
Maximum likelihood estimation of individual inbreeding
coefficients and null allele frequencies

NATHAN HALL1*, LAINA MERCER1 #, DAISY PHILLIPS1 $, JONATHAN SHAW2

AND AMY D. ANDERSON1·

1Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA
2North Carolina Wildlife Resources Commission, Raleigh, NC 27695, USA

(Received 6 January 2012; revised 12 May 2012; accepted 16 May 2012; first published online 18 July 2012 )

Summary

In this paper, we developed and compared several expectation–maximization (EM) algorithms to find maximum
likelihood estimates of individual inbreeding coefficients using molecular marker information. The first method
estimates the inbreeding coefficient for a single individual and assumes that allele frequencies are known without
error. The second method jointly estimates inbreeding coefficients and allele frequencies for a set of individuals
that have been genotyped at several loci. The third method generalizes the second method to include the case in
which null alleles may be present. In particular, it is able to jointly estimate individual inbreeding coefficients and
allele frequencies, including the frequencies of null alleles, and accounts for missing data. We compared our
methods with several other estimation procedures using simulated data and found that our methods perform
well. The maximum likelihood estimators consistently gave among the lowest root-mean-square-error (RMSE)
of all the estimators that were compared. Our estimator that accounts for null alleles performed particularly well
and was able to tease apart the effects of null alleles, randomly missing genotypes and differing degrees of
inbreeding among members of the datasets we analysed. To illustrate the performance of our estimators, we
analysed previously published datasets on mice (Mus musculus) and white-tailed deer (Odocoileus virginianus).

1. Introduction

An individual is said to be inbred if its parents are
genetically related to each other. The degree to which
an individual is inbred can be summarized by that
individual’s inbreeding coefficient, f, which can be
defined as the probability that the individual’s two
alleles at a random autosomal locus will both be
copies of a single allele present in one of the in-
dividual’s ancestors. In other words, f is the prob-
ability that an individual’s two alleles will be identical
by descent (IBD) from some ancestor.

There has been recent interest in the estimation of
inbreeding coefficients or the related topic of estimat-
ing relatedness between individuals in the presence of

inbreeding (Anderson & Weir, 2007; Purcell et al.,
2007; Chybicki & Burczyk, 2009; Wang, 2011a, b ;
Yang et al., 2011). The main topic of this paper is the
development of maximum likelihood estimators for
estimating inbreeding coefficients from molecular
marker data.

The presence of null alleles complicates the esti-
mation of inbreeding coefficients. A null allele is an
allele that cannot be directly observed during geno-
typing. An individual homozygous for a null allele
will not produce any readable alleles at that marker
and so will be recorded as having a missing genotype.
An individual heterozygous for the null allele and
another allele will be recorded as being homozygous
for that other allele. The uncertainty in genotypes
caused by the presence of null alleles can cause diffi-
culty in interpreting the results of a number of kinds
of population genetic studies (Chapuis & Estoup,
2007; Chybicki & Burczyk, 2009) and there has been
recent interest in detecting null alleles and/or esti-
mating their frequencies (Kalinowski & Taper, 2006;
Van Oosterhout et al., 2006; Chybicki & Burczyk,
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2009; Girard, 2011). In developing a method that
could estimate inbreeding coefficients in the presence
of null alleles, we noted that both null alleles and in-
breeding cause an increase in observed homozygosity.
If used effectively, though, a dataset consisting of
genotypes of multiple individuals genotyped at several
markers can be used to distinguish between null alleles
and inbreeding because the two sources of excess
homozygosity leave somewhat different footprints in
the data. For example, markers with common null
alleles will tend to have more missing data than other
markers, especially among individuals who are more
inbred. In contrast, at loci with no null alleles (or rare
null alleles), inbred and non-inbred individuals should
show similar rates of missingness. In addition, more
highly inbred individuals will tend to have more
missing genotypes (because such individuals are
more likely to be homozygous for the null allele),
particularly at markers with higher null allele fre-
quencies. By looking at inbreeding and null alleles
together, one can take advantage of these types of
patterns in the data.

In this paper, we will compare new and previously
existing methods that either (1) estimate individual
inbreeding coefficients assuming known allele fre-
quencies and no null alleles, (2) jointly estimate in-
breeding coefficients and allele frequencies, again
assuming no null alleles, or (3) jointly estimate indi-
vidual inbreeding coefficients and allele frequencies in
the presence of null alleles.

2. Theory and methods

(i) Existing methods for estimating inbreeding
coefficients when there are no null alleles

Perhaps the most sophisticated method in this
category is Leutenegger’s method (Leutenegger et al.,
2003), which performs maximum likelihood esti-
mation of inbreeding coefficients using (potentially)
linked genetic markers. Leutenegger’s method is
the only method to be mentioned in this paper
that models linkage between loci. Since we are con-
cerned with unlinked markers, we did not include
Leutenegger’s method directly in our calculations.
However, Leutenegger’s method applied to unlinked
markers (with no genotyping error) should be equi-
valent to our Method 1 described below. The only
difference between the two is the algorithm used to
numerically maximize the likelihood function.

