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Abstract

We study continuous-time Markov chains on the nonnegative integers under mild reg-
ularity conditions (in particular, the set of jump vectors is finite and both forward and
backward jumps are possible). Based on the so-called flux balance equation, we derive
an iterative formula for calculating stationary measures. Specifically, a stationary mea-
sure π (x) evaluated at x ∈N0 is represented as a linear combination of a few generating
terms, similarly to the characterization of a stationary measure of a birth–death process,
where there is only one generating term, π (0). The coefficients of the linear combination
are recursively determined in terms of the transition rates of the Markov chain. For the
class of Markov chains we consider, there is always at least one stationary measure (up
to a scaling constant). We give various results pertaining to uniqueness and nonunique-
ness of stationary measures, and show that the dimension of the linear space of signed
invariant measures is at most the number of generating terms. A minimization problem is
constructed in order to compute stationary measures numerically. Moreover, a heuristic
linear approximation scheme is suggested for the same purpose by first approximating
the generating terms. The correctness of the linear approximation scheme is justified in
some special cases. Furthermore, a decomposition of the state space into different types
of states (open and closed irreducible classes, and trapping, escaping and neutral states)
is presented. Applications to stochastic reaction networks are well illustrated.

Keywords: recurrence; transience; explosivity; stationary distribution; signed invariant
measure
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1. Introduction

Stochastic models of interacting particle systems are often formulated in terms of
continuous-time Markov chains (CTMCs) on a discrete state space. These models find appli-
cation in population genetics, epidemiology, and biochemistry, where the particles are known
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2 M. C. HANSEN ET AL.

as species. A natural and accessible framework for representing interactions between species is
a stochastic reaction network (SRN), where the underlying graph captures the possible jumps
between states and the interactions between species. In the case where the reaction network
consists of a single species, it is referred to as a one-species reaction network. Such networks
frequently arise in various applications, ranging from SIS (susceptible-infected-susceptible)
models in epidemiology [24] to bursty chemical processes (for example, in gene regulation)
[25] and the Schlögl model [11]. One often focuses on examining the long-term dynamic
behavior of the system, which can be captured by its corresponding limiting or stationary
distribution, provided it exists. Therefore, characterizing the structure of such distributions is
of great interest.

Stochastic models of reaction networks, in general, are highly nonlinear, posing chal-
lenges for analytical approaches. Indeed, the characterization of stationary distributions remain
largely incomplete [26], except for specific cases such as mono-molecular (linear) reaction
networks [16], complex balanced reaction networks [2], and when the associated stochas-
tic process is a birth–death process [4]. To obtain statistical information, it is common to
resort to stochastic simulation algorithms [9, 12], running the Markov chain numerous times.
However, this approach can be computationally intensive, rendering the analysis of com-
plex reaction networks infeasible [20]. Furthermore, it fails to provide analytical insights into
the system.

We investigate one-species reaction networks on the nonnegative integers N0, and present
an analytic characterization of stationary measures for general CTMCs, subject to mild and
natural regularity conditions (in particular, the set of jump vectors is finite and both forward
and backwards jumps are possible); see Proposition 4.1. Furthermore, we provide a decompo-
sition of the state space into different types of states: neutral, trapping, and escaping states, and
positive irreducible components (PICs) and quasi-irreducible components (QICs) (Proposition
3.1). Based on this characterization, we provide an iterative formula to calculate π (x), x ∈N0,
for any stationary measure π , not limited to stationary distributions, in terms of a few generat-
ing terms (Theorem 4.1); similarly to the characterization of the stationary distribution/measure
of a birth–death process with one generating term π (0). The iterative formula is derived from
the general flow balance equation [17].

Moreover, we show that the linear subspace of signed invariant measures has dimension
at most the number of generating terms and that each signed invariant measure is given by
the iterative formula and a vector of generating terms (Theorem 6.1). We use [15] to argue that
there always exists a stationary measure and give conditions for uniqueness and nonuniqueness
(Corollary 5.3, Corollary 5.4, Theorem 6.3, Lemma 6.3). Furthermore, we demonstrate by
example that there might be two or more linearly independent stationary measures (Example
8.5). As birth–death processes have a single generating term, then there cannot be a signed
invariant measure taking values with both signs.

