
Glasgow Math. J. 54 (2012) 241–259. C© Glasgow Mathematical Journal Trust 2011.
doi:10.1017/S0017089511000553.

IWASAWA THEORY FOR THE SYMMETRIC SQUARE
OF A CM MODULAR FORM AT INERT PRIMES

ANTONIO LEI
School of Mathematical Sciences, Monash University, Clayton, VIC 3800, Australia

e-mail: antonio.lei@monash.edu

(Received 3 February 2011; accepted 15 August 2011; first published online 12 December 2011)

Abstract. Let f be a modular form with complex multiplication (CM) and p an
odd prime that is inert in the CM field. We construct two p-adic L-functions for the
symmetric square of f , one of which has the same interpolating properties as the one
constructed by Delbourgo and Dabrowski (A. Dabrowski and D. Delbourgo, S-adic
L-functions attached to the symmetric square of a newform, Proc. Lond. Math. Soc.
74(3) (1997), 559–611), whereas the other one has a similar interpolating properties but
corresponds to a different eigenvalue of the Frobenius. The symmetry between these
two p-adic L-functions allows us to define the plus and minus p-adic L-functions à la
Pollack (R. Pollack, on the p-adic L-function of a modular form at a supersingular
prime, Duke Math. J. 118(3) (2003), 523–558). We also define the plus and minus
p-Selmer groups analogous to the ones defined by Kobayashi (S. Kobayashi, Iwasawa
theory for elliptic curves at supersingular primes, Invent. Math. 152(1) (2003), 1–36).
We explain how to relate these two sets of objects via a main conjecture.

2000 Mathematics Subject Classification. 11R23, 11F80.

1. Introduction. Let f be a normalised eigen-newform of weight k, level N and
character ε. Fix a prime p �= 2 such that p � N. In [3] (also in [1] under some additional
conditions), even distributions on �×

p are constructed to interpolate the L-values of
the symmetric square of f . More precisely, if the Euler factor of L(f, s) at p is given
by (1 − α1(p)p−s)(1 − α2(p)p−s), then there exists an admissible distribution μαi(p)2 for
i = 1, 2 such that∫

�×
p

θdμαi(p)2 = p3n(k−1)

αi(p)2nτ (θ−1)
× L(Sym2f, θ−1, 2k − 2)

(period)
(1)

for any non-trivial even Dirichlet character θ of conductor pn, where τ (θ−1) denotes
the Gauss sum of θ−1.

Since the Euler factor of L(Sym2f, s) at p is (1 − α1(p)2p−s)(1 − α2(p)2p−s)(1 −
ε(p)pk−1−s), we expect that there should be a distribution με(p)pk−1 satisfying
interpolating properties similar to (1), but with αi(p)2 replaced by ε(p)pk−1. In this
paper, we construct such a distribution for the case when f is a modular form with
complex multiplication (CM) that is non-ordinary at p. In other words, when the L-
function of f coincides with that of a Grossencharacter φ defined over K and p inerts
in K . More precisely, we prove the following theorem in Section 3 (Theorem 3.20).
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THEOREM 1.1. If f is as above, then there exist even admissible distributions μ±ε(p)pk−1

such that ∫
�×

p

θdμ±ε(p)pk−1 = p3n(k−1)

(±ε(p)pk−1)nτ (θ−1)
× L(Sym2f, θ−1, 2k − 2)

(period)
.

Note that we have α1(p)2 = α2(p)2 = −ε(p)pk−1 in this case, methods in [3] only
produce one distribution, which agrees with μ−ε(p)pk−1 as given by Theorem 1.1.

The idea of the construction is rather simple. Let Vf be the p-adic representation
of G� associated to f as constructed by Deligne in [4]. In order to prove Theorem 1.1,
we make use of the following observation. As G�-representations, we have

Sym2(Vf ) ∼= V1 ⊕ V2,

where V1 is an one-dimensional representation associated to some Dirichlet character
η twisted by a power of the cyclotomic character and V2 is a two-dimensional
representation associated to the Grossencharacter φ2. This implies that the L-function
of f factorises into

L(Sym2f, s) = L(φ2, s)L(η, s − k + 1).

We can therefore make use of the Euler system constructed from elliptic units
to interpolate the L-values of φ2 and multiply the resulting distributions with an
appropriate twist of the Kubota–Leopoldt p-adic L-function associated to η, which
interpolates the L-values of η.

Because of the symmetry between the two distributions, we show that some plus
and minus logarithms log± of the Pollack divide μ+ε(p)pk−1 ± μ−ε(p)pk−1 . This allows us
to obtain two bounded measures:

THEOREM 1.2. (Theorem 3.25). Let θ be an even Dirichlet character of conductor
pn. There exist bounded p-adic measures μ±(Sym2(Vf )) such that the followings hold.
(a) If n is even, then∫

�×
p

θμ+(Sym2(Vf )) = (2k − 3)!(k − 1)!p2n(k−1)

θ (log+)τ (θ−1)2ε(p)n
× L(Sym2f, θ−1, 2k − 2)

(period)
.

(b) If n is odd, then∫
�×

p

θμ−(Sym2(Vf )) = (2k − 3)!(k − 1)!p2n(k−1)

θ (log−)τ (θ−1)2ε(p)n
× L(Sym2f, θ−1, 2k − 2)

(period)
.

Moreover, μ±(Sym2(Vf )) are uniquely determined by (a) and (b), respectively.

In Section 4, we make use of some of the ideas in [6] to show that these measures
can be obtained from some appropriate Coleman maps and define the corresponding
plus and minus p-Selmer groups Sel±p (Sym2(Vf )). On identifying the measures as
elements in some Iwasawa algebra � ⊗ �, we show that the following holds under
some appropriate conditions (see Theorem 4.8 for a precise statement).

THEOREM 1.3. The Selmer groups Sel±p (Sym2(Vf )) are �-cotorsion and

Char�⊗�

(
Sel±p (Sym2(Vf ))∨

) = (μ±(Sym2(Vf ))).
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Finally, in the Appendix, we explain how some of the linear algebra results that we
use to prove the main theorems can be easily generalised to general symmetric powers
Symmf where m ≥ 2 is an integer.