Another estimator, which we call the ‘Simple’ esti-
mator, is

fˆSim =1x
HO

HE

, (1)

where HO is the total number of loci at which the
individual is heterozygous and HE is the expected

number of loci at which the individual is hetero-
zygous, given the known allele frequencies. If pjk is the
relative frequency of allele k at marker j, m is the
number of genotyped markers and nj is the number of
possible alleles at marker j, then

HE= g
m

j=1
1x g

nj

k=1

p2
jk

� �
: (2)

Note that this estimator is slightly different than
Wright’s population inbreeding coefficient estimator
because Wright’s estimator deals with genotypes from
multiple individuals at a single marker, whereas this
estimator deals with genotypes from a single individ-
ual at multiple markers. This estimator is similar in
spirit to the one presented in Carothers et al. (2006),
but differs in the details of the calculations. In the case
in which there are only two possible alleles at a mar-
ker and allele frequencies are known (not estimated
from the dataset), this estimator is the same as the
estimator calculated by the PLINK program (Purcell
et al., 2007).

Another popular moment estimator, due to Ritland
(specifically, eqn (5) in Ritland, 1996), is

fˆRit =
gm

j=1 g
nj
k=1

Sjkxp2
jk

pjk

gm

j=1 (njx1)
, (3)

where Sjk is 1 if the individual is homozygous for allele
k at marker j and 0 otherwise. This estimator can be
viewed as a variant of eqn (5) in Li & Horvitz (1953),
except that Li’s version assumes multiple individuals
have been genotyped at a single locus, while Ritland’s
version applies to a single individual genotyped at
multiple loci and, additionally, Li’s version assumes
allele frequencies have been estimated from the data-
set by allele counting.

Both the Simple and Ritland estimators have the
property that they do not constrain their estimated
inbreeding coefficients to be between 0 and 1. If one
considers only inbreeding coefficients between 0 and
1, one might replace any negative estimate by 0 and
any estimate greater than 1 by 1 itself. The versions of
the Simple and Ritland estimators for which we made
these adjustments are called the adjusted Simple and
adjusted Ritland estimators.

The above estimators do not take uncertainty in
allele frequencies into account. Vogl et al. (2002) de-
veloped a Bayesian method to jointly estimate allele
frequencies and inbreeding coefficients using a dataset
containing multiple individuals genotyped at multiple
markers. The Vogl model assumes that the inbreeding
coefficients in the dataset are random values from a
beta distribution. The final estimated inbreeding
coefficients take both the beta prior distribution and
the observed data into account. We ran Vogl’s algor-
ithm with the prior recommendation by Vogl et al.
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(a beta prior with a1=a2=0.001) and also using a
uniform prior (a beta prior with a1=a2=1.0).

(ii) Existing method for estimating null allele
frequencies, assuming no inbreeding

Kalinowski & Taper (2006) produced an ex-
pectation–maximization (EM) algorithm to estimate
allele frequencies and showed that it produced smaller
root mean square errors (RMSE) than other estima-
tors. The Kalinowski and Taper method considers
one marker at a time and estimates the frequencies of
all alleles at the marker (including a null allele) as well
as a parameter, b, that measures the rate at which
genotypes are randomly missing for reasons unrelated
to null alleles. The b parameter is essential – without
it, a marker with many missing genotypes but no
other sign of excess homozygosity would produce a
high estimated null allele frequency since, without b,
the estimator would assume that any missing geno-
type is in fact homozygous for the null allele.

(iii) Existing method for jointly estimating null allele
frequencies and inbreeding coefficients

Vogl et al. (2002), in their paper on estimating
inbreeding coefficients, also described how their
Bayesian method could be adapted to the case of null
alleles.

(iv) New Method 1: an EM algorithm for maximum
likelihood estimation of inbreeding coefficients when
allele frequencies are known

When allele frequencies are known, individuals in the
dataset can be considered one at a time. Since we
are considering unlinked markers, the likelihood (the
probability of the data, viewed as a function of the
parameter f) is the product of the single-marker like-
lihoods. Let gj be the genotype of the individual at
marker j, let ~gg=(g1, . . . , gm) and let Aj1, . . . ,Ajnj be
the possible alleles at marker j. Then the likelihood
function is

L(f)=
Ym
j=1

Pr(gjjf,~pp), (4)

where, letting~pp denote the matrix of allele frequencies
at the various markers, with pjk denoting the relative
frequency of allele k at marker j,

Pr (gjjf,~pp)=
fpjk+(1xf )p2

jk, if gj=AjkAjk,

2(1xf )pjkpjl, if gj=AjkAjl (kll):

�
(5)

The maximum likelihood estimate for f is found by
maximizing the likelihood, L(f ), with respect to f.

We will perform this maximization via an EM al-
gorithm. For each marker, j, define a random variable
Xj as follows:

Xj=
1, if the 2 alleles at marker j are IBD
0, if the 2 alleles at marker j are not IBD:

�
(6)

If the Xj values were known, then the maximum
likelihood estimator (MLE) for f would be fˆ=
gm

j=1 Xj=m. If the Xj values were unknown but we
could calculate their expected values (noting that
E [Xjj f,~gg] is the probability that an individual’s 2
alleles at marker j are IBD, given the individual’s
genotypes and inbreeding coefficient), the MLE for f
would still be easy to find ( fˆ=gm

j=1 E [Xjj f,~gg ]=m).
Unfortunately, the probabilities E [Xjj f,~gg ] depend
on f and hence cannot be calculated without first
knowing f. That leaves us with the following: if we
knew f, we could estimate the E [Xjj f,~gg ] values and, if
we knew the E [Xjj f,~gg ] values, we could estimate f.
The EM algorithm proceeds by alternating between
steps in which we estimate the E [Xjj f,~gg ] values based
on our current estimate for f, and steps in which we
update our estimate for f based on our current values
for E [Xjj f,~gg ]. The algorithm begins with an initial
guess for f, call it f (0). Let f (z) denote our estimate for
f at the start of the zth iteration of our algorithm. The
steps for the (z+1)st iterations are :