Finally, we demonstrate how the iterative formula can be used to approximate a station-
ary measure. Two methods are discussed: convex optimization (Theorem 7.1) and a heuristic
linear approximation scheme (Lemma 7.1). We establish conditions under which the linear
approximation scheme is correct, and provide simulation-based illustrations to support the
findings. Furthermore, we observe that even when the aforementioned conditions are not met,
the linear approximation scheme still produces satisfactory results. In particular, it allows us to
recover stationary measures in certain cases. This approach offers an alternative to truncation
approaches [14, 19] and forward-in-time simulation techniques such as Gillespie’s algorithm
[12].
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Stationary measures of CTMCs with applications to SRNs 3

2. Preliminaries

2.1. Notation

Let R≥0, R>0, R be the nonnegative real numbers, the positive real numbers, and the real
numbers, respectively, Z the integers, N the natural numbers and N0 =N∪ {0} the nonnegative
integers. For m, n ∈N0, let Rm×n denote the set of m × n matrices over R. The sign of x ∈R

is defined as sgn(x) = 1 if x> 0, sgn(x) = 0 if x = 0, and sgn(x) = −1 if x< 0. We use �·� to
denote the ceiling function, �·	 to denote the floor function, and || · ||p to denote the p-norm.
Furthermore, let �B : D → {0, 1} denote the indicator function of a set B ⊆ D, where D is the
domain.

2.2. Markov Chains

We define a class of CTMCs on N0 in terms of a finite set of jump vectors and nonnegative
transition functions. The setting can be extended to CTMCs on N

d
0 for d> 1 and to infinite

sets of jump vectors. Let �⊆Z\{0} be a finite set and F = {λω : ω ∈�} a set of nonnegative
transition functions on N0,

λω : N0 →R≥0, ω ∈�.

The notation is standard in reaction network literature [3], where we find our primary source
of applications. For convenience, we let

λω(k) = 0 for k< 0 and λω ≡ 0 for ω ∈�. (2.1)

The transition functions define a Q matrix Q = (qx,y)x,y∈N0 with qx,y = λy−x(x), x, y ∈N0,
and subsequently, a class of CTMCs (Yt)t≥0 on N0 by assigning an initial state Y0 ∈N0. Since
� is finite, there are at most finitely many jumps from any x ∈N0. For convenience, we identify
the class of CTMCs with (�,F).

A state y ∈N0 is reachable from x ∈N0 if there exists a sequence of states x(0), . . . , x(m),
such that x = x(0), y = x(m), and λω(i) (x(i))> 0 with ω(i) = x(i+1) − x(i) ∈�, i = 0, . . . ,m − 1. It
is accessible if it is reachable from some other state. The state is absorbing if no other states
can be reached from it. A set A ⊆N0 is a communicating class of (�,F) if any two states
in A can be reached from one another, and the set cannot be extended while preserving this
property. A state x ∈N0 is a neutral state of (�,F) if it is an absorbing state not accessible
from any other state, a trapping state of (�,F) if it is an absorbing state accessible from some
other state, and an escaping state of (�,F) if it forms its own communicating class and some
other state is accessible from it. A set A ⊆N0 is a PIC of (�,F) if it is a nonsingleton closed
communicating class, and a QIC of (�,F) if it is a nonsingleton open communicating class.

Let N, T, E, P, and Q be the (possibly empty) set of all neutral states, trapping states,
escaping states, PICs, and QICs of (�,F), respectively. Each state has a unique type; hence,
N, T, E, P, and Q form a decomposition of the state space into disjoint sets.