2. Notation.

2.1. Extensions by p power roots of unity. Throughout this paper, p is an odd
prime. If K is a field of characteristic 0, either local or global, GK denotes its absolute
Galois group, χ the p-cyclotomic character on GK and OK the ring of integers of K .
We write ι for the complex conjugation in G�.

For an integer n ≥ 0, we write Kn for the extension K(μpn ), where μpn is the
set of pnth roots of unity and K∞ denotes

⋃
n≥1 Kn. When K = �, we write kn =

�(μpn ) instead. In particular, we write �p,n = �p(μpn ). Let Gn denotes the Galois
group Gal(�p,n/�p) for 0 ≤ n ≤ ∞. Then, G∞ ∼= � × �, where � = G1 is a finite
group of order p − 1 and � = Gal(�p,∞/�p,1) ∼= �p. We fix a topological generator γ

of �.

2.2. Iwasawa algebras and power series. Given a finite extension K of �p,
�OK (G∞) (respectively �OK (�)) denotes the Iwasawa algebra of G∞ (respectively
�) over OK . We write �K (G∞) = �OK (G∞) ⊗ K and �K (�) = �OK (�) ⊗ K . If M is
a finitely generated �OK (�)-torsion (respectively �K (�)-torsion) module, we write
Char�OK (�)(M) (respectively Char�K (�)(M)) for its characteristic ideal.

Given a module M over �OK (G∞) (respectively �K (G∞)) and a character δ : � →
�×

p , Mδ denotes the δ-isotypical component of M. For any m ∈ M, we write mδ for the
projection of m into Mδ. The Pontryagin dual of M is written as M∨.

Let r ∈ �≥0. We define

Hr =
⎧⎨
⎩
∑

n≥0,σ∈�

cn,σ · σ · Xn ∈ �p[�][[X ]] : sup
n

|cn,σ |p
nr

< ∞ ∀σ ∈ �

⎫⎬
⎭ ,

where | · |p is the p-adic norm on �p such that |p|p = p−1. We write H∞ = ∪r≥0Hr and
Hr(G∞) = {f (γ − 1) : f ∈ Hr} for r ∈ �≥0 ∪ {∞}. In other words, the elements of Hr

(respectively Hr(G∞)) are the power series in X (respectively γ − 1) over �p[�] with
growth rate O(logr

p). If F, G ∈ H∞ or H∞(G∞) are such that F = O(G) and G = O(F),
we write F ∼ G.

Given a subfield K of �p, we write Hr,K = Hr ∩ K [�][[X ]] and similarly for
Hr,K (G∞). In particular, H0,K (G∞) = �K (G∞).

Let n ∈ �. We define the K-linear map Twn from Hr,K (G∞) to itself to be the map
that sends σ to χ (σ )nσ for all σ ∈ G∞. It is clearly bijective (with inverse Tw−n).

2.3. Crystalline representations. We write �cris and �dR for the rings of Fontaine
and ϕ for the Frobenius acting on these rings. Recall that there exists an element
t ∈ �dR such that ϕ(t) = pt and g · t = χ (g)t for g ∈ G�p .

Let V be a p-adic representation of G�p . We denote the Dieudonné module by
�cris(V ) = (�cris ⊗ V )G�p . We say that V is crystalline if V has the same �p-dimension
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as �cris(V ). Fix such a V . If j ∈ �, Filj�cris(V ) denotes the jth de Rham filtration of
�cris(V ).

Let T be a lattice of V , which is stable under G�p . Let �1
Iw(T) denote the inverse

limit lim← H1(�p,n, T) with respect to the corestriction and �1
Iw(V ) = � ⊗ �1

Iw(T).

Moreover, if V arises from the restriction of a p-adic representation of G� and T
is a lattice stable under G�, we write

�1(T) = lim
←−
n

H1(�[μpn , 1/p], T) and �1(V ) = � ⊗ �1(T).

We have localisation maps

loc : �1(T) → �1
Iw(T) and loc : �1(V ) → �1

Iw(V ).

If F is a number field, we define the p-Selmer group of T over F to be

Selp(T/F) = ker

(
H1(F, T ⊗ �p/�p) →

∏
v

H1(Fv, T ⊗ �p/�p)

H1
f (Fv, T ⊗ �p/�p)

)
,

where v runs through the places of F .
Let V (j) denote the jth Tate twist of V , i.e. V (j) = V ⊗ �pej where G�p acts on ej

via χ j. We have

�cris(V (j)) = t−j�cris(V ) ⊗ ej.

For any v ∈ �cris(V ), vj = v ⊗ t−jej denotes its image in �cris(V (j)). We write Twj :
�1

Iw(V ) → �1
Iw(V (j)) for the isomorphism defined in Section A.4 in [9], which depends

on a choice of primitive p-power roots of unity.
Finally, we write

exp : �p,n ⊗ �cris(V ) → H1(�p,n, V ) and exp∗ : H1(�p,n, V ) → �p,n ⊗ Fil0�cris(V )

for Bloch–Kato’s exponential and dual exponential, respectively.

2.4. Imaginary quadratic fields. Let K be an imaginary quadratic field with ring of
integers O and idele class group CK . We write εK for the quadratic character associated
to K , i.e. the character on G�, which sends σ to 1 if σ ∈ GK and to −1 otherwise.

A Grossencharacter of K is simply a continuous homomorphism φ : CK → �×

with complex L-function

L(φ, s) =
∏
v

(1 − φ(v)N(v)−s)−1,

where the product runs through the finite places v of K at which φ is unramified, φ(v)
is the image of the uniformiser of Kv under φ and N(v) is the norm of v. Let f be the
conductor of φ. We say that η is of type (m, n) where m, n ∈ � if the restriction of η to
the Archimedean part �× of CK is of the form z �→ zmz̄n.

We write K = ∪K(pnf), where K(a) denotes the ray class field of K modulo a if a

is an ideal of O.
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If T is a �p-representation of GK , we write

�1
p∞f(T) = lim←−

K ′
H1(OK ′ [1/p], T) and �1

p∞f(� ⊗� T) = �1
p∞f(T) ⊗� �,

where K ′ ranges over all finite extensions of K contained in K(p∞f).

