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Abstract

Let X be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, two weighted
estimates related to A∞ weights are established for singular integral operators with nonsmooth kernels
via a new sharp maximal operator associated with a generalized approximation to the identity. As
applications, the weighted L p(X ) and weighted endpoint estimates with general weights are obtained
for singular integral operators with nonsmooth kernels, their commutators with BMO (X ) functions, and
associated maximal operators. Some applications to holomorphic functional calculi of elliptic operators
and Schrödinger operators are also presented.
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1. Introduction

Let X be a set endowed with a positive Borel regular measure µ and a quasi-metric d
satisfying that there exists a constant κ ≥ 1 such that for all x , y, z ∈X ,

d(x, y)≤ κ[d(x, z)+ d(z, y)].

The triple (X , d, µ) is said to be a space of homogeneous type in the sense of Coifman
and Weiss [3], if µ satisfies the following doubling condition: there exists a constant
C ≥ 1 such that for all x ∈X and r > 0,

µ(B(x, 2r))≤ Cµ(B(x, r)) <∞;

here and in what follows B(x, r)= {y ∈X : d(y, x) < r}. It is easy to see that the
above doubling property implies the following strong homogeneity property: there
exist positive constants c0 and n such that for all λ≥ 1, r > 0 and x ∈X ,
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µ(B(x, λ r))≤ c0λ
nµ(B(x, r)). (1.1)

Moreover, there also exist constants C > 0 and N ∈ [0, n] such that for all x , y ∈X
and r > 0,

µ(B(y, r))≤ C

(
1+

d(x, y)

r

)N

µ(B(x, r)). (1.2)

We remark that although that all balls defined by d satisfy the axioms of complete
system of neighborhoods in X , and therefore induced a (separated) topology in X ,
the balls B(x, r) for x ∈X and r > 0 need not be open with respect to this topology.
However, by a well-known result of Macı́as and Segovia [8], we know that there exists
another quasi-metric d̃ which is equivalent to d such that the balls corresponding to d̃
are open in the topology induced by d̃ . Thus, throughout this paper, we always assume
that the balls B(x, r) for x ∈X and r > 0 are open.

Let T be an L2(X ) bounded linear operator with kernel K in the sense that for all
bounded functions f with bounded support and almost all x /∈ supp f ,

T f (x)=
∫

X
K (x, y) f (y) dµ(y), (1.3)

where K is a measurable function on X ×X \ {(x, y) : x = y}. To obtain a weak
(1, 1) estimate for certain Riesz transforms, and L p-boundedness with p ∈ (1,∞) of
holomorphic functional calculi of linear elliptic operators on irregular domains, Duong
and McIntosh [4] introduced singular integral operators with nonsmooth kernels on
spaces of homogeneous type via the following generalized approximation to the
identity.

DEFINITION 1.1. A family of operators {Dt }t>0 is said to be an approximation to the
identity, if for every t > 0, Dt can be represented by the kernel at in the following
sense: for every function u ∈ L p(X ) with p ∈ [1,∞] and almost everywhere x ∈X ,

Dt u(x)=
∫

X
at (x, y)u(y) dµ(y),

and the kernel at satisfies that for all x, y ∈X and t > 0,

|at (x, y)| ≤ ht (x, y)=
1

µ(B(x, t1/m))
s(d(x, y)m t−1), (1.4)

where m > 0 is a constant and s is a positive, bounded and decreasing function
satisfying

lim
r→∞

rn+δs(rm)= 0 (1.5)

for some δ > N appearing in (1.2).
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Duong and McIntosh [4] proved that if T is an L2(X )-bounded linear operator with
kernel K , and satisfies that:

(i) there exists an approximation to the identity {Dt }t>0 such that the composite
operator T Dt with t > 0 has an associated kernel Kt in the sense (1.3), and there
exist positive constants c1 and C such that for all y ∈X and t > 0,∫

d(x,y)≥c1t1/m
|K (x, y)− Kt (x, y)| dµ(x)≤ C;

then T is bounded from L1(X ) to L1,∞(X ), that is, there exists a constant C > 0 such
that for any f ∈ L1(X ) and any λ > 0,

µ({x ∈X : |T f (x)|> λ})≤ Cλ−1
‖ f ‖L1(X ).

An L2(X )-bounded linear operator with kernel K satisfying (i) is called a singular
integral operator with nonsmooth kernel, since K does not enjoy smoothness in space
variables. Martell [9] considered the weighted L p(X ) estimate with Ap weights for
p ∈ (1,∞) and weighted L1,∞(X ) estimates with A1 weights for T . Here and in what
follows, Ap with p ∈ [1,∞] is the weight function class of Muckenhoupt on X ; see,
for example, [20] (or [7]) for its definition and properties. To be precise, Martell [9]
proved that if T is an L2(X )-bounded linear operator, satisfies (i) and:

(ii) there exists an approximation to the identity {D̃t }t>0 such that the composite
operator D̃t T with t > 0 has an associated kernel K t , and there exist positive
constants c2, C and α such that for all t > 0 and x, y ∈X with d(x, y)≥ c2t1/m ,

|K (x, y)− K t (x, y)| ≤ C
1

µ(B(x, d(x, y)))

tα/m

[d(x, y)]α
;

then for any p ∈ (1,∞) and u ∈ Ap, T is bounded on L p(X , u). Moreover,
Martell [9] proved that if T is an L2(X )-bounded linear operator, satisfies (ii) and:

(iii) there exists an approximation to the identity {Dt }t>0 such that the composite
operator T Dt with t > 0 has an associated kernel Kt in the sense (1.3), and there
exist positive constants C , c3 and β such that for all t > 0 and x, y ∈X with
d(x, y)≥ c3t1/m ,

|K (x, y)− Kt (x, y)| ≤ C
1

µ(B(y, d(x, y)))

tβ/m

[d(x, y)]β
;

then for u ∈ A1, T is bounded from L1(X , u) to L1,∞(X , u). Here and in what
follows, L p(X , u) means L p(X , u dµ).

Now let u ∈ A∞ and T be an L2(X )-bounded linear operator satisfying (i) and (ii).
It was proved by Martell [9] that for any p ∈ (0,∞) and u ∈ A∞ and bounded function
f with bounded support,∫

X
(M(T f )(x))pu(x) dµ(x)≤ C

∫
X
(M(| f |r )(x))p/r u(x) dµ(x), (1.6)
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where r ∈ (1,∞), C > 0 is a constant depending only on {Dt }t>0, {D̃t }t>0, r and the
weight u. This weighted estimate plays an important role in establishing weighted
L p estimates with Ap weights for T , where p ∈ (1,∞). However, as was shown
in [10, 11, 13] on Euclidean spaces, to prove weighted estimates with general weights
for singular integral operators and their commutators with BMO (Rn) functions, the
inequality (1.6) is not enough. In this paper, we establish two weighted estimates with
A∞ weights, which are more general than (1.6) and are useful in establishing weighted
estimates with general weights for singular integral operators and their commutators
with BMO (X ) functions. To state our results, we first introduce some notation.

A measurable function w is said to be a weight if it is nonnegative and locally
integrable on X , and a weight w on X is said to belong to A∞ if there exist two
positive constants CA∞(w) and δA∞(w) such that for any ball B and any measurable
set E ⊂ B,

w(E)

w(B)
≤ CA∞(w)

(
µ(E)

µ(B)

)δA∞ (w)

;

here and in what follows, w(E)=
∫

E w(x) dµ(x). Let M be the classical Hardy–
Littlewood maximal operator on X and Mk with k ∈N be the operator M iterated k
times. Our main results can be stated as follows.

THEOREM 1.2. Let T be an L2(X )-bounded linear operator with kernel K as in
(1.3). Suppose that T satisfies (i) and (ii) above. Then for any k ∈N:

(i) if p ∈ (0,∞) and u ∈ A∞, then there exists a constant C > 0 depending only on
k, p, CA∞(u) and δA∞(u) such that for any bounded function f with bounded
support,∫

X
(Mk(T f )(x))pu(x) dµ(x)≤ C

∫
X
(Mk+1 f (x))pu(x) dµ(x), (1.7)

provided that ‖Mk(T f )‖L p(X ,u) <∞;
(ii) if l ∈N and w is a weight such that M lw is finite almost everywhere, then for

any p ∈ (1,∞) and % > 0, there exists a constant C > 0 depending only on k, p
and % such that for any bounded function f with bounded support,∫

X
(Mk(T f )(x))p(M lw(x))−% dµ(x)

≤ C
∫

X
(Mk+1 f (x))p(M lw(x))−% dµ(x). (1.8)

THEOREM 1.3. Let u ∈ A∞ and k ∈N, and let8 be an increasing function on [0,∞)
satisfying the doubling condition that there exists a constant C > 0 such that for all
t ≥ 0,

8(2t)≤ C8(t). (1.9)
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Under the hypotheses of Theorem 1.2, there exists a constant C > 0 depending only on
k, CA∞(u) and δA∞(u) such that for any bounded function f with bounded support,

sup
λ>0

8(λ)u({x ∈X : Mk(T f )(x) > λ})

≤ C sup
λ>0

8(λ)u({x ∈X : Mk+1 f (x) > λ}), (1.10)

provided that
sup

0<λ<R
8(λ)u({x ∈X : Mk(T f )(x) > λ}) <∞

for any R > 0.

We remark that when µ(X ) <∞, the assumption that

sup
0<λ<R

8(λ)u({x ∈X : Mk(T f )(x) > λ}) <∞

for any R > 0 in Theorem 1.3 automatically holds.
To prove Theorems 1.2 and 1.3, we need a new sharp maximal operator related to an

approximation to the identity, which is more general than the sharp maximal operator
introduced by Martell [9]. Moreover, we also need its certain weighted A∞ estimates;
see Theorems 2.1 and 2.2 below. It was proved by Duong and Yan [6] that such sharp
maximal operators play an important role in the theory of some new BMO-type spaces.

REMARK 1.4. As pointed out by Duong and McIntosh [4], if the kernel K associated
with T satisfies a Hölder continuity estimate, that is, there exist positive constants C ,
c and ε such that for x, y, y′ ∈X satisfying d(x, y)≥ cd(y, y′),

|K (x, y)− K (x, y′)| + |K (y, x)− K (y′, x)|

≤ C
1

µ(B(y, d(x, y)))

[
d(y, y′)

d(x, y)

]ε
, (1.11)

then there exist two approximations to the identity {Dt }t>0 and {D̃t }t>0 such that T
satisfies (i) and (ii) above. Thus, the condition that T satisfies (i) and (ii) above is
weaker than that K satisfies (1.11). On the other hand, even for the case that K satisfies
(1.11) and (X , d, µ) is the Euclidean space, both Theorems 1.2 and 1.3 are also new.

Using Theorem 1.2, we can obtain the weighted L p(X ) when p ∈ (1,∞) and
weak type (1, 1) estimates with general weights for singular integral operators with
nonsmooth kernels.