A nonzero measure π on a closed irreducible component A ⊆N0 of (�,F) is a stationary
measure of (�,F) if π is invariant for the Q matrix, that is, if π is a nonnegative equilibrium
of the master equation [13]

0 =
∑
ω∈�

λω(x −ω)π (x −ω) −
∑
ω∈�

λω(x)π (x), x ∈ A, (2.2)

and a stationary distribution if it is a stationary measure and
∑

x∈A π (x) = 1. Furthermore, we
say π is unique if it is unique up to a scaling constant. We might leave out ‘on A’ and just say
π is a stationary measure of (�,F), when the context is clear.
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4 M. C. HANSEN ET AL.

2.3. Stochastic reaction networks

For clarity, we only introduce one-species SRNs and not SRNs in generality [3], as one-
species SRNs are our primary application area. A one-species SRN is a finite labelled digraph

(C,R) with an associated CTMC on N0. The elements of R are reactions, denoted by y
η−→ y′,

where y, y′ ∈ C are complexes and the label is a nonnegative intensity function on N0. Each
complex is an integer multiple of the species S, that is, nS for some n. In examples, we
simply draw the reactions as in the following example with C = {0, S, 2S, 3S}, and four
reactions:

4S
η1−→ 2S

η2�
η3

0
η4−→ 6S. (2.3)

For convenience, we represent the complexes as elements of N0 via the natural embedding,
nS �→ n, and number the reactions as in the example above. The associated stochastic process
(Xt)t≥0 can be given as

Xt = X0 +
#R∑
k=1

(y′
k − yk)Yk

(∫ t

0
ηk(Xs) ds

)
,

where Yk are independent unit-rate Poisson processes and ηk : N0 → [0,∞) are intensity func-
tions [3, 10, 23]. By varying the initial species count X0, a whole family of Markov chains is
associated with the SRN.

A common choice of intensity functions is that of stochastic mass-action kinetics [3],

ηk(x) = κk
x!

(x − yk)! , x ∈N0,

where κk > 0 is the reaction rate constant of the kth reaction, and the combinatorial factor is
the number of ways yk molecules can be chosen out of x molecules (with order). This intensity
function satisfies the stoichiometric admissibility condition

ηk(x)> 0 ⇔ x ≥ yk

(≥ is taken componentwise). Thus, every reaction can only fire when the copy numbers of the
species in the current state are no fewer than those of the source complex.

We assume mass-action kinetics in many examples below and label the reactions with their
corresponding reaction rate constants, rather than the intensity functions. To bring SRNs into
the setting of the previous section, we define

�= {y′
k − yk | yk → y′

k ∈R},

λω(x) =
#R∑
k=1

1{ω}(y′
k − yk)ηk(x), x ∈N0, ω ∈�.

3. A classification result

In this section we classify the state space N0 into different types of states. In particular, we
are interested in characterizing the PICs in connection with studying stationary measures. Our
primary goal is to understand the class of one-species SRNs, which we study by introducing a
larger class of Markov chains embracing SRNs.
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Stationary measures of CTMCs with applications to SRNs 5

We assume throughout that a class of CTMCs associated with (�,F) is given. Define

�+: = {ω ∈� : sgn(ω) = 1} , �−: = {ω ∈� : sgn(ω) = −1}
as the sets of positive and negative jumps, respectively. To avoid trivialities and for regularity,
we make the following assumptions.

(A1) � is finite, �− =∅ and �+ =∅.
(A2) For ω ∈�, there exists iω ∈N0 such that λω(x)> 0 if and only if x ≥ iω.
Then, iω is the smallest state for which a jump of size ω can occur (i is for input). If either of

�− and �+ is empty, then the chain is either a pure death or a pure birth process. Assumption
(A1) and (A2) are fulfilled for stochastic mass-action kinetics.

For the classification, we need some further quantities. Let oω: = iω +ω be the smallest
possible ‘output’ state after applying a jump of size ω, and let

i := minω∈�iω, i+ := minω∈�+ iω, o := minω∈�oω, o− := minω∈�−oω.

Any state x< i is a trapping or neutral state (no jumps can occur from one of these states), and
i+ is the smallest state for which a forward jump can occur. Similarly, o is the smallest state
that can be reached from any other state and o− is the smallest state that can be reached by a
backward jump.

