various actuarial applications. In this paper, we adopt the approach from Rentzmann and Wüthrich
(2019). We use the hyperbolic tangent activation function in the hidden layer (χ 1), reconstruct the input
using the linear prediction:

x ∈R
p �→ x̂ = π (x) = (

�2
1(x), ...,�2

p(x)
)′ ∈R

p, (3.1)

and use the mean square error loss function L to measure the reconstruction error between the prediction
x̂ = π (x) and the input x. We build a non-linear autoencoder since we use a non-linear activation function
(the hyperbolic tangent) in the hidden layer. In contrast to Rentzmann and Wüthrich (2019), we allow
for bias terms in the network since we use the min–max scaler transformation of the numerical features
instead of zero mean and unit variance standardization. An example of the architecture of a neural
network used in this paper to build an autoencoder for numerical features is presented in Figure 1.

As far as denoising autoencoders are concerned, we apply two types of corruption processes to distort
the input, see for example Vincent et al. (2008), (2010):

• Gaussian disturbance (gaussian): For each observation, i = 1, ..., n, and each numerical feature
in vector xi, the original input is corrupted with the transformation xj,i �→ x̃j,i ∼ N(xj,i, σ 2).

• Masking to zero (zero): For each observation, i = 1, ..., n, and the fraction v of numerical fea-
tures in vector xi chosen at random, the original input is corrupted with the transformation
xj,i �→ x̃j,i = 0.

3.2. Autoencoders for categorical features
We consider two types of architecture of autoencoders for categorical features. Neither has been explored
in the actuarial literature, although they appear, and versions of them appear, in many applications of
machine learning methods in various fields.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 219

Figure 1. Architecture of the autoencoder for numerical features used in the paper.

1. Separate autencoders for each feature (Separate AEs): For categorical feature xj with mj different
labels and its one-hot representation xcat

j = (xj1 , ..., xjmj
)′, we build a neural network (2.1)–(2.2)

with M = 1, q0 = mj, q1 = lj, q2 = mj, where lj is the required dimension of the representation
of the categorical feature. Since we use the one-hot representation of xj as the input to the
network, there is no need to train bias terms in the hidden layer, so we set b1

r = 0 for r = 1, ..., lj.
However, it is still beneficial to train bias terms in the output layer in order to match the output
expressed with probabilities (see below). The linear activation function for χ 1 in the hidden
layer is a natural choice here since the linear mappings 〈w1

r , xcat
j 〉, for neurons r = 1, ..., lj, yield

unique constants for each label of the categorical feature, so there is no need to apply non-linear
transformations to these constants. We reconstruct the input using the prediction:

xcat
j ∈R

mj �→ x̂cat
j = π (xcat

j) = (
π1(xcat

j), ..., πmj (xcat
j)

)′ ∈R
mj , (3.2)

where

πr(xcat
j) = e�

2
r (xcat

j)

∑mj

u=1 e�
2
u(xcat

j)
, r = 1, ..., mj.

The soft-max activation function is applied to the output from the network (2.3) to derive the
reconstructed input. The reconstruction function returns the probabilities that the reconstructed
feature takes a particular label. The label with the highest predicted probability is the label
predicted for the reconstructed feature. Since we now deal with a classification problem for the
single categorical feature xj, it is natural to use the cross entropy loss function L to measure the
reconstruction error between the prediction x̂ = π (x) and the input x:

L(π (xcat
j,i), xcat

j,i) = −
mj∑

r=1

xcat
jr ,i log

(
πr(xcat

j,i)
)
, i = 1, ..., n. (3.3)

We build a non-linear autoencoder since we use a non-linear activation function (the soft-max
function) in the output layer. The approach described above is applied to all categorical features
in the data set. An example of the architecture of a neural network used in this paper to build
the autoencoder of type Separate AEs for categorical features (with 2 and 3 labels) is presented
in Figure 2.

2. Joint autoencoder all features (Joint AE): We consider a vector of categorical features (x1, ..., xc)
with (m1, ..., mc) different labels and their one-hot representations xcat = (

(xcat
1)′, ..., (xcat

c)′)′. Let
m̄0 = 0 and m̄j = ∑j

u=1 mu for j = 1, ..., c. This time we build a neural network (2.1)–(2.2) with
M = 1, q0 = m̄c, q1 = l, q2 = m̄c, where l is the dimension of the required joint representation of
all categorical features. We still set b1

r = 0 for r = 1, ..., l, train bias terms in the output layer

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

220 Łukasz Delong and Anna Kozak

Figure 2. Architecture of the autoencoder of type Separate AEs for categorical features.

and apply the linear activation function in χ 1. We reconstruct the input using the prediction:

xcat ∈R
m̄c �→ x̂cat = π (xcat) = (

π1(xcat), ..., πm̄1 (xcat), ...,

πm̄j−1+1(xcat), ..., πm̄j (xcat), ...,

πm̄c−1+1(xcat), ..., πm̄c (xcat)
)′ ∈R

m̄c , (3.4)

where

πr(xcat) = e�
2
r (xcat)∑m̄j

u=m̄j−1+1 e�2
u(xcat)

, r = m̄j−1 + 1, ..., m̄j, j = 1, ..., c,

and πr(xcat), for r = m̄j−1 + 1, ..., m̄j, return probabilities that the categorical feature xj takes a
particular label among its mj labels. The prediction of the label for xj is the label with the highest
predicted probability among πr(xcat). Clearly, we build a non-linear autoencoder. We remark
that the soft-max activations functions are now applied to groups of neurons in the output
layer from the network (2.3) which correspond to the labels of the categorical features. Hence,
the decoder here returns probabilities in classification problems for all categorical features.
This time all neurons in the layers of the autoencoder (before the soft-max transformations
are applied) share the parameters of one neural network. By applying the Separate AEs, we
independently solve multiple classification problems for our categorical features with separate
autoencoders, whereas by applying the Joint AE, we jointly solve multiple classification prob-
lems for our categorical features with one autoencoder. Such an approach is called multi-task
learning in machine learning, see for example Caruana (1997) and Ruder (2017). We use the
cross entropy loss function L to measure the reconstruction error between prediction x̂ = π (x)
and input x:

L(π (xcat
i), xcat

i) = −
c∑

j=1

mj∑
r=1

xcat
jr ,i log

(
πr(xcat

i)
)
, i = 1, ..., n. (3.5)

An example of the architecture of type Joint AE is presented in Figure 3.

