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1. Introduction

The classical theory of canonical correlation is concerned with a standard
description of the relationship between any linear combination of p random
variables x, and any linear combination of q random variables yt insofar as
this relation can be described in terms of correlation. Lancaster [1] has
extended this theory, for p = q = 1, to include a description of the correla-
tion of any function of a random variable x and any function of a random
variable y (both functions having finite variance) for a class of joint distribu-
tions of x and y which is very general. It is the purpose of this paper to derive
Lancaster's results from general theorems concerning the spectral decompo-
sition of operators on a Hilbert space. These theorems lend themselves easily
to the generalisation of the theory to situations where p and q are not finite.
In the case of Gaussian, stationary, processes this generalisation is equivalent
to the classical spectral theory and corresponds to a canonical reduction of a
(finite) sample of data which is basic. The theory also then extends to any
number of processes. In the Gaussian case, also, the present discussion-is
connected with the results of Gelfand and Yaglom [2] relating to the amount
of information in one random process about another.

For the Gaussian case the theory can be presented in a very general form
by commencing from assumptions concerning the symmetry of the covari-
ance function of a vector-valued stochastic process and using the harmonic
analysis for the corresponding group of symmetries to produce a spectral
theory upon which the canonical correlation theory may be founded.

2. The Canonical Correlation of Stochastic Processes

We consider two stochastic processes, that is two families of random
variables

1 This research was mainly done at the University of North Carolina with support from the
Office of Naval Research.
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{x,,se^; {yt,te<T}

where 5? and &~ are two index sets. We do not require that the two families
be independent. We have mainly in mind the case where y and 3~ are finite
or are the set of all integers or all reals but the discussion is general.

We consider the space Q which is the cartesian product of a family of
copies of the real line, one copy for each point in y and one copy for each
point in &~. It is a classic fact (Kolmogoroff [4]) that the joint distributions
of finite sets of the x, and yt, provided they are consistent (Kolmogoroff
[4], p. 29), may be used to institute a probability measure, fi, on a Borel
field of sets in Q which includes all cylinder sets having a Borel set in a finite
dimensional Euclidean space as base. We call 3^ the Hilbert space of all
square integrable complex valued functions oi co e Q and indicate the inner
product in 3^ by the square bracket,

[a, b] = J a(co)b(<o)d/i{oo)

[a, a] = ||a||«.

We shall use the letters /, g, h, • • • for those elements of Jf which are
functions only of the coordinates of co belonging to £f and u, v, w, • • • for
those depending only on the coordinates belonging to &'. The set of all such
/ forms a subspace (closed) of Sff which we call Jt', and the set of all« forms a
subspace which we call ^V. We shall use the notation

U.g] = V.g)*. (A DM =\\t\\\
[«, v] = («, v),, (w, u)^ = \\u\\\.

By a well known property of bounded linear functionals on a Hilbert
space we know that

(1) U.«]

where A is a linear operator from Jt to JV, and putting u = Af in (1) we
derive, from Schwartz's inequality, that

P/IL ^ ll/ILr.
so that A is bounded by 1. Of course we also have

where A* is the adjoint of A.
In the classical canonical correlation theory we use the x,(s = 1, • • •, p)

and yt{t = 1, • • •, q) as bases in the spaces JV and Jf (respectively) so that
the matricial form of A with respect to these bases, which we call [̂ 4], is the
matrix of regression coefficients of the x, on the yt, i.e.

*' = (*lf • • •, *,) = (y1( • • -,yq)[A] + (Zl, •••,*,) = y'[A] + z',
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where the cross product, ${zsyt), is zero for all s, t. Here we use the symbol &
for 'expectation'. It is well known that we may find orthogonal matrices
P and Q so that Q[A]P' has non zero elements only in the diagonal commenc-
ing from the top left hand corner. Each element of Px will now depend linear-
ly upon at most one element of Qy. Those that are dependent1 on an element
of Qy (at most mm{p, q) in number), after normalisation, are called the
canonical x variables and the element of Py on which they depend, after
normalisation, are called the canonical y variables. Thus the operator A
may be thought of as first expressing each (linear) function of the x, linearly
in terms of the canonical variables of the x set and then replacing each of
these by the corresponding members of the y set multiplied by the appropriate
diagonal element, pt, let us say, of Q[A]P', adjusted to take account of the
normalisations. That is we may write

where Et projects onto the subspace of ^t spanned by the canonical x
variables corresponding to this pt (there may be more than one for the same
pf) and W maps the space spanned by the canonical x variables onto the
space spanned by the canonical y variables and is the null operator on the
orthogonal complement, in Jt', of the first-mentioned of these two spaces.
The canonical decompositions of a (linear) function, /, of the x set and a
linear function, u, of the y set are then given by

Here we have included among the Et an operator which projects onto the
orthogonal complement, in J(, of the space spanned by the canonical x
variables. The operator W* is the adjoint of W, mapping the y set onto the
canonical x set and operating as the null operator on the orthogonal comple-
ment in ~V of the former set, while ux is orthogonal to all of the elements of
the canonical set. Thus the second of these formulae expresses u in terms of
the canonical y variables and a residual ux. Finally

[/, u] = (Af, u), = (WXtoEJ.WXEiWu), = Jpt(Ett, EiWu)^

It is these last three displayed formulae that we seek to generalise.
Before doing this we rewrite the first in the form

after defining

E(P) = I E,

where the summation is over those Et for which pt ^ p. We have included a
component corresponding to p = 0 so that E (1) is the identity operator on -# .
The other formulae are modified accordingly. Naturally in the general situa-
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tion which we shall discuss below this representation of A will involve limit-
ing processes and it is to be expected that the points where E(p) increases
need not be denumerable. We refer the reader who is not familiar with the
spectral theory of operators in a Hilbert space to [7] pp. 261—277.

In the general situation we may write (Naimark [3], p. 284)

A = WB

where B = (A*A)1!2 (taking the positive square root) and W is 'partially
isometric' in that it maps the closure of BJK isometrically onto the closure
of A^V and is the null operator on (B^V)1- (the orthogonal complement of
BJ( in JK). Thus

(2) A = WJlpdE{p)

where E(p) is a resolution of the identity in Jt relative to the Borel subsets
of [0, 1]. It follows from (1) that unity is always a characteristic value of B
corresponding to the characteristic function which is identically 1. Indeed

(A*A1, g)M = {A\, Ag), = [1, Ag] = (1, Ag], = [1, g] = (1, g)M

for all g € JK.
We now put

(3) / = f1 dE(p)f, u = W P_ dE{P)W*u+u1.

Heretic {AJK)^, since

{Af, u), = (Af, WW*u)s + (At, u^
= (W*Af,Wu)JI+(Af,u1)jr

= (Af,u)jr+ (Af.uJs-

These formulae (3) constitute the generalisation of those given earlier which
expressed / and u in terms of the canonical variables of the two sets.

Then, finally

= Jlpd(E(p)f,E(P)W*u)Jt.

3. The Canonical Correlation of Two Finite Sets

It is shown in [2] that the information (in Shannon's sense) in one set of p
random variables about another set of q can be finite only if the probability
distribution, in the p -f- q dimensional space, induced by the joint distribu-
tion is absolutely continuous with respect to the product measure induced
by the marginal distributions of the two sets. If we use H(x, y), M(x), N(y)
for these three distribution functions, then when this absolute continuity
condition is satisfied, we shall put
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8H(x, y)
(Z> V) dM{x)8N(y)

for the Radon-Nikodym derivative of the H measure with respect to the
product measure. This derivative is the (essentially) unique function for
which

for every measurable set <%. (See Halmos [10] p. 128.)
Thus A in (1) is defined by

(5) Af=JA(x,y)f(x)dM(x).

The typical case where this is not so is that for p = q — 1, where there is a
concentration of mass along a line.

When H{x, y) is Gaussian the amount of information becomes ([2], p. 217)

where p, is the 7th canonical correlation in the classical theory. Now

(6) £ l o g t r B 2 =

where the trace is defined as

(7) t r£3 =

and the \pt form any complete orthonormal sequence in the (separable)
Hilbert space u^.

The validity of (6) follows (see Lancaster [1]) by considering the normal-
ised Chebyshev-Hermite polynomials ([5], p. 133), #,(£,), i = 1, 2, • • •;
j = 1, •••,/>, in the variables i, which are canonical in the classical theory.
If rjj is the corresponding canonical y variable then the only non zero corre-
lations between these polynomials are between H^j) and H^TJJ). The
finite products

3=1 i=\

are dense in uf and Jf respectively and the only non zero correlations are
between corresponding pairs, a typical pair having correlation

Thus, from (7)

t i

i=^=-£2iog(i-/

the summation 2 ' being over all different products.
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If we use 1/2 log tr B2 as a measure of the information in one set of random
variables about the other, even when the distributions are not Gaussian, and
require this measure of information to be finite then the set of values p for
which E(p) increases (i.e. the spectrum of B and B2) can have no limit point
other than zero. For if p0 ^ 0 is such a limit point we can find an e, 0 < e < p0,
and an infinite sequence of orthonormal elements, y>t, which belong to the
space on which {E(p0 + e) — E(p0 — e)} projects ([7], p. 364). The contri-
bution of these ipt to the right hand side of (7) would then be infinite. An
operator which has at most one limit point in its spectrum, and this at the
origin, is called compact (completely continuous) (see [7] sections 85 and
93). Since B is compact and B2 has finite trace it follows (see for example
the argument on pp. 242—3 of [7]) that A (x, y) is square integrable with
respect to AM{x)AN{y). The analogy with the classical theory is now almost
complete for B will be generated by the square integrable kernel

0 0

so that the <f>j(x) become the canonical x variables while

are the canonical y variables. Finally

[/, U] = 2 Kj
with

00

= 2 «*&(*)
0

where fx is orthogonal to all ^ , ux to all y>t.
This is the case discussed, for j> = q= 1, by Lancaster [1]. Lancaster

begins from Karl Pearson's coefficient of mean square contingency, &2,
which he generalises defining it (in our notation) by

02 = f f r idF(x, y)\2 I {AM (x)AN(y)\\ - 1

where the integral is taken as a Hellinger integral. This is (tr B* — 1)
in our notation, the subtraction of unity being made so as to make 02 zero
when the only point of the spectrum of B is unity, which is a characteristic
value of unit multiplicity, so that the correlation (after mean correction) is
zero between any two functions. Lancaster commences from the assumption
that &* is finite which is equivalent to our assumption that \ log tr B2 is
finite, and then develops the canonical correlation theory for this case.
Of course £ log tr B2 is not a wholly satisfactory measure of the information
in one set of random variables about the other when the distributions are not
Gaussian so that the justification, for assuming A (x, y) square integrable,
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given above is not very well founded. Nevertheless the assumption of a
square integrable A (x, y) would seem reasonable in practice.

4. The Canonical Correlation of Stationary Gaussian Processes

We consider first the case of two stationary Gaussian processes of the form

_ cos sXf + f91 sin .
(8)

I 00

~" " ' cos Uj -\- r]2j sin tXf) 0 ^ Xt ^ n

_,<% < oo, ^b* < ao

where the #, and >?,• are Gaussian and «9" and &" are the integers. We also
take these variables to have zero mean and unit variance and assume.all of
the covariances zero save for

Pu>
- [in, nu\ = Pa-

These covariance assumptions are imposed so as to agree with those for a
pair of stationary processes in discrete time (see formulae (11) below and the
definitions following them).

If we form the random variables

+ P2iV2i)

— PvVu)
then the only non zero correlations among the | H and fo are

[in. f«] = \PU + *P2i\ = Pi-

Now the functions of the form

where there are only a finite number of terms in the product, are dense in the
space ~#. This follows from the fact that the elements of ~# may be approxi-
mated (in the sense of mean square convergence, i.e. in the strong topology)
arbitrarily closely by polynomials in the x, and any x, may be approximated
strongly, uniformly in s, by a truncated sum of the form

n
x:n = 2 ai(£u c o s ai + hi sin Mi)-

I

Since x, — x,n is Gaussian the result follows.
To orthonormalise these products we replace the powers of £tj by the

standardised Chebyshev-Hermite polynomials, the pXh of which we indicate
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by Hv{^u). We do the same with the £«• Then the products of the Hp(gif)
form an orthonormal base for ^ and the H^dj) perform the same function
forjV. The space upon which E(p), in (2), projects is thus spanned by the
products

(9) II. #„(£«,,,)
for which

(10) UiP'il^P
This serves to describe the E (p) for a general pair of Gaussian stationary

processes. Taking S? and &" as the integers let xs and yt have the spectral
representations ([6], p. 481)

( x, = f cos skdu^k) -f- I si

2/e = I cos£Ad«2(A) -f- r sin tkdv2{X)

with
^A)2} = 2dFn(A) =

where ^ and J denote the real and imaginary parts and all other cross prod-
ucts have zero expectation. The -FW(A) are the spectral distribution func-
tions.

We may now approximate to the processes (11) by two sequences of
processes x{"\ y|n) of the form (8) with

We call ̂ Kn the subspace of ~# spanned by the | j " ' and./Fn the subspace of
Jf spanned by the £["K Correspondingly we use En{p) for the spectral
family of projections for the operator An, which is itself defined by (1) for
the two sets of random variables x{"\ yln). If Pn projects onto J(n and Qn

onto ./f „ then
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QnAPn = An

on JKn, and is the null operator on u ^ . Indeed if / e *-#„ then

(QnAPJ, u), = (Af, Qnu)s = [/, Qnu] = (AJ, Q^), = (AJ, u),
since AJ ejVn.

However, Pn and Qn converge strongly to the identity operators on Jl and
Jf (since {x\n)}v converges strongly to zf and similarly for^"'}"). Thus
QnAPn converges strongly to A and it follows ([7], p. 369) that En{p)
converges strongly to E(p) for each p not in the point spectrum of A.

If we put

then the inequality (10) may be written in the form

2 * log

A characterization of E(p) directly in terms of

would be preferable to the indirect one given above.
The situation for Gaussian stationary processes is simpler than that

obtained in general, for the theory then extends (and only then) to any
number of processes. Let xit be the Ith process. We use Q, as before, for the
space of all realizations of the vector process and J f again for the Hilbert
space of square integrable functions on Q, but ^Kt for the subspace of func-
tions of the realizations of the ith process only.

Now

Ui.fi\= {Aufi.fi) *,. fi*^i>
where

Ati = WiiBit,Btt=(A*Ait)*.
It is not difficult to see that

W — W* R — W R W*

If now, in addition, the xit are jointly Gaussian and stationary the Bfj,
for fixed i and / varying, commute. This is easily seen to be so for the Bty,
corresponding to the x1"] as defined earlier in this section, and will be so also
for their strong limits. Thus we may write ([7], p. 360)

where the pit(X) are defined, measurable and take values in [0, 1], almost
everywhere with respect to all of the measures (Ei{X)f,f)Jl.,fe~#i.
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Thus

and we have, speaking loosely, simultaneously diagonalised all of the Ati.
For the present situation the information defined in one process about

another can again be shown to be

Jlogtr(B»).

This is infinite for a pair of processes with continuous spectra but for a
process whose matrix of spectral distribution functions has only a denumer-
able sequence of jumps, at the points Xj let us say, we have

where the summation is over all different products, each such product being
repeated twice, however, since Hv(gu) and HV(CU) have the same correlation
as H,(£u) and H,{£u). Thus

\ log tr (£») = \ log ILU - P?)-2 = -I log (1 - pj)

lo g ( l

The methods used in this section extend to a number of other cases of
which we mention two.

(a) We consider a vector valued process Xt having at most a denumerable
number of components xif and covariance function

yu(s, t) = £{xi<txitt\ s.tef.
Let there be given a priori a group of transformations, 'S, of 9~ such that

Yn(gs, g-t) = yti(s, t), all i, j , s, t and g e <S.

We shall also assume that ^ acts transitively on &~. The situation where
'S does not act transitively but the set of transition equivalence classes of
points of 9~ (transition equivalence of two points being defined by the
existence of an element of & carrying one into the other) is denumerable
may be brought to the one we are considering by defining a new process
obtained by considering vector processes obtained by taking one point from
each equivalence class. Then the elements of 3" may be put into one to one
correspondence with the cosets of <§ modulo the subgroup which leaves some
fixed point, t0, of &" invariant. We indicate a representative element of the
coset corresponding to t by gt. We now topologise & by giving it the weakest
topology in which all of the functions

are continuous. Then 'S is a topological group in the usual sense. If &~ has a
natural topology in which it is locally compact and in which the components
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xit are mean square continuous while yw(s, t) tends to zero as s tends to
infinity the topology of 5? will be the same as the initial topology (it being
assumed that xit has non zero mean square for some *').

We form the Hilbert space J f which is the linear closure (complex coeffi-
cients) of the xit with respect to the inner product defined by the covariance
function, i.e.

Then the group of transformations on 3^ defined by

constitutes a representation of & by means of unitary operators in Sdf.
The spectral theory for the process Xt now proceeds from the spectral

decomposition of this representation of 'S (see Naimark [3], p. 519). The two
simplest cases are discussed shortly below.

(i) If IS is locally compact and commutative then

£ / „ = / . (a,g)d£(«)

where & is the character group of 5? and E(ct) is a resolution of the identity
relative to the Borel sets of <&. Then

xi,t —

= J. (a, g«)d*,(a).
This result is due to Kampe" de FeYiet [8].

(ii) If <8 is compact but not abelian we may put (Naimark [3], pp. 484—6)

where the Ug
a) are irreducible representations of 9 in mutually orthogonal

finite dimensional subspaces df(<x) of tf. If the matricial form of \Jg
a) is

given by

the f£a) being an orthonormal basis for Jf(a), then putting

we obtain

(13) xitt = xi>Bi.to = 2 2 f(o) G *8 ^ ( r 1 ) } -
a * i

In both of these cases the canonical correlation theory then proceeds from
the spectral representation (i.e. (12) or (13)) basically in the same way as
before, provided Xt is Gaussian. For example if &" is the surface of a sphere
in 3 dimensional space and *& is the rotation group (13) becomes
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xiit = x{(B, <f>) = f i
i

k=—a

where (6, </>) are the spherical coordinates of the point t on the surface of the
sphere and (3fa>^> <f>) is a surface spherical harmonic. The canonical variables
are now the normalised Chebyshev-Hermite polynomials in the £[a), and p
(in (2)) takes in the values 0 or 1 only, so that Au is itself a projection (onto
the space spanned by the Chebyshev-Hermite polynomials in the f[a) which
occur in both x^d, <f>) and a^(0, <f>) with non zero coefficients).

b) If only two processes are involved there is a range of other relevant
cases of which we shall mention only that of two mean square continuous
(but not necessarily stationary), Gaussian processes on a finite interval on
the real line. It is now not very difficult to show that we may put

K Vt = 2 Pk(s)Zk
I 1

where wk and zk are random variables with unit mean square and a.k{s), f$k{s)
are constants. The cross products between the random variables vanish save
for those between wk and zk for the same k.

In this case the information, \ log tr B2, is

where

is the expansion (essentially by Mercer's theorem) of the continuous function

r12{s, t) = £{xsyt).

5. The Canonical Analysis of Sample Sequences

For completeness we shall here briefly indicate the analysis of a sample of n
consecutive observations on a vector stationary, Gaussian, process xt of p
components, &~ being the integers, which corresponds to the theoretical
discussion given above.

We form the transforms

Jn{,) Zt

whose real and imaginary parts correspond to the u(X) and v{X) previously
discussed. It is easy to show that

(14) *{/„(*, x)Jn(jt, x)'} -> null matrix, X ^ n,
if A and /j, are not points of jump of F(X), the matrix of spectral distribution
functions, and that
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However, we shall want to form Jn(X, x) for the n equispaced values

and will want

for fixed /, k, uniformly in / and k. However,

(16) *{/.&. *)Jn{h, *)'} = -2 1 e^-^r(s - t)
=i

where F(s — t) is a matrix having yP>g(s — t) in the (p, q)ib place. Thus (16)
equals

" l r(r)eiTX>
-n+i \n

where the summation in ]£' runs from 1 t o w - r i f r ^ O and from I -\- r to
n if T ^ 0. The element of (16) in the pth place in the main diagonal is

2 y , , ( ) M 2 >
-n+i [n

which becomes, after some elementary rearrangements,
I f X,+ Xk .

«n 2 7vAr) ~ (cos r—^— s m T

where \an\ = {n/2r\ sin jrr/21}-1 and y = |/ — ^|. Since |#J < 1 we see that
the diagonal elements of (16) converge to zero, uniformly, for \j — k\ > 1,
provided

2lr*,(*)l<°° for all/..
T

Thus (16) itself then converges to the null matrix, uniformly in / and k.
It is also evident that

tends to zero uniformly in /, under the same conditions.
Thus the quantities Jn{Xj, x), or at least their real and imaginary parts,

may take the part played by u(X) and v(X) in the previous section, at least
asymptotically. Of course, the pif are not known unless F(X) is prescribed a
priori, which is not likely, so that the effects of estimation need to be
considered. It must be mentioned that Jn(X, x)Jn{X, x)' does not itself provide
a useful estimator of F'{X) (see for example [9], chapter III).

Of course a considerable improvement in the rate at which (16) converges
to zero can be obtained under suitable stronger conditions. For example if
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oo
xt = 1 Aist-i

—oo

where the sf form a sequence of random vectors with

<?(e,e't) = <5MG
and

infill? i* <oo,
—oo

where \\At\\ is the norm of the matrix At, then ([9] section III.l)

Jn(l *) = {I At^}Jn{X, e) + Rn{l)
where / „ (A, e) is formed from the et in the same way as / „ (A, x) is formed from
the xt. Here

while
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