2.5. Modular forms. Let f =∑ anqn be a normalised eigen-newform of weight
k ≥ 2, level N and character ε. We assume that f is a CM modular form, i.e. L(f, s) =
L(φ, s) for some Grossencharacter φ of an imaginary quadratic field K with conductor
f. Then, φ is of type (−k + 1, 0). Moreover, p inerts in K if and only if f is non-ordinary
at p. In this case, ap is always 0. Throughout, we fix such a p with p �= 2.

The coefficient field Ff of f is contained in the field of definition of φ. We write E
for the completion of this field at a fixed prime above p.

We write Vf for the two-dimensional E-linear representation of G� associated to
f from [4], so we have a homomorphism

ρf : G� → GL(Vf ).

Throughout the paper, we assume that the following hypothesis holds.

HYPOTHESIS 2.1. If ε and K are as above, then εK �= ε.

3. p-adic L-functions.

3.1. Grossencharacters over K . We first review some results on Grossencharac-
ters. Let η be a Grossencharacter on GK of conductor f. We fix a finite extension E
of �p such that E contains the image of η. We write V (η) for the one-dimensional E-
linear representation of GK associated to η. It is a representation that factors through
Gal(K/K). For an ideal a of O, which is prime to pf, the Artin symbol (a,K/K) ∈
Gal(K/K) acts on V (η) as the multiplication by η(a)−1. We write η̃ : GK → E× for the
corresponding character.

We write Ṽη = Ind�
K (V (η)). The canonical homomorphism K ⊗ �(ζp∞ ) → K(p∞f)

induces a map

Ind : �1
p∞f(V (η)) → �1(Ṽη).

Let γ be a non-zero element of V (η). By Section 15.5 in [5], a system of norm compatible
elliptic units in K(pnf) defines an element zp∞f ∈ �1

p∞f
(�p(1)). We write the image of

zp∞f under the composition

�1
p∞f

(�p(1))
γ �� �1

p∞f
(V (η)(1)) Ind �� �1(Ṽη(1))

loc �� �1
Iw(Ṽη(1))

Tw−1 �� �1
Iw(Ṽη)

as zγ (η) = z(η) and its projection into H1(�p,n, Ṽη(j)) is denoted by zj,n(η).
Note that the eigenvalues of ι on Ṽη are ±1, each with multiplicity 1. If v ∈ Ṽη, we

write v± for the projection of v into the ±1 eigenspace.
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PROPOSITION 3.1. Let η be a Grossencharacter over K of type (−r, 0) with r ≥ 1. Let
θ be a character on Gn and write

κθ : �p,n ⊗ Fil0�cris(Ṽη(1)) → � ⊗ Ṽη(1),

x ⊗ y �→
∑
σ∈Gn

θ (σ )σ (x)per(y),

where per is the period map associated to η as defined in Section 15.8 in [5]. Then, we
have

κθ ◦ exp∗(z1,n(η)) = L{p}(η̄θ, r) · (γ ′)±,

where ± = θ (−1) and γ ′ denotes the image of γ in Ṽη.

Proof. Section 15.12 in [5]. �

3.2. The symmetric square of a CM modular form. Let f be a modular form as in
Section 2.5. By comparing the eigenvalues of Frobenii, we see that the representation
Vf is isomorphic to Ṽφ = Ind�

K V (φ). Therefore, Vf admits a basis x, y such that for
σ ∈ G�, the matrix of ρf (σ ) with respect to this basis is given by

ρf (σ ) =
(

φ̃(σ ) 0

0 φ̃(ισ ι)

)
(2)

if σ ∈ GK . Otherwise,

ρf (σ ) =
(

0 φ̃(ισ ′ι)

φ̃(σ ′) 0

)
, (3)

where σ = ισ ′ with σ ′ ∈ GK .

LEMMA 3.2. The determinant of ρf is given by

det(ρf )(σ ) =
{

φ̃(σ )φ̃(ισ ι) if σ ∈ GK

−φ̃(σ ′)φ̃(ισ ′ι) if σ = ισ ′ where σ ′ ∈ GK .

Proof. This is immediate from (2) and (3). �
PROPOSITION 3.3. As a G�-representation, Sym2(Vf ) decomposes into

Sym2(Vf ) ∼= V1 ⊕ V2,

where ρi : G� → GL(Vi) is an i-dimensional representation of G� for i = 1, 2. Moreover,

ρ1
∼= εK · det(ρf ) = εK · ε · χk−1, (4)

ρ2
∼= Ṽφ2 . (5)

Proof. It is clear that x ⊗ x, y ⊗ y, x ⊗ y + y ⊗ x form a basis of Sym2(Vf ). By
formulae (2) and (3), σ · (x ⊗ y + y ⊗ x) is a multiple of x ⊗ y + y ⊗ x for any σ ∈ G�.
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Hence, it gives a one-dimensional sub-representation V1 of Sym2(Vf ). More explicitly,
we have

σ · (x ⊗ y + y ⊗ x) =
{

φ̃(σ )φ̃(ισ ι)(x ⊗ y + y ⊗ x) if σ ∈ GK

φ̃(σ ′)φ̃(ισ ′ι)(x ⊗ y + y ⊗ x) if σ = ισ ′ where σ ′ ∈ GK .

Therefore, we deduce (4) from Lemma 3.2.
It is also clear that x ⊗ x, y ⊗ y form a basis of a two-dimensional representation

ρ2 : G� → GL(V2). With respect to this basis,

ρ2(σ ) =
(

φ̃2(σ ) 0

0 φ̃2(ισ ι)

)

if σ ∈ GK . Otherwise if σ = ισ ′, where σ ′ ∈ GK , then

ρ2(σ ) =
(

0 φ̃2(ισ ′ι)

φ̃2(σ ′) 0

)
.

Therefore, V2
∼= Ind�

K V (φ2) as required. �
COROLLARY 3.4. The complex L function admits a factorisation

L(Sym2f, s) = L(φ2, s)L(εK · ε, s − k + 1).