1. Given f (z), estimate the value for Xj for every mar-
ker j using the following equation:

Ez Xjj f (z),~gg
� �

=
f (z)pjk

f (z)pjk+ 1xf (z)ð Þp2
jk

, if gj=AjkAjk,

0, if gj=AjkAjl (kll):

(

(7)

2. Given the Ez Xjj f (z),~gg
� �

estimates, update the esti-
mate for f using the following equation:

f (z+1)=
g

j
Ez Xjj f (z),~gg

� �
m

: (8)

Maximization is accomplished by iterating eqns (7)
and (8) until convergence is reached. Note that the
algorithm should be repeated using several different
starting values for f because an EM algorithm can
converge to a local rather than a global maximum (see,
for example, Wu, 1983). A more formal derivation of
this algorithm is included in the online Supplementary
Material at http://journals.cambridge.org/GRH.

(v) New Method 2: an EM algorithm for joint
maximum likelihood estimation of inbreeding
coefficients and allele frequencies

We consider a dataset with N individuals genotyped
at m markers. Let fi denote the inbreeding coefficient
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of individual i (i=1, …,N) and gij be the genotype
of individual i at marker j. Letting~ff=( f1, . . . , fN) and
~pp be the matrix of allele frequencies, the likelihood
equation now becomes

L(~ff,~pp)=
YN
i=1

Ym
j=1

Pr(gijj~ff,~pp), (9)

where the Pr(gijj~ff,~pp ) values are still calculated as
in eqn (5). The maximization of the likelihood is
now taken with respect to ~ff=( f1, . . . , fN) and all the
allele frequencies (~pp) jointly. Let dijkl=1 if individual
i’s genotype at marker j is AjkAjl and dijkl=0 otherwise
and let Xij be defined such that Xij=1 if individual
i’s two alleles at marker j are IBD and Xij=0 other-
wise. Using Ez[Xij] as a shorthand notation
for E [Xij| fi(z), gij], the equations for the EM algorithm
are

Ez[Xij]=
f (z)
i

p(z)
jk

f (z)
i

p(z)
jk
+ 1xf (z)

ið Þ p(z)
jkð Þ2, if gij=AjkAjk,

0, if gij=AjkAjl (kll),

8<
:

(10)

p(z+1)
jk =

gN

i=1 dijkk Ez[Xij]+2 1xEz[Xij]
� �� �

+g
llk

dijkl

h i
gnj

l=1 g
N

i=1 dijll Ez[Xij]+2 1xEz[Xij]
� �� �

+g
hll

dijhl

h i,
(11)

f (z+1)
i =

g
j
Ez[Xij]

m
: (12)

Here, eqns (10) and (12) are analogous to eqns (7) and
(8) in the previous method. Equation (11) provides
updated estimates of the allele frequencies, given the
estimated Xij values. In spirit, the numerator in eqn
(11) represents a calculation in which we go through
the list of all individuals genotyped at marker j and,
for each individual homozygous for allele Ak, we
count 1 allele if the individual’s 2 alleles are IBD
and 2 distinct alleles otherwise. For each individual
heterozygous for allele Ak, we count one allele. Since
we cannot see whether a homozygous genotype con-
tains two IBD alleles or not, we do not know precisely
whether to count 1 or 2 distinct alleles so, in the
numerator of eqn (12), we take a weighted average
between 1 and 2, weighted by the probability that the
two alleles are IBD. That gives us the (expected) total
number of distinct Ak alleles in the dataset based on
our current estimates for the Xij values. In the de-
nominator we count the total (expected) number of
distinct alleles at marker j in the dataset. The updated
estimate for pjk is the estimated proportion of distinct
alleles in the dataset that are of type Ajk. A more
formal derivation of this algorithm is presented in

the online Supplementary Material at http://journals.
cambridge.org/GRH.

(vi) New Method 3: an EM algorithm for joint
estimation of inbreeding coefficients and allele
frequencies including null alleles

For this algorithm, we generalize our Method 2
algorithm by adding the possibility of null alleles.
This algorithm can also be viewed as a generalization
of Kalinowski and Taper’s method in which we allow
their model to include the possibility of inbreeding.
We take the convention that there are now nj+1
possible alleles at marker j (j=1, …, m), where Aj1,
. . .Ajnj are the visible alleles and Aj, n is the null allele.
We adopt Kalinowski and Taper’s model for missing
data: that each genotype at marker j (j=1, 2 …, m)
has a probability bj of being missing, independent of
the genotype at that marker.

The presence of null alleles, as well as the fact that
a genotype may be randomly missing, may cause a
difference between the observed and true genotypes.
Define gij* to be individual i’s true genotype at marker
j and gij to be the observed genotype, with the con-
vention that gij=M denotes a missing genotype.
Define H to be the values of all the parameters,
so H=(~ff, ~pp, ~bb). As before, let Xij be 0 or 1 depending
on whether individual i’s 2 alleles at marker j are IBD.
Define Bij (i=1, …,N, j=1, …, m) such that Bij=1 if
individual i’s genotype at marker j is missing at ran-
dom and Bij=0 otherwise. The variable Bij is unob-
served because a missing genotype may be missing
randomly or missing because the genotype is homo-
zygous for a null allele.