In the example given in (2.3), all jumps are multiples of 2, that is, the Markov chain is
on 2N0 or 2N0 + 1, depending on the initial state. Generally, the number of infinitely large
irreducible classes is ω∗ = gcd(�), the greatest positive common divisor of ω ∈� (ω∗ = 2 in
(2.3)). The following classification result is a consequence of [27, Corollary 3.15].

Proposition 3.1. Assume that (A1) and (A2) hold. Then

N = {0, . . . ,min{i, o} − 1}, T = {o, . . . , i − 1}, E = {i, . . . ,max{i+, o−} − 1}.
Furthermore, the following assertions hold.

(i) If #T = 0 then Q =∅, and Ps =ω∗N0 + s, s = o−, . . . , o− +ω∗ − 1 are the PICs.

(ii) If #T ≥ω∗ then P =∅, and Qs =ω∗N0 + s, s = i+, . . . , i+ +ω∗ − 1 are the QICs.

(iii) If 0< #T<ω∗ then Ps =ω∗N0 + s, s = i+, . . . , o− +ω∗ − 1 are the PICs, and Qs =
ω∗N0 + s, s = o− +ω∗, . . . , i+ +ω∗ − 1 are the QICs.

In either case, there are ω∗ PICs and QICs in total. When PICs exist, these are indexed by
s = max{i+, o−}, . . . , o− +ω∗ − 1, and P = ∅ if and only if i+ < o− +ω∗.

Proof. We apply [27, Corollary 3.15]. To translate the notation of the current paper to that of
[27, Corollary 3.15], we set c = 0, Lc =N0, c∗ = max{i+, o−}, ω∗ =ω∗, and ω∗∗ =ω∗. Then,
the expressions of N, T, and E naturally follow. As in [27], we define the following sets:

�+
0 =

{
1 + v −

⌊
v

ω∗

⌋
ω∗ : v ∈ T

}
,

�−
0 =

{
1 + v −

⌊
v

ω∗

⌋
ω∗ : v ∈ {i, . . . , o +ω∗ − 1} \ T

}
.

Since, for v ∈N0,

1 ≤ 1 + v −
⌊

v

ω∗

⌋
ω∗ ≡ 1 + v mod ω∗ < 1 +ω∗,
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6 M. C. HANSEN ET AL.

we have �+
0 ∩�−

0 = ∅, �+
0 ∪�−

0 = {1, . . . , ω∗}, and #�+
0 = min{#T, ω∗}. If o< i, these

conclusions follow easily; if o ≥ i then �+
0 = ∅, and the conclusions follow.

According to [27, Corollary 3.15], it follows that

ω∗
(
N0 +

⌈
c∗ − (v − 1)

ω∗

⌉)
+ v − 1 =

{
P(v)

0 , v ∈�−
0 ,

Q(v)
0 , v ∈�+

0 ,
(3.1)

are the disjoint PICs and the disjoint QICs of (�,F), respectively, in the terminology of [27].
Consequently, as #(N ∪ T ∪ E) = c∗,⋃

v∈�−
0 ∪�+

0

(P(v)
0 ∪ Q(v)

0 ) =N0 \ (N ∪ T ∪ E) =N0 + c∗.

Since, for v ∈Z,

c∗ ≤ω∗
⌈

c∗ − (v − 1)

ω∗

⌉
+ v − 1<ω∗ + c∗,

then we might state (3.1) as

P(v)
0 = (ω∗Z+ v − 1) ∩ (N0 + c∗) for v ∈�−

0 ,

Q(v)
0 = (ω∗Z+ v − 1) ∩ (N0 + c∗) for v ∈�+

0 .

We show that the expressions given for P(v)
0 ,Q(v)

0 correspond to those given for Ps,Qs

in the three cases, by suitable renaming of the indices. First, note that T =∅ if and only if
o ≥ i. From o ≤ o− < i−: = minω∈�− iω and o ≥ i, we have i = i+ ≤ o−, which yields c∗ = o−.
Consequently, �+

0 = ∅ and Q =∅. This proves the expression for Ps in (i).
Otherwise, if o< i then o< i ≤ i+ < o+: = minω∈�+oω, which implies that o = o− < i+.