Proof. The L-function of Sym2f only have non-trivial Euler factors at q � N. The
Euler factors on the two sides of the equation at q agree by Proposition 3.3, so we are
done. �

3.3. The symmetric square as a G�p -representation. We study the representation
Sym2(Vf ) restricted to G�p . More specifically, we study �cris(Sym2Vf ).

LEMMA 3.5. As G�p -representations, both V1 and V2 are crystalline.

Proof. The functor �cris is compatible with taking direct sums, so we can identify
�cris(Vi) as a filtered sub-ϕ-module of �cris(Vf ) for i = 1, 2. That is,

�cris(Sym2(Vf )) ∼= �cris(V1) ⊕ �cris(V2). (6)

Since Sym2(Vf ) is crystalline, �cris(Sym2(Vf )) is of dimension 3 over E. Hence, �cris(Vi)
must have dimension i and Vi is crystalline for i = 1, 2. �

We now give explicit descriptions of �cris(V1) and �cris(V2).
Recall that �cris(Vf ) is a two-dimensional E-vector space with Hodge–Tate weights

0 and 1−k. Moreover, the de Rham filtration is given by

Fili�cris(Vf ) =

⎧⎪⎨
⎪⎩

Eω ⊕ Eϕ(ω) if i ≤ 0

Eω if 1 ≤ i ≤ k − 1

0 if i ≥ k
(7)
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for some ω �= 0. The action of ϕ on �cris(Vf ) satisfies ϕ2 = −ε(p)pk−1. Therefore,

Fili�cris(Sym2(Vf )) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�cris(Sym2(Vf )) if i ≤ 0

E(ω ⊗ ω) ⊕ E(ϕ(ω) ⊗ ω + ω ⊗ ϕ(ω)) if 1 ≤ i ≤ k − 1

E(ω ⊗ ω) if k ≤ i ≤ 2k − 2

0 if i ≥ 2k − 1

.

(8)
Since ϕ2(ω) = −ε(p)pk−1ω, we have

ϕ(ω ⊗ ϕ(ω) + ϕ(ω) ⊗ ω) = −ε(p)pk−1(ω ⊗ ϕ(ω) + ϕ(ω) ⊗ ω).

In particular, ω ⊗ ϕ(ω) + ϕ(ω) ⊗ ω is an eigenvector of ϕ. Therefore, we have a
decomposition of filtered ϕ-modules

�cris(Sym2(Vf )) = (E(ω ⊗ ω) ⊕ E(ϕ(ω) ⊗ ϕ(ω))) ⊕ (E(ω ⊗ ϕ(ω) + ϕ(ω) ⊗ ω)).

PROPOSITION 3.6. As filtered ϕ-modules, we have

�cris(V1) = E(ϕ(ω) ⊗ ω + ω ⊗ ϕ(ω)),

�cris(V2) = E(ω ⊗ ω) ⊕ E(ϕ(ω) ⊗ ϕ(ω)).

Proof. By (4), ρ1 = εK · ε · χk−1. Since p is inert in K , εK (p) = −1. The Hodge–Tate
weight of V1 is therefore 1 − k and ϕ acts on �cris(V1) as multiplication by −ε(p)pk−1.
This proves the first equality. The second equality is then automatic by (6). �

REMARK 3.7. Such a decomposition of G�p -representations is in fact possible for
f without CM (see Section 2.2 in [10]).

COROLLARY 3.8. The eigenvalues of ϕ on �cris(V2) are ±ε(p)pk−1.

Proof. By Proposition 3.6, the matrix of ϕ with respect to the basis ω ⊗ ω, ϕ(ω) ⊗
ϕ(ω) is (

0 ε(p)2p2k−2

1 0

)
,

hence the result. �
COROLLARY 3.9. The Hodge–Tate weights of V2 are 0 and 2−2k.

Proof. This follows from (8) and Proposition 3.6. �

3.4. The Perrin–Riou pairing. By Corollary 3.8, the slope of ϕ on �cris(V2) is k−1.
Hence, by Corollary 3.9, given any v ∈ �cris(V2), we have the Perrin–Riou pairing

Lv : �1
Iw(V∗

2 ) → Hk−1,E(G∞),

which satisfies the following properties.
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PROPOSITION 3.10. For an integer r ≥ 0, we have

χ r (Lv(z)) = r!
[(

1 − ϕ−1

p

)
(1 − ϕ)−1(vr+1), exp∗(z−r,0)

]
0
.

Let θ be a character of Gn which does not factor through Gn−1 with n ≥ 1, then

χ rθ (Lv(z)) = r!
τ (θ−1)

∑
σ∈Gn

θ−1(σ )
[
ϕ−n(vr+1), exp∗(zσ

−r,n)
]

n ,

where [, ]n is the pairing

[, ]n : H1(�p,n, V2(r + 1)) × H1(�p,n, V∗
2 (−r)) → H2(�p,n, E(1)) ∼= E,

z−r,n denotes the projection of Tw−r(z) into H1(�p,n, V∗
2 (−r)) and τ (θ−1) denotes the

Gauss sum of θ−1.

Proof. See Section 3.2 in [6]. �
REMARK 3.11. The assumption on the eigenvalues of ϕ made in [6] are not necessary

for our purposes here because the Perrin–Riou pairings can be defined by applying 1−
ϕ to the (ϕ, G∞)-module of V∗

2 (see [7] and Section 16.4 in [5]).

We fix a non-zero element ω̄ ∈ Fil−1�cris(V∗
2 (1)) and write

per(ω̄) = �+(γ ′)+ + �−(γ ′)−,

where �± ∈ �× and γ ′ is as given in the statement of Proposition 3.1 for some fixed γ .

DEFINITION 3.12. Under the choices made above, we define v± ∈ �cris(V2) by

v± = 1
[ϕ(ω) ⊗ ϕ(ω), ω̄]

(±ε(p)pk−1ω ⊗ ω + ϕ(ω) ⊗ ϕ(ω)).

LEMMA 3.13. The elements v± satisfy:
(a) Both v± are eigenvalues of ϕ with ϕ(v±) = ±ε(p)pk−1v±.
(b) For any x ∈ Fil0�cris(V∗

2 (−r)) and an integer r such that 0 ≤ r ≤ 2k − 3, we have

[v+
r+1, x] = [v−

r+1, x],

where [, ] denotes the pairing

[, ] : �cris(V2(r + 1)) × �cris(V∗
2 (−r)) → �cris(E(1)) = E · t−1e1.