In order to build denosing autoencoders, we apply the following corruption processes for categorical
features:

• For each observation, i = 1, ..., n, and a fraction v of categorical features in vector xi chosen at
random, the original input is corrupted with the transformations:

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 221

Figure 3. Architecture of the autoencoder of type Joint AE for categorical features.

• Sampling a new label (sample): The original input is corrupted with the transformation xj,i �→
x̃j,i ∼ F̂xj and one-hot encoded with x̃j,i �→ x̃cat

j,i , where F̂xj is the empirical distribution of the
feature xj in the data set. This corruption process can be seen as an extension of the salt-and-
pepper noise for binary data to categorical data, see for example Vincent et al. (2008, 2010)
for the salt-and-pepper noise for binary data.

• Masking to zero (zero): The original input and its one-hot encoding are corrupted with the trans-
formation xcat

j,i �→ x̃cat
j,i = 0′, where 0 is a vector of zeros. This corruption process is an analogue

to the technique of masking applied to numerical features from Section 3.1.

We conclude this section with some remarks on the types of architecture of our autoencoders for
categorical data:

(a) The approach with the Separate AEs has at least two disadvantages compared to the Joint AE.
First, we have to train a number of autoencoders equal to the number of categorical features,
which may be time-consuming. Secondly, and more importantly, we neglect possible depen-
dencies between different categorical features when creating representations with separate and
independent autoencoders. The second disadvantage is explored in Experiment 1 below. We
consider the approach with the Separate AEs as a benchmark since it gives us a representation
of categorical data which matches the representation of categorical data learned with entity
embeddings in supervised learning tasks.

(b) If the categorical features are binary features, then our approach with the Joint AE is aligned
with the approach for binary data used by Vincent et al. (2008, 2010) in their experiments.
For binary data, autoencoders which coincide with our Joint AE are also used in Generative
Adversarial Imputation Nets, see for example Yoon et al. (2018).

(c) Hespe (2020) recommends a multi-task learning autoencoder for categorical data which agrees
with our Joint AE. He also describes single-task learning autoencoders learned with loss
functions different from the cross-entropy.

3.3. Experiment 1: the reconstruction ability of autoencoders
We compare the following four autoencoders for categorical data:

• Separate AEs,
• Joint AE,
• MCA — we build a linear autoencoder with the classical MCA algorithm, that is instead of

training a neural network, we apply Generalized Singular Value Decomposition (GSVD) to a

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

222 Łukasz Delong and Anna Kozak

matrix with centered one-hot encoded categorical features, see Pagès (2015) and Chavent et al.
(2017),

• MCA as non-linear PCA — we build a non-linear autoencoder for numerical data, the one
described in Section 3.1, on linearly transformed one-hot encoded categorial features. From
Pagès (2015) and Chavent et al. (2017), MCA is PCA on centered one-hot encoded categori-
cal data transformed with linear mappings (GSVD). Instead of building a linear autoencoder,
which is equivalent to the PCA algorithm, on linearly transformed centered one-hot encoded
categorial features, we build a non-linear autoencoder with the hyperbolic tangent activation
function in the single hidden layer by minimizing the mean square reconstruction error.

From the data set freMTPL2freq with 678,013 observations, we sample 100,000 observations. We
work with a smaller data set to speed up the calculations. We limit our attention to categorical features
and we consider the six categorical features from Table 1. Our data set with 100,000 observations is
next split randomly into five data sets with 20,000 observations. We build our autoencoders on each
of these five sets and report the average metric for these five sets evaluated at the training set. As the
metric, we use the cosine similarity measure, but the findings also hold for example for the number of
correct predictions. In this experiment, we only build under-complete autoencoders without noise, as
this is sufficient to derive the key conclusions. We train our autoencoders with 15, 100 and 500 epochs.
We do not differentiate between a training, a validation and a test set (we do not discuss possible over-
fitting) since we are only interested in evaluating the reconstruction errors of the autoencoders. Details
are presented in Section 1 in the Online Supplement.

The dimension of the data matrix with the one-hot encoded categorical features is 54. We consider
a range of dimensions of the representation of the categorical features: q1 = l = 6, 8, 10, 12, 15, 20, 30.
For the Separate AEs, we have to specify the number of neurons lj (the dimension of representation)
for each feature j. We assume that the number of neurons l, which defines the global dimension of the
representation for all categorical features, is split across the individual categorical features evenly, if
possible, and if not possible, a larger number of neurons is allocated to a feature with a larger number of
labels. For example if we choose l = 6, then we build representations of dimension 1 for each feature, if
we choose l = 12, then we build representations of dimension 2 for each feature, but if we choose l = 8,
then we build representations of dimension 2 for Region and VehBrand (these two features have the two
largest number of labels in the data set) and representations of dimension 1 for the remaining features.