Hence, c∗ = i+. If #T ≥ω∗ then P =∅, which proves the expression for Qs in (ii). It remains
to prove the last case. If 0< #T<ω∗ then

P(v+1)
0 = (ω∗Z+ v) ∩ (N0 + c∗) for v = i, . . . , o +ω∗ − 1.

If i = i+ then using the above equation and o = o−, the expression for Ps in (iii) follows
directly, and the remaining irreducible classes must be QICs. Finally, we show that i< i+
is impossible, which concludes the proof. Assume oppositely that i< i+. Then, i = i−, T =
{o−, . . . , i−1}, and i− ∈ E. This implies that one can jump from state i− (the smallest state for
which a backward jump can be made) leftwards to a state x ≤ i−ω∗ < o−. The latter inequal-
ity comes from 0< #T = i − o<ω∗ and o = o−. However, this implies that x ∈ N, which is
impossible.

The total number of PICs and QICs follows from �+
0 ∪�−

0 = {1, . . . , ω∗}. The indexation
follows from c∗ = max{i+, o−} in the two case (i) and (iii). Also, the inequality i+ < o− +ω∗
follows straightforwardly in these two cases. It remains to check that it is not fulfilled in case
(ii). In that case, #T = i − o ≥ω∗ by assumption, hence, i+ ≥ i ≥ o +ω∗ = o− +ω∗, and the
conclusion follows. �

In either of the three cases of the proposition, the index s is the smallest element of the
corresponding class (PIC or QIC). The role of assumption (A2) in Proposition 3.1, together
with assumption (A1), is to ensure the nonsingleton irreducible classes are infinitely large.
If the assumption fails there could be nonsingleton finite irreducible classes, even when
�+ = ∅.
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Stationary measures of CTMCs with applications to SRNs 7

A stationary distribution exists trivially on each element of N ∪ T. If the chain starts in E,
it will eventually be trapped into a closed class, either into T or P, unless absorption is not
certain in which case it might be trapped in Q. If absorption is certain it will eventually leave
Q. We give two examples of CTMCs on N0 showing how the chain might be trapped.

Example 3.1.

(i) The reaction network S −→ 0, 2S � 3S has �= {1,−1}, ω∗ = 1, i1 = 2, i−1 = 1 (note
that there are two reactions with the jump size −1). Hence, i = 1, i+ = 2, and o = o− =
0. It follows from Proposition 3.1 that N =∅, T = {0}, E = {1}, P =∅, and Q =N0 + 2.
There is only one infinite class, which is a QIC. From the escaping state, one can only
jump backward to the trapping state. The escaping state is reached from Q.

(ii) The reaction network S −→ 2S, 2S � 3S has�= {1,−1}, ω∗ = 1, i1 = 1, i−1 = 3 (note
that there are two reactions with the jump size 1). Hence, i = 1, i+ = 1 and o = o− = 2.
It follows from Proposition 3.1 that N = {0}, T =∅, E = {1}, P =N0 + 2, and Q =∅.
There is only one infinite class, which is a PIC. From the escaping state, one can only
jump forward to this PIC.

4. Characterization of stationary measures

We present an identity for stationary measures based on the flux balance equation [17]; see
also [29]. It provides means to express any term of a stationary measure as a linear combina-
tion with real coefficients of the generating terms. The coefficients are determined recursively,
provided (A1) and (A2) are fulfilled.

To smooth the presentation, we assume without loss of generality that
(A3) ω∗ = 1, s = 0 and P0 =N0.
Hence, we assume that N0 is a PIC and remove the index s from the notation for conve-

nience. For general (�,F) with ω∗ ≥ 1 and s ∈ {max{i+, o−}, . . . , o− +ω∗ − 1}, we translate
the Markov chain to one fulfilling (A3) for each s by defining (�∗,Fs) by �∗ =�ω−1∗ (ele-
mentwise multiplication) and Fs = {λs

ω : ω ∈�∗} with λs
ω(x) = λωω∗(ω∗x + s), x ∈N0. Hence,

there is no loss in assuming that (A3) holds. We assume that (A1)–(A3) hold throughout
Section 4 unless otherwise stated.

