Bull. Aust. Math. Soc. 85 (2012), 275–279 doi:10.1017/S0004972711003017

ON THE ALGEBRAIC CONVERGENCE OF FINITELY GENERATED KLEINIAN GROUPS IN ALL DIMENSIONS

XI FU

(Received 10 May 2011)

Abstract

Let $\{G_{r,i}\}$ be a sequence of *r*-generator Kleinian groups acting on \mathbb{R}^n . In this paper, we prove that if $\{G_{r,i}\}$ satisfies the *F*-condition, then its algebraic limit group G_r is also a Kleinian group. The existence of a homomorphism from G_r to $G_{r,i}$ is also proved. These are generalisations of all known corresponding results.

2010 *Mathematics subject classification*: primary 30F40; secondary 20H10, 57S30. *Keywords and phrases*: Kleinian group, WY(G), loxodromic element, algebraic convergence.

1. Introduction

In this paper, we will adopt the same definitions and notation as in [5, 7, 8], such as discrete groups G of $M(\mathbb{R}^n)$, limit sets L(G) of G, nonelementariness and so on. For example, G is a *Kleinian group* if G is discrete and nonelementary.

Let $\{G_{r,i}\}$ be a sequence of subgroups in $M(\overline{\mathbb{R}}^n)$ and each $G_{r,i}$ be generated by $g_{1,i}, g_{2,i}, \ldots, g_{r,i}$ $(0 < r < \infty)$. If, for each $t \in \{1, 2, \ldots, r\}$,

$$g_{t,i} \to g_t \in M(\overline{\mathbb{R}}^n)$$
 as $i \to \infty$,

then we say that $\{G_{r,i}\}$ converges algebraically to $G_r = \langle g_1, g_2, \ldots, g_r \rangle$ and G_r is called the *algebraic limit group* of $\{G_{r,i}\}$. If, for each *i*, $G_{r,i}$ is a Kleinian group, then the question when G_r is still a Kleinian group has attracted much attention. For example, in [3], Jørgensen and Klein established the following classical algebraic convergence theorem.

THEOREM A [3]. Let $\{G_{r,i}\}$ be a sequence of r-generator Kleinian groups of $M(\overline{\mathbb{R}}^2)$ converging algebraically to the group G_r . Then G_r is a Kleinian group.

In higher dimensions, Martin observed that if the sequence $\{G_{r,i}\}$ contains elliptic elements $g_{t,i}$ such that $g_{t,i} \rightarrow g_t$ with $\operatorname{ord}(g_{t,i}) \rightarrow \infty$ as $i \rightarrow \infty$, then the algebraic limit

The research was partly supported by NSF of China (No. 11071063).

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

group is not a Kleinian group, where ' $\operatorname{ord}(g)$ ' denotes the order of g. This shows that to study when the algebraic limit group of a sequence of r-generator Kleinian groups is Kleinian some restriction is needed. In [5], Martin introduced the following restriction.

A set X of $M(\overline{\mathbb{R}}^n)$ is said to have *uniformly bounded torsion* if there is an integer N > 0 such that for each $g \in X$,

$$\operatorname{ord}(g) \le N$$
 or $\operatorname{ord}(g) = \infty$

By using this restriction, Martin generalised Theorem A to the higher dimensional case.

THEOREM B [5, Proposition 5.8]. Let G_r be the algebraic limit group of a sequence $\{G_{r,i}\}$ of r-generator Kleinian groups of $M(\overline{\mathbb{R}}^n)$ with uniformly bounded torsion. Then G_r is a Kleinian group.

Recently, Wang [7] and Yang [10] introduced the restrictions '*EP*-condition' and '*Condition A*', respectively, to weaken 'uniformly bounded torsion'. Their results are as follows.

THEOREM C [7, Theorem 1.1]. Let G_r be the algebraic limit group of a sequence $\{G_{r,i}\}$ of r-generator Kleinian groups of $M(\overline{\mathbb{R}}^n)$. If $\{G_{r,i}\}$ satisfies the EP-condition, then G_r is a Kleinian group.

Here a sequence $\{G_i\}$ is said to satisfy the *EP*-condition if the following two conditions are satisfied.

