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Telescoping Estimates for Smooth Series
Dedicated to my friend Joachim Gräter on the occasion of his 60th birthday

Karl Joachim Wirths

Abstract. We derive telescoping majorants and minorants for some classes of series and give applica-
tions of these results.

1 Introduction

An old and often used theorem to estimate the growth of a series is Cauchy’s integral
criterion. More powerful and elaborate is the Euler–MacLaurin summation method.
In this article, an elementary method of estimation for series that uses telescoping
majorants and minorants is presented. These results can be used to ameliorate the
theorems derived from Cauchy’s method, but naturally they are not as fine as those
obtained by the Euler–MacLaurin summation method.

In [2], the authors found elementary bounds for
∑∞

k=n k−s, s > 1 by use of such
methods. The present article is dedicated to the question of which series can be
treated in a similar way. In the following we shall show that this is the case for a big
class of series

∑∞
k=n f (k). They only have to satisfy certain mild smoothness condi-

tions on the function f . The proofs are based on the comparison of f (k) and∫ k+1−c

k−c
f (x) dx, c ∈ (0, 1),

that may be regarded as special cases of theorems from the theory of numerical in-
tegration. We will demonstrate the usefulness of this method by some applications.
Among them there will be a generalization of the Stieltjes constants and an elemen-
tary proof of Stirling’s formula.

2 The Central Lemma and Telescoping Series

Lemma 1 Let F : [x0,∞)→ R be three times differentiable, and assume

lim
x→∞

F′′(x)

F′′(x + 1)
= 1.
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(i) If F′′(x) < 0 and F′′′(x) > 0 for x ≥ x0, then the following assertions are valid.

(a) F′(k) < F(k + 1
2 )− F(k− 1

2 ) for k ≥ x0 + 1
2 .

(b) For any c ∈ (0, 1
2 ) there exists N(c) such that for every k ≥ N(c) the inequal-

ity

F′(k) > F(k + 1− c)− F(k− c)

holds.

(ii) If F′′(x) > 0 and F′′′(x) < 0 for x ≥ x0, then the following assertions are valid.

(a) F′(k) > F(k + 1
2 )− F(k− 1

2 ) for k ≥ x0 + 1
2 .

(b) For any c ∈ (0, 1
2 ) there exists N(c) such that for every k ≥ N(c) the inequal-

ity

F′(k) < F(k + 1− c)− F(k− c)

holds.

(iii) If F′′(x) > 0 and F′′′(x) > 0 for x ≥ x0, then the following assertions are valid.

(a) F′(k) < F(k + 1
2 )− F(k− 1

2 ) for k ≥ x0 + 1
2 .

(b) For any c ∈ ( 1
2 , 1) there exists N(c) such that for every k ≥ N(c) the inequal-

ity

F′(k) > F(k + 1− c)− F(k− c)

holds.

(iv) If F′′(x) < 0 and F′′′(x) < 0 for x ≥ x0, then the following assertions are valid.

(a) F′(k) > F(k + 1
2 )− F(k− 1

2 ) for k ≥ x0 + 1
2 .

(b) For any c ∈ ( 1
2 , 1) there exists N(c) such that for every k ≥ N(c) the inequal-

ity

F′(k) < F(k + 1− c)− F(k− c)

holds.

Proof Since the proofs of (i)–(iv) differ only in obvious details, we restrict ourselves
to the proof of part (i) here.