Let π be any stationary measure of (�,F) on N0. Define ω+, ω− to be the largest positive
and negative jump sizes, respectively,

ω+ = max �+, ω− = min �−. (4.1)

We show that π (x) can be expressed as a linear combination with real coefficients of the
generating terms π (L), . . . , π (U), where

L = iω− +ω− = oω− , U = iω− − 1, (4.2)

are the lower and upper numbers, respectively. Hence, as a sum of U − L + 1 = −ω− terms.
No backward jumps of size ω− can occur from any state x ≤ U, and L is the smallest output
state of a jump of size ω−.

Example 4.1.

(i) Consider the reaction network, 0 � 2S, 5S −→ S. In this case, ω∗ = 2, i+ = o− = 0,
and (A3) does not apply. In fact, s = 0, 1 with PICs 2N0 and 2N0 + 1, respectively. After
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8 M. C. HANSEN ET AL.

translation, we find that L0 = 1, U0 = 2, and L1 = 0, U1 = 1, where the index refers to
s = 0, 1. Thus, the lower and upper numbers are not the same for each class.

(ii) The reaction network, 0 � S, nS � (n + 2)S has ω∗ = 1, i+ = o− = 0. Hence, s = 0
with PIC N0, and (A3) applies. We find that L = n,U = n + 1. Thus, the lower and upper
numbers might be arbitrarily large depending on the SRN.

Before presenting the main results, we study the following example.

Example 4.2. Recall Example 4.1(ii) with mass-action kinetics, n = 2, and reactions

0
κ1�
κ2

S, 2S
κ3�
κ4

4S.

According to [28, Theorem 7] this SRN is positive recurrent on N0 for all κ1, . . . , κ4 > 0 and,
hence, it has a unique stationary distribution. We have L = 2, U = 3.

By rewriting the master equation (2.2), we obtain

π (0) = κ2

κ1
π (1), π (1) = 2κ2

κ1
π (2),

π (4) =
3∑

i=1

ηi(2)

η4(4)
π (2) − η1(1)

η4(4)
π (1) − η2(3)

η4(4)
π (3),

π (	) =
4∑

i=1

ηi(	− 2)

η4(	)
π (	− 2) −η1(	− 3)

η4(	)
π (	− 3) −η2(	− 1)

η4(	)
π (	− 1) − η3(	− 4)

η4(	)
π (	− 4),

the latter for 	 >U + 1 = 4. There is not an equation that expresses π (3) in terms of the lower
states 	 < 3 as the state 3 can only be reached from 2, 4, and 5. Consequently, π (0) and π (1) can
be found from π (2) and π (3), but not vice versa, and π (	), 	≥ U + 1 = 4 is determined recur-
sively from π (2) and π (3) using the last equations above, say, π (	) = γ2(	)π (2) + γ3(	)π (3),
where the coefficients γ2(	), γ3(	) depend on the intensity functions. For 	= 0, 1, these follow
from the first equations (see also Theorem 4.1 below),

γ2(0) = 2κ2
2

κ2
1

, γ3(0) = 0, γ2(1) = 2κ2

κ1
, γ3(1) = 0,

while for 	= 2, 3, we obviously have γj(	) = δj,	, where δ	,j is the Kronecker symbol. For
	 > 3, the coefficients are given recursively; see Theorem 4.1 for the general expression. A
recursion for π (	) cannot be given in terms of π (0), . . . , π(1) alone.

First, we focus on the real coefficients of the linear combination. From Example 4.2
we learn that the coefficients take different forms depending on the state, which is reflected
in the definition of γj(	) below. For convenience, rows and columns of a matrix are indexed
from 0.