The equations for the EM algorithm depend on two
critical quantities, Pr(gij*|gij, Xij,H), and E [Xij|gij, H],
i=1, …, N, j=1, …, m. Values for the first of these
can be found in Table 1. Note that there are no for-
mulae given for Pr(gij*|gij=AkAl, Xij=1,H) in Table 1,
since, if Xij=1 (and so the 2 alleles are IBD), it is
impossible to observe a heterozygous genotype under
this model. The values for E [Xij|gij,H] are given in the
following equation.

E [Xijjgij,H]=
fipjk

fipjk+(1xfi)(p
2
jk+2pjnpjk)

, gij=AjkAjk,

0, gij=AjkAjl, (kll),

fi(bj+(1xbj)pjn)

bj+(1xbj) fpjn+(1xf)p2
jn

� �, gij=M:

8>>>>><
>>>>>:

(13)

The likelihood is now

L(H)=
YN
i=1

Ym
j=1

Pr(gijjH): (14)
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Given the estimated parameter values after the
zth iteration, namely H(z)=(~ff

(z)
, ~pp (z), ~bb

(z)
), the EM

algorithm proceeds as follows (as before, using the
notation E [Xij|gij, H(z)]=Ez [Xij] when convenient) :

1. Update the values of E [Xij|gij, H(z)] for all i and j
using eqn (13). Call these updated values Ez[Xij].

2. The updated estimates for the inbreeding coeffi-
cients are :

f (z+1)
i =

gm

j=1 Ez[Xij]

m
: (15)

3. Update the allele frequency estimates using the
following equations:

p(z+1)
jk = g

N

i=1
2P gij*=AkAkjgij,Xij=0,H(z)

� ��
r 1xEz[Xij]

� �
+P gij*=AkAkjgij,Xij=1,H(z)

� �
rEz[Xij]+ g

llk

P gij*=AkAljgij,Xij*=0,H(z)
� �

rð1xEz[Xij]Þ�=C(z+1)
j , (16)

where

C (z+1)
j = g

N

i=1
g
nj

l=1

2P gij*=AlAljgij,Xij=0,H(z)
� ��

r 1xEz[Xij]
� �

+P gij*=AlAljgij,Xij=1,H(z)
� �

rEz[Xij]+2 g
h<l

P gij*=AlAhjgij,Xij=0,H(z)
� �

rð1xEz[Xij]Þ
�
: (17)

The values for quantities of the form P(gij*|gij,Xij,
H) can be calculated according to Table 1.
4. Update the probability that a genotype will be

randomly missing:

p(z)miss=b(z)
j + 1xb(z)

j

� 	
f (z)i p(z)j, n+ 1xf (z)i

� 	
p(z)j, n

� 	2

 �

:

(18)

5. The updated estimates for bj (j=1, …, m) are

b(z+1)
j =

gN
i=1 b(z)

j =p(z)miss

� 	� 	
m

: (19)

A detailed derivation of this algorithm can be found in
the online Supplementary Material at http://journals.
cambridge.org/GRH.

(vii) Simulations without null alleles

We performed a number of simulations in order to
evaluate the performance of our estimators and com-
pare them with other estimators. We varied the num-
ber of genotyped markers (m=5, 10, 20, 50 and 100),
number of alleles per marker (a=2, 5 and 10) and
number of individuals in the simulated datasets
(N=20 and 100). In all cases the allele frequencies at a
marker with m alleles were (1c, 2c, …, mc), where
c=2/(m(m+1)). The markers were simulated to be
unlinked and not in linkage disequilibrium with each
other. A simulated dataset consisted of equal numbers
of individuals with the following inbreeding coeffi-
cients: f=0.00, 0.02, 0.05, 0.10, 0.20, 0.30, 0.4, 0.5, 0.7
and 0.9. Once an individual was assigned an inbreed-
ing coefficient, its genotypes were simulated indepen-
dently at each locus according to the probabilities
given in eqn (5). For each dataset, we recorded the
estimated inbreeding coefficient for 10 individ-
uals – one with each of the possible inbreeding coeffi-
cients. One thousand datasets were generated for each
combination of m, a and N.

For these simulations, we compared the behaviour
of our Method 1 MLE with that of the Simple esti-
mator and Ritland’s estimator (and versions of these
adjusted to give estimated values of f that lie between
0 and 1). Since these methods assume known allele
frequencies, we assumed the true allele frequencies
(the allele frequencies used to generate the data) when

Table 1. Conditional genotype probabilities of the form Pr(gij*|gij, Xij, H) for each combination of gij, gij* and Xij

gij Xij

True genotype gij*

AkAk AkAl(kll) AkAn AnAn

AkAk 0
pjk

pjk+2pjn
0

2pjn
pjk+2pjn

0

AkAk 1 1 0 0 0
AkAl 0 0 1 0 0

M 0
bjp

2
jk

bj+(1xbj)p
2
jn

2bjpjkpjl

bj+(1xbj)p
2
jn

2bjpjkpjn

bj+(1xbj)p
2
jn

p2
jn

bj+(1xbj)p
2
jn

M 1
bjpjk

bj+(1xbj)pjn
0 0

pjn
bj+(1xbj)pjn
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we used these algorithms to estimate the inbreeding
coefficients.