- (1) For any sequence $\{f_{ik}\}$, $f_{ik} \in G_{ik}$ ($\in \{G_i\}$), if $\operatorname{card}(\operatorname{fix}(f_{ik})) = \infty$ and $f_{ik} \to f$ as $k \to \infty$, where f is the identity map I or a parabolic element, then $\{f_{ik}\}$ has uniformly bounded torsion.
- (2) $\{G_i\}$ satisfies *Property A*, that is, $\{G_i\}$ contains no sequences $\{f_{ik}\}, \{g_{ik}\}$ which satisfy that both $f_{ik}, g_{ik} \in G_{ik} (\in \{G_i\})$ are elliptic and

$$\operatorname{fix}(f_{ik}) \cap \operatorname{fix}(g_{ik}) = \emptyset, \quad \operatorname{card}(\operatorname{fix}(f_{ik})) = \operatorname{card}(\operatorname{fix}(g_{ik})) = 2,$$
$$f_{ik} \to I \quad \text{and} \quad g_{ik} \to I$$

as $k \to \infty$.

THEOREM D [10, Theorem 2.4]. Let G_r be the algebraic limit group of a sequence $\{G_{r,i}\}$ of r-generator Kleinian groups of $M(\mathbb{R}^n)$. If $\{G_{r,i}\}$ satisfies Condition A, then G_r is a Kleinian group.

Here we say that a sequence $\{G_i\}$ satisfies *Condition* A if there is no sequence $\{f_{ik}\}, f_{ik} \in G_{ik} (\in \{G_i\})$ with card(fix(f_{ik})) = ∞ and $f_{ik} \rightarrow I$ as $k \rightarrow \infty$ (see [2]).

EXAMPLE 1.1. Suppose that $G_2 = \langle f_1, f_2 \rangle$ is a two-generator purely hyperbolic nonelementary subgroup of PSL(2, \mathbb{R}) and that, for each natural number *i*,

$$f_i = \left(\begin{array}{cc} a_i & 0\\ 0 & a_i \end{array}\right),$$

where $a_i = \cos(\theta_i \pi) + e_2 e_3 \sin(\theta_i \pi)$ and each θ_i is a rational number. Let

$$G_{2,i} = \langle G_2, f_i \rangle.$$

Then, for each *i*, $G_{2,i}$ is a Kleinian group in PSL(2, Γ_4). If the sequence $\{\theta_i\}$ converges to a rational number θ , then the algebraic limit group G_3 of $\{G_{2,i}\}$ is also a Kleinian group; but, if the sequence $\{\theta_i\}$ converges to an irrational number θ , then G_3 is nondiscrete. Moreover, in the former case, if $\theta_i = 1/3^i$, then we know that the sequence $\{G_{2,i}\}$ does not satisfy the *EP*-condition nor Condition *A*, but G_3 is still a Kleinian group.

Motivated by Example 1.1, we introduce the following restriction.

DEFINITION 1.2. We say that a sequence $\{G_i\}$ satisfies the *F*-condition if there is no sequence $\{f_{ik}\}, f_{ik} \in WY(G_{ik}) \ (\in \{G_i\})$ such that $f_{ik} \to f$ as $k \to \infty$, where f is an elliptic element with $\operatorname{ord}(f) = \infty$.

Let us recall the important notation WY(G) for a Kleinian group G, which was first put forward by Wang and Yang in [8]:

$$WY(G) = \{f : f|_{M(G)} = I, f \in G\},\$$

where M(G) is the smallest *G*-invariant hyperbolic space whose boundary contains the limit set L(G) of *G* (see [6]). It is obvious that WY(G) is $\{I\}$ or a purely elliptic subgroup of *G*.

REMARK 1.3. Obviously, if a sequence of Kleinian groups satisfies the *EP*-condition or Condition *A*, then it must satisfy the *F*-condition. From Example 1.1, we see that there are sequences of Kleinian groups which satisfy the *F*-condition but do not satisfy the *EP*-condition nor Condition *A*. Also, if a sequence $\{G_{r,i}\}$ ($\{WY(G_{r,i})\}$) of Kleinian groups has uniformly bounded torsion, then $\{G_{r,i}\}$ satisfies the *F*-condition.

