
Bull. Aust. Math. Soc. 85 (2012), 275–279
doi:10.1017/S0004972711003017

ON THE ALGEBRAIC CONVERGENCE OF FINITELY
GENERATED KLEINIAN GROUPS IN ALL DIMENSIONS
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Abstract

Let {Gr,i} be a sequence of r-generator Kleinian groups acting on R
n
. In this paper, we prove that if {Gr,i}

satisfies the F-condition, then its algebraic limit group Gr is also a Kleinian group. The existence of
a homomorphism from Gr to Gr,i is also proved. These are generalisations of all known corresponding
results.
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1. Introduction

In this paper, we will adopt the same definitions and notation as in [5, 7, 8], such as
discrete groups G of M(R

n
), limit sets L(G) of G, nonelementariness and so on. For

example, G is a Kleinian group if G is discrete and nonelementary.
Let {Gr,i} be a sequence of subgroups in M(R

n
) and each Gr,i be generated by

g1,i, g2,i, . . . , gr,i (0 < r <∞). If, for each t ∈ {1, 2, . . . , r},

gt,i→ gt ∈ M(R
n
) as i→∞,

then we say that {Gr,i} converges algebraically to Gr = 〈g1, g2, . . . , gr〉 and Gr is called
the algebraic limit group of {Gr,i}. If, for each i, Gr,i is a Kleinian group, then the
question when Gr is still a Kleinian group has attracted much attention. For example,
in [3], Jørgensen and Klein established the following classical algebraic convergence
theorem.

T A [3]. Let {Gr,i} be a sequence of r-generator Kleinian groups of M(R
2
)

converging algebraically to the group Gr. Then Gr is a Kleinian group.

In higher dimensions, Martin observed that if the sequence {Gr,i} contains elliptic
elements gt,i such that gt,i→ gt with ord(gt,i)→∞ as i→∞, then the algebraic limit
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group is not a Kleinian group, where ‘ord(g)’ denotes the order of g. This shows that
to study when the algebraic limit group of a sequence of r-generator Kleinian groups is
Kleinian some restriction is needed. In [5], Martin introduced the following restriction.

A set X of M(R
n
) is said to have uniformly bounded torsion if there is an integer

N > 0 such that for each g ∈ X,

ord(g) ≤ N or ord(g) =∞.

By using this restriction, Martin generalised Theorem A to the higher dimensional
case.

T B [5, Proposition 5.8]. Let Gr be the algebraic limit group of a sequence
{Gr,i} of r-generator Kleinian groups of M(R

n
) with uniformly bounded torsion. Then

Gr is a Kleinian group.

Recently, Wang [7] and Yang [10] introduced the restrictions ‘EP-condition’ and
‘Condition A’, respectively, to weaken ‘uniformly bounded torsion’. Their results are
as follows.

T C [7, Theorem 1.1]. Let Gr be the algebraic limit group of a sequence {Gr,i}

of r-generator Kleinian groups of M(R
n
). If {Gr,i} satisfies the EP-condition, then Gr

is a Kleinian group.

Here a sequence {Gi} is said to satisfy the EP-condition if the following two
conditions are satisfied.

(1) For any sequence { fik}, fik ∈Gik (∈ {Gi}), if card(fix( fik)) =∞ and fik→ f as
k→∞, where f is the identity map I or a parabolic element, then { fik} has
uniformly bounded torsion.

(2) {Gi} satisfies Property A, that is, {Gi} contains no sequences { fik}, {gik} which
satisfy that both fik, gik ∈Gik (∈ {Gi}) are elliptic and

fix( fik) ∩ fix(gik) = ∅, card(fix( fik)) = card(fix(gik)) = 2,

fik→ I and gik→ I

as k→∞.

T D [10, Theorem 2.4]. Let Gr be the algebraic limit group of a sequence {Gr,i}

of r-generator Kleinian groups of M(R
n
). If {Gr,i} satisfies Condition A, then Gr is a

Kleinian group.

Here we say that a sequence {Gi} satisfies Condition A if there is no sequence
{ fik}, fik ∈Gik (∈ {Gi}) with card(fix( fik)) =∞ and fik→ I as k→∞ (see [2]).

E 1.1. Suppose that G2 = 〈 f1, f2〉 is a two-generator purely hyperbolic
nonelementary subgroup of PSL(2, R) and that, for each natural number i,

fi =

(
ai 0
0 ai

)
,
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where ai = cos(θiπ) + e2e3 sin(θiπ) and each θi is a rational number. Let

G2,i = 〈G2, fi〉.

Then, for each i, G2,i is a Kleinian group in PSL(2, Γ4). If the sequence {θi} converges
to a rational number θ, then the algebraic limit group G3 of {G2,i} is also a Kleinian
group; but, if the sequence {θi} converges to an irrational number θ, then G3 is
nondiscrete. Moreover, in the former case, if θi = 1/3i, then we know that the sequence
{G2,i} does not satisfy the EP-condition nor Condition A, but G3 is still a Kleinian
group.

Motivated by Example 1.1, we introduce the following restriction.

D 1.2. We say that a sequence {Gi} satisfies the F-condition if there is no
sequence { fik}, fik ∈WY(Gik) (∈ {Gi}) such that fik→ f as k→∞, where f is an elliptic
element with ord( f ) =∞.

Let us recall the important notation WY(G) for a Kleinian group G, which was first
put forward by Wang and Yang in [8]:

WY(G) = { f : f |M(G) = I, f ∈G},

where M(G) is the smallest G-invariant hyperbolic space whose boundary contains
the limit set L(G) of G (see [6]). It is obvious that WY(G) is {I} or a purely elliptic
subgroup of G.