THEOREM 1.5. Let T be an L2(X ) bounded linear operator with kernel K as in (1.3).
Suppose that T satisfies (ii) and (iii). Then for any p ∈ (1,∞), there exists a constant
C > 0 depending only on p such that for any weight w, and any bounded function f
with bounded support,∫

X
|T f (x)|pw(x) dµ(x)≤ C

∫
X
| f (x)|p M [2p]+1w(x) dµ(x); (1.12)
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here and in what follows, for a positive number θ , [θ ] denotes the biggest integer no
more than θ .

THEOREM 1.6. Let T be an L2(X ) bounded linear operator with kernel K as in (1.3).
Suppose that T satisfies (ii) and (iii). Then there exists a constant C > 0 such that for
any weight w, λ > 0 and bounded function f with bounded support,∫

{x∈X : |T f (x)|>λ}
w(x) dµ(x)≤ Cλ−1

∫
X
| f (x)|M3w(x) dµ(x).

As another application of Theorem 1.2, we consider the weighted estimates
with general weights for commutators of BMO (X ) functions and singular integral
operators with nonsmooth kernels. For b ∈ BMO (X ) and T as in Theorem 1.5, define
the commutator Tb by

Tb f (x)= b(x)T f (x)− T (b f )(x), (1.13)

where x ∈X and f is any bounded function with bounded support. Duong and Yan [5]
considered the L p(X )-boundedness of Tb, and proved that if T is bounded on L2(X )

and satisfies (i) and (ii), then Tb is bounded on L p(X ) for any p ∈ (1,∞). From
Theorem 1.2, we can deduce the following conclusions.

THEOREM 1.7. Let b ∈ BMO (X ) and Tb be as in (1.13). Under the hypotheses of
Theorem 1.5, for any p ∈ (1,∞), there exists a constant C > 0 depending only on p
such that for any weight w, and any bounded function f with bounded support,∫

X
|Tb f (x)|pw(x) dµ(x)

≤ C‖b‖p
BMO (X )

∫
X
| f (x)|p M [3p]+1w(x) dµ(x). (1.14)

THEOREM 1.8. Let b ∈ BMO (X ) and Tb be as in (1.13). Under the hypotheses of
Theorem 1.6, there exists a constant C > 0 such that for any weight w, any λ > 0 and
bounded function f with bounded support,∫

{x∈X : |Tb f (x)|>λ}
w(x) dµ(x)

≤ C‖b‖BMO (X ) log(2+ ‖b‖BMO (X ))

×

∫
X

| f (x)|

λ
log
(

2+
| f (x)|

λ

)
M4w(x) dµ(x).

We remark that Theorem 1.8 is also new, even when w(x)≡ 1.
We also establish some weighted estimates for the following maximal operators.

Let T be an L2(X )-bounded linear operator associated with kernel K in the sense of
(1.3). For each fixed ε > 0, define the truncated operator Tε by

Tε f (x)=
∫

d(x,y)≥ε
K (x, y) f (y) dµ(y),
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and the associated maximal operator by

T ∗ f (x)= sup
ε>0
|Tε f (x)|.

Our result concerning the weighted L p(X ) estimate for T ∗ can be stated as follows.

THEOREM 1.9. Let T be an L2(X )-bounded linear operator with kernel K as in
(1.3). Suppose that T satisfies (ii) and (iii), and that the approximation to the identity
{D̃t }t>0 that appeared in (ii) above also satisfies that for all t > 0 and x, y ∈X with
d(x, y)≤ c2t1/m ,

|K t (x, y)| ≤ C
1

µ(B(x, t1/m))
, (1.15)

where C > 0 is a constant independent of t , x and y. Then for any p ∈ (1,∞), there
exists a constant C > 0 depending only on p such that for any weight w, and any
bounded function f with bounded support,∫

X
[T ∗ f (x)]pw(x) dµ(x)≤ C

∫
X
| f (x)|p M [2p]+2w(x) dµ(x).

Although it is still unclear whether there exists certain weighted endpoint estimate
for T ∗ with general weights, we have the following conclusion, which is new even
when u(x)≡ 1.

THEOREM 1.10. Let u ∈ A1 and T be as in Theorem 1.9. Then there exists a constant
C > 0 depending only on the A1-constant of u such that for any λ > 0 and any
bounded function f with bounded support,∫

{x∈X : T ∗ f (x)>λ}
u(x) dµ(x)≤ C

∫
X

| f (x)|

λ
log
(

2+
| f (x)|

λ

)
u(x) dµ(x).

REMARK 1.11. By the results of [10, 16], we know that if T is the classical Calderón–
Zygmund operator on Rn , then for each fixed p ∈ (1,∞), the iterations of the Hardy–
Littlewood maximal operator in (1.12) and (1.14) should be [p] + 1 and [2p] + 1,
respectively, which are optimal. Although the singular integral satisfying (i) and (ii)
is more singular (its kernel has no regularity in the space variable), it is still unclear
whether the iterations [2p] + 1 and [3p] + 1 in Theorems 1.5 and 1.7 are optimal.

The organization of this paper is as follows. In Section 2, we introduce a new
sharp maximal operator and establish its weighted A∞ estimates. The proofs of
Theorems 1.2 and 1.3 are presented in Section 3. Section 4 is devoted to the proofs of
Theorems 1.5 and 1.6. In Section 5, we prove Theorems 1.7 and 1.8. The proofs of
Theorems 1.9 and 1.10 are given in Section 6. Finally, in Section 7, we present some
applications of our results to holomorphic functional calculi of elliptic operators and
Schrödinger operators.
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We finally make some conventions. Throughout this paper, we let N= {1, 2, . . .}
and let C denote a positive constant that is independent of the main parameters
involved but whose value may differ from line to line. The symbol f . g means
f ≤ Cg, which will be used only in proofs of theorems and lemmas and only when the
omitted constant will not be cited later. Constants with subscripts, such as c1, do not
change in different occurrences. For a fixed p with 1≤ p <∞, p′ denotes the dual
exponent of p, namely, p′ = p/(p − 1). For any ball B = B(x, r) and t > 0, we set
t B = B(x, tr).

2. A new sharp maximal operator

In this section, we introduce a new sharp maximal operator associated with an
approximation to the identity, which is a generalization of the sharp maximal operator
introduced by Martell [9], and establish certain weighted A∞ estimates related to this
new sharp maximal operator and some other maximal operators.

Let k be a nonnegative integer and let V be a measurable set with µ(V ) <∞. For
any suitable function f , let ‖ f ‖L(log L)k ,V be the Luxemburg norm of f defined by

‖ f ‖L(log L)k ,V = inf
{
λ > 0 :

1
µ(V )

∫
V

| f (x)|

λ
logk

(
2+
| f (x)|

λ

)
dµ(x)≤ 1

}
.

The maximal operator ML(log L)k is defined by

ML(log L)k f (x)= sup
B3x
‖ f ‖L(log L)k ,B,

where the supremum is taken over all balls containing x . For an approximation to the
identity {D̃t }t>0 and any f ∈ L p0(X ) with p0 ∈ [1,∞), we define the sharp maximal
operator M]

D̃,L(log L)k
by

M]

D̃,L(log L)k
f (x)= sup

B3x
‖ f − D̃tB f ‖L(log L)k ,B,

where tB = rm
B and rB is the radius of B. If k = 0, we denote M]

D̃,L
simply by M]

D̃
,

which was introduced by Martell [9] and plays an important role in [6].
By (1.4) and (1.5), we can verify that for any f ∈

⋃
∞

p=1 L p(X ) and ball B,

sup
y∈B
|D̃tB f (y)| ≤ C inf

y∈B
M f (y).

It then follows that for all x ∈X ,

M]

D̃,L(log L)k
f (x)≤ C ML(log L)k f (x). (2.1)

Our goal in this section is to prove that, in some sense, the converse of (2.1) is true.
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THEOREM 2.1. Let k be a nonnegative integer, p ∈ (0,∞) and u ∈ A∞, {D̃t }t>0 be
an approximation to the identity as in Definition 1.1. There exists a constant C > 0
depending only on p, CA∞(u) and δA∞(u) such that for any f with ML(log L)k f ∈
L p(X , u) and f ∈ L p0(X ) for some p0 ∈ (1,∞):

(a) if µ(X )=∞, then

‖ML(log L)k f ‖L p(X ,u) ≤ C‖M]

D̃,L(log L)k
f ‖L p(X ,u);

(b) if µ(X ) <∞, then

‖ML(log L)k f ‖L p(X ,u)

≤ C‖M]

D̃,L(log L)k
f ‖L p(X ,u) + C[u(X )]1/p

‖ f ‖L(log L)k ,X .

THEOREM 2.2. Let 8 be an increasing function on [0,∞) satisfying (1.9), let k be
a nonnegative integer, let u ∈ A∞ and let {D̃t }t>0 be an approximation to the identity
as in Definition 1.1. Then there exists a constant C > 0 depending only on p, CA∞(u)
and δA∞(u) such that for any f ∈ L p0(X ) with p0 ∈ (1,∞):

(a) if µ(X )=∞, and for any R > 0,

sup
0<λ<R

8(λ)u({x ∈X : ML(log L)k f (x) > λ}) <∞,

then

sup
λ>0

8(λ)u({x ∈X : ML(log L)k f (x) > λ})

≤ C sup
λ>0

8(λ)u({x ∈X : M]

D̃,L(log L)k
f (x) > λ});

(b) if µ(X ) <∞, then

sup
λ>0

8(λ)u({x ∈X : ML(log L)k f (x) > λ})

≤ C sup
λ>0

8(λ)u({x ∈X : M]

D̃,L(log L)k
f (x) > λ})

+ Cu(X )8(‖ f ‖L(log L)k ,X ).

To prove Theorems 2.1 and 2.2, we need some preliminary lemmas.

LEMMA 2.3 [1]. Let (X , d, µ) be a space of homogeneous type and B = {Bα}α∈3 be
a family of balls in X such that U =

⋃
α∈3 Bα is measurable and µ(U ) <∞. Then

there exists a disjoint sequence {B(x j , r j )} j ⊂ B such that U ⊂
⋃

j B(x j , c4r j ) with
c4 a positive constant depending only on κ . Moreover, for any α ∈3, Bα is contained
in some B(x j , c4r j ).
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LEMMA 2.4. Let k be a nonnegative integer and p ∈ (1,∞). Then there exists a
constant C > 0 depending only on k and p such that for any weight w,∫

X
(ML(log L)k f (x))pw(x) dµ(x)≤ C

∫
X
| f (x)|p Mw(x) dµ(x).

Moreover, there exists a constant C > 0 such that for any weight w and any λ > 0,∫
{x∈X : ML(log L)k f (x)>λ}

w(x) dµ(x)

≤ C
∫

X

| f (x)|

λ
logk

(
2+
| f (x)|

λ

)
Mw(x) dµ(x), (2.2)

provided that µ(X ) <∞, or µ(X )=∞ and f ∈ L p0(X ) for some p0 ∈ (1,∞).