To prove (a) we use the fact that there exist θ1 ∈ (k − 1
2 , k) and θ2 ∈ (k, k + 1

2 )
such that

F
(

k +
1

2

)
= F(k) +

1

2
F′(k) +

1

8
F′′(θ2)

and

F
(

k− 1

2

)
= F(k)− 1

2
F′(k) +

1

8
F′′(θ1).

Hence

F
(

k +
1

2

)
− F
(

k− 1

2

)
= F′(k) +

1

8

(
F′′(θ2)− F′′(θ1)

)
> F′(k),

since F′′ is strictly monotonically increasing.
For the proof of (b) we use the fact that there exist θ1 ∈ (k − c, k) and θ2 ∈

(k, k + 1− c) such that

F(k + 1− c)− F(k− c) = F′(k) +
1

2

(
(1− c)2F′′(θ2)− c2F′′(θ1)

)
.

https://doi.org/10.4153/CMB-2014-037-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-037-5


190 K. J. Wirths

From the monotonicity conditions we derive

0 < −F′′(k + 1− c) < −F′′(θ2) < −F′′(θ1) < −F′′(k− c),

and therefore we have

1 <
−F′′(θ1)

−F′′(θ2)
<
−F′′(k− c)

−F′′(k + 1− c)
→ 1

as k→∞. Hence, there exists N(c) such that for k ≥ N(c),

−F′′(θ1)

−F′′(θ2)
<
−F′′(k− c)

−F′′(k + 1− c)
<

(1− c)2

c2
.

This implies

(1− c)2F′′(θ2)− c2F′′(θ1) < 0,

which proves the assertion.

Now, we consider the series
∑∞

k=n f (k) where F′(x) = f (x).

Theorem 1

(i) If F satisfies the conditions of part (i) of Lemma 1, then for any c ∈ (0, 1
2 ) there

exists N(c) such that for n ≥ N(c),

F
(

N +
1

2

)
− F
(

n− 1

2

)
>

N∑
k=n

f (k) > F(N + 1− c)− F(n− c).

(ii) If F satisfies the conditions of part (ii) of Lemma 1, then for any c ∈ (0, 1
2 ) there

exists N(c) such that for n ≥ N(c),

F
(

N +
1

2

)
− F
(

n− 1

2

)
<

N∑
k=n

f (k) < F(N + 1− c)− F(n− c).

(iii) If F satisfies the conditions of part (iii) of Lemma 1, then for any c ∈ ( 1
2 , 1) there

exists N(c) such that for n ≥ N(c),

F
(

N +
1

2

)
− F
(

n− 1

2

)
>

N∑
k=n

f (k) > F(N + 1− c)− F(n− c).

(iv) If F satisfies the conditions of part (iv) of Lemma 1, then for any c ∈ ( 1
2 , 1) there

exists N(c) such that for n ≥ N(c),

F
(

N +
1

2

)
− F
(

n− 1

2

)
<

N∑
k=n

f (k) < F(N + 1− c)− F(n− c).
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3 Stieltjes Constants

The Stieltjes constants γν , ν ∈ N ∪ {0}, are defined by the relation

(3.1) γν = lim
N→∞

( N∑
k=1

logν k

k
− logν+1 N

ν + 1

)
,

where we used the abbreviation logν k = (log k)ν , compare [4] and [5]. These con-
stants are intimately related to the Laurent expansion of the Riemann zeta function
at its pole.

We shall use Theorem 1 to show that one may use equation (3.1) to define analo-
gous constants γs, s > −1, and to prove some properties of these constants.

If we let

f (x) =
logs x

x
, F(x) =

logs+1 x

s + 1
,

and differentiate, we easily see that parts (i) of both Lemma 1 and Theorem 1 apply.
Hence, for sufficiently big n, one has

n−1∑
k=1

logs k

k
+

logs+1(N + 1− c)

s + 1
− logs+1(n− c)

s + 1
− logs+1 N

s + 1

<

N∑
k=1

logs k

k
− logs+1 N

s + 1
=: cN

<

n−1∑
k=1

logs k

k
+

logs+1(N + 1/2)

s + 1
− logs+1(n− 1/2)

s + 1
− logs+1 N

s + 1
.