By using the F-condition, we get the following generalisation of Theorems B, C and D.

THEOREM 1.4. Let G_r be the algebraic limit group of a sequence $\{G_{r,i}\}$ of r-generator Kleinian groups of $M(\overline{\mathbb{R}}^n)$. If $\{G_{r,i}\}$ satisfies the F-condition, then G_r is a Kleinian group.

We have the following corollary, which is easily derived from Theorem 1.4 and Remark 1.3.

COROLLARY 1.5. Let G_r be the algebraic limit group of a sequence $\{G_{r,i}\}$ of r-generator Kleinian groups of $M(\overline{\mathbb{R}}^n)$. If $\{WY(G_{r,i})\}$ has uniformly bounded torsion, then G_r is a Kleinian group.

Moreover, we prove the following result, which is a generalisation of [5, Theorem 6.1].

X. Fu

THEOREM 1.6. Let $\{G_{r,i}\}$ be a sequence of r-generator Kleinian groups of $M(\mathbb{R}^n)$ converging algebraically to the group G_r . Suppose that the corresponding sequence $\{WY(G_{r,i})\}$ of $\{G_{r,i}\}$ has uniformly bounded torsion and that G_r is finitely presented. Then G_r is also a Kleinian group and the correspondence from the generators of G_r to their approximants in $G_{r,i}$ extends for all sufficiently large i to a homomorphism of G_r onto $G_{r,i}$.

2. Proofs of Theorems 1.4 and 1.6

2.1. Several lemmas. The following result due to Waterman is from [9].

LEMMA E [9, Theorem 11]. If $\langle f, g \rangle$ is a Kleinian group of $M(\overline{\mathbb{R}}^n)$, then

$$||f - I|| \cdot ||g - I|| > \frac{1}{32}.$$

The following two lemmas are crucial for the proofs of Theorems 1.4 and 1.6.

LEMMA 2.1. Let G_r be the algebraic limit group of a sequence $\{G_{r,i}\}$ of r-generator Kleinian groups of $M(\overline{\mathbb{R}}^n)$. Then:

- (1) G_r is nonelementary; and
- (2) G_r is nondiscrete if and only if there exists an elliptic element $f \in WY(G_r)$ with $ord(f) = \infty$.

PROOF. The first part of this lemma follows from [4, Theorem 1.4]. Now we come to prove the second part. It suffices to show that if G_r is nondiscrete, then there is an element $f \in WY(G_r)$ with $\operatorname{ord}(f) = \infty$, since the converse is obvious. Now we assume that G_r is nondiscrete. Recall that G_r is a finitely generated subgroup of $M(\mathbb{R}^n)$. By applying the Selberg lemma, we know that G_r contains a torsion free subgroup G'_r of finite index which is nondiscrete as well. Then there exists a sequence $\{f_j\}$ in G'_r such that $f_j \to I$ as $j \to \infty$. As G'_r is nonelementary, there are finitely many loxodromic elements g_1, g_2, \ldots, g_s in G'_r such that the set $\{\operatorname{fix}(g_1), \operatorname{fix}(g_2), \ldots, \operatorname{fix}(g_s)\}$ spans the boundary of $M(G'_r)$. Then, for all sufficiently large j, we have

$$||f_j - I|| \cdot ||g_k - I|| < \frac{1}{32},$$

where $k \in \{1, 2, ..., s\}$. Let $f_{i,j}$ and $g_{i,k}$ be the corresponding elements of f_j and g_k in $G_{r,i}$, respectively. Then, for large enough i,

$$||f_{i,j} - I|| \cdot ||g_{i,k} - I|| < \frac{1}{32}.$$

Lemma E implies that the subgroups $\langle f_{i,j}, g_{i,k} \rangle$ are elementary. It follows that $fix(g_{i,k}) \subset fix(f_{i,j})$, which shows that for $k \in \{1, 2, ..., s\}$ and all sufficiently large j, $fix(g_k) \subset fix(f_j)$. Hence, $f_j \in WY(G'_r)$, from which the conclusion follows.