PROOF. The argument is similar to the case of Euclidean spaces; see [11, Lemma 1.6].
For the convenience of the reader, we present some details. It is obvious that ML(log L)k

is bounded on L∞(X ). Thus, by an interpolation theorem of Rivière (see [18,
Theorem 1.1]), it suffices to prove (2.2). Recall that for any nonnegative integer k,
there exists a constant Ck > 1 such that for any suitable function h,

C−1
k ML(log L)k h(x)≤ Mk+1h(x)≤ Ck ML(log L)k h(x). (2.3)

In fact, the first inequality was proved by Pérez and Wheeden [15, Lemma 8.5], and
the second inequality can be proved by the same argument as used in [11, p. 174]; see
also [16, (4.7)]. If f ∈ L p0(X ), the L p0(X )-boundedness of M then states that

µ({x ∈X : ML(log L)k f (x) > λ}). λ−p0‖ f ‖p0
L p0 (X )

<∞. (2.4)

For any λ > 0 and x ∈X with ML(log L)k f (x) > λ, we choose a ball Bx containing x
such that

1
µ(Bx )

∫
Bx

| f (y)|

λ
logk

(
2+
| f (y)|

λ

)
dµ(y) > 1.

By (2.4) and Lemma 2.3, we obtain a sequence of nonoverlapping balls {B j } j such
that

{x ∈X : ML(log L)k f (x) > λ} ⊂
⋃

j

c4 B j ,

and, for all j ,

1
µ(B j )

∫
B j

| f (x)|

λ
logk

(
2+
| f (x)|

λ

)
dµ(x) > 1.
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Therefore, ∫
{x∈X : ML(log L)k f (x)>λ}

w(x) dµ(x)

≤

∑
j

∫
c4 B j

w(x) dµ(x)

.
∑

j

µ(B j )
1

µ(c4(B j ))

∫
c4 B j

w(x) dµ(x)

.
∑

j

µ(B j ) inf
y∈B j

Mw(y)

.

∫
X

| f (y)|

λ
logk

(
2+
| f (y)|

λ

)
Mw(y) dµ(y),

which completes the proof of Lemma 2.4. 2

LEMMA 2.5. Let k be a nonnegative integer. There exists a constant c5 > 0 depending
only on k such that for any measurable set V with µ(V ) <∞, function f supported
on V and belonging to L p0(X ) with p0 ∈ (1,∞), and λ > 0,

µ({x ∈X : ML(log L)k f (x) > λ})

≤ c5µ(V )
‖ f ‖L(log L)k ,V

λ
logk

(
2+
‖ f ‖L(log L)k ,V

λ

)
.

PROOF. By homogeneity, we may assume that ‖ f ‖L(log L)k ,V = 1, which means that∫
V
| f (x)| logk(2+ | f (x)|) dµ(x)≤ µ(V ).

It follows from Lemma 2.4 with w ≡ 1 that

µ({x ∈X : ML(log L)k f (x) > λ})

.

∫
V

| f (x)|

λ
logk

(
2+
| f (x)|

λ

)
dµ(x)

.
1
λ

logk(2+ λ−1)

∫
V
| f (x)| logk(2+ | f (x)|) dµ(x)

.
1
λ

logk(2+ λ−1)µ(V ),

which completes the proof of Lemma 2.5. 2

On the maximal operators ML(log L)k and M]

D̃,L(log L)k
, we have the following good-

λ inequality.
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LEMMA 2.6. Let {D̃t }t>0 be an approximation to the identity as in Definition 1.1.
Then there exists a constant c6 > 1 which depends on {D̃t }t>0 such that for all
λ > 0, all functions f ∈ L p0(X ) with some p0 ∈ (1,∞), all balls B such that
ML(log L)k f (x0)≤ λ for some x0 ∈ B, and any fixed η ∈ (0, 1), there exists a constant
γ > 0, which depends on η, but is independent of f , λ and B, such that

µ({x ∈ B : ML(log L)k f (x) > c6λ, M]

D̃,L(log L)k
f (x)≤ γ λ})≤ ηµ(B).

PROOF. We follow the argument used in the proof of [9, Proposition 4.1]. Let
Mc

L(log L)k
be the operator defined by

Mc
L(log L)k h(x)= sup

r>0
‖h‖L(log L)k ,B(x,r)

for any x ∈X and suitable function h. It is easy to verify that there exists a constant
c7 ∈ (0, 1) such that for any x ∈X ,

c7 ML(log L)k h(x)≤ Mc
L(log L)k h(x)≤ ML(log L)k h(x).

Let B be as in the assumption of the lemma, let rB be its radius, and let t0 = (4κ2rB)
m .

Set
Gλ = {x ∈ B : ML(log L)k f (x) > c6λ, M]

D̃,L(log L)k
f (x)≤ γ λ},

where c6 > 1 will be determined later. If Gλ = ∅, there is nothing to prove. Thus, we
may assume that there exists a point xGλ

∈ Gλ such that

M]

D̃,L(log L)k
f (xGλ

)≤ γ λ.

It is obvious that for any x ∈ Gλ, there exists rx > 0 such that

‖ f ‖L(log L)k ,B(x,rx )
> c7c6λ.

Choose c6 such that c7c6 > 1. Then x0 6∈ B(x, rx ) (otherwise ML(log L)k f (x0) > λ),
so rx ≤ 2κrB and B(x, rx )⊂ 4κ2 B. Therefore, for any x ∈ Gλ,

ML(log L)k ( f χ
4κ2 B

)(x) > c7c6λ. (2.5)

As was pointed out in [9, p. 122], for each y ∈ 4κ2 B,

|D̃t0( f χ
16κ3 B

)(y)|. M f (x0). λ

and
|D̃t0( f χ

X\16κ3 B
)(y)|. M f (x0). λ.

This, in turn, implies that for a certain constant c8 > 0,

ML(log L)k ((D̃t0 f )χ
4κ2 B

)(x) ≤ ML(log L)k (D̃t0( f χ
16κ3 B

)χ
4κ2 B

)(x)

+ ML(log L)k (D̃t0( f χ
X\16κ3 B

)χ
4κ2 B

)(x)

≤ c8λ,
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and so, for x ∈ Gλ,

ML(log L)k ( f χ4κ2 B)(x) ≤ ML(log L)k (( f − D̃t0 f )χ4κ2 B)(x)

+ ML(log L)k ((D̃t0 f )χ4κ2 B)(x)

≤ ML(log L)k (( f − D̃t0 f )χ4κ2 B)(x)+ c8λ.

Now we take c6 such that c7c6 = c8 + 1. The estimate (2.5) tells us that

Gλ ⊂ {x ∈ B : ML(log L)k (( f − D̃t0 f )χ4κ2 B)(x) > λ}.

By Lemma 2.5, we finally obtain

µ(Gλ) ≤ c5µ(4κ2 B)
‖ f − D̃t0 f ‖L(log L)k ,4κ2 B

λ

× logk
(

2+
‖ f − D̃t0 f ‖L(log L)k ,4κ2 B

λ

)

≤ c5µ(4κ2 B)
M]

D̃, L(log L)k
f (xGλ

)

λ
logk

(
2+

M]

D̃,L(log L)k
f (xGλ

)

λ

)
≤ (4κ2)nc5c0µ(B)γ logk(2+ γ ),

where c0 is the constant in (1.1). Taking

γ ∈ (0,min{1/2, η/((4κ2)nc5c0logk3)})

then completes the proof of Lemma 2.6. 2

PROOF OF THEOREM 2.1. Let c6 be as in Lemma 2.6. For η ∈ (0, 1) which will be
chosen later, let γ be the corresponding constant as in Lemma 2.6. For each fixed
λ > 0, set

Hλ = {x ∈X : ML(log L)k f (x) > λ}

and

Fλ = {x ∈X : ML(log L)k f (x) > c6λ, M]

D̃,L(log L)k
f (x)≤ γ λ}.

It is easy to see that Hλ is an open set. Moreover, applying Lemma 2.5, we know that
when µ(X ) <∞,

µ(Hλ)≤ c5µ(X )
‖ f ‖L(log L)k ,X

λ
logk

(
2+
‖ f ‖L(log L)k ,X

λ

)
.

Let λ f,X = 0 if µ(X )=∞, and

λ f,X = (c5logk3+ 2)‖ f ‖L(log L)k ,X
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if µ(X ) <∞. It is obvious that if µ(X ) <∞ and λ > λ f,X , then µ(Hλ) < µ(X ).
On the other hand, by f ∈ L p0(X ) with p0 ∈ (1,∞) and Lemma 2.4, when µ(X )

=∞, we still have µ(Hλ) <∞= µ(X ). Thus, we always have X \ Hλ 6= ∅. For
each fixed x ∈ Hλ, denote by ρx the distance between x and X \ Hλ. Let c4 be as
in Lemma 2.3. Obviously, we can assume that c4 ≥ 1. It is also easy to see that
ρx > 0 and Hλ =

⋃
x∈Hλ B(x, ρx/(2c4)). Applying Lemma 2.3, we find a sequence

of nonoverlapping balls {B(x j , ρ j/(2c4))} j such that Hλ =
⋃

j B j and B̃ j ∩ (X \ Hλ)

6= ∅, where B j = B(x j , 4ρ j/5) and B̃ j = B(x j , 5ρ j/4). It follows from Lemma 2.6
that, for all j ,

µ({x ∈ B̃ j : ML(log L)k f (x) > c6λ, M]

D̃,L(log L)k
f (x)≤ γ λ})≤ ηµ(B̃ j ),

and so, for u ∈ A∞,

u({x ∈ B̃ j : ML(log L)k f (x) > c6λ, M]

D̃,L(log L)k
f (x)≤ γ λ})

≤ CA∞(u)η
δA∞ (u)u(B̃ j ).

A straightforward computation then leads to that

u(Fλ) ≤
∑

j

u({x ∈ B̃ j : ML(log L)k f (x) > c6λ, M]

D̃,L(log L)k
f (x)≤ γ λ})

≤ CA∞(u)η
δA∞ (u)

∑
j

u(B̃ j )

≤ CA∞(u)η
δA∞ (u)

∑
j

u(B(x j , ρ j/(2c4)))

≤ CA∞(u)η
δA∞ (u)u(Hλ). (2.6)

We can now conclude the proof of Theorem 2.1. If µ(X )=∞, integrating the last
inequality then yields

‖ML(log L)k f ‖p
L p(X ,u)

= cp
6 p

∫
∞

0
λp−1u(Hc6λ) dλ

≤ cp
6 p

∫
∞

0
λp−1u({x ∈X : M]

D̃,L(log L)k
f (x) > γλ}) dλ

+ cp
6 p

∫
∞

0
λp−1u(Fλ) dλ

≤ Cγ−p
‖M]

D̃,L(log L)k
f ‖p

L p(X ,u) + CCA∞(u)η
δA∞ (u)‖ML(log L)k f ‖p

L p(X ,u).
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On the other hand, for the case that µ(X ) <∞, again by (2.6),

‖ML(log L)k f ‖p
L p(X ,u)

= cp
6 p

∫
∞

λ f,X

λp−1u(Hc6λ) dλ+ cp
6 p

∫ λ f,X

0
λp−1u(Hc6λ) dλ

≤ Cγ−p
‖M]

D̃, L(log L)k
f ‖p

L p(X ,u) + CCA∞(u)η
δA∞ (u)‖ML(log L)k f ‖p

L p(X ,u)

+ Cu(X )λ
p
f,X .