If we define

αn =

n−1∑
k=1

logs k

k
− logs+1(n− c)

s + 1

and

βn =

n−1∑
k=1

logs k

k
− logs+1(n− 1/2)

s + 1
,

we get that for sufficiently big n

αn ≤ limN→∞cN ≤ limN→∞cN ≤ βn,

since

(3.2)
logs+1(N + 1− c)

s + 1
− logs+1 N

s + 1
=

logs+1 N

s + 1

((
1+

log(1 + 1−c
N )

log N

) s+1
−1

)
→ 0,

as N → ∞. Using the inequalities of Lemma 1, part (i), we see that αn is a strictly
increasing sequence for sufficiently big n, and that βn is a strictly decreasing sequence
for sufficiently big n. Similar to (3.2) one can show that

lim
n→∞

(βn − αn) = 0.

This proves the existence of the limit γs, s < −1.
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In the case s = 0, it is well known that the convergence of the sequence βn to the
Euler constant γ = γ0 is much faster than that of the defining sequence, see [4].

Now, we can use the inequalities

cn − βn < cn − γs < cn − αn

for c = 1
2 − ε, ε > 0, and a sufficiently big n to prove that

lim
n→∞

(
(cn − γs)

n

logs n

)
=

1

2
.

In the cases s ∈ N ∪ {0} this relation is well known; compare [5].
In a similar way, one can define γ−1 by

γ−1 = lim
N→∞

( N∑
k=3

1

k log k
− log(log N)

)
,

and prove that

lim
N→∞

(( N∑
k=3

1

k log k
− log(log N)− γ−1

)
N log N

)
=

1

2
.

4 Alternating Series and a Formula Due to Hardy

In this section we will give an elementary proof of a special case of a formula that
can be found in Hardy’s famous book on divergent series, see [3, p. 333]. Using
telescoping series we shall prove that, for s ∈ (0, 1),

(4.1) lim
m→∞

( m∑
k=1

1

ks
− m1−s

1− s
− 1

2
m−s

)
=

1

1− 21−s

∞∑
k=1

(−1)k−1

ks
= ζ(s).

We start with the equation

(4.2)
m∑

k=1

1

ks
=

1

21−s − 1

( 2m∑
k=m+1

1

ks
−

2m∑
k=1

(−1)k−1

ks

)
.

The proof of this formula is an exercise in elementary calculations with series, see
[1, p. 127]. It should be remarked that (4.2) can be used to prove that for s > 1, the
identity

1

1− 21−s

∞∑
k=1

(−1)k−1

ks
= ζ(s)

holds.
If in Lemma 1 and Theorem 1 we take

f (x) =
1

xs
, F(x) =

x1−s

1− s
, s ∈ (0, 1),

we see by differentiation that again part (i) applies. Now, we take N = 2m and
n = m + 1, m sufficiently big, in (4.2), and let m→∞. This results in the identities

lim
m→∞

( m∑
k=1

1

ks
− m1−s

1− s

)
=

1

21−s − 1

∞∑
k=1

(−1)k−1

ks
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and

(4.3) lim
m→∞

( m∑
k=1

1

ks
− m1−s

1− s
+

1

21−s − 1

2m∑
k=1

(−1)k−1

ks

)
ms =

(21−s − 2)(s + 1)

4(21−s − 1)
.

In order to simplify this formula we apply our method of telescoping series to alter-
nating series. The basis of this application is the following lemma.

Lemma 2 Let s > 0.

(i) For any k ∈ N the inequality

(4.4) k−s − (k + 1)−s <
1

2

((
k− 1

2

)−s
−
(

k +
3

2

)−s
)

is valid.
(ii) For any c ∈ (0, 1

2 ) there exists N(c) such that for all k ≥ N(c) the inequalities

k−s − (k + 1)−s >
1

2

(
(k− c)−s − (k + 2− c)−s

)
are valid.

Sketch of the proof We only mention the crucial steps in the proof of part (i) and
omit the proof of part (ii), since the ideas are essentially the same.