R 1.3. Obviously, if a sequence of Kleinian groups satisfies the EP-condition
or Condition A, then it must satisfy the F-condition. From Example 1.1, we see that
there are sequences of Kleinian groups which satisfy the F-condition but do not satisfy
the EP-condition nor Condition A. Also, if a sequence {Gr,i} ({WY(Gr,i)}) of Kleinian
groups has uniformly bounded torsion, then {Gr,i} satisfies the F-condition.

By using the F-condition, we get the following generalisation of Theorems B, C
and D.

T 1.4. Let Gr be the algebraic limit group of a sequence {Gr,i} of r-generator
Kleinian groups of M(R

n
). If {Gr,i} satisfies the F-condition, then Gr is a Kleinian

group.

We have the following corollary, which is easily derived from Theorem 1.4 and
Remark 1.3.

C 1.5. Let Gr be the algebraic limit group of a sequence {Gr,i} of r-generator
Kleinian groups of M(R

n
). If {WY(Gr,i)} has uniformly bounded torsion, then Gr is a

Kleinian group.

Moreover, we prove the following result, which is a generalisation of [5,
Theorem 6.1].
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T 1.6. Let {Gr,i} be a sequence of r-generator Kleinian groups of M(R
n
)

converging algebraically to the group Gr. Suppose that the corresponding sequence
{WY(Gr,i)} of {Gr,i} has uniformly bounded torsion and that Gr is finitely presented.
Then Gr is also a Kleinian group and the correspondence from the generators of Gr to
their approximants in Gr,i extends for all sufficiently large i to a homomorphism of Gr

onto Gr,i.

2. Proofs of Theorems 1.4 and 1.6

2.1. Several lemmas. The following result due to Waterman is from [9].

L E [9, Theorem 11]. If 〈 f , g〉 is a Kleinian group of M(R
n
), then

‖ f − I‖ · ‖g − I‖ > 1
32 .

The following two lemmas are crucial for the proofs of Theorems 1.4 and 1.6.

L 2.1. Let Gr be the algebraic limit group of a sequence {Gr,i} of r-generator
Kleinian groups of M(R

n
). Then:

(1) Gr is nonelementary; and
(2) Gr is nondiscrete if and only if there exists an elliptic element f ∈WY(Gr) with

ord( f ) =∞.

P. The first part of this lemma follows from [4, Theorem 1.4]. Now we come to
prove the second part. It suffices to show that if Gr is nondiscrete, then there is an
element f ∈WY(Gr) with ord( f ) =∞, since the converse is obvious. Now we assume
that Gr is nondiscrete. Recall that Gr is a finitely generated subgroup of M(R

n
). By

applying the Selberg lemma, we know that Gr contains a torsion free subgroup G′r of
finite index which is nondiscrete as well. Then there exists a sequence { f j} in G′r such
that f j→ I as j→∞. As G′r is nonelementary, there are finitely many loxodromic
elements g1, g2, . . . , gs in G′r such that the set {fix(g1), fix(g2), . . . , fix(gs)} spans the
boundary of M(G′r). Then, for all sufficiently large j, we have

‖ f j − I‖ · ‖gk − I‖ < 1
32 ,

where k ∈ {1, 2, . . . , s}. Let fi, j and gi,k be the corresponding elements of f j and gk in
Gr,i, respectively. Then, for large enough i,

‖ fi, j − I‖ · ‖gi,k − I‖ < 1
32 .

Lemma E implies that the subgroups 〈 fi, j, gi,k〉 are elementary. It follows that
fix(gi,k) ⊂ fix( fi, j), which shows that for k ∈ {1, 2, . . . , s} and all sufficiently large j,
fix(gk) ⊂ fix( f j). Hence, f j ∈WY(G′r), from which the conclusion follows. �

L 2.2. Let {Gi} be a sequence of finitely generated Kleinian groups of M(R
n
)

converging algebraically to a group G. If there exists a sequence { fik}, fik ∈Gik

(∈ {Gi}), such that fik→ I as k→∞, then, for sufficiently large k, fik ∈WY(Gik).
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P. By [4, Lemma 4.2], we know that for large enough k, fik = I or there is a
Gik-invariant hyperbolic space Πik which is fixed pointwise by fik. So, the closed
set Πik ∩ R

n
is also Gik-invariant. Since the limit set L(Gik) of Gik is the smallest

Gik-invariant subset in R
n
, similar reasoning as in [1, Theorem 5.3.7] shows that

L(Gik) ⊂ Πik ∩ R
n
, which implies that M(Gik) ⊂ Πik. It follows that fik ∈WY(Gik). �

2.2. Proof of Theorem 1.4. By Lemma 2.1, we only need to prove that there is no
elliptic element f ∈WY(Gr) with ord( f ) =∞. Suppose on the contrary that there is
some elliptic element f ∈WY(Gr) such that ord( f ) =∞. Then there exists an integer
sequence {n j} such that f n j → I as n j→∞. For each n j, let f

n j

i be the corresponding
element in Gr,i. By Lemma 2.2 and the hypothesis that {Gr,i} satisfies the F-condition,
we know that f

n j

i = I for large enough i. It follows that f n j = I, which contradicts the
assumption that f ∈WY(Gr) with ord( f ) =∞.

2.3. Proof of Theorem 1.6. The proof easily follows from Lemma 2.2 and a similar
argument as in the proof of [5, Theorem 6.1].
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