We present the results in Figure 4. It is obvious that the cosine similarity increases with the number
of neurons and the number of epochs. For the large number of epochs (500), for which we achieve the
smallest reconstruction errors for all our autoencoders in terms of the loss functions minimized in the
training process, the autoencoders Separate AEs and Joint AE are very similar in terms of their recon-
struction power measured with the cosine similarity and they are much better than the remaining two
autoencoders. The first conclusion confirms that categorical data have different intrinsic properties than
numerical data, which are explored when a low-dimensional representation is built with an autoencoder,
and categorical data should not be compressed with algorithms derived for numerical data (MCA is just
PCA on linearly transformed data). The second conclusion is that for the low and the medium number
of epochs (15, 100), especially for the low number of epochs, the performance of Joint AE is superior
in terms of its ability to reconstruct the input from a low dimensional representation. In particular, our
experiment shows that there are dependencies between the categorical features in the data set which are
efficiently captured by the Joint AE at initial epochs (15 epochs) of the learning process of the autoen-
coder, and which cannot be captured by learning independent Separate AEs. Intuitively, dependencies
between categorical features should allow the Joint AE to learn more robust and informative representa-
tions of categorical features and the Joint AE should lead to better reconstruction errors compared to the
Separate AEs. For the low number of epochs (15) and a low dimension of the representation (6, 8, 10),
the Joint AE is very similar to the MCA, but the performance of the Joint AE improves quickly when we
increase the number of epochs. Clearly, we can benefit from non-linear autoencoders when the purpose
is to derive informative representations of categorical features.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 223

Figure 4. Cosine similarity measures for autoencoders for categorical data.

As discussed in Section 3, if we can find an autoencoder for which the reconstruction error is small,
then we can say that the encoder extracts the most important information from a multi-dimensional
vector of features. Our example points out that representations of categorical features built with the
Separate AEs may not be optimal in terms of their robustness and informativeness, especially if we do
not want to spend much time on training autoencoders with a large number of epochs. It is known that
the predictive power of neural networks and their generalization properties in supervised learning tasks
depend on providing a good representation of the available information for its efficient pre-processing
in hidden layers before the final prediction of the response is constructed with the output. Since the
Joint AE performs better than the Separate AEs in terms of providing a more robust and informative
representation of categorical features, we may prefer to use the numerical representation of categorical
features implied by the Joint AE, rather than the Separate AEs, as the input to neural networks built
for supervised learning tasks. However, in all practical examples in actuarial data science to date, the
numerical representation of categorical features which is fed into hidden layers of a neural network
matches the representation from the Separate AEs. We have to use a different type of architecture of a
neural network to use the representation from the Joint AE. This experiment may serve as a motivating
example for what we present in the sequel.

4. Training neural networks with mixed categorical and numerical features
We now move to the main topic of this paper. Below, we discuss different approaches to training neural
networks with mixed categorical and numerical features in supervised learning tasks. These approaches
differ in the architecture of the neural network and initialization of the parameters of the neural network.

4.1. Architecture A1 with separate entity embeddings
Let us start by recalling the concept of an entity embedding developed by Guo and Berkhahn (2016).
An entity embedding for categorical feature xj is a neural network which maps the categorical feature
xj, with its one-hot representation xcat

j , into a vector of dimension lj:

xcat
j ∈R

mj �→ xee
j = (xee

j1
, ..., xee

jlj
)′ ∈R

lj ,

where

xee
jr

= 〈wee
r , xcat

j 〉, r = 1, ..., lj.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

224 Łukasz Delong and Anna Kozak

Figure 5. Architecture of type A1 with separate entity embeddings.

With an entity embedding, each label, from the set of mj possible labels {a1, ..., amj} of the categorical
feature xj, can be represented with a vector in the space R

lj . The parameter lj is the dimension of the
embedding for the categorical feature xj.

In Figure 5, we provide an example of the architecture of a neural network with mixed categorical
and numerical features used in supervised learning tasks in actuarial data science. This architecture uses
entity embeddings for categorial features and has been promoted by Richman (2021), Noll et al. (2019)
and Ferrario et al. (2020). We present a simple example with two categorical features xcat

1 , xcat
2 , with

3 and 2 levels, and two numerical features x3 and x4. For xcat
1 , we implement the entity embedding of

dimension 2, and for xcat
2 — the entity embedding of dimension 1. More generally, within (2.1)–(2.2),

we define a neural network with Architecture 1 (A1):

• For each categorical feature xj, j = 1, .., c, we build an entity embedding — a sub-network
without hidden layers, that is M = 0, where the input z = xcat

j , q0 = mj and the output q1 = lj,
• Once all one-hot encoded categorical features are transformed with linear mappings of the

entity embeddings, the outputs from the entity embeddings, that is the numerical representa-
tions of the categorical features, are concatenated with the numerical features to yield a new
numerical vector of all features. This new vector is fed as the input into another sub-network
with M hidden layers,

• We build a sub-network with M hidden layers with neurons q1, ..., qM and the hyper-
bolic tangent activation functions χ 1, ..., χM in the hidden layers, where the input z =(
(xee

1)′, ..., (xee
c)′, xc+1, ..., xd

)′ and q0 = ∑c
j=1 lj + d − c,

• All weights of the network (including the weights of the entity embeddings) are initialized with
values sampled from uniform distributions with the Xavier initialization, see Glorot and Bengio
(2010), and the bias terms are initialized with zero.

The goal of this paper is to challenge A1 with a new architecture and a new training process of a neural
network. The results from Experiment 1 provide us with arguments regarding how we could change A1.
We can now clearly observe that the numerical representations of the categorical features learned with
the entity embeddings in A1 matches, in their architectures, the numerical representations learned with
the Separate AEs. From Section 3.3, we conclude that we could replace the numerical representations
of the categorical features in A1 with the representation learned with the Joint AE. This leads us to
introduce Architecture 2.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 225

Figure 6. Architecture of type A2 with joint embedding.

4.2. Architecture A2 with joint embedding
Instead of applying separate entity embeddings to each categorical feature, we now use a joint embedding
for all categorical features. A joint embedding is understood here as a neural network with the following
mapping:

xcat = ((xcat
1)′, ..., (xcat

c)′)′ ∈R
m̄c �→ xẽe = (xẽe

1 , ..., xẽe
l)′ ∈R

l,

where

xẽe
r = 〈wẽe

r , xcat〉, r = 1, ..., l.

Parameter l is the dimension of the embedding for all categorical features (x1, ..., xc). We expect that
l< l1 + ... + lc.