Considering the case in which allele frequencies
were not assumed to be known, we also looked at the
behaviour of our Method 2 MLE and the version of
Vogl’s estimators that did not account for null alleles.
These were also compared with our Method 1 MLE,
Ritland’s estimator, and the Simple estimator where
these methods were given allele frequencies naively
estimated from the data using simple allele-counting
methods.

Two criteria for judging the performance of an
estimator are the bias and the mean-square-error
(MSE). The bias of an estimator is the average
amount by which it overestimates or underestimates a
parameter. Let fˆi be the estimated inbreeding coef-
ficient for the ith individual analysed of those 1000.
Then our estimate for the bias is the average value by
which the estimator missed the true value f,

BIAS=
g1000

i=1 fˆi xf
� 	
1000

: (20)

Since, within each dataset, we recorded the estimated
inbreeding coefficient for one individual with each
true inbreeding coefficient (f=0.00, 0.02, 0.05, 0.10,
0.20, 0.30, 0.4, 0.5, 0.7 and 0.9), we could use eqn (20)
to estimate the bias for each true inbreeding co-
efficient. We knew that the estimated inbreeding
coefficients would be biased upward when f was quite
small, and looking at bias separately for different de-
grees of inbreeding would allow us to see how this bias
decreases with increasing sample size.

The MSE of an estimator is the average squared
distance between the value of the estimator and the
parameter it is supposed to estimate. An estimate for
the MSE of the estimators was found by taking

MSE=
g1000

i=1 ( f
ˆ
ixf)2

1000
: (21)

In our summaries, we reported the RMSE, which is
the square root of the MSE.

(viii) Simulations with null alleles

Each simulated dataset had loci with null alleles. The
null alleles had variable frequencies as follows: the
first simulated marker had pnull=0, the second had
pnull=0.1, the third had pnull=0.2, and this pattern
was repeated (i.e. every third marker had a frequency
of 0, etc.). At each marker the frequencies of the non-
null alleles were given by

pjk=
2k

nj(nj+1)
(1xpnull), (22)

where pjk is the allele frequency of the kth observable
allele at marker j, pnull is the frequency of the null

allele and nj is the number of observable alleles. The
rate at which a genotype would be missing at random
was b=0.05 at all loci.

Other than the addition of null alleles and ran-
domly missing data, these simulations were per-
formed similarly to the simulations without null
alleles with the following exceptions: (1) We did not
simulate the case in which the number of (visible) al-
leles at a marker was a=2, (2) 400 datasets were
generated for each combination of m, a and N, (3) we
used the version of Vogl’s algorithm that allows for
the presence of null alleles.

(ix) Real datasets

To evaluate the performance of the estimators on real
data, we looked at two datasets : the Mouse dataset
(Laurie et al., 2007) contained 94 wild-caught mice
(M. musculus domesticus) captured in Arizona. We
chose to use 757 single nucleotide polymorphism
(SNP) loci with an average inter-marker spacing of
2 Mb. At this spacing, we expect that there is no
linkage disequilibrium between the loci. We chose this
dataset because mice are generally known to practice
inbreeding (Ihe et al., 2006). There was some missing
data in this dataset ; however, all 94 mice were geno-
typed at at least 714 of these markers.

The Deer dataset (Shaw et al., 2006) consisted of
740 white-tailed deer (Odocoileus virginianus) geno-
typed at 15 microsatellite loci. The number of ob-
served alleles at each locus ranged from 5 to 17. This
dataset was of interest to us because DeYoung et al.
(2003) had found null alleles at a number of these loci
in another population of white-tailed deer, so this was
a dataset for which we expected both inbreeding and
null alleles.

3. Results

(i) Simulation results

Our first simulations were designed to investigate the
behaviour of the estimators that analyse data from a
single individual and assume known allele fre-
quencies. Tables showing the estimated bias and
RMSE values for the MLE, Ritland, Simple, adjusted
Ritland and adjusted Simple estimators are included in
the online Supplementary Material at http://journals.
cambridge.org/GRH. It should be noted that, because
allele frequencies were the same for all loci in our
simulations, the Simple estimator is identical to the un-
weighted version of the estimator given in Carothers
et al. (2006) for these simulations. Although the MLE
and adjusted Simple estimators gave quite different
estimates of f in many instances, both estimators
yielded nearly identical estimates for RMSE and bias
for all sample sizes and all values of f that we ex-
amined. The adjusted Ritland estimator performed
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similarly to the others with the exception that it ten-
ded to have a larger RMSE when f was large.

We next turned our attention to the situation in
which allele frequencies were not known and had to
be estimated from the dataset. In this case, we com-
pared our Method 2 MLE and Vogl’s estimators. We
also included the Method 1 MLE, as well as the ad-
justed Ritland and Simple estimators, with the pro-
vision that these estimators would use allele
frequencies estimated by simple allele counting from
the dataset. Table 2 shows the estimated RMSE va-
lues for these estimators for the situation in which
there were 20 individuals in each simulated dataset.
More results appear in the online Supplementary
Materials. Even with just 20 individuals in the sample,
these estimators performed similarly to the case in
which allele frequencies were known. It did not seem
to matter much whether allele frequencies were esti-
mated using sophisticated methods (e.g. our Method
2 MLE or Vogl’s methods) or by simple allele count-
ing. Also apparent from the table is that Vogl’s
method that used a strongly informative prior (V2,
which begins with a strong assumption that the values

of f will be close to 0 or 1) gives an inflated RMSE
compared with the other estimators when f is moder-
ately large and the number of markers is not large.
The other side of this phenomenon is that this esti-
mator did very well when f was small, which is not
surprising since the estimator is based on a strong
prior assumption that f will be close to 0.

