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Energy-dispersive X-ray spectroscopy (EDS) is a widely adopted characterization technique used for 

qualitative and quantitative chemical analysis in a broad range of scientific and industrial applications. 

Advances in detector design and digital pulse processing in recent years have enabled EDS analysis at 

high throughputs and with excellent spectral resolution. Throughputs in the order of 100,000 stored 

counts/s are now routine, allowing for a point-mode analysis with precision down to 1% of weight 

concentration to be completed in a few seconds. However, X-ray throughput remains a significant 

bottleneck to high-speed EDS analysis, especially for spectral imaging. For example, even with 1 

million X-rays collected (that is, after 10 seconds of acquisition time with the above throughput), a 

conventional spectral image with a spatial resolution of 768 x 512 pixels contains only 2.5 counts per 

pixel on average. To enable an accurate analysis of such a sparse data set, we argue that advanced 

computational methods can be combined to significantly shorten the time needed to achieve high-quality 

outputs. In this work, we demonstrate and compare the efficiency of three fundamentally different yet 

complementary computational methods for spectral imaging: (1) gross count mapping as a reference 

method, (2) standardless quantitative mapping, and (3) phase analysis based on multivariate statistical 

analysis. 

 

For comparison (see Fig. 1), we present all three methods with a spectral data cube of 1 million X-rays, 

collected over a sample containing four different phases, namely Zinc sulfite, Galena, Tetrahedrite, and 

Quartz. In Fig. 1, the first column shows the conventional spectral maps obtained with gross count 

mapping. Here, every pixel represents the number of counts corresponding to a specific element line 

which is the simplest approach algorithmically. However, the resulting map clearly does not account for 

peak overlaps, background effects, and geometric artifacts. 

 

This can be solved by the method of quantitative mapping, as shown in the second column of Fig. 1. 

Unlike gross count mapping, here the pixels are grouped into (traditionally square-shaped) segments to 

increase the counting statistics, and subsequently, each region is processed using the same quantitative 

approaches that would be used in the conventional point-mode analysis. In particular, we used 

standardless peak fitting with peak deconvolution by linear least squared fit, and Phi-rho-Z (PROZA) [1] 

matrix corrections routines to infer the concentrations with high accuracy. To further increase the spatial 

accuracy of the spectral map, we employed a feature-based segmentation algorithm based on [2] in 

which individual features in the electron image are detected through computer vision and the spectra 

were analyzed over the sample-dependent regions rather than square-shaped regions. Multiple layers of 

these feature-based regions with increasingly finer resolution create a hierarchy where segments from 

one layer break down to finer segments in a lower layer as more counts are collected to achieve the 

highest possible spatial resolution without compromising the overall spatial or spectroscopic resolution. 

While the spatial accuracy and detection of individual chemically significant regions were greatly 
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improved, the results may be ambiguous in the case of complex samples containing multiple phases with 

similar elements. The algorithm will then produce quantitative maps where each elemental map can 

spread over multiple phases. In Fig. 1, only the Cu and Sb maps (Sb is not displayed in Fig. 1) clearly 

show the small Tetrahedrite phase separated from Zinc sulfide (because Tetrahedrite contains both Zn 

and S), making it more demanding for an operator to reach the correct conclusion.  

 

In the third approach, we break the implicit assumption of the independence of individual pixels or 

sample regions by performing component-based phase mapping using multivariate statistical analysis. 

Here, the dominant components within the entire spectral data cube are computed and used to define the 

elementally unique phases [3]. The components are calculated by determining the variance-covariance 

of the data and then creating a matrix of the variances, from which matrix transformation calculations 

eigenvectors and eigenvalues are determined. Such an approach performs particularly well on sparse 

data sets, as it is less susceptible to noise despite no prior knowledge of the elemental constituents or 

their relationships within the data set. As the third column of Fig. 1 shows, the phase mapping algorithm 

correctly finds four phases where the discrimination of Tetrahedrite from Zinc sulfite was clear along 

with the accurate isolation of the Galena phase, without trading off the spectral or spatial resolution. 

 

In this paper, we demonstrated that computational methods including feature-based quantitative 

mapping and multivariate phase analysis can greatly improve the accuracy and information content of 

spectral maps, thereby reducing the time to data and accelerating EDS workflows in science and 

industry. Due to recent advances in computational power and algorithmic techniques, the presented 

approach applies to both offline and live EDS use cases, and thereby positions EDS even stronger as a 

ubiquitous and fast analysis technique. 
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Fig. 1: EDS mapping of a sample containing four phases: Zinc sulfide (ZnS), Quartz (SiO2), Galena 

(PbS), and Tetrahedrite [(Cu,Zn,Ag)12Sb4S13]. The left column of images shows count maps (4x4 

segmentation) of the individual elements that can be compared to the quant maps (object segmentation) 

in the middle column. S overlaps with Pb, and the quant maps show the deconvolved elemental layout 

while the count maps do not show Pb and S correctly and cannot distinguish between the two S 

concentrations in Zinc sulfide and Galena.  The right column shows the phase map images correctly 

recognizing the four phases that can be consecutively quantified or matched to a database. BSE image is 

provided as a reference. The EDS dataset contains 1 million integral counts (2.5 counts per pixel) and 

was acquired using HV=15 kV. O, Sb, and Ag count/quant maps are not displayed. 
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