Choosing η such that CCA∞(u)η
δA∞ (u) = 1/2 gives us the desired conclusion, which

completes the proof of Theorem 2.1. 2

PROOF OF THEOREM 2.2. Using the same notation as in the proof of Theorem 2.1.
Let η ∈ (0, 1) which is a constant and will be determined later. For each fixed
λ > λ f,X , by the inequality (2.6), we then have

u({x ∈X : ML(log L)k f (x) > c6λ})

≤ u({x ∈X : ML(log L)k f (x) > c6λ, M]

D̃, L(log L)k
f (x)≤ γ λ})

+ u({x ∈X : M]

D̃, L(log L)k
f (x) > γλ})

≤ CCA∞(u)η
δA∞ (u)u({x ∈X : ML(log L)k f (x) > λ})

+ u({x ∈X : M]

D̃,L(log L)k
f (x) > γλ}).

If µ(X )=∞, the last inequality, via (1.9) together with a trivial computation, tells us
that, for any R > 0,

sup
0<λ<R

8(λ)u({x ∈X : ML(log L)k f (x) > λ})

= sup
0<λ<R/c6

8(c6λ)u({x ∈X : ML(log L)k f (x) > c6λ})

≤ CCA∞(u)η
δA∞ (u) sup

0<λ<R
8(λ)u({x ∈X : ML(log L)k f (x) > λ})

+ C sup
λ>0

8(λ)u({x ∈X : M]

D̃,L(log L)k
f (x) > γλ}).

On the other hand, if µ(X ) <∞, we have that, for any R > c6λ f,X ,

sup
c6λ f,X<λ<R

8(λ)u({x ∈X : ML(log L)k f (x) > λ})

= sup
λ f,X<λ<R/c6

8(c6λ)u({x ∈X : ML(log L)k f (x) > c6λ})

≤ CCA∞(u)η
δA∞ (u) sup

0<λ<R
8(λ)u({x ∈X : ML(log L)k f (x) > λ})

+ C sup
λ>0

8(λ)u({x ∈X : M]

D̃,L(log L)k
f (x) > γλ}),
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which, in turn, shows that

sup
0<λ<R

8(λ)u({x ∈X : ML(log L)k f (x) > λ})

≤ sup
0<λ≤c6λ f,X

8(λ)u({x ∈X : ML(log L)k f (x) > λ})

+ sup
c6λ f,X<λ<R

8(λ)u({x ∈X : ML(log L)k f (x) > λ})

≤ CCA∞(u)η
δA∞ (u) sup

0<λ<R
8(λ)u({x ∈X : ML(log L)k f (x) > λ})

+ C sup
λ>0

8(λ)u({x ∈X : M]

D̃,L(log L)k
f (x) > γλ})+ C8(λ f,X )u(X ).

Choosing η such that CCA∞(u)η
δA∞ (u) = 1/2 then leads to the desired estimates,

which completes the proof of Theorem 2.2. 2

3. Proofs of Theorems 1.2 and 1.3

We begin with some lemmas.

LEMMA 3.1. Let S be a sublinear operator which is bounded from L p0(X ) to
L p0,∞(X ) for certain p0 ∈ (1,∞) and from L1(X ) to L1,∞(X ). Then for any
nonnegative integer k, there exists a constant C > 0 depending only on k such that for
any measurable sets V1 and V2 with µ(V1)≤ µ(V2) <∞, and function f supported
on V1,

‖S f ‖L(log L)k ,V2
≤ C‖ f ‖L(log L)k+1,V1

.

PROOF. By homogeneity, we may assume that ‖ f ‖L(log L)k+1,V1
= 1, which means

that ∫
V1

| f (x)| logk+1(2+ | f (x)|) dµ(x)≤ µ(V1).

For each fixed λ > 0, set �λ = {x ∈X : | f (x)|> λ(1−1/p0)/2}. Decompose f into

f (x)= f (x)χ�λ (x)+ f (x)χX\�λ
(x)= f1(x)+ f2(x).
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A trivial computation leads to that∫
V2

|S f (x)| logk(2+ |S f (x)|) dµ(x)

≤

∫ 1

0
µ({x ∈ V2 : |S f (x)|> λ})(λlogk(2+ λ)

)′ dλ
+

∫
∞

1
µ({x ∈X : |S f1(x)|> λ/2})(λlogk(2+ λ))′ dλ

+

∫
∞

1
µ({x ∈X : |S f2(x)|> λ/2})(λlogk(2+ λ))′ dλ

. µ(V2)+

∫
∞

1

∫
V1

| f1(x)|

λ
dµ(x)(λlogk(2+ λ))′ dλ

+

∫
∞

1

∫
V1

(
| f2(x)|

λ

)p0

dµ(x)(λlogk(2+ λ))′ dλ.

The fact that ‖ f2‖L∞(X ) ≤ λ
(1−1/p0)/2 now tells us that∫

∞

1

∫
V1

(
| f2(x)|

λ

)p0

dµ(x)(λlogk(2+ λ))′ dλ. µ(V1).

On the other hand,∫
∞

1

∫
V1

| f1(x)|

λ
dµ(x)(λlogk(2+ λ))′ dλ

≤

∫
V1

| f (x)|
∫
| f (x)|2/(1−1/p0)

1
λ−1(λlogk(2+ λ))′ dλ dµ(x)

.

∫
V1

| f (x)|
∫
| f (x)|2/(1−1/p0)

1
λ−1logk(2+ λ) dλ dµ(x)

.

∫
V1

| f (x)|
∫
| f (x)|2/(1−1/p0)

1
(logk+1(2+ λ))′ dλ dµ(x)

.

∫
V1

| f (x)| logk+1(2+ | f (x)|) dµ(x)

. µ(V1).

Combining the estimates above leads to that∫
V2

|S f (x)| logk(2+ |S f (x)|) dµ(x). µ(V1)+ µ(V2). µ(V2)

and our desired conclusion follows directly. 2
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REMARK 3.2. We point out that in Lemma 3.1, if X =Rn , V1 = V2 is a ball, and S is
the Hardy–Littlewood maximal operator, then Lemma 3.1 was obtained by Stein [19].
In fact, in this case, Stein proved that for any k ≥ 0, ball B ⊂Rn and function f
supported on B, M f logk(2+ M f ) ∈ L1(B) if and only if

| f | logk+1(2+ | f |) ∈ L1(B).

LEMMA 3.3. Let w be a locally integrable function such that Mw is finite almost
everywhere. For ν > 0, set u(x)= (Mw(x))−ν for x ∈X . Then there exists a constant
C > 0 depending only on ν such that for any ball B and measurable set E ⊂ B,

u(E)

u(B)
≤ C

µ(E)

µ(B)
.

Namely, u ∈ A∞ with CA∞(u)≤ C and δA∞(u)= 1.

PROOF. The argument is similar to that used in the proof of [13, Lemma 3]. We
first notice that following the argument in the case of Euclidean spaces (see, for
example, [7, pp. 158–160]) shows that (Mw)ν/(ν+1) is an A1 weight with A1 constant
Cν depending only on ν. Namely, for any ball B,

1
µ(B)

∫
B
(Mw(x))ν/(ν+1) dµ(x)≤ Cν ess inf

x∈B
(Mw(x))ν/(ν+1).

Note that, for any fixed ball B, it follows from Hölder’s inequality that[ ∫
B
(Mw(x))−ν dµ(x)

]1/(ν+2)[ ∫
B
(Mw(x))ν/(ν+1) dµ(x)

](ν+1)/(ν+2)

≥ µ(B).

Therefore,

sup
x∈B

u(x) =

[
inf
x∈B

(Mw(x))ν/(ν+1)
]−ν−1

≤ Cν

[
1

µ(B)

∫
B
(Mw(x))ν/(ν+1) dµ(x)

]−ν−1

≤
Cν
µ(B)

∫
B

u(x) dµ(x).

If E ⊂ B is a measurable set, then

u(E)

u(B)
≤
µ(E) supx∈B u(x)

u(B)
≤ Cν

µ(E)

µ(B)
,

which completes the proof of Lemma 3.3. 2
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PROOF OF THEOREM 1.2. First, we claim that for any f ∈ L p0(X )with p0 ∈ (1,∞),
and any x ∈X ,

M]

D̃,L(log L)k
(T f )(x). ML(log L)k+1 f (x). (3.1)

In fact, for each fixed x ∈X and any fixed ball B containing x , denote the radius of B
by rB . We decompose f as

f (y)= f (y)χc9 B (y)+ f (y)χX\c9 B (y)= f1(y)+ f2(y),

where c9 = κ(c2 + 2κ + 1). Recall that the operator T is bounded on L2(X ), and is
bounded from L1(X ) to L1,∞(X ) (see [4]), it follows from Lemma 3.1 that

‖T f1‖L(log L)k ,B . ‖T f1‖L(log L)k ,c9 B

. ‖ f1‖L(log L)k+1,c9 B

. ML(log L)k+1 f (x).

Set

F0 =

∫
2c9 B
|T f1(z)| dµ(z),

and

F j =

∫
2 j+1c9 B\2 j c9 B

|T f1(z)| dµ(z)

for j ∈N. Another application of Lemma 3.1 yields that for all j ≥ 0,

F j . µ(2 j+1 B)‖ f1‖Llog L ,c9 B . 2 jnµ(B)MLlog L f (x).

Note that if y ∈ B and z 6∈ 2 j c9 B for some positive integer j , then d(y, z)≥ 2 j−1rB ,
and so by (1.4) and (1.2),

htB (y, z)≤
1

µ(B(y, rB))
s(2m( j−1)).

1
µ(B)

s(2m( j−1)).

Thus, for any y ∈ B,

|D̃tB (T f1)(y)| ≤
∫

2c9 B
htB (y, z)|T f1(z)| dµ(z)

+

∞∑
j=1

∫
2 j+1c9 B\2 j c9 B

htB (y, z)|T f1(z)| dµ(z)

.
1

µ(B)
F0 +

1
µ(B)

∞∑
j=1

s(2m( j−1))F j

. MLlog L f (x)+ MLlog L f (x)
∞∑
j=1

s(2m( j−1))2 jn

. MLlog L f (x).

This, in turn, implies that

https://doi.org/10.1017/S1446788708000657 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000657


396 G. Hu and D. Yang [20]

‖D̃tB (T f1)‖L(log L)k ,B . ML(log L)k+1 f (x).

We now turn our attention to T f2. Since for x, y ∈ B and z ∈X \ c9 B,

d(x, z)≥ (c2 + 2κ)rB and d(y, z)≥ (c2 + 2κ)rB .