Proof. (a) is easy to check using the matrix given in the proof of Corollary 3.8 (or
by direct calculations).

By Corollary 3.9, the Hodge–Tate weights of V∗
2 are 0 and 2k−2. Hence,

Fil0�cris(V∗
2 (−r)) is one-dimensional with basis ω̄−r−1 for 0 ≤ r ≤ 2k − 3. Since

(ω ⊗ ω)r+1 ∈ Fil0�cris(V2(r + 1)), we have [(ω ⊗ ω)r+1, ω̄−r−1] = 0. Hence,

[v+
r+1, ω̄−r−1] = [v−

r+1, ω̄−r−1] = 1,

which implies (b). �

https://doi.org/10.1017/S0017089511000553 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000553


250 ANTONIO LEI

Note that V∗
2

∼= Ṽφ̄2 (2k − 2). This enables us to make the following definition of
p-adic L-functions associated to φ2.

DEFINITION 3.14. On taking η = φ̄2 in Section 3.1, we define

L±ε(p)pk−1 (φ2) = Lv± (Tw2k−2(z(φ̄2))) ∈ Hk−1,E(G∞).

LEMMA 3.15. Let θ be a character of Gn which does not factor through Gn−1 with
n ≥ 1 and write δ = θ (−1), then

χ2k−3θ (Lα(φ2)) = (2k − 3)!p(2k−2)n

τ (θ−1)αn
× L(φ2θ−1, 2k − 2)

�δ

,

where α = ±ε(p)pk−1.

Proof. We have

χ2k−3θ (L±ε(p)pk−1 (φ2))

= χ2k−3θ (Lv± (Tw2k−2(z(φ̄2))))

= (2k − 3)!
τ (θ−1)

∑
σ∈Gn

θ−1(σ )[ϕ−n(v±
2k−2), exp∗(z1,n(φ̄2)σ )]n

= (2k − 3)!
τ (θ−1)

⎡
⎣(±ε(p)pk−1 × p−2k+2)−nv±

2k−2,
∑
σ∈Gn

θ−1(σ ) exp∗(z1,n(φ̄2)σ )

⎤
⎦

n

= (2k − 3)!p(2k−2)n

τ (θ−1)(±ε(p)pk−1)n
× L(φ2θ−1, 2k − 2)

�δ

,

where the second equality follows from Proposition 3.10, the third follows from
Lemma 3.13(a) and the last equality is a consequence of Proposition 3.1 and the
fact that p divides the conductor of θ . �

LEMMA 3.16. We have

χ2k−3(L±ε(p)pk−1 (φ2)) = (1 − p−1 + (1 − ε(p)−2p2k−3)(±ε(p)p1−k)) × L(φ2, 2k − 2)
�+

.

Proof. Since ϕ2 = ε(p)2p2−2k on �cris(V2(2k − 2)), we have

(
1 − ϕ−1

p

)
(1 − ϕ)−1

= (1 − ε(p)−2p2k−3ϕ)
1 + ϕ

1 − ε(p)2p2−2k

= 1 − p−1 + (1 − ε(p)−2p2k−3)ϕ
1 − ε(p)2p2−2k

.
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Therefore, similar to the proof of Lemma 3.15, we have

χ2k−3(L±ε(p)pk−1 (φ2))

= χ2k−3(Lv± (Tw2k−2(z(φ̄2))))

= (2k − 3)!
[

1 − p−1 + (1 − ε(p)−2p2k−3)ϕ
1 − ε(p)2p2−2k

(v±
2k−2), exp∗(z1,0(φ̄2))

]
0

= (2k − 3)!
[

1 − p−1 + (1 − ε(p)−2p2k−3)(±ε(p)p1−k)
1 − ε(p)2p2−2k

· v±
2k−2, exp∗(z1,0(φ̄2))

]
0

= 1 − p−1 + (1 − ε(p)−2p2k−3)(±ε(p)p1−k)
1 − ε(p)2p2−2k

× L{p}(φ2, 2k − 2)
�+

= (1 − p−1 + (1 − ε(p)−2p2k−3)(±ε(p)p1−k)) × L(φ2, 2k − 2)
�+

.

�

REMARK 3.17. Consider the p-adic L-function L+ε(p)pk−1 (φ2). The first factor on
the right-hand side of the equation in the statement of Lemma 3.16 vanishes if and
only if k = 2 and ε(p) = 1 (e.g. when f corresponds to an elliptic curve over �). This
recovers the trivial zero result in [10].

3.5. p-adic L-functions of the symmetric square. Let us first recall the following
result of Kubota and Leopoldt.

THEOREM 3.18. If η is a non-trivial Dirichlet character of conductor prime to p, there
exists a bounded p-adic measure Lp(η) ∈ H0,E(G∞), where E is some finite extension of
�p which contains the image of η such that

χ rθ (Lp(η)) = (r + 1)!pn(r+1)

(2π i)r+1τ (θ−1)
× L(ηθ−1, r + 1);

χ r(Lp(η)) = (r + 1)!
(2π i)r+1

L(η, r + 1)

for any integer r ≥ 0 and the Dirichlet character θ of conductor pn such that χ r+1θ (−1) =
η(−1).

Since we assume that Hypothesis 2.1 holds, we may take η = εK · ε in
Theorem 3.18. This enables us to give the following definition.

DEFINITION 3.19. For α = ±ε(p)pk−1 we define

Lα(Sym2(Vf )) = Lα(φ2) × Tw−k+1(Lp(εK · ε)).

For the rest of this section, unless otherwise stated, θ denotes an even character
on Gn, which does not factor through Gn−1 with n ≥ 1.
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THEOREM 3.20. Both L±ε(p)pk−1

(
Sym2(Vf )

)
lie inside Hk−1,E(G∞) and admit the

following interpolating properties:

χ2k−3θ (Lα(Sym2(Vf ))) = (2k − 3)!(k − 1)!p3n(k−1)

τ (θ−1)2αn
× L(Sym2f, θ−1, 2k − 2)

(2π i)k−1�+
;

χ2k−3(Lα(Sym2(Vf ))) = (2k − 3)!(k − 1)!
(

1 − 1
p

+ α

(
p−2k+2 − 1

pε(p)2

))

×L(Sym2f, 2k − 2)
(2π i)k−1�+

,

where α = ±ε(p)pk−1.