Our new architecture of a neural network with mixed categorical and numerical features where the
categorical features are modelled with a joint embedding is presented in Figure 6. For xcat

1 , xcat
2 , we

implement a joint embedding of dimension 3—this is the only, but also a significant difference between
the architectures in Figures 5 and 6. Within (2.1) and (2.2), we define a neural network with Architecture
2 (A2):

• For all categorical features (x1, ..., xc), we build a joint embedding — a neural sub-network
without hidden layers, that is M = 0, where the input z = xcat, q0 = m̄c and the output q1 = l,

• The next steps of building the network for predicting the response are the same as for A1.
• We initialize all weights with the Xavier initialization and set the bias terms equal to zero, as

for A1.

We can observe that the numerical representation of the categorical features learned with the joint
embedding in A2 matches, in its architecture, the representation learned with the Joint AE. We have
already discussed the advantages of this representation in unsupervised learning tasks, which should
also hold in supervised learning tasks. In addition, we can expect that by learning a joint embedding for
all categorical features, we allow all categorical features, not only labels for a single categorical feature,
to share the information about their impact on the response. As a result, we should be able to improve
predictions of the response based on the experience collected from similar categorical features and their
similar labels. Hence, the switch from A1 to A2 has intuitive foundations. To the best of our knowledge,
A2 has not been considered to date in any actuarial data science problem.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

226 Łukasz Delong and Anna Kozak

4.3. Initialization of A1 and A2
The issue of initialization of parameters of neural networks has been noticed in actuarial data science.
Under A1, Merz and Wüthrich (2019) and Schelldorfer and Wüthrich (2019) propose the Combined
Actuarial Neural Network (CANN) approach to initialize a neural network with predictions from a GLM
— we call this architecture and the training process A1_CANN. The idea is to add a skip connection to
the output from the network with architecture A1. In mathematical terms, in A1 we use the prediction:

λi = elog (Expi)+�M+1
1

(
((xee

1,i)
′ ,...,(xee

c,i)
′ ,xc+1,i ,...,xd,i)

′
)
, i = 1, ..., n, (4.1)

whereas in A1_CANN we use the prediction:

λi = elog (Expi)+ηGLM
i +�M+1

1

(
((xee

1,i)
′ ,...,(xee

c,i)
′ ,xc+1,i ,...,xd,i)

′
)
, i = 1, ..., n, (4.2)

where ηGLM
i denotes the prediction, on the linear scale, of the unit intensity (for exposure equal to one)

from a Poisson GLM with a log link for observation i.
In A1 and A2, we initialize the weights of the embeddings for the categorical features with the Xavier

initialization. However, since autoencoders extract important information about features, we could ini-
tialize the weights of the embeddings with the weights from the encoder of the appropriate autoencoder
and define the weights of the embeddings as non-trainable in the training process. This is reasonable,
but may be sub-optimal for a supervised learning task since the representation of the categorical fea-
tures learned with an autoencoder without the information about the response would be kept fixed. To
improve the representation from an autoencoder, we should fine-tune it in a supervised learning task
with a target response. In the machine learning literature, Erhan et al. (2010, 2009) propose to pre-train
layers of neural networks with denoising autoencoders, that is initialize neurons in layers of a neural
network for a supervised learning task with representations of the neurons from denoising autoencoders
built in unsupervised learning tasks for the input to the layers. We recover and modify their approach in
this paper.

Apart from changing the architecture from A1 to A2, we initialize the weights and the bias terms in
the joint embedding for the categorical feature and the first hidden layer in A2 with the weights and the
bias terms from the representations of the neurons in the layers learned with autoencoders. From Erhan
et al. (2010, 2009), we know that the initialization procedure with autoencoders gives the largest gains
in predictive power of a neural network when it is applied to initial layers of the network. We proceed
in the following way:

• We build an autoencoder of type Joint AE (denoted as the 1st AE) for the categorical
input (x1, ..., xc) using its one-hot representation xcat = (

(xcat
1)′, ..., (xcat

c)′)′. To build a denois-
ing autoencoder, we corrupt the categorical input with the sample or the zero transformation,
see Section 3.2,

• We take the weights from the encoder of the 1st AE, denoted by wenc
r = (wenc

r,1 , ..., wenc
r,m̄c

), r =
1, ..., l, and initialize the weights wẽe

r , r = 1, ..., l, of the joint embedding in A2 with these
weights,

• We take the representation of the categorical features predicted by the 1st AE: xenc =
(xenc

1 , ..., xenc
l)′ with xenc

r = 〈wenc
r , xcat〉, r = 1, ..., l, concatenate this vector with the vector of

the numerical features (xc+1, ..., xd)′ and create a new vector of numerical features z =
((xenc)′, xc+1, ..., xd)′,

• We build an autoencoder from Section 3.1 (denoted as the 2nd AE) for the numerical input
z. The dimension of the representation to be learned for the (l + d − c)-dimensional vector z
is equal to q1, where q1 denotes the number of neurons used in the first hidden layer in the
sub-network with M hidden layers, which is built for the input constructed by concatenating
the representation from the joint embedding with the numerical features. To build a denoising
autoencoder, we corrupt the numerical input with the gaussian or the zero transformation, see
Section 3.1,

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 227

• We take the weights and the bias terms from the encoder of the 2nd AE and initialize the
weights and the bias terms b1

r , w1
r , r = 1, ..., q1, in the first hidden layer in the sub-network with

M hidden layers with these weights and the bias terms.
• All other weights are initialized with the Xavier initialization and the bias terms are initialized

with zero.

The initialization procedure applied here also clarifies why we were only interested in building
autoencoders with one hidden layer in Section 3. For A2, and any initialization of layers, we use the
predictions:

λi = elog (Expi)+�M+1
1

(
((xẽe

i)′ ,xc+1,i ,...,xd,i)
′
)
, i = 1, ..., n. (4.3)

The autoencoders, which are trained without the information about the response, are only used to
derive initial values of the neurons in the two layers of A2. These initial values are next fine-tuned by
training the whole neural network to predict the target response. When training an autoencoder, we are
only interested in extracting the most important discriminatory factors in the multi-dimensional input
vector, which are next improved and optimally transformed by taking into account the target response.
Since in this application autoencoders are trained for a low number of epochs, in Experiment 1, we
should only look at the results for epochs 15 and 100, which show clear advantages of the representation
of categorical features learned with the Joint AE compared to the Separate AEs.