Thus, for any y ∈ B, an argument used in the proof of [9, Proposition 5.4] gives us that

|T f2(y)− D̃tB (T f2)(y)| ≤
∫

d(y,z)≥(c2+2κ)rB
d(x,z)≥(c2+2κ)rB

|K (y, z)− K tB (y, z)|| f (z)| dµ(z)

. M f (x).

Combining the estimates for T f1 and T f2 then leads to the estimate (3.1).
Let µ(X ) <∞. We claim that

‖ f ‖L(log L)k ,X ≤ inf
x∈X

ML(log L)k f (x). (3.2)

In fact, for any ε > 0, we take some point x0 ∈X such that

ML(log L)k f (x0) < λε = inf
x∈X

ML(log L)k f (x)+ ε.

Let B be a ball containing x0. Then ‖ f ‖L(log L)k ,2 j B < λε , for any j ∈N, which means
that

1
µ(2 j B)

∫
2 j B

| f (x)|

λε
logk

(
2+
| f (x)|

λε

)
dµ(x)≤ 1.

Letting j→∞ then shows that

1
µ(X )

∫
X

| f (x)|

λε
logk

(
2+
| f (x)|

λε

)
dµ(x)≤ 1,

which implies that ‖ f ‖L(log L)k ,X ≤ λε and leads to (3.2).
We can now prove (1.7). If µ(X )=∞, (1.7) follows from the inequality (2.3),

Theorem 2.1 and the estimate (3.1).
On the other hand, if µ(X ) <∞, again by the inequality (2.3), Theorem 2.1, the

estimate (3.1), Lemma 3.1 and the estimate (3.2), we can deduce that∫
X
|Mk(T f )(x)|pu(x) dµ(x)

.

∫
X
(Mk+1 f (x))pu(x) dµ(x)+ ‖T f ‖p

L(log L)k−1,X u(X )

.

∫
X
(Mk+1 f (x))pu(x) dµ(x)+ ‖ f ‖p

L(log L)k ,X u(X )

.

∫
X
(Mk+1 f (x))pu(x) dµ(x)+

(
inf

x∈X
Mk+1 f (x)

)p

u(X )

.

∫
X
(Mk+1 f (x))pu(x) dµ(x),

which verifies (1.7).
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The inequality (1.8) is an easy consequence of (1.7) and Lemma 3.3. In fact, for
each fixed ε > 0, it follows from Lemma 3.3 that (M l(w + ε))−% is an A∞ weight,
and both CA∞((M

l(w + ε))−%) and δA∞((M
l(w + ε))−%) depend only on %. By the

L p(X )-boundedness for p ∈ (1,∞) of T (see [9]) and M , we then have∫
X
(Mk(T f )(x))p(M l(w + ε)(x))−% dµ(x) ≤ ε−%

∫
X
(Mk(T f )(x))p dµ(x)

. ε−%‖ f ‖p
L p(X ) <∞.

This together with (1.7) implies that, for any ε > 0,∫
X
(Mk(T f )(x))p(M l(w + ε)(x))−% dµ(x)

.

∫
X
(Mk+1 f (x))p(M l(w + ε)(x))−% dµ(x).

An application of the monotonic convergence theorem yields (1.8) and then completes
the proof of Theorem 1.2. 2

PROOF OF THEOREM 1.3. If µ(X )=∞, (1.10) follows from the inequality (2.3),
Theorem 2.2 together with the assumption that, for any R > 0,

sup
0<λ<R

8(λ)u({x ∈X : Mk(T f )(x) > λ}) <∞,

and the inequality (3.1).
If µ(X ) <∞, again by the inequality (2.3), Theorem 2.2, the inequality (3.1) and

Lemma 3.1, we finally obtain

sup
λ>0

8(λ)u({x ∈X : Mk(T f )(x) > λ})

. sup
λ>0

8(λ)u({x ∈X : M]

D̃,L(log L)k−1(T f )(x) > λ})

+ u(X )8(‖T f ‖L(log L)k−1,X )

. sup
λ>0

8(λ)u({x ∈X : Mk+1 f (x) > λ})+ u(X )8(‖ f ‖L(log L)k ,X )

. sup
λ>0

8(λ)u({x ∈X : Mk+1 f (x) > λ}),

where in the last inequality, we have used the inequality (3.2) and employed the fact
that

8(‖ f ‖L(log L)k ,X ) ≤ 8

(
inf

x∈X
ML(log L)k f (x)

)
. (u(X ))−1 sup

λ>0
8(λ)u({x ∈X : Mk+1 f (x) > λ}).

This finishes the proof of Theorem 1.3. 2
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4. Proofs of Theorems 1.5 and 1.6

We begin with the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. We may assume that M [2p]+1w is finite almost
everywhere, otherwise there is nothing to prove. By duality it suffices to show that
for any p ∈ (1,∞), any weight w and any bounded function f with bounded support,∫

X
|T f (x)|p

′

(M [2p]+1w(x))1−p′ dµ(x).

∫
X
| f (x)|p

′

(w(x))1−p′ dµ(x). (4.1)

Recall that, for k ∈N, ∫
X
(Mk f (x))p′(M [kp]+1w(x))1−p′ dµ(x)

.

∫
X
| f (x)|p

′

(w(x))1−p′ dµ(x). (4.2)

In fact, for the Euclidean space, this was proved in [10] and [12]; for the space of
homogeneous type, see [16]. The estimate (4.1) then follows from (1.8) with k = 1
and l = [2p] + 1 and (4.2) immediately, which completes the proof of Theorem 1.5. 2

PROOF OF THEOREM 1.6. We assume that M3w(x) is finite almost everywhere. Note
that if µ(X ) <∞, the inequality (3.2) with k = 0 shows that

w(X )/µ(X )≤ inf
x∈X

Mw(x);

then for λ≤ ‖ f ‖L1(X )(µ(X ))−1, it is easy to see that∫
{x∈X : |T f (x)|>λ}

w(x) dµ(x) ≤ w(X )

≤
1
λ

w(X )

µ(X )
‖ f ‖L1(X )

≤
1
λ

∫
X
| f (x)| Mw(x) dµ(x).

For each fixed bounded function f with bounded support, let τX = 0 if µ(X )=∞

and τX = ‖ f ‖L1(X ) (µ(X ))−1 if µ(X ) <∞. For λ > τX , applying the Calderón–
Zygmund decomposition to f at level λ (see [1]), we obtain a sequence of balls {B j } j
with pairwise disjoint interiors and a constant c10 ≥ 1 such that:

(I) for any x ∈X \
⋃

j c10 B j and any ball B centered at x ,

1
µ(B)

∫
B
| f (x)| dµ(x)≤ λ;
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(II) for all j ,

1
µ(c10 B j )

∫
c10 B j

| f (y)| dµ(y)≤ λ≤
1

µ(B j )

∫
B j

| f (y)| dµ(y).

As in [1, p. 146], if we set V1 = c10 B1 \
⋃

l≥2 Bl , and for j ≥ 2,

V j = c10 B j

∖( j−1⋃
l=1

Vl

⋃ ⋃
i≥ j+1

Bi

)
,

it then follows that B j ⊂ V j ⊂ c10 B j ,
⋃

j V j =
⋃

j c10 B j and {V j } j are mutually
disjoint. Define the functions g and a j by

g(x)= f (x)χX\
⋃

j V j
(x)+

∑
j

[
1

µ(V j )

∫
V j

f (y) dµ(y)

]
χV j

(x),

and

a j (x)=

[
f (x)−

1
µ(V j )

∫
V j

f (y) dµ(y)

]
χV j

(x).

Let Eλ =
⋃

j ϑB j with ϑ = c10(κ + 1)κ(c2 + 1) and a =
∑

j a j . By the doubling
condition,

w(Eλ) .
∑

j

w(ϑB j )

µ(ϑB j )
µ(B j ).

∑
j

inf
x∈B j

Mw(x)µ(B j )

. λ−1
∑

j

∫
B j

| f (y)| Mw(y) dµ(y). λ−1
∫

X
| f (y)| Mw(y) dµ(y).

The proof of Theorem 1.6 can be reduced to proving that

w({x ∈X \ Eλ : |T g(x)|> λ/2}). λ−1
∫

X
| f (x)| M3w(x) dµ(x) (4.3)

and

w({x ∈X \ Eλ : |T a(x)|> λ/2}). λ−1
∫

X
| f (x)| M3w(x) dµ(x). (4.4)

We first prove (4.3). A trivial computation along with Theorem 1.5 with p = 4/3
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gives

w({x ∈X \ Eλ : |T g(x)|> λ/2})

. λ−4/3
∫

X
|T g(x)|4/3w(x)χX\Eλ

(x) dµ(x)

. λ−4/3
∫

X
|g(x)|4/3 M3(wχX\Eλ

)(x) dµ(x)

. λ−1
∫

X \
⋃

j V j

| f (x)| M3w(x) dµ(x)

+ λ−1
∑

j

∫
V j

|g(x)| M3(wχX\Eλ
)(x) dµ(x).

Following an argument similar to the case of Euclidean spaces (see [10, p. 159]), we
can verify that, for any x ∈ c10 B j ,

M3(wχX\Eλ
)(x). inf

y∈c10 B j
M3(wχX\Eλ

)(y). (4.5)

Therefore, ∑
j

∫
V j

|g(x)| M3(wχX\Eλ
)(x) dµ(x)

.
∑

j

∫
V j

| f (x)| dµ(x) inf
y∈B j

M3(wχX\Eλ
)(y)

. λ
∑

j

µ(c10 B j ) inf
y∈B j

M3(wχX\Eλ
)(y)

. λ
∑

j

µ(B j ) inf
y∈B j

M3(wχX\Eλ
)(y)

.
∑

j

∫
B j

| f (x)| dµ(x) inf
y∈B j

M3(wχX\Eλ
)(y)

.

∫
X
| f (x)| M3w(x) dµ(x),

which implies the estimate (4.3).
To prove (4.4), let r j be the radius of B j and t j = rm

j for each fixed j . Write

w({x ∈X \ Eλ : |T a(x)|> λ/2})

≤ w

({
x ∈X \ Eλ :

∣∣∣∣T(∑
j

(a j − Dt j a j )

)
(x)

∣∣∣∣> λ/4})
+ w

({
x ∈X \ Eλ :

∣∣∣∣T(∑
j

Dt j a j

)
(x)

∣∣∣∣> λ/4})
= I1 + I2.
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As it was pointed out in [4], we know that

T

(∑
j

(a j − Dt j a j )

)
(x)=

∑
j

T (a j − Dt j a j )(x).