Proof. By definition, Lα(φ2) ∈ Hk−1,E(G∞) and Lp(εK · ε) ∈ H0,E(G∞), which
implies the first part of the theorem.

Since det(Vf ) = εχk−1 and ρf is odd, we have εχk−1(−1) = −1. But εK (−1) =
−1 and θ (−1) = 1, so χk−1θ (−1) = εKε(−1) and we can apply Theorem 3.18 and
Lemma 3.15 as follows:

χ2k−3θ (Lα(Sym2(Vf )))

= χ2k−3θ (Lα(φ2)) × χk−2θ (Lp(εK · ε))

= (2k − 3)!p(2k−2)n

τ (θ−1)αn
× L(φ2θ, 2k − 2)

�+
× (k − 1)!pn(k−1)

(2π i)k−1τ (θ−1)
× L(εk · ε · θ−1, k − 1)

= (2k − 3)!(k − 1)!p3n(k−1)

τ (θ−1)2αn
× L(Sym2f, θ−1, 2k − 2)

(2π i)k−1�+
,

where the last equality follows from Corollary 3.4. This gives the first interpolating
formula and the second one can be deduced in the same way. �

LEMMA 3.21. Let η be an even character on �, then Lη

±ε(p)pk−1 (Sym2(Vf )) �= 0.

Proof. We have L(Sym2(Vf ), η, 2k − 2) �= 0 because the critical strip of Sym2(Vf )
is k − 1 < Re(s) < k. Therefore, we are done by the interpolating properties given by
Theorem 3.20. �

3.6. Pollack’s plus and minus splittings. As in [11], we define

log+(γ ) =
2k−3∏
r=0

∞∏
n=1

�2n(χ (γ )−rγ )
p

,

log−(γ ) =
2k−3∏
r=0

∞∏
n=1

�2n−1(χ (γ )−rγ )
p

,

where �m denotes the pmth cyclotomic polynomial. Then, log±(γ ) ∼ logk−1.

LEMMA 3.22. For an integer r such that 0 ≤ r ≤ 2k − 3 and a character θ of Gn which
does not factor through Gn−1 with n ≥ 1,

χ rθ (L+ε(p)pk−1 (φ2)) = (−1)nχ rθ (L−ε(p)pk−1 (φ2)).
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Proof. This follows from the same calculations as in the proof of Lemma 3.15,
thanks to Lemma 3.13(b). �

COROLLARY 3.23. We have divisibilities

log+(γ ) | L+ε(p)pk−1 (φ2) + L−ε(p)pk−1 (φ2);

log−(γ ) | L+ε(p)pk−1 (φ2) − L−ε(p)pk−1 (φ2).

Similarly,

log+(γ ) | L+ε(p)pk−1 (Sym2(Vf )) + L−ε(p)pk−1 (Sym2(Vf ));

log−(γ ) | L+ε(p)pk−1 (Sym2(Vf )) − L−ε(p)pk−1 (Sym2(Vf )).

Proof. The first set of divisibilities follows from Lemma 3.22. The second set is
then immediate by definition. �

This allows us to define the following.

DEFINITION 3.24. We define the plus and minus p-adic L-functions for Sym2(Vf )
by

L+
p (Sym2(Vf )) = (L+ε(p)pk−1 (Sym2(Vf )) + L−ε(p)pk−1 (Sym2(Vf )))/2 log+(γ );

L−
p (Sym2(Vf )) = (L+ε(p)pk−1 (Sym2(Vf )) − L−ε(p)pk−1 (Sym2(Vf )))/2 log−(γ ).

Similarly, we define the plus and minus p-adic L-functions for V2 by

L+
p (φ2) = (L+ε(p)pk−1 (φ2) + L−ε(p)pk−1 (φ2))/2 log+(γ );

L−
p (φ2) = (L+ε(p)pk−1 (φ2) − L−ε(p)pk−1 (φ2))/2 log−(γ ).

It is immediate that

L±
p (Sym2(Vf )) = L±

p (φ2) × Tw−k+1(Lp(εK · ε)). (9)

THEOREM 3.25. Both L±
p (Sym2(Vf )) are elements of �E(G∞) and admit the following

interpolating properties:

(a) If n is even, then

χ2k−3θ (L+
p (Sym2(Vf ))) = (2k − 3)!(k − 1)!p2n(k−1)

log+(χ2k−3θ (γ ))τ (θ−1)2ε(p)n
× L(Sym2f, θ−1, 2k − 2)

(2π i)k−1�+
,

χ2k−3(L+
p (Sym2(Vf ))) = (2k − 3)!(k − 1)!(1 − p−1)

log+(χ2k−3(γ ))
× L(Sym2f, 2k − 2)

(2π i)k−1�+
.
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(b) If n is odd, then

χ2k−3θ (L−
p (Sym2(Vf ))) = (2k − 3)!(k − 1)!p2n(k−1)

log−(χ2k−3θ (γ ))τ (θ−1)2ε(p)n
× L(Sym2f, θ−1, 2k − 2)

(2π i)k−1�+
,

χ2k−3(L−
p (Sym2(Vf ))) = (2k − 3)!(k − 1)!(ε(p)p−k+1 − ε(p)−1pk−2)

log−(χ2k−3(γ ))

×L(Sym2f, 2k − 2)
(2π i)k−1�+

.

Moreover, L±
p (Sym2(Vf )) are uniquely determined by (a) and (b), respectively.

Proof. By the first part of Theorem 3.20, L±ε(p)pk−1 (Sym2(Vf )) are both elements of
Hk−1,E(G∞). But log±(γ ) ∼ logk−1, so the quotients above are inH0,E(G∞) = �E(G∞).