The third step above where we concatenate the numerical representation of the categorical features
from the 1st AE with the other numerical features deserves attention. We propose a modification of the
pre-training strategy of layers with autoencoders which has not been considered by Erhan et al. (2010,
2009). It is known that the features, fed into a neural network, should live on the same scale in order
to perform effective training of the network. We can easily control the numerical features and scale
them to [− 1, 1], which is done before the training process is started. However, we cannot expect the
numerical representation of the categorical features learned with the 1st AE, that is the values given by
xenc

r = 〈wenc
r , xcat〉, r = 1, ..., l, to yield predictions in [− 1, 1]. If the predictions from the encoder of the

1st AE live on a scale different from [− 1, 1], which is the scale where the numerical features live, then
the input to the 2nd AE and the input to the first hidden layer of the sub-network with M hidden layers
will have features on different scales, and the training process of the neural networks may suffer from
this inconsistency in scales. Fortunately, we can modify the weights and the bias terms of the encoder
and the decoder of the 1st AE to keep the reconstruction error unchanged and have the representation
of the categorical features in the desired scale. This is possible due to the linear activations functions
assumed and the bias terms chosen to be trained in the output layer in the autoencoder of type Joint AE,
before the soft-max functions are applied. In the encoder part of the Joint AE, we re-define the weights:

wenc
r,k �→ wenc,∗

r,k = 2

maxi{xenc
r,i } − mini{xenc

r,i }wenc
r,k − 1

c

(
2 mini{xenc

r,i }
maxi{xenc

r,i } − mini{xenc
r,i } + 1

)
,

for r = 1, ..., l and k = 1, ..., m̄c. We can deduce that for these new representations we have
〈wenc,∗

r , xcat
i 〉 ∈ [− 1, 1] for all r = 1, ..., l and all observations i = 1, ..., n. Since xcat

i is always a
vector with c elements equal to 1 and the remaining elements are equal to zero, the constant term
−2 mini{xenc

r,i }/(maxi{xenc
r,i } − mini{xenc

r,i }) − 1 from the min–max scaler transformation of the original
predictions from the encoder 〈wenc

r , xcat
i 〉, for each neuron r, can be absorbed by the new weights of the

encoder by dividing the constant by c. Let (bdec
r , wdec

r)m̄c
r=1 denote the weights and the bias terms from the

decoder. In the decoder part of the Joint AE, we now re-define:

wdec
r,k �→ wdec,∗

r,k = maxi{xenc
k,i } − mini{xenc

k,i }
2

wdec
r,k ,

bdec
r �→ bdec,∗

r = bdec
r +

l∑
k=1

(
wdec,∗

r,k + min
i

{xenc
k,i }wdec

r,k

)
,

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

228 Łukasz Delong and Anna Kozak

for r = 1, ..., m̄c and k = 1, ..., l. We can conclude that the predictions in the output layer from the
autoencoder with the modified weights and bias terms remain exactly the same as in the original
autoencoder, hence the reconstruction error remains unchanged. Since the bias terms are needed in the
decoder to adjust the representation, in Section 3.2, we decided to train the bias terms in the decoder of
the autoencoder for categorical data.

Let us conclude with remarks on our architectures A1–A2:

(a) We could initialize the representations of the categorical features in A1 with the weights from
the encoders from the Separate AEs. Based on the results from Experiments 1, we expect that
this type of initialization of A1 would not be an efficient solution for improving predictive
power of neural networks, and we decided not to proceed with this approach in this paper.
Moreover, training multiple autoencoders in unsupervised learning tasks for initialization of a
neural network for a supervised learning task would be time-consuming and would be unlikely
to gain popularity in practical applications.

(b) Other architectures of neural networks are also possible. For example, we could consider
Architecture 3. First, the one-hot encoded categorical features are centered and linearly
transformed with non-trainable mappings defined as in the MCA algorithm before the PCA
algorithm is applied. Then, they could be treated as numerical data together with the other
numerical features. Such an approach is proposed in the Factor Analysis of Mixed Data, see
Pagès (2015) and Chavent et al. (2017). In other words, we could define neurons in the first hid-
den layer of a neural network as linear transformations of linearly transformed one-hot encoded
categorical features and numerical features. In Figure 6, we would remove the intermediate
layer with grey neurons. We would only need the autoencoder for numerical data to pre-train
the first hidden layer of the network and the autoencoder for the categorical data would not be
needed at all. Based on the results from Experiment 1, we reject such architecture because we
believe that categorical data should be treated differently from numerical data. This view is
also supported with experiments presented by Brouwer (2004) and Yuan et al. (2020).

4.4. Experiment 2 — the predictive power of A1 and A2
We study architectures and training processes of neural networks denoted by A1, A1_CANN, A2,
A2_MCA, A2_1AE, A2_2AEs, where A1, A1_CANN, A2 are defined above and we introduce:

• A2_MCA — we only pre-train the joint embedding of A2 with a linear autoencoder, that is we
initialize the weights of the joint embedding for the categorical features with the weights from
the encoder from a linear autoencoder built with the MCA algorithm. In our experiment, and
also in general, we cannot apply a linear autoencoder built with the PCA algorithm as the 2nd
AE since PCA only allows us to build under-complete autoencoders, whereas the number of
neurons in the first hidden layer of a sub-network with M hidden layers is usually much larger
than the dimension of the input to the layer — this remark can serve as an additional argument
for using over-complete autoencoders for pre-training layers of neural networks rather than
classical under-complete autoencoders,

• A2_1AE — we only pre-train the joint embedding of A2 with a non-linear autoencoder,
that is we initialize the weights of the joint embedding for the categorical features with the
weights from the encoder from an autoencoder of type Joint AE. We use only one non-linear
autoencoder since we want to directly validate MCA with a non-linear autoencoder,

• A2_2AEs — our main approach, in which we pre-train the joint embedding and the first hidden
layer of A2 with two non-linear autoencoders, that is we initialize the weights of the joint
embedding for the categorical features with parameters from the encoder from an autoencoder
for categorical data of type Joint AE and we initialize the weights and bias terms of the first
hidden layer in the sub-network with M hidden layers with parameters from the encoder from
an autoencoder for numerical data from Section 3.1.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 229

A1_CANN is initialized with GLM1 from Schelldorfer and Wüthrich (2019), which is a Poisson
GLM with log link function where the features in Table 1 are used as regressors and the categorical
features are coded with dummy variables.