By the definition of ω+ and ω−, any state is reachable from at most ω+ −ω− other states
in one jump. For this reason, let

m∗ =ω+ −ω−1 ≥ 1 (4.3)

(as ω+ ≥ 1, −ω− ≥ 1), and define the functions

γj : Z→R, L ≤ j ≤ U,
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Stationary measures of CTMCs with applications to SRNs 9

by

γj(	) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 for 	 < 0,
G	,j−L for 	= 0, . . . , L − 1, j<U,

0 for 	= 0, . . . , L − 1, j = U,
δ	,j for 	= L. . . . ,U,

m∗∑
k=1

γj(	− k)fk(	) for 	 >U,

(4.4)

where the functions fk : [U + 1,∞) ∩N0 →R are defined by

fk(	) = −ck(	− k)

c0(	)
for 	 >U, k = 0, . . . ,m∗, (4.5)

ck(	) = sgn

(
ω− + k + 1

2

) ∑
ω∈Bk

λω(	), 	 ∈Z, k = 0, . . . ,m∗, (4.6)

Bk = {ω ∈� ∣∣ k′(ω− k′)> 0, with k′ =ω− + k + 1
2

}
(4.7)

(note that f0(	) = −1 is not used in the definition of γj(	), but appears in the proof of the
Proposition 4.1 below), and G = −(H1)−1H2 is an L × (U − L) matrix defined from the L × U
matrix H = (H1 H2) with entries

Hm,n = δm,n − λ(m−n)(n)∑
ω∈� λω(m)

, m = 0, . . . , L − 1, n = 0, . . . ,U − 1, (4.8)

where H1 is L × L dimensional and H2 is L × (U − L) dimensional. Note that H is the empty
matrix if L = 0 or U = L. In (4.8) we adopt the convention stated in (2.1). In particular, Hm,m =
1 for 0 ≤ m ≤ L − 1. By definition, (IL − G) is the row reduced echelon form of H by Gaussian
elimination, where IL is the L × L identity matrix.

The functions ck : Z→R and the sets Bk come out of the flux balance equation, that is,
an equivalent formulation of the master equation [17]. We use it in (4.10) in the proof of
Proposition 4.1. For each x ∈N0, it provides an identity between two positive sums, one over
terms evaluated in at most ω+ states with values 	 < x, and one over terms evaluated in at most
−ω− + 1 states with values 	≥ x. The function fk(	) is well defined for 	 >U if (A1) and
(A2) are fulfilled. In that case, c0(	)< 0; see Lemma A.1. The matrix H is well defined with
invertible H1 under the assumptions (A1) and (A2), provided L> 0 and U > L; see Lemma A.2.

Proposition 4.1 and Theorem 4.1 below do not require uniqueness of the stationary measure.

Proposition 4.1. A nonzero measure π on N0 is a stationary measure of (�,F) on N0 if and
only if

m∗∑
k=0

π (	− k)ck(	− k) = 0 for 	 >U − L. (4.9)

Here, π (	) = 0 for 	 < 0 for convenience, ck is defined as in (4.6) and m∗ is defined as in (4.12).

Proof. We recall an identity related to the flux balance equation [17] for stationary measures
for a CTMC on the nonnegative integers [29, Theorem 3.3], which is a consequence of the
master equation (2.2): a nonnegative measure (probability measure) π on N0 is a stationary
measure (stationary distribution) of (�,F) if and only if

−
0∑

j=ω−+1

π (x − j)
∑
ω∈Aj

λω(x − j) +
ω+∑
j=1

π (x − j)
∑
ω∈Aj

λω(x − j) = 0, x ∈Z, (4.10)
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10 M. C. HANSEN ET AL.

where #�<∞ is used, and the domain of π as well as λω is extended from N0 to Z (that is,
π (x) = 0, λω(x) = 0 for x ∈Z \N0). Furthermore, the sets Aj are defined by

Aj =
{

{ω ∈� : j>ω} if j ∈ {ω−, . . . , 0},
{ω ∈� : j ≤ω} if j ∈ {1, . . . , ω+ + 1}.

If x ≤ 0 then all terms in both double sums in (4.10) are zero. In fact, (4.10) for x is equivalent
to the master equation (2.2) for x − 1.