On the other hand, a straightforward computation shows that for any fixed j ,∫
X
|a j (y)| M(wχX\Eλ

)(y) dµ(y)

≤
1

µ(V j )

∫
V j

| f (x)| dµ(x)
∫

c10 B j

M(wχX\Eλ
)(y) dµ(y)

+

∫
V j

| f (y)| M(wχX\Eλ
)(y) dµ(y)

≤ inf
y∈c10 B j

M(wχX\Eλ
)(y)µ(c10 B j )

1
µ(B j )

∫
c10 B j

| f (x)| dµ(x)

+

∫
V j

| f (y)| M(wχX\Eλ
)(y) dµ(y)

. λ inf
y∈c10 B j

M(wχX\Eλ
)(y)µ(B j )

+

∫
V j

| f (y)| M(wχX\Eλ
)(y) dµ(y)

.

∫
V j

| f (y)| M(wχX\Eλ
)(y) dµ(y).

Thus,

I1 . λ−1
∑

j

∫
X \ϑB j

∣∣T (a j − Dt j a j )(x)| w(x)χX\Eλ
(x) dµ(x)

= λ−1
∑

j

∫
X
|a j (y)|

×

{∫
X \ϑB j

|K (x, y)− Kt j (x, y)| w(x)χX\Eλ
(x) dµ(x)

}
dµ(y)

. λ−1
∑

j

∫
X
|a j (y)| M(wχX\Eλ

)(y) dµ(y)

. λ−1
∫

X
| f (y)|Mw(y) dµ(y),

where in the second-to-last inequality, we have invoked an estimate in [9, Remark 5.9],
which states that for some constant C > 0 depending only on the approximation to the
identity {Dt }t>0 such that for any weight v,∫

d(x,y)≥c3t1/m
|K (x, y)− Kt j (x, y)| v(x) dµ(x)≤ C Mv(y).
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It remains to consider the term I2. Obviously,

I2 . λ−4/3
∫

X

∣∣∣∣T(∑
j

Dt j a j

)
(x)

∣∣∣∣4/3w(x)χX\Eλ
(x) dµ(x).

Using (1.4) and (1.5) together with some basic estimates yields that, for any j , function
v, and y ∈ V j ,

∫
X

ht j (x, y)|v(x)| dµ(x). inf
z∈V j

Mv(z), (4.6)

which gives us that

∣∣∣∣∫
X

Dt j a j (x)v(x) dµ(x)

∣∣∣∣ ≤ ∫
V j

|a j (y)|

[ ∫
X

ht j (x, y)|v(x)| dµ(x)

]
dµ(y)

.

∫
V j

|a j (y)| dµ(y) inf
z∈V j

Mv(z)

. λµ(V j ) inf
z∈V j

Mv(z)

. λ

∫
X

Mv(x)χV j
(x) dµ(x).

Recall, by Lemma 3.3, that (M3(wχX\Eλ
))−3
∈ A∞. Let T̃ be the adjoint operator of

T . From the above estimate, Hölder’s inequality, Theorem 1.2 with k = 1 and (4.2),
we deduce that for h ∈ L4(X , (wχX\Eλ

)−3) with ‖h‖L4(X ,(wχX\Eλ
)−3) ≤ 1,

∣∣∣∣∫
X

T

(∑
j

Dt j a j

)
(x)h(x) dµ(x)

∣∣∣∣
=

∣∣∣∣∫
X

T̃ h(x)
∑

j

Dt j a j (x) dµ(x)

∣∣∣∣
. λ

∫
X

M(T̃ h)(x)
∑

j

χV j
(x) dµ(x)

. λ

{∫
X
(M(T̃ h)(x))4(M3(wχX\Eλ

)(x))−3 dµ(x)

}1/4

×

{∫
X

∑
j

χV j
(x)M3(wχX\Eλ

)(x) dµ(x)

}3/4
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. λ

{∫
X
(M2h(x))4(M3(wχX\Eλ

)(x))−3 dµ(x)

}1/4

×

{∫
X

∑
j

χV j
(x)M3(wχX\Eλ

)(x) dµ(x)

}3/4

. λ

{∫
X

∑
j

χV j
(x)M3(wχX\Eλ

)(x) dµ(x)

}3/4

.

This along with the inequality (4.5) leads to that

I2 .

∫
X

∑
j

χc10 B j
(x)M3(wχX\Eλ

)(x) dµ(x)

.
∑

j

inf
y∈c10 B j

M3(wχX\Eλ
)(y)µ(B j )

. λ−1
∑

j

inf
y∈c10 B j

M3(wχX\Eλ
)(y)

∫
B j

| f (x)| dµ(x)

. λ−1
∫

X
| f (x)| M3(wχX\Eλ

)(x) dµ(x),

which then completes the proof of Theorem 1.6. 2

5. Proofs of Theorems 1.7 and 1.8

We begin with a generalization of Hölder’s inequality.

LEMMA 5.1. Let k be a nonnegative integer. Then there exists a constant C > 0
depending only on k such that for any measurable set V with µ(V ) <∞, functions v1
and v2,

‖v1v2‖L(log L)k ,V ≤ C‖v1‖expL ,V ‖v2‖L(log L)k+1,V ;

here and in what follows ‖v1‖expL ,V denotes the norm defined by

‖v1‖expL ,V = inf
{
λ > 0 :

1
µ(V )

∫
V

exp
(
|v1(x)|

λ

)
dµ(x)≤ 2

}
.

For the proof of Lemma 5.1, see [17, p. 58].

LEMMA 5.2. Under the hypotheses of Theorem 1.7, there exists a constant C > 0 such
that for any bounded function f with bounded support and x ∈X ,

M]

D̃
(Tb f )(x)≤ C‖b‖BMO (X )(M

2(T f )(x)+ M3 f (x)). (5.1)
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PROOF. Without loss of generality, we may assume that ‖b‖BMO (X ) = 1. For each
fixed x ∈X and each fixed ball B containing x , let rB be the radius of B. Recall,
by [5], that Tb is bounded on L p(X ) with p ∈ (1,∞). For a bounded function f with
bounded support, we decompose f as

f (y)= f (y)χc9 B (y)+ f (y)χX\c9 B (y)= f1(y)+ f2(y).

Let m B(b) be the mean value of b on B, namely, m B(b)= (1/µ(B))
∫

B b(y) dµ(y).
Write

1
µ(B)

∫
B
|Tb f (y)− D̃tB (Tb f )(y)| dµ(y)

≤
1

µ(B)

∫
B
|b(y)− m B(b)||T f (y)| dµ(y)

+
1

µ(B)

∫
B
|T ((b − m B(b)) f1)(y)| dµ(y)

+
1

µ(B)

∫
B
|D̃tB ((b − m B(b))T f )(y)| dµ(y)

+
1

µ(B)

∫
B
|D̃tB T ((b − m B(b)) f1)(y)| dµ(y)

+
1

µ(B)

∫
B
|T ((b − m B(b)) f2)(y)− D̃tB T ((b − m B(b)) f2)(y)| dµ(y)

=

5∑
j=1

U j .

It follows from Lemma 5.1 that

U1 . ‖b − m B(b)‖exp L ,B‖T f ‖Llog L ,B . M2(T f )(x),

where we have employed the John–Nirenberg inequality, which says that for some
positive constants c11 and c12 > 1,

1
µ(B)

∫
B

exp
(
|b(x)− m B(b)|

c11‖b‖BMO (X )

)
dµ(x)≤ c12

(see [2]) and so

‖b − m B(b)‖exp L ,B . ‖b‖BMO (X ).

On the other hand, by Lemmas 3.1 and 5.1,

U2 . ‖(b − m B(b)) f1‖Llog L ,c9 B . ‖ f ‖L(log L)2,c9 B . M3 f (x).
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As in the proof of (3.1), it follows from (1.4), (1.5) and Lemma 5.1 that

U3 ≤
1

µ(B)

∫
2c9 B

{∫
B

htB (y, z) dµ(y)

}
|b(z)− m B(b)||T f (z)| dµ(z)

+
1

µ(B)

∞∑
j=1

∫
2 j+1c9 B\2 j c9 B

{∫
B

htB (y, z) dµ(y)

}
×|b(z)− m B(b)||T f (z)| dµ(z)

.
1

µ(B)

∫
2c9 B
|b(z)− m B(b)||T f (z)| dµ(z)

+
1

µ(B)

∞∑
j=1

s(2m( j−1))|m2 j+1c9 B(b)− m B(b)|
∫

2 j+1c9 B
|T f (z)| dµ(z)

+
1

µ(B)

∞∑
j=1

s(2m( j−1))

∫
2 j+1c9 B

|b(z)− m2 j+1c9 B(b)||T f (z)| dµ(z)

. ‖T f ‖Llog L ,2c9 B +

∞∑
j=1

j2 jns(2m( j−1))
1

µ(B)
‖T f ‖L1,2 j+1c9 B

+

∞∑
j=1

2 jns(2m( j−1))‖T f ‖Llog L ,2 j+1c9 B

. MLlog L(T f )(x)

. M2(T f )(x).

Similarly, by (1.4), (1.5), Lemmas 3.1 and 5.1, we see that

U4 .
1

µ(B)
‖T ((b − m B(b)) f1)‖L1,2c9 B

+
1

µ(B)

∞∑
j=1

2 jns(2m( j−1))‖T ((b − m B(b)) f1)‖L1,2 j+1c9 B\2 j c9 B

. ‖(b − m B(b)) f1‖Llog L ,c9 B

. M3 f (x).

For the term U5, the condition (ii) via a standard argument gives us that, for any y ∈ B,

|T ((b − m B(b)) f2)(y)− D̃tB T ((b − m B(b)) f2)(y)|

. rαB

∫
d(y,z)≥c2rB

|b(z)− m B(b)|

µ(B(y, d(y, z)))

| f (z)|

(d(y, z))α
dµ(z)

.
∞∑

i=1

2−iα 1
µ(B(y, 2i c2rB))

∫
d(y,z)≤2i c2rB

|b(z)− m B(b)|| f (z)| dµ(z)
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.
∞∑

i=1

2−iα 1
µ(B(y, 2i c2rB))

×

∫
d(y,z)≤2i c2rB

|b(z)− m B(y,2i c2rB )
(b)|| f (z)| dµ(z)

+

∞∑
i=1

2−iα
|m B(b)− m B(y,2i c2rB )

(b)|

×
1

µ(B(y, 2i c2rB))

∫
d(y,z)≤2i c2rB

| f (z)| dµ(z)

. inf
z∈B

M2 f (z).

Combining the estimates for U j (1≤ j ≤ 5) then establishes (5.1). 2

PROOF OF THEOREM 1.7. We assume that ‖b‖BMO (X ) = 1 and M [3p]+1w is finite
almost everywhere. As in the proof of Theorem 1.5, it suffices to prove that for any
p ∈ (1,∞) and any bounded function f with bounded support,∫

X
(M(Tb f )(x))p′(M [3p]+1w(x))1−p′ dµ(x)

.

∫
X
(M3 f (x))p′(M [3p]+1w(x))1−p′ dµ(x). (5.2)

To prove (5.2), applying the L p′(X )-boundedness of Tb, we see that for any ε > 0,∫
X
(M(Tb f )(x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x). ε1−p′

‖ f ‖p′

L p′ (X )
<∞.