Next, we considered the case in which null alleles
were present in the data. Table 3 shows the mean bias
observed among 400 datasets for each of several in-
breeding coefficients when the simulated datasets each
consisted of 20 individuals. Tables showing RMSE
are included in the online Supplementary Materials.
Three things are apparent from Table 3: (1) the esti-
mators that ignored the presence of null alleles (the
adjusted Ritland and Simple estimators and the
Method 2 MLE) tended to over-estimate inbreeding
coefficients when null alleles are present. (2) The
Method 3 MLE was able to dramatically reduce the
bias compared with the estimators that ignore null
alleles. (3) For the Vogl algorithm, neither prior used
in our analyses was entirely satisfactory. Under the
uniform prior, the Vogl algorithm systematically

Table 2. RMSE, allele frequencies unknown, 10 possible alleles at each marker

Number of
markers Estimator*

f

0.0 0.05 0.1 0.2 0.3

10 jMLE 0.079 0.095 0.115 0.153 0.178
MLE 0.077 0.092 0.111 0.150 0.176
V1 0.150 0.131 0.120 0.119 0.131
V2 0.017 0.050 0.099 0.199 0.284
aSim 0.081 0.094 0.114 0.148 0.172
aRit 0.064 0.074 0.094 0.139 0.177

20 jMLE 0.045 0.069 0.094 0.125 0.133
MLE 0.045 0.066 0.090 0.122 0.132
V1 0.098 0.086 0.085 0.098 0.108
V2 0.010 0.052 0.102 0.190 0.252
aSim 0.049 0.069 0.092 0.121 0.131
aRit 0.035 0.055 0.080 0.118 0.147

50 jMLE 0.024 0.048 0.070 0.085 0.089
MLE 0.025 0.046 0.066 0.084 0.090
V1 0.057 0.048 0.050 0.069 0.081
V2 0.001 0.050 0.097 0.159 0.151
aSim 0.025 0.048 0.067 0.084 0.088
aRit 0.021 0.041 0.067 0.099 0.125

100 jMLE 0.011 0.041 0.057 0.062 0.064
MLE 0.013 0.037 0.053 0.063 0.067
V1 0.037 0.030 0.038 0.053 0.058
V2 0.001 0.050 0.091 0.102 0.070
aSim 0.013 0.039 0.054 0.060 0.063
aRit 0.010 0.037 0.059 0.087 0.117

*The estimators are denoted as follows: jMLE is our Method 2 MLE (which jointly estimates allele frequencies and in-
breeding coefficients), MLE is the Method 1 MLE, V1 is Vogl’s Bayesian estimator (assuming a uniform prior), V2 is Vogl’s
Bayesian estimator (assuming the prior suggested in Vogl et al., 2002), aSim and aRit are the adjusted Simple and Ritland
estimators, respectively. The MLE, aSim and aRit estimators all used allele frequencies estimated from the data by allele
counting.
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over-estimated the degree of inbreeding for indivi-
duals that had low-inbreeding coefficients. The
Vogl algorithm with the prior suggested in Vogl
et al. (2002) resulted in inbreeding coefficients being
substantially under-estimated for highly inbred in-
dividuals. In fact, this algorithm tended to assign in-
breeding coefficients close to 0 even for individuals
whose true inbreeding coefficients were as high as 0.5
when there were up to 50 markers genotyped (results
not shown).

The Method 3 MLE, Vogl’s method and the
algorithm of Kalinowski and Taper were all con-
structed with the ability to estimate null allele fre-
quencies. To examine each algorithm’s ability to give
accurate estimates of the null allele frequently, we
looked at the estimated null allele frequency for just
three markers from each simulated dataset : one mar-
ker for each of the three possible null allele fre-
quencies that were present in the simulations. Table 4
shows the average estimated null allele frequency over
400 datasets when there were 20 individuals in each
dataset and 10 observable alleles at each marker. As
might be expected, the Kalinowski and Taper algor-
ithm, which was developed for use on datasets with
non-inbred individuals, tends to over-estimate the

frequencies of null alleles considerably. The Vogl es-
timator that assumes the beta (0.001, 0.001) prior
performs similarly. Both of these algorithms assume
lower inbreeding coefficients than actually exist in the
dataset : the Kalinowski and Taper algorithm assumes
that f=0 for all individuals and the Vogl algorithm
with this prior begins with a strong assumption that
the inbreeding coefficients will be close to 0 and so
tends to produce under-estimates of f for individuals
with larger inbreeding coefficients. When inbreeding
coefficients are under-estimated, the excess homo-
zygosity observed in the data results in inflated null
allele frequencies. The Vogl estimator with the uni-
form prior and theMethod 3MLE, which do better at
estimating the inbreeding coefficients, consequently
give more accurate estimated null allele frequencies.

(ii) Real data results

For both the mouse and deer datasets, we compared
the behaviour of the Method 3 MLE and the Vogl
estimator that assumed a uniform prior. The top row
of Fig. 1 shows some results from the analysis of the
mouse data. For this dataset, the Vogl estimator
nearly always gave considerably smaller estimated

Table 3. Estimated bias in the presence of null alleles, 10 alleles per marker

Number
of loci Estimator

f

0.0 0.05 0.1 0.2 0.3

10 jMLE 0.141 0.115 0.099 0.083 0.063
aSim# 0.145 0.123 0.103 0.087 0.064
aRit 0.096 0.055 0.030 x0.027 x0.069
M3MLE 0.059 0.030 0.009* x0.010* x0.022*
V1$ 0.204 0.170 0.138 0.090 0.044
V2 0.000* x0.048 x0.096 x0.196 x0.285

20 jMLE 0.127 0.108 0.106 0.096 0.080
aSim 0.130 0.113 0.109 0.097 0.080
aRit 0.086 0.053 0.034 x0.014 x0.064
M3MLE 0.030 x0.004* x0.007* x0.019* x0.026*
V1 0.149 0.118 0.100 0.066 0.029
V2 0.000* x0.050 x0.094 x0.185 x0.267

50 jMLE 0.131 0.118 0.121 0.087 0.081
aSim 0.133 0.120 0.120 0.088 0.080
aRit 0.087 0.060 0.042 x0.020 x0.064
M3MLE 0.012 x0.019* x0.033* x0.055* x0.033*
V1 0.100 0.074 0.062 0.019 0.011
V2 0.001* x0.047 x0.092 x0.163 x0.173

100 jMLE 0.135 0.122 0.113 0.090 0.076
aSim 0.137 0.123 0.114 0.089 0.075
aRit 0.089 0.061 0.035 x0.015 x0.067
M3MLE 0.003 x0.032* x0.051* x0.059* x0.044*
V1 0.078 0.053 0.041 0.013 0.002
V2 0.001* x0.045 x0.075 x0.102 x0.077

*Indicates a value that is not significantly different than 0 at a significance level of a=0.05.
#The adjusted Simple and Ritland algorithms used in these analyses used allele frequencies estimated for each dataset by
allele counting.
$The Vogl algorithms used in these analyses were the versions of the Vogl algorithm that account for null alleles.
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inbreeding coefficients than the MLE. Consequently
(because excess homozygosity must be due to either
null alleles or inbreeding), Vogl gave higher estimates
for the frequency of null alleles than did the MLE.
Interestingly, there were many markers for which the
Vogl and MLE estimators were in sharp disagreement
regarding the frequency of null alleles. Specifically,
there were 148 (out of the 757) markers for which the
MLE gave null allele frequencies below 0.01 and the
Vogl estimator gave null allele frequencies above 0.05.
This type of behaviour can be explained as follows: in

the version of Vogl’s estimator that we used (the ver-
sion explicitly described in Vogl et al., 2002), the
model assumes that any missing genotype is homo-
zygous for a null allele. Hence, Vogl’s algorithm will
assign a high null allele frequency to any marker with
a substantial number of missing genotypes. The
model used in calculating our MLE, however, fol-
lowing Kalinowski & Taper (2006), has a parameter
that allows genotypes to be missing at random at a
marker. With this parameter in the model, the MLE
will not assign a high null allele frequency to markers
that have missing data but no other sign of excess
homozygosity beyond that accounted for by the
inbreeding coefficients of the individuals in the
dataset.

The second row of Fig. 1 shows some results from
the analysis of the deer data. As with the mouse data,
we focused on the behaviour of the Method 3 MLE
and the Vogl estimator that assumed a uniform prior.
The estimators are in rough agreement about the es-
timated inbreeding coefficients for each deer in the
dataset, with the MLE tending to give lower estimates
than Vogl’s estimator. When estimating null allele
frequencies, the two estimators tended to give similar
results except for markers with a high degree of
missing data, in which case the Vogl estimator yielded
much higher estimates.

4. Discussion

In our analyses, we found that the MLE algorithms
presented in the paper work generally well. We found
weaknesses in most of the other estimators we ex-
amined. For example, Ritland’s estimator had prob-
lems when the true inbreeding coefficients were large
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Fig. 1. Results from the analyses of the Arizona Mice (top row) and Deer (bottom row) datasets. The plots on the left
contain a point for each individual (mouse or deer) in the dataset. The x- and y-coordinates of each point are the
estimated inbreeding coefficients for that individual from the Method 3 MLE (M3) and the Vogl estimator with the
uniform prior (V1), respectively. In the plots on the right, each point represents a marker in the dataset and the
coordinates are the estimated frequencies of the null allele at that marker.

Table 4. Mean estimated null allele frequencies,
10 alleles per locus

Number
of loci Estimator

Null allele frequency

0.0 0.1 0.2

10 M3MLE 0.013 0.075 0.152
V1 0.070 0.115 0.167
V2 0.135 0.200 0.260
K* 0.154 0.231 0.305

20 M3MLE 0.017 0.082 0.159
V1 0.073 0.121 0.176
V2 0.122 0.185 0.246
K 0.159 0.233 0.302

50 M3MLE 0.022 0.084 0.175
V1 0.074 0.117 0.185
V2 0.099 0.152 0.224
K 0.160 0.226 0.304

100 M3MLE 0.022 0.093 0.176
V1 0.074 0.122 0.184
V2 0.090 0.143 0.208
K 0.155 0.234 0.303

*K denotes the Kalinowski and Taper estimator.
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and Vogl’s estimator was sensitive to the choice of
parameters of the prior distribution and tended to
over-estimate null allele frequencies when confronted
with missing data. As pointed out in Vogel et al.
(2002), however, Vogl’s algorithm could be easily ad-
justed to handle missing data more effectively. The
Simple estimator, which is similar to Carother’s esti-
mator, was the only estimator examined that seemed
to perform as well as the MLE. Unfortunately, it is
not obvious how to adjust the Simple estimator to
account for null alleles.

The bias of the MLE is virtually identical to the
bias of the adjusted versions of the moment estima-
tors (see the online Supplementary Materials). The
conclusion to be drawn is that the bias of the MLE is
completely inconsequential for most purposes as it
seems to be primarily the result of assigning an
inbreeding coefficient of 0 rather than a negative
value to individuals that show less homozygosity than
expected. There is one situation in which the moment
estimators might be preferred to the MLE, namely, if
a researcher is interested in showing that individuals
in a population are showing less heterozygosity than
would occur by random mating (e.g. this might occur
if the population is showing an avoidance of matings
between relatives). The moment estimators we looked
at are capable of giving the negative inbreeding coef-
ficients that could indicate that sort of scenario. As
the MLEs are based on a model that views f as a
probability rather than a correlation coefficient, they
cannot give negative values.

In order to investigate the robustness of the esti-
mators to various strange situations or violations of
model assumptions, we performed additional simula-
tions, the details of which are included in the online
Supplementary Materials. The first set of these simu-
lations looked at the performance of the estimators on
datasets consisting of sets of closely related in-
dividuals. In our simulations, all estimators per-
formed poorly under these circumstances. The second
question was whether the estimators that allow for
null alleles would have trouble if there were no null
alleles or if all markers had the same null allele fre-
quencies. In our simulations, this seemed to pose no
difficulty. Finally, the third set of additional simula-
tions was designed to see the effect of having certain
individuals for which many genotypes were missing
due to degradation. This common situation is differ-
ent from that modelled by the Method 3 MLE (in
which genotypes are missing at random for all in-
dividuals, or are missing because they are homo-
zygous for null alleles) or by Vogl’s algorithms (which
assume missing genotypes are homozygous for null
alleles). In our simulations, this type of missingness
was disastrous. All three estimators greatly over-
estimated the inbreeding coefficients for these indivi-
duals. In our simulations, these individuals consisted

of just 10 out of the 100 individuals in the simulated
datasets. Their inclusion did not seem to have a great
effect on the estimated inbreeding coefficients of the
other individuals in the datasets.

An estimator that was not included in this study is
that of Wang (2011a). Wang’s estimator is a Bayesian
estimator that accounts for null alleles and allelic
dropout. Wang uses an exponential distribution as the
prior distribution for inbreeding coefficients. In
Wang’s paper, the likelihood equation was written
out for a single individual. Allele frequencies (includ-
ing the null allele frequency) and the dropout rate
were required to be known values. As written, then,
Wang’s estimator is not directly comparable to any of
our MLEs. To make our Method 3 estimator com-
parable to Wang’s estimator would involve treating
the allele frequencies and error rates in our model as
known constants rather than values that are estimated
using our EM algorithm. Similarly, Wang’s method
could be modified to estimate null allele frequencies
and/or error rates as follows: the likelihood for a set
of individuals would be the product of Wang’s likeli-
hood for single individual. Using this new likelihood
function (and, presumably, a prior distribution for the
inbreeding coefficients that would be the product of
exponential distributions), the allele frequencies and
dropout rates could be estimated along with the in-
breeding coefficients. The difference in which para-
meters are considered known and which are estimated
constitutes a minor difference between our Method 3
estimator and Wang’s estimator. Apart from this,
there are three actual differences between the estima-
tors : (1) Wang begins by assuming a prior distri-
bution for the inbreeding coefficient that will tend to
gently push his estimated inbreeding coefficients to-
wards zero, (2) Wang’s model includes the possibility
of allelic dropout (but only for genotypes that are
heterozygous for non-null alleles), which is a source of
excess homozygosity that is ignored in our model and
(3) Wang’s model uses only non-missing data, and
hence, does not make use of the fact that, when null
alleles exist, missing data itself provide some evidence
of homozygosity.

A key point that is apparent from our simulations is
that the variability of all the estimators we examined
will be substantial unless a large number of markers is
used (see the RMSE values in the tables in the online
Supplementary Materials). For example, when there
are unknown allele frequencies and no null alleles,
and 50 markers have been genotyped, each with 10
alleles, the Method 2 MLE yields a RMSE of 0.048
for individuals with f=0.05. Since the bias is small,
the RMSE will be close to the standard deviation. A
margin of error for an estimator will be roughly twice
its standard deviation, so, in this case, even with 50
markers, the margin of error for the estimate will be
close to 0.10. Hence, even with 50 highly variable
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markers, the estimated inbreeding coefficients will be
quite imprecise.

Researchers intending to use an estimated inbreed-
ing coefficient in a subsequent linear regression
against, for example, a fitness-related trait, should be
aware of how uncertainty in estimates of f may affect
their results. There is a body of literature on the effects
of measurement error on regression analyses (e.g.
Frost & Thompson, 2000) and it can be shown that
variability in the predictor variable (estimated in-
breeding coefficients) will result in a systematic tend-
ency to under-estimate the strength of the relationship
between the predictor and response variables (in-
breeding and fitness). This will reduce the power of
studies looking for evidence of inbreeding depression.
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