We multiply the inequality (4.4) by ks and replace 1
k by x. To prove

1− (1 + x)−s <
1

2

((
1− x

2

)−s
−
(

1 +
3x

2

)−s
)

x ∈ (0, 1],

we remark that both sides vanish at x = 0, and we differentiate both sides. This
procedure reveals that it is sufficient to prove

1 <
1

4

( 1 + x

1− x
2

) 1+s
+

3

4

( 1 + x

1 + 3x
2

) 1+s
, x ∈ (0, 1].

Since both sides are identical for x = 0, we differentiate again. The resulting inequal-
ity

0 <
3(1 + x)s(1 + s)

8

((
1− x

2

)−s−2
−
(

1 +
3x

2

)−s−2
)
, x ∈ (0, 1]

is obvious and proves the assertion.

Summation of the inequalities in Lemma 2 for k = 2m + 1, 2m + 3, . . . , 2N − 1,
and letting firstly N →∞, and then m→∞, prove the following.

Corollary 1 Let s > 0.

(i) For any m ∈ N ∪ {0} the inequality

∞∑
k=2m+1

(−1)k−1

ks
<

1

2

(
2m +

1

2

)−s

is valid.
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(ii)

lim
m→∞

(( ∞∑
k=2m+1

(−1)k−1

ks

)
ms

)
= 2−s−1.

An immediate consequence of formula (4.3) and Corollary 1 is the desired iden-
tity (4.1).

5 An Elementary Proof of the Stirling Formula

By similar considerations as in the preceding section one can get information on

log(m!) =
m∑

k=2

log k.

It is easy to see that the identity

(5.1)
m∑

k=2

log k = −2m log 2 +
2m∑

k=m+1

log k +
2m∑
k=2

(−1)k log k

holds. If we let

f (x) = log x, F(x) = x(log x − 1),

we see that case (ii) of Lemma 1 and Theorem 1 applies. Hence, setting n = m+1 and
N = 2m, the above considerations imply that for any c ∈ (0, 1/2) and m sufficiently
big the inequalities(

2m +
1

2

)(
log
(

2m +
1

2

)
− 1

)
−
(

m +
1

2

)(
log
(

m +
1

2

)
− 1

)
<

2m∑
k=m+1

log k

< (2m + 1− c)
(

log(2m + 1− c)− 1
)
− (m + 1− c)

(
log(m + 1− c)− 1

)
are valid. If in the upper bound we let c = 1

2 − ε, ε > 0, and consider the upper and
lower bound for m→∞, we get

(5.2) lim
m→∞

( 2m∑
k=m+1

log k−
(

2m log 2 + m(log m− 1) +
1

2
log 2

))
= 0.

The third term on the right hand side of (5.1) can be written as

1

2

m∑
k=1

log
( 4k2

4k2 − 1

)
+

1

2
log(2m + 1).

The application of the product theorem of Wallis herein immediately implies

(5.3) lim
m→∞

( 2m∑
k=2

(−1)k log k−
( 1

2
log

π

2
+

1

2
log m +

1

2
log 2

))
= 0.
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Inserting (5.2) and (5.3) into (5.1) delivers an elementary proof of the Stirling for-
mula

lim
m→∞

(
log(m!)−

((
m +

1

2

)
log m−m + log

√
2π

))
= 0.

6 Further Applications

If we consider
∑∞

k=1 ks for s > 0 and let

f (x) = xs, F(x) =
xs+1

s + 1
,

we see that for s ∈ (0, 1), parts (ii) of Lemma 1 and Theorem 1 apply, whereas for
s > 1 part (iii) of Lemma 1 and Theorem 1 play the decisive rôle. In both cases we
can use the resulting inequalities to get

lim
N→∞

( 1

N s

N∑
k=1

ks − N

s + 1

)
=

1

2
.

For s = 1 the idea of telescoping series and the identity

k1 =
(k + 1

2 )2 − (k− 1
2 )2

2
delivers a very short proof of the famous equation

N∑
k=n

k =
(N + 1

2 )2 − (n− 1
2 )2

2
=

N(N + 1)

2
− n(n− 1)

2
.
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