Recall, by Lemma 3.3, that (M [3p]+1w)1−p′
∈ A∞. Ifµ(X )=∞, Theorem 2.1, along

with Lemma 5.2 and Theorem 1.2 with k = 2, states that∫
X
(M(Tb f )(x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x)

.

∫
X
(M]

D̃
(Tb f )(x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x)

.

∫
X
(M2(T f )(x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x)

+

∫
X
(M3 f (x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x)

.

∫
X
(M3 f (x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x). (5.3)

For the case of µ(X ) <∞, observe that for any ball B ⊂X and any positive integer j ,

|m B(b)− m2 j B(b)| ≤
1

µ(B)

∫
B
|b(x)− m2 j B(b)| dµ(x).

µ(2 j B)

µ(B)
.
µ(X )

µ(B)
,
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and

|mX (b)− m B(b)|

≤
1

µ(X )

∫
X
|b(x)− m B(b)| dµ(x)

≤
1

µ(X )
lim

j→∞

( ∫
2 j B
|b(x)− m2 j B(b)| dµ(x)+ µ(2

j B)|m B(b)− m2 j B(b)|

)
.
µ(X )

µ(B)
.

Thus,

1
µ(X )

∫
X

exp
(
|b(x)− mX (b)|

c11

)
dµ(x)

≤ lim
j→∞

1
µ(X )

∫
2 j B

exp
(
|b(x)− m2 j B(b)|

c11

)
dµ(x)exp

(
|m2 j B(b)− mX (b)|

c11

)
≤ c12 lim

j→∞
exp

(
|m2 j B(b)− mX (b)|

c11

)
. c12 lim

j→∞
exp

(
µ(X )

c11µ(2 j B)

)
. 1.

It then follows from Lemmas 5.1 and 3.1 that∫
X
|Tb f (x)| dµ(x)

≤

∫
X
|b(x)− mX (b)||T f (x)| dµ(x)+

∫
X
|T ((b − mX (b)) f )(x)| dµ(x)

. inf
x∈X

M2(T f )(x)+ ‖(b − mX (b)) f ‖Llog L ,X

. inf
x∈X

(M2(T f )(x)+ M3 f (x)).

Again by Theorem 2.1, Lemma 5.2 and Theorem 1.2 with k = 2,∫
X
(M(Tb f )(x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x)

.

∫
X
(M]

D̃
(Tb f )(x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x)

+ ‖Tb f ‖p′

L1(X )

∫
X
(M [3p]+1(w + ε)(x))1−p′ dµ(x)
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.

∫
X
(M2(T f )(x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x)

+

∫
X
(M3 f (x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x)

.

∫
X
(M3 f (x))p′(M [3p]+1(w + ε)(x))1−p′ dµ(x). (5.4)

The inequality (5.2) follows by letting ε→ 0 in (5.3) and (5.4), which completes the
proof of Theorem 1.7. 2

PROOF OF THEOREM 1.8. We use some ideas coming from [14]. Again we assume
that ‖b‖BMO (X ) = 1. Let τX = ‖ f ‖L1(X )(µ(X ))−1. As in the proof of Theorem 1.6,
it suffices to consider the case that λ > τX . For each fixed λ > τX and each bounded
function f with bounded support, with the notation B j , V j , g, Eλ, a and a j as in the
proof of Theorem 1.6, we see that the proof of Theorem 1.8 can be reduced to proving
that

w({x ∈X \ Eλ : |Tbg(x)|> λ/2}). λ−1
∫

X
| f (x)| M4w(x) dµ(x) (5.5)

and

w({x ∈X \ Eλ : |Tba(x)|> λ/2})

.

∫
X

| f (x)|

λ
log
(

2+
| f (x)|

λ

)
M4w(x) dµ(x). (5.6)

To prove (5.5), we apply Theorem 1.7 with p = 5/4 and obtain

w({x ∈X \ Eλ : |Tbg(x)|> λ/2})

. λ−5/4
∫

X
|Tbg(x)|5/4 w(x)χX\Eλ

(x) dµ(x)

. λ−5/4
∫

X
|g(x)|5/4 M4(wχX\Eλ

)(x) dµ(x)

. λ−1
∫

X \
⋃

j V j

| f (x)| M4w(x) dµ(x)

+ λ−1
∑

j

∫
V j

|g(x)| M4(wχX\Eλ
)(x) dµ(x),

which via the argument used in the proof of (4.3) then yields (5.5).
We turn our attention to (5.6). Since f is bounded with bounded support, we can

write

Tba(x)=
∑

j

(b(x)− m B j (b))T a j (x)+ T

(∑
j

(m B j (b)− b)a j

)
(x).
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It follows from Theorem 1.6 and Lemma 5.1 that

w

({
x ∈X \ Eλ :

∣∣∣∣T(∑
j

(m B j (b)− b)a j

)
(x)

∣∣∣∣> λ/4})
. λ−1

∑
j

∫
X
|b(x)− m B j (b)||a j (x)| M

3(wχX\Eλ
)(x) dµ(x)

. λ−1
∑

j

inf
x∈c10 B j

M3(wχX\Eλ
)(x)µ(V j )

×‖b − mc10 B j (b)‖expL ,V j ‖a j‖Llog L ,V j

+ λ−1
∑

j

inf
x∈c10 B j

M3(wχX\Eλ
)(x)‖a j‖L1(X ).

Take c11 > 1 such that (2cn
10)

1/c11 < 2. Note that, for any τ > 0,

1
µ(c10 B j )

∫
c10 B j

exp
(
|b(y)− mc10 B j (b)|

τ

)
dµ(y)≤ 2

implies
1

µ(V j )

∫
V j

exp
(
|b(y)− mc10 B j (b)|

τ

)
dµ(y)≤ 2cn

10.

It then follows from Hölder’s inequality that

1
µ(V j )

∫
V j

exp
(
|b(y)− mc10 B j (b)|

c11τ

)
dµ(y)≤ (2cn

10)
1/c11 ≤ 2.

Therefore,

‖b − mc10 B j (b)‖expL ,V j ≤ c11‖b − mc10 B j (b)‖expL ,c10 B j . 1.

This via the fact that

‖a j‖Llog L ,V j ≤ λ+
1

µ(V j )

∫
V j

| f (x)| log
(

2+
| f (x)|

λ

)
dµ(x)

.
1

µ(V j )

∫
V j

| f (x)| log
(

2+
| f (x)|

λ

)
dµ(x)

gives us that

w

({
x ∈X \ Eλ :

∣∣∣∣T(∑
j

(b − m B j (b))a j

)
(x)

∣∣∣∣> λ/4})
. λ−1

∑
j

inf
x∈c10 B j

M3(wχX\Eλ
)(x)µ(V j )‖a j‖Llog L ,V j

.

∫
X

| f (x)|

λ
log
(

2+
| f (x)|

λ

)
M3(wχX\Eλ

)(x) dµ(x).
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It remains to consider
∑

j (b − m B j (b))T a j . Write∑
j

(b(x)− m B j (b))T a j (x)

=

∑
j

(b(x)− m B j (b))(T a j (x)− T Dt j a j (x))

+

∑
j

(b(x)− m B j (b))T Dt j a j (x)

=

∑
j

(b(x)− m B j (b))(T a j (x)− T Dt j a j (x))

+ Tb

(∑
j

Dt j a j

)
(x)+ T

(∑
j

(b − m B j (b))Dt j a j

)
(x)

=W1(x)+W2(x)+W3(x).

Let r j be the radius of B j and t j = rm
j . An argument involving the condition (iii) and

Lemma 5.1 shows that for any j , y ∈ V j and weight v,∫
X \ϑB j

|K (x, y)− Kt j (x, y)||b(x)− m B j (b)| v(x) dµ(x)

.
∞∑

i=1

∫
c32i−1r j≤d(x,y)<c32i r j

|b(x)− m B j (b)|

µ(B(y, d(x, y)))

tβ/m
j

[d(x, y)]β
v(x) dµ(x)

.
∞∑

i=1

2−βi 1
µ(c32i B)

∫
d(x,y)<c32i r j

|b(x)− mc32i B j
(b)| v(x) dµ(x)

+

∞∑
i=1

2−βi
|m B j (b)− mc32i B j

(b)|
1

µ(c32i B j )

∫
d(x,y)<c32i r j

v(x) dµ(x)

. M2v(y),

which, in turn, implies that

w({x ∈X \ Eλ : |W1(x)|> λ/12})

≤ λ−1
∑

j

∫
X \ϑB j

|T (a j − Dt j a j )(x)||b(x)− m B j (b)| w(x)χX\Eλ
(x) dµ(x)

= λ−1
∑

j

∫
X
|a j (y)|

∫
X \ϑB j

|K (x, y)− Kt j (x, y)|

×|b(x)− m B j (b)| w(x)χX\Eλ
(x) dµ(x) dµ(y)

. λ−1
∑

j

∫
X
|a j (y)| M

2(wχX\Eλ
)(y) dµ(y)

. λ−1
∫

X
| f (y)| M2w(y) dµ(y).
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To deal with W2, let T̃b be the adjoint operator of Tb. If

h ∈ L5(X , (wχX\Eλ
)−4)

with ‖h‖L5(X ,(wχX\Eλ
)−4) ≤ 1, by (4.6), we obtain

∣∣∣∣∫
X

Tb

(∑
j

Dt j a j

)
(x)h(x) dµ(x)

∣∣∣∣
=

∣∣∣∣∫
X

T̃bh(x)
∑

j

Dt j a j (x) dµ(x)

∣∣∣∣
. λ

∫
X

M(T̃bh)(x)
∑

j

χV j
(x) dµ(x)

. λ

{∫
X
(M(T̃bh)(x))5(M4(wχX\Eλ

)(x))−4 dµ(x)

}1/5

×

{∫
X

∑
j

χV j
(x)M4(wχX\Eλ

)(x) dµ(x)

}4/5

. λ

{∫
X
(M3h(x))5(M4(wχX\Eλ

)(x))−4 dµ(x)

}1/5

×

{∫
X

∑
j

χV j
(x)M4(wχX\Eλ

)(x) dµ(x)

}4/5

. λ

{∫
X

∑
j

χV j
(x)M4(wχX\Eλ

)(x) dµ(x)

}4/5

,

where the second inequality follows from Hölder’s inequality, the third inequality
follows from the estimate (5.2), and the last inequality follows from (4.2). Therefore,
as in the proof of Theorem 1.6,

w({x ∈X \ Eλ : |W2(x)|> λ/12})

. λ−5/4
∫

X

∣∣∣∣Tb

(∑
j

Dt j a j

)
(x)

∣∣∣∣5/4w(x)χX\Eλ
(x) dµ(x)

.
∑

j

∫
c10 B j

M4(wχX\Eλ
)(x) dµ(x)

. λ−1
∫

X
| f (x)| M4w(x) dµ(x).
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Finally, we consider W3. For h ∈ L5(X , (wχX\Eλ
)−4), each fixed j and z ∈ B j , an

argument involving (1.4), (1.5) and Lemma 5.1, yields∫
X

ht j (y, z)|m B j (b)− b(y)||T̃ h(y)| dµ(y)

≤

∫
2κB j

ht j (y, z)|m B j (b)− b(y)||T̃ h(y)| dµ(y)

+

∞∑
i=1

∫
2i+1κB j\2iκB j

ht j (y, z)|m B j (b)− b(y)||T̃ h(y)| dµ(y)

≤

∫
2κB j

ht j (y, z)|m B j (b)− b(y)||T̃ h(y)| dµ(y)

+

∞∑
i=1

s(2m(i−1))|m B j (b)− m2i+1κB j
(b)|

×

∫
2i+1κB j\2iκB j

|T̃ h(y)|

µ(B(y, r j ))
dµ(y)

+

∞∑
i=1

s(2m(i−1))

∫
2i+1κB j\2iκB j

1
µ(B(y, r j ))

× |m2i+1κB j
(b)− b(y)||T̃ h(y)| dµ(y)

. inf
ξ∈B j

M2(T̃ h)(ξ)

+

∞∑
i=1

is(2m(i−1))2i N
[µ(B j )]

−1µ(2iκB j ) inf
ξ∈B j

M(T̃ h)(ξ)

+

∞∑
i=1

s(2m(i−1))2i N
[µ(B j )]

−1µ(2iκB j ) inf
ξ∈B j

M2(T̃ h)(ξ)

. inf
ξ∈B j

M2(T̃ h)(ξ).