The dimension of the categorical input, which consists of the one-hot encoded categorical features,
is equal to 54. We set the dimension of the representation of the categorical features to 8. For A1, we
build separate representations of dimension 2 for Region and VehBrand and separate representations
of dimension 1 for all other features—Area, VehPower, VehAge and DrivAge. This choice is compat-
ible with Experiment 1 and the choice made by Noll et al. (2019), Schelldorfer and Wüthrich (2019)
and Ferrario et al. (2020). For A2, we build a joint representation of dimension 8 for all categorical
features. The dimension of the input to the first hidden layer, which consists of the numerical features
and the numerical representation of the categorical features, is equal to 11, since we concatenate the
representation of the categorical features learned with the embeddings with the three numerical features
— BonusMalus, Density and VehGas. The number of neurons in the single hidden layer in the 1st AE
is 8, as this number must coincide with the dimension of the representation of the categorical features
for our supervised learning task. The number of neurons in the single hidden layer in the 2nd AE is
equal to the number of neurons in the first hidden layer of the sub-network with M hidden layers. We
consider sub-networks with M = 3 hidden layers in our experiments below. We consider three possible
choices for the numbers of neurons in the hidden layers in A2, similar to Noll et al. (2019), Schelldorfer
and Wüthrich (2019) and Ferrario et al. (2020), and we define the numbers of neurons for A1 so that
the number of trainable parameters in A1 and A2 are equal, see Table 2.1 in Section 2 in the Online
Supplement for the numbers of neurons.

Experiment 2 is conducted on the same 100,000 observations as Experiment 1. Since the predictive
power of neural networks depends on their hyperparameters, in the first step of this experiment, we per-
form hyperparameter optimization. With hyperparameter optimization, we also control over-fitting of
the networks. We try to identify the best hyperparameters for the two autoencoders (the 1st AE and the
2nd AE) trained in an unsupervised process and the best hyperparameters for the neural networks with
Architectures 1 and 2 trained in a supervised process. The hyperparameters optimized in the experiment,
together with their best values, are presented in Section 2 in the Online Supplement, where the hyper-
parameter optimization process is described in detail. As a part of the hyperparameter optimization, we
choose between denoising autoencoders and autoencoders without noise. We point out that we prefer
a denoising autoencoder for pre-training the joint embedding of A2, see Table 2.3 in Section 2 in the
Online Supplement.

In the second step of this experiment, we study in more detail the predictive power of the best neural
networks identified in the first step of the experiment for each architecture and training process. The set
of 100,000 observations is split into a training, a validation and a test set to the proportions 3:1:1. We
perform 100 calibrations for each best approach for A1, A1_CANN, A2, A2_MCA, A2_1AE, A2_2AEs.
In each calibration, we train the autoencoders in unsupervised learning tasks, if required, and the neural
network for the supervised learning task. The training process is the same as in the hyperparameter
optimization. We train the networks on the training set by minimizing the Poisson loss, early stop the
algorithm on the validation set and evaluate the predictive power of the trained networks by calculating
the Poisson loss on the test set.

The box plots of the Poisson loss values on the test set in 100 calibrations are presented in Figure 7,
and their key characteristics in Table 2. By initializing A1 with GLM1, we gain on average a small pre-
dictive power of 0.0052 and we increase the standard deviation of the loss from 0.0384 to 0.0708. In
general, the predictive power of A1_CANN depends on the GLM used for initialization of A1 and here
we use one of the simplest GLMs investigated by Noll et al. (2019). As discussed by Schelldorfer and
Wüthrich (2019), A1_CANN could only benefit from a very good initial GLM. If we switch from A1
to A2, then the predictive power of the network increases slightly on average by 0.0095, but at the same
time, A2 has standard deviation of the loss twice as high as A1. A1, A1_CANN and A2 are all close in
terms of their predictive power and we do not find strong evidence that A1_CANN and A2 are better than

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

230 Łukasz Delong and Anna Kozak

30.2

30.3

30.4

30.5

30.6

A1 A1_CANN A2 A2_MCA A2_1AE A2_2AEs

Model

L
o

ss
 f

u
n

ct
io

n

Figure 7. Distributions of the Poisson loss on the test set (for each network the dotted line represents
the average loss in 100 calibrations).