LEMMA 2.2. Let $\{G_i\}$ be a sequence of finitely generated Kleinian groups of $M(\overline{\mathbb{R}}^n)$ converging algebraically to a group G. If there exists a sequence $\{f_{ik}\}, f_{ik} \in G_{ik}$ $(\in \{G_i\})$, such that $f_{ik} \to I$ as $k \to \infty$, then, for sufficiently large k, $f_{ik} \in WY(G_{ik})$. **PROOF.** By [4, Lemma 4.2], we know that for large enough k, $f_{ik} = I$ or there is a G_{ik} -invariant hyperbolic space Π_{ik} which is fixed pointwise by f_{ik} . So, the closed set $\overline{\Pi}_{ik} \cap \overline{\mathbb{R}}^n$ is also G_{ik} -invariant. Since the limit set $L(G_{ik})$ of G_{ik} is the smallest G_{ik} -invariant subset in $\overline{\mathbb{R}}^n$, similar reasoning as in [1, Theorem 5.3.7] shows that $L(G_{ik}) \subset \overline{\Pi}_{ik} \cap \overline{\mathbb{R}}^n$, which implies that $M(G_{ik}) \subset \Pi_{ik}$. It follows that $f_{ik} \in WY(G_{ik})$. \Box

2.2. Proof of Theorem 1.4. By Lemma 2.1, we only need to prove that there is no elliptic element $f \in WY(G_r)$ with $\operatorname{ord}(f) = \infty$. Suppose on the contrary that there is some elliptic element $f \in WY(G_r)$ such that $\operatorname{ord}(f) = \infty$. Then there exists an integer sequence $\{n_j\}$ such that $f^{n_j} \to I$ as $n_j \to \infty$. For each n_j , let $f_i^{n_j}$ be the corresponding element in $G_{r,i}$. By Lemma 2.2 and the hypothesis that $\{G_{r,i}\}$ satisfies the *F*-condition, we know that $f_i^{n_j} = I$ for large enough *i*. It follows that $f^{n_j} = I$, which contradicts the assumption that $f \in WY(G_r)$ with $\operatorname{ord}(f) = \infty$.

2.3. Proof of Theorem 1.6. The proof easily follows from Lemma 2.2 and a similar argument as in the proof of [5, Theorem 6.1].

Acknowledgement

The author would like to thank the referee for a careful reading of this paper as well as for many useful comments and suggestions.

References

- A. F. Beardon, *The Geometry of Discrete Groups*, Graduate Texts in Mathematics, 91 (Springer, New York, 1983).
- [2] A. Fang and B. Nai, 'On the discreteness and convergence in *n*-dimensional Möbius groups', *J. Lond. Math. Soc.* **61** (2000), 761–773.
- [3] T. Jørgensen and P. Klein, 'Algebraic convergence of finitely generated Kleinian groups', Q. J. Math. Oxford 33 (1982), 325–332.
- M. Kapovich, 'On the sequences of finitely generated discrete groups, in the tradition of Ahlfors– Bers. V', *Contemp. Math.* 510 (2010), 165–184.
- [5] G. Martin, 'On discrete Möbius groups in all dimensions: a generalization of Jørgensen's inequality', *Acta Math.* 163 (1989), 253–289.
- [6] X. Wang, 'Dense subgroups of *n*-dimensional Möbius groups', Math. Z. 243 (2003), 643–651.
- [7] X. Wang, 'Algebraic convergence theorems of *n*-dimensional Kleinian groups', *Israel J. Math.* 162 (2007), 221–233.
- [8] X. Wang and W. Yang, 'Discreteness criteria of Möbius groups of high dimensions and convergence theorems of Kleinian groups', *Adv. Math.* 159 (2001), 68–82.
- [9] P. Waterman, 'Möbius transformations in several dimensions', Adv. Math. 101 (1993), 87–113.
- [10] S. Yang, 'Algebraic convergence of finitely generated Kleinian groups in all dimensions', *Linear Algebra Appl.* 432 (2010), 1147–1151.

XI FU, Department of Mathematics, Shaoxing College of Arts and Sciences, Shaoxing, Zhejiang 312000, PR China e-mail: fuxi1000@yahoo.com.cn