Thus, if ‖h‖L5(X ,(wχX\Eλ
)−4) ≤ 1, it follows that∣∣∣∣∫

X
T

(∑
j

(b − m B j (b))Dt j a j

)
(x)h(x) dµ(x)

∣∣∣∣
≤

∑
j

∫
X

{∫
X

ht j (y, z)|m B j (b)− b(y)||T̃ h(y)| dµ(y)

}
|a j (z)| dµ(z)

≤

∑
j

inf
z∈B j

M2(T̃ h)(z)
∫

X
|a j (z)| dµ(z)

. λ

∫
X

M2(T̃ h)(y)
∑

j

χB j
(y) dµ(y).
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As in the argument for the term W2, another application of Theorem 1.2 with k = 2
and the inequality (4.2) yields

w({x ∈X \ Eλ : |W3(x)|> λ/12}). λ−1
∫

X
| f (x)| M4w(x) dµ(x).

This completes the proof of Theorem 1.8. 2

6. Proofs of Theorems 1.9 and 1.10

We first show Theorem 1.9.

PROOF OF THEOREM 1.9. By an estimate of Duong and McIntosh [4] (see also [9]),
we know that under the hypotheses of Theorem 1.9,

T ∗ f (x). MT f (x)+ M f (x). (6.1)

Thus, Theorem 1.9 follows from Theorem 1.5 and Lemma 2.4 directly. 2

PROOF OF THEOREM 1.10. By (2.2) with k = 0 and (6.1), it suffices to prove that if
u ∈ A1, then for any λ > 0 and bounded function f with bounded support,

u({x ∈X : M(T f )(x) > λ}).

∫
X

| f (x)|

λ
log
(

2+
| f (x)|

λ

)
u(x) dµ(x). (6.2)

An application of Theorem 1.3 with k = 1 together with Lemma 2.4 then gives us that

u({x ∈X : M(T f )(x) > 1})

. sup
τ>0

τ log−1(2+ τ−1)u({x ∈X : M2 f (x) > τ })

.

∫
X
| f (x)| log(2+ | f (x)|)u(x) dµ(x),

which via homogeneity leads to (6.2). 2

7. Holomorphic functional calculi of elliptic operators

This section is devoted to some applications of our theorems in Section 1 to
holomorphic functional calculi of elliptic operators and Schrödinger operators. We
first review some necessary background.

For fixed ω and ν with 0≤ ω < ν < π , define the closed sector Sω in the complex
plane C by

Sω = {ζ ∈C : |arg ζ | ≤ ω} ∪ {0}

and denote its interior by S0
ω. Let H(S0

ν ) be the space of holomorphic functions on S0
ν ,

and H∞(S0
ν ) be the subspace of H(S0

ν ) defined by

H∞(S0
ν )=

{
f ∈ H(S0

ν ) : ‖ f ‖∞ = sup
ζ∈S0

ν

| f (ζ )|<∞

}
.
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Let 9(S0
ν ) and F(S0

ν ) respectively be the function spaces defined by

9(S0
ν ) = {ψ ∈ H(S0

ν ) : there is an ε > 0

such that |ψ(ζ )| ≤ C |ζ |ε(1+ |ζ |2ε)−1
}

and

F(S0
ν )= {ψ ∈ H(S0

ν ) : there is an ε > 0 such that |ψ(ζ )| ≤ C(|ζ |−ε + |ζ |ε)}.

It then follows that

9(S0
ν )⊂ H∞(S0

ν )⊂ F(S0
ν ).

Let 0≤ ω < π . A closed operator L on some Banach space A is said to be of type ω,
if its spectrum σ(L)⊂ Sω and for each ν > ω, there exists a constant Cν such that

‖(L − ζ I )−1
‖ ≤ Cν |ζ |

−1
∀ζ 6∈ Sν .

By the Hille–Yosida theorem, an operator L of type ω with ω < π/2 is the generator
of a bounded holomorphic semigroup e−zL on the sector S0

ν with ν = π/2− ω.
Now let L be a one-to-one operator of type ω with dense domain and dense range

in A. The functional calculi of L can be defined as follows.
If ψ ∈9(S0

ν ), then

ψ(L)=
1

2π i

∫
0

(L − ζ I )−1ψ(ζ ) dζ,

where 0 is the contour {ζ = re±iθ
: r ≥ 0} parameterized clockwise around Sω and

ω < θ < ν. As pointed out in [4], this integral is absolutely convergent in L(A), and
the definition is independent of the choice of θ ∈ (ω, ν).

Now we take f ∈ F(S0
ν ) satisfying | f (ζ )| ≤ C(|ζ |−k

+ |ζ |k) for certain C > 0 and
k > 0, and any ζ ∈ S0

ν , and choose

ψ(ζ )=

(
ζ

(1+ ζ )2

)k+1

.

Then ψ , fψ ∈9(S0
ν ) and ψ(L) is one-to-one. Therefore, ( fψ)(L) is a bounded

operator on A, and (ψ(L))−1 is a closed operator on A. Now we define

f (L)= (ψ(L))−1( fψ)(L).

As in [4, 5, 9], we obtain the following Theorem 7.1 from Theorems 1.5 and 1.6,
and Theorem 7.2 from Theorems 1.7 and 1.8. We omit the details.

THEOREM 7.1. Let u be a weight on X and � be a measurable set of a space
of homogeneous type (X , d, µ). Let 0≤ ω < ν ≤ π and L be an operator of type
ω < π/2, so that −L generates a holomorphic semigroup e−zL , in the set 0≤ |arg(z)|
< π/2− ω. Suppose that:
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(a1) the holomorphic semigroup e−zL , |arg(z)|< π/2− ω is represented by kernels
az(x, y) which satisfy that, for all θ > ω, an estimate

|az(x, y)| ≤ Cθh|z|(x, y),

for all x, y ∈� and |arg(z)|< π/2− θ , where ht is defined on X ×X by
Definition 1.1;

(a2) the operator L has a bounded holomorphic functional calculus in L2(�), that
is, for any ν > ω and f ∈ H∞(S0

ν ), the operator f (L) satisfies

‖ f (L)‖L2(�)→L2(�) ≤ Cν‖ f ‖∞.

Then for any p ∈ (1,∞), ν > ω and f ∈ H∞(S0
ν ),

‖ f (L)‖L p(�,M [2p]+1u)→L p(�,u) ≤ C p,ν‖ f ‖∞.

Furthermore, when p = 1 we have that

‖ f (L)‖L1(�,M3u)→L1,∞(�,u) ≤ Cν‖ f ‖∞.

THEOREM 7.2. Let u be a weight on X , � be a measurable set of a space of
homogeneous type (X , d, µ) and b be a function on � such that b̃(x)= b(x)χ�(x)
is in BMO (X ). Let 0≤ ω < ν ≤ π and L be an operator of type ω < π/2, which is
the same as in Theorem 7.1. For f ∈ H∞(S0

ν ), let f (L)b be defined as in (1.13) with
T replaced by f (L). Then for any p ∈ (1,∞), ν > ω and f ∈ H∞(S0

ν ),

‖ f (L)b‖L p(�,M [3p]+1u)→L p(�,u) ≤ C p,ν‖b̃‖BMO (X )‖ f ‖∞.

Furthermore, when p = 1 we have that

‖ f (L)b‖Llog L(�,M4u)→L1,∞(�,u) ≤ Cν‖b̃‖BMO (X ) log(2+ ‖b̃‖BMO (X ))‖ f ‖∞,

where ‖ f (L)b‖Llog L(�,M4u)→L1,∞(�,u) is the minimum constant C > 0 such that for

all functions h satisfying
∫
�
|h(x)| log(2+ |h(x)|)M4u(x) dµ(x) <∞,

u({x ∈� : | f (L)b(h)(x)|> λ})

≤ C
∫
�

|h(x)|

λ
log

(
2+
|h(x)|

λ

)
M4u(x) dµ(x).

At the end of this paper, we give two operators which satisfy the hypotheses of
Theorems 7.1 and 7.2.

Let V be a nonnegative function on Rn . The Schrödinger operator with potential
V is defined by

L =−4+ V (x). (7.1)
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The Trotter formula shows that the semigroup e−t L has a kernel pt (x, y) which
satisfies an upper bound of Gaussian type, namely, there exist constant C > 0 and
c > 0 such that for all x, y ∈Rn and t > 0,

0< pt (x, y)≤
C

tn/2 e−c|x−y|2/t .

As is well known, unless V satisfies additional conditions, the heat kernel may be a
discontinuous function in the space variables.

Another example is the following elliptic operator. Let

L f =−
n∑

i, j=1

∂

∂xi
ai j (x)

∂

∂x j
f (7.2)

be an elliptic divergence form operator of real, symmetric coefficients with Dirichlet
boundary conditions on a domain � of Rn which is defined by the variation method.
This means that L is the positive self-adjoint operator associated with the form

Q( f, g)=
∫
�

n∑
i, j=1

ai j (x)

(
∂

∂x j
f (x)

)(
∂

∂xi
ḡ(x)

)
dx

on Y × Y by 〈Lg, h〉 = Q(g, h), where Y is the Sobolev space H1
0 (�). This operator

also has Gaussian heat kernel bounds without any conditions on smoothness of the
boundary of �.

As was pointed in [4, 5, 9], the operators L in both (7.1) and (7.2) satisfy the
assumptions of Theorems 7.1 and 7.2. More general operators on open domains of Rn

which possess Gaussian bounds can be found in [4, 5, 9].
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