A1. In fact, we observe that the Poisson loss values achieved in calibrations are dispersed more under
A1_CANN and A2 than A1. If we improve the training process of A2 by initializing its parameters with
the parameters from the autoencoders, then the performance of A2 improves in terms of the predictive
power, the standard deviation and quantiles of the Poisson loss. By initializing the joint embedding of
A2 with the linear autoencoder, we gain on average a small amount of predictive power of 0.0087. If
we replace the linear autoencoder of type MCA with the non-linear denoising autoencoder of type Joint
AE, then we can observe on average a significant gain in the predictive power of 0.0256 (A2_1AE vs.
A2). This shows that linear autoencoders are not sufficient for pre-training layers of neural networks for
supervised learning tasks and we have to rely on non-linear denoising autoencoders to initialize neural
networks (it is not possible to use PCA for pre-training the first hidden layer of the sub-network with
three hidden layers and only the joint embedding can be pre-trained with MCA). If we pre-train A2 with
the two autoencoders for the categorical and the numerical input, then we reduce the Poisson loss on
average by 0.0620 (A2_2AEs vs. A2). When we move from A2_1AE to A2_2AEs, the improvement in
the predictive power on average of 0.0364 is possible only if we re-scale the weights from the autoen-
coder for the categorical input before we train the autonencoder for the numerical input (see Section 4.3
for details on this step). Without this step, A2_2AEs would fail to provide superior results. The size of
the improvement in the predictive power when we switch from A2_1AE to A2_2AEs also depends on
the choice of the autoencoder for the categorical input. Hence, the choice of the 1st AE (recall that we
choose a denoising autoencoder) is important even though the 2nd AE leads to a larger decrease in the
average value of the Poisson loss. By pre-training A2 with our two autoencoders, we also decrease the
standard deviation of the loss. Most importantly, we finally compare A2_2AEs with A1. We achieve an
improvement in the Poisson loss on average of 0.0525 for A2_2AEs compared to A1. All reported quan-
tiles are lower for A2_2AEs than for A1, and the distribution of the loss from A2_2AEs is shifted to the
left compared to A1, but the standard deviation of the loss from A2_2AEs is slightly larger than the stan-
dard deviation of the loss from A1. We can conclude that our new architecture with a joint embedding for
all categorical features and initialized with parameters from (denosing) autoencoders is better, in terms
of its predictive power, than the classical architecture nowadays commonly used in actuarial data science
with separate entity embeddings for categorical features and random initialization of parameters. The
improvement of the predictive power from 30.3950 to 30.3425 can indeed be interpreted as significant
for this data set—Schelldorfer and Wüthrich (2019) demonstrate for example that the Poisson loss can
decrease from 31.5064 to 31.4532 by optimizing the dimensions of the entity embedding, or the Poisson
loss can decrease from 32.1490 to 32.10286 by boosting a GLM with one regressor transformed with a
neural network (for the BonusMalus which achieves the largest improvement).

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

ASTIN Bulletin 231

Table 2. Distributions of the poisson loss on the test set, their quantiles (q), average values (avg)
and standard deviations (SD).

Statistics A1 A1_CANN A2 A2_MCA A2_1AE A2_2AEs
q0.05 30.3362 30.2875 30.3133 30.3142 30.2863 30.2767
q0.25 30.3684 30.3417 30.3481 30.3495 30.3322 30.3138
avg 30.3950 30.3898 30.4045 30.3958 30.3789 30.3425
q0.75 30.4130 30.4261 30.4338 30.4386 30.4157 30.3719
q0.95 30.4688 30.5101 30.5444 30.5104 30.4833 30.4126
sd 0.0384 0.0708 0.0758 0.0597 0.0624 0.0433

The bias of the predictors and the performance of auto-calibrated predictors is investigated in
Section 3 in the Online Supplement.

5. Conclusion
We have presented a new approach to training neural networks with mixed categorical and numerical
features for supervised learning tasks. We have illustrated that our new architecture of a network with a
joint embedding for all categorical features and network parameters properly initialized with parameters
from (denosing) autoencoders, learned in an unsupervised manner, performs better, in terms of the
predictive power and the stability of the predictions, than the classical architecture, used nowadays in
actuarial data science, with separate entity embeddings for categorical features and random initialization
of parameters. We hope that the results described in this paper will draw attention in actuarial data
science to a new possible architecture of a neural network for supervised learning tasks and benefits of
autoencoders in deriving representations of features for supervised learning tasks. In fact, we are already
aware of new (unpublished) experiments with autoencoders used for initialization of neural networks
for actuarial pricing, see Holvoet et al. (2022).

Despite the results presented in the paper, there is one more advantage of our new architecture. As far
as hyperparameter optimization is concerned for the classical architecture, we should optimize the loss
function with respect to multiple hyperparameters which describe the dimensions of the entity embed-
dings for categorical features. In our new architecture, we only search for the optimal value of only
one hyperparameter which specifies the dimension of the joint embedding for all categorical features.
Consequently, our new architecture enables faster and more convenient optimization of the dimension of
the representation of categorical features, see Section 4 in the Online Supplement. There is also a disad-
vantage of our approach. We lose simple graphical interpretation of the joint embedding of categorical
features due to a higher dimension of the joint representation compared to one- or two-dimensional rep-
resentations of entity embeddings. Hopefully, we should be able to use rich methods of explainable AI
to interpret the impact of categorical features, modelled with a joint embedding, on the response.

Finally, we could modify our approach by learning autoencoders, used for pre-training layers of a
network, jointly with a network with a target response, which uses the representations from the autoen-
coders as the input (at the additional cost of fine-tuning the weight between the unsupervised and the
supervised loss). Such an approach is also postulated in the machine learning literature, see for exam-
ple Ranzato and Szummer (2008), Lei et al. (2018). This last remark reinforces the conclusion stated
above that autoencoders should be included in the toolbox of data science actuaries who build predictive
models.

Acknowledgement. The authors would like to thank the referees and the Editor-in-Chief for very useful remarks which helped
to improve the first version of this paper. At its initial stage, this research was partially funded with The European Regional
Development Fund, Smart Growth Programme, as a part of a grant from The National Centre for Research and Development.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15

232 Łukasz Delong and Anna Kozak

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2023.15.

References
Blier-Wong, C., Baillargeon, J.-T., Cossette, H., Lamontagne, L. and Marceau, E. (2021) Rethinking representations in P&C

actuarial science with deep neural networks. https://arxiv.org/abs/2102.05784.
Blier-Wong, C., Cossette, H., Lamontagne, L. and Marceau, E. (2022) Geographical ratemaking with spatial embeddings. ASTIN

Bulletin, 52, 1–31.
Brouwer, R. (2004) A hybrid neural network for input that is both categorical and quantitative. International Journal of Intelligent

Systems, 19, 979–1001.
Caruana, R. (1997) Multitask learning. Machine Learning, 28, 41–75.
Chavent, M., Kuentz-Simonet, V., Labenne, A. and Saracco, J. (2017) Multivariate analysis of mixed data: The R package

pcamixdata. https://arxiv.org/abs/1411.4911.
Dixon, M., Halperin, I. and Bilokon, P. (2020) Machine Learning in Finance: From Theory to Practice. Nature Switzerland, AG:

Springer.
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P. and Bengio, S. (2010) Why does unsupervised pre-training help

deep learning? Journal of Machine Learning Research, 11, 625–660.
Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S. and Vincent, P. (2009) The difficulty of training deep architectures and the

effect of unsupervised pre-training. Proceedings of the 12th International Conference on Artificial Intelligence and Statistics,
pp. 153–160.

Ferrario, A., Noll, A. and Wüthrich, M.V. (2020) Insights from inside neural networks. https://ssrn.com/abstract=3226852.
Gao, G. and Wüthrich, M. (2018) Feature extraction from telematics car driving heatmaps. European Actuarial Journal, 8,

383–406.
Glorot, X. and Bengio, Y. (2010) Understanding the difficulty of training deep feedforward neural networks. Proceedings of the

13th International Conference on Artificial Intelligence and Statistics, pp. 249–256.
Grari, V., Charpentier, A., Lamprier, S. and Detyniecki, M. (2022) A fair pricing model via adversarial learning. https://arxiv.

org/abs/2202.12008.
Guo, C. and Berkhahn, F. (2016) Entity embeddings of categorical variables. https://arxiv.org/abs/1604.06737.
Hainaut, D. (2018) A neural-network analyzer for mortality forecast. ASTIN Bulletin, 48, 481–508.
Hespe, N. (2020) Building autoencoders on sparse, one-hot encoded data. https://towardsdatascience.com/building-

autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7.
Holvoet, F., Antonio, K. and Henckaerts, R. (2022) Neural networks for frequency-severity modelling: A benchmark study from

data preprocessing steps to technical tarif. Talk Presented in European Actuarial Journal Conference in Tatru.
Kuo, K. and Richman, R. (2021) Embeddings and attention in predictive modeling. https://arxiv.org/abs/2104.03545.
Lee, G., Manski, S. and Maiti, T. (2019) Actuarial applications of word embedding models. ASTIN Bulletin, 50, 1–24.
Lei, L., Petterson, A. and White, M. (2018) Supervised autoencoders: Improving generalization performance with unsupervised

regularizers. Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 107–117.
Merz, M. and Wüthrich, M. (2019) Editorial: Yes, we CANN! ASTIN Bulletin, 49, 1–3.
Miyata, A. and Matsuyama, N. (2022) Extending the Lee Carter model with variational autoencoder: A fusion of neural network

and bayesian approach. ASTIN Bulletin, 53, 798–812.
Noll, A., Salzmann, R. and Wüthrich, M. (2019) Case study: French Motor Third-Party Liability claims. https://ssrn.com/

abstract=3164764.
Pagès, J. (2015) Multiple Factor Analysis by Example Using R. New York: CRC Press.
Ranzato, M. and Szummer, M. (2008) Semi-supervised learning of compact document representations with deep networks.

Proceedings of the 25th International Conference on Machine Learning, pp. 792–799.
Rentzmann, S. and Wüthrich, M.V. (2019) Unsupervised learning: what is a sports car? https://ssrn.com/abstract=3439358.
Richman, R. (2021) AI in actuarial science - a review of recent advances - part 1. The Annals of Actuarial Science, 15, 207–229.
Ruder, S. (2017) An overview of multi-task learning in deep neural networks. https://arxiv.org/pdf/1706.05098.
Schelldorfer, J. and Wüthrich, M. (2019) Nesting classical actuarial models into neural networks. https://ssrn.com/abstract

=3320525.
Shi, P. and Shi, K. (2022) Nonlife insurance risk classification using categorical embedding. North Americal Actuarial Journal.
Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A. (2008) Extracting and composing robust features with denoising

autoencoders. Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103.
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol, P.-A. (2010) Stacked denoising autoencoders: learning useful

representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371–3408.
Yoon, J., Jordon, J. and Van der Schaar, M. (2018) GAIN: Missing data imputation using Generative Adversarial Nets.

https://arxiv.org/abs/1806.02920.
Yuan, Z., Jiang, Y., Li, J. and Huang, H. (2020) Hybrid—DNNs: Hybrid Deep Neural Networks for mixed inputs.

https://arxiv.org/abs/2005.08419.

https://doi.org/10.1017/asb.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.15
https://arxiv.org/abs/arxiv:2102.05784
https://arxiv.org/abs/arxiv:1411.4911
https://ssrn.com/abstract$=$\gdef �{$=$}\gdef no{no}\gdef yes{yes}3226852
https://arxiv.org/abs/arxiv:2202.12008
https://arxiv.org/abs/arxiv:2202.12008
https://arxiv.org/abs/arxiv:1604.06737
https://towardsdatascience.com/building-
https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7
https://arxiv.org/abs/arxiv:2104.03545
https://ssrn.com/abstract$=$\gdef �{$=$}\gdef no{no}\gdef yes{yes}3164764
https://ssrn.com/abstract$=$\gdef �{$=$}\gdef no{no}\gdef yes{yes}3164764
https://ssrn.com/abstract$=$\gdef �{$=$}\gdef no{no}\gdef yes{yes}3439358
https://arxiv.org/pdf/1706.05098
https://ssrn.com/abstract$=$\gdef �{$=$}\gdef no{no}\gdef yes{yes}3320525
https://ssrn.com/abstract$=$\gdef �{$=$}\gdef no{no}\gdef yes{yes}3320525
arxiv:1806.02920
arxiv:2005.08419
https://doi.org/10.1017/asb.2023.15

	Introduction
	General setup
	Autoencoders
	Autoencoders for numerical features
	Autoencoders for categorical features
	Experiment 1: the reconstruction ability of autoencoders

	Training neural networks with mixed categorical and numerical features
	Architecture A1 with separate entity embeddings
	Architecture A2 with joint embedding
	Initialization of A1 and A2
	Experiment 2 "2014` the predictive power of A1 and A2

	Conclusion