The interpolating formulae in (a) and (b) follow from those given in Theorem 3.20.
Finally, since L±

p (Sym2(Vf )) ∈ �E(G∞), they are uniquely determined by their
values at an infinite number of characters, hence the last part of the theorem. �

LEMMA 3.26. Let η be an even character on �, then L±,η
p (Sym2(Vf )) �= 0.

Proof. The same as the proof of Lemma 3.21. �

REMARK 3.27. Analogues of Theorem 3.25 and Lemma 3.26 for L±
p (φ2) can be

deduced in the same way.

REMARK 3.28. A conjectural generalisation of Pollack’s plus and minus splittings
of p-adic L-functions for motives has been formulated in [2]. Theorem 3.25 gives an
affirmative answer to Conjecture 2 (op. cit.) for the special case when the motive
corresponds to the symmetric square of a CM modular form.

4. Selmer groups. In this section, we define the plus and minus p-Selmer groups
for Sym2(Vf ) and relate these to the p-adic L-functions L±

p

(
Sym2(Vf )

)
defined

above. By the decomposition given by Proposition 3.3, we only need to define their
counterparts for V2 = Ṽφ2 because the Selmer group of V1 is relatively well understood.
The G�-representation V2 behaves in exactly the same way as Vf ′ , where f ′ is some
CM modular form of weight 2k−1, so many of the results on V2 below can be proved
using the arguments given in [6]. Therefore, we only outline the proofs without giving
all the details here.

4.1. Coleman maps and Selmer groups. As in [6, 7], we define plus and minus
Selmer groups using the kernels of some Coleman maps.

PROPOSITION 4.1. If z ∈ �1
Iw(V∗

2 ), then

log+(γ ) | Lϕ(ω)⊗ϕ(ω)(z),

log−(γ ) | Lω⊗ω(z).

Proof. As in Proposition 3.14 in [6], this can be proved using Proposition 3.10. �
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Therefore, as in [6], we may define �E(G∞) homomorphisms

Col+ : �1
Iw(V∗

2 ) → �E(G∞)

z �→ 1
2[ϕ(ω) ⊗ ϕ(ω), ω̄] log+(γ )

Lϕ(ω)⊗ϕ(ω)(z);

Col− : �1
Iw(V∗

2 ) → �E(G∞)

z �→ 1
2[ϕ(ω) ⊗ ϕ(ω), ω̄] log−(γ )

Lω⊗ω(z).

Then, it is clear by definition that Col±
(
Tw2k−2

(
z(φ̄2)

)) = L±
p (φ2).

We now fix an OE-lattice T of V (φ), which is stable under G�, it then gives rise to
natural OE-lattices Tf = Ind�

K (T) and Sym2Tf in Vf = Ṽφ and Sym2(Vf ), respectively,
both of which are again stable under G�. As p �= 2, we have

Sym2Tf ∼= T1 ⊕ T2 and Sym2Vf /Tf ∼= V1/T1 ⊕ V2/T2

for some OE-lattice Ti inside Vi for i = 1, 2.
Write H1

±(�p,n, T∗
2 ) for the projection of ker(Col±) into H1(�p,n, T∗

2 ) and define
H1(�p,n, V2/T2(1))± to be the exact annihilator of H1

±(�p,n, T∗
2 ) under the Pontryagin

duality

H1(�p,n, T∗
2 ) × H1(�p,n, V2/T2(1)) → �p/�p.

Let F be a number field. Then the p-Selmer group of Sym2Tf (1) decomposes into
those of T1(1) and T2(1):

Selp(Sym2Tf (1)/F) = Selp(T1(1)/F) ⊕ Selp(T2(1)/F).

We define the plus/minus Selmer groups over kn = �(μpn ) by

Sel±p (T2(1)/kn) = ker

(
Selp(T2(1)/kn) → H1(�p,n, V2/T2(1))

H1
f (�p,n, V2/T2(1))±

)
,

Sel±p (Sym2Tf (1)/kn) = Selp(T1(1)/kn) ⊕ Sel±p (T2(1)/kn),

and let

Sel±p (T2(1)/k∞) = lim→ Sel±p (T2(1)/kn) and Sel±p (Sym2Tf (1)/k∞)

= lim→ Sel±p (Sym2Tf (1)/kn).

4.2. Description of the kernels. In this section we give a more explicit description
of the groups H1

f (�p,n, V2/T2(1))± under the following additional assumption.

HYPOTHESIS 4.2. Either p − 1 � k − 1 or ε �= 1.

In Section in [6], one of the key ingredients to give an explicit description
of H1

f (�p,n, Vf /Tf (1))± is the fact that (Vf /Tf (j))G�p,n = 0 under some appropriate
assumptions. We show below that we get an analogue of such description under
Hypothesis 4.2.
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LEMMA 4.3. If Hypothesis 4.2 holds, then (V2/T2(j))G�p,n = 0 for all j ∈ � and
n ∈ �≥0.

Proof. Let q � N be a prime which is inert in K . Then, by the second half of the
proof of Proposition 3.3, we see that the eigenvalues of the q-Frobenius on V2(j) are
±ε(q)χ j(q)qk−1. Therefore, as in proof of Lemma 4.4 in [6], it is enough to show that
there exists some q such that

±ε(q)χ j(q)qk−1 �≡ 1 mod p.

If either p − 1 � k − 1 or ε(q) �= 1, we can find such a q by Dirichlet’s theorem, so we
are done. �

COROLLARY 4.4. If Hypothesis 4.2 holds, then the restriction map H1(�p,m, T2(1)) →
H1(�p,n, T2(1)) is injective for any integers n ≥ m ≥ 0. On identifying the former as a
subgroup of the latter, we have

H1
f (�p,n, V2/T2(1))± = H1

f (�p,n, T2(1))± ⊗ E/OE .

Here

H1
f (�p,n, T2(1))± = {x ∈ H1

f (�p,n, T2(1)) : corn/m+1(x) ∈ H1
f (�p,m, T2(1))∀m ∈ S±

n

}
,

where cor denotes the corestriction map and

S+
n = {m ∈ [0, m − 1] : m even},

S−
n = {m ∈ [0, m − 1] : m odd}.

Proof. These can be proved in exactly the same way as their counterparts in Section
4 in [6] using Lemma 4.3. �

4.3. Main conjectures.

THEOREM 4.5. Let θ be a character on � and r ≥ 0 an integer such that χ r+1θ (−1) =
η(−1). Then Selp(�p(η)(r + 1))θ is �E(�)-cotorsion and

Char�E (�)(Selp(�p(η)(r + 1))∨,θ ) = (Tw−rLθ
p(η)
)
.

Proof. For any �E(G∞)-module, M∨(r) = M(−r)∨. If M is a �E(�) torsion
module, we have Char(M(r)) = Twr(Char(M)). Therefore, the result is just a rewrite of
the Iwasawa main conjecture, as proved by Mazur and Wiles [8]. �

COROLLARY 4.6. Let η be an even character on �. Then

Char�E (�)(Selp(T1(1)/k∞)∨,η) = (Tw−k+1Lη
p(εK · ε)).

Proof. We may apply Theorem 4.5 to εK · ε with r = k − 1. �
PROPOSITION 4.7. Let δ = ± and let η be a character on � such that η = 1 if δ = −.

Then, Selδp(T2(1)/k∞)θ is �E(�) cotorsion and

Char�E (�)
(
Selδp(T2(1)/k∞)∨,η

) = (Lδ,η
p (φ2)

)
.
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Proof. This follows from the same argument as in [12], which has been generalised
for CM modular forms in Section 7 in [6]. It relies on the main conjecture for K as
proved in [13]. �

THEOREM 4.8. Let η be a character on � as in the statement of Proposition 4.7.
Then Sel±p (Sym2(Vf )/k∞)η is �E(�) cotorsion and

Char�E (�)
(
Sel±p (Sym2(Vf )/k∞)∨,η

) = (L±,η
p (Sym2(Vf ))

)
.

Proof. Recall that

Sel±p (Sym2Tf (1)/k∞) = Selp(T1(1)/k∞) ⊕ Sel±p (T2(1)/k∞)

by definition, so

Sel±p (Sym2Tf (1)/k∞)∨,η = Selp(T1(1)/k∞)∨,η ⊕ Sel±p (T2(1)/k∞)∨,η.

But we have

L±,η
p (Sym2(Vf )) = L±,η

p (φ2) × Tw−k+1
(
Lη

p(εK · ε)
)

by (9). Therefore, the theorem follows from Corollary 4.6 and Proposition 4.7 because

Char(M1 ⊕ M2) = Char(M1)Char(M2)

for any torsion modules M1 and M2. �

5. Appendix. In this section, we fix an integer m ≥ 2. We prove an analogue of
Proposition 3.3.

PROPOSITION 5.1. If m is even, we have a decomposition of G�-representations

SymmVf ∼=
m/2−1⊕

i=0

(
Ṽφm−2i ⊗ (εK det ρf

)i)⊕ (εK det ρf
)m/2

.

If m is odd, then

SymmVf ∼=
(m−1)/2⊕

i=0

(
Ṽφm−2i ⊗ (εK det ρf

)i)
.

Proof. We only give the proof for the case when m is even, since the other case can
be proved in a similar way. Let x, y be the basis of Vf given as in Section 3.2. For an
integer r such that 0 ≤ r ≤ m, we write xr for the element in V⊗m

f given by

∑
a1 ⊗ a2 ⊗ · · · ⊗ am,

where the sum runs over ai ∈ {x, y} with #{i : ai = x} = r. Then, x0, . . . , xm give a basis
of SymmVf .
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If σ ∈ GK , we have

σ (xr) = φ̃r(σ )φ̃m−r(ισ ι)xr

by (2). If σ = ισ ′ with σ ′ ∈ GK , then

σ (xr) = φ̃r(σ ′)φ̃m−r(ισ ′ι)xm−r

by (3). Therefore, xr and xm−r generate a sub-representation of SymmVf , which we
denote by ρr : G� → GL(Vr), where 0 ≤ r ≤ m/2. Note that Vr is two-dimensional if
r < m/2 and Vm/2 is one-dimensional. We have a decomposition

SymmVf ∼= ⊕m/2
r=0Vr.

For r < m/2, the matrix of σ ∈ GK with respect to the basis xm−r, xr is(
φ̃m−r(σ )φ̃r(ισ ι) 0

0 φ̃r(σ )φ̃m−r(ισ ι)

)
= φ̃r(σ ισ ι)

(
φ̃m−2r(σ ) 0

0 φ̃m−2r(ισ ι)

)
,

whereas that of σ = ισ ′ with σ ′ ∈ GK is given by(
0 φ̃r(σ ′)φ̃m−r(ισ ′ι)

φ̃m−r(σ ′)φ̃r(ισ ′ι) 0

)
= φ̃r(σ ′ισ ′ι)

(
0 φ̃m−2r(ισ ′ι)

φ̃m−2r(σ ′) 0

)
.

Therefore, we see that ρr ∼= Ind�
K (V (φm−2r)) · (εK det ρf )r by Lemma 3.2.

Finally, for r = m/2, we have

σ (xm/2) =
{

φ̃m/2(σ ισ ι)xm/2 if σ ∈ GK

φ̃m/2(σ ′ισ ′ι)xm/2 if σ = ισ ′ where σ ′ ∈ GK .

Hence, Vm/2 = (εK det ρf )m/2 again by Lemma 3.2. This finishes the proof. �
COROLLARY 5.2. The complex L-function admits a factorisation

L(Symmf, s)

=
{(∏m/2−1

i=0 L(φm−2i, (εKε)i, s − i(k − 1))
)
L((εKε)m/2, s − m/2(k − 1)) if m is even,∏(m−1)/2

i=0 L(φm−2i, (εKε)i, s − i(k − 1)) otherwise.

Proof. This can be proved in the same way as Corollary 3.4. �
REMARK 5.3. For 0 ≤ i ≤ �(m − 1)/2�, we may obtain a p-adic L-function that

interpolates the L-values of φm−2i at (m − 2i)(k − 1) using Proposition 3.1. However,
when m > 2, their product does not interpolate the L-values of Symmf . We would need
p-adic L-functions that interpolate the L-values of φm−2i at (m − i)(k − 1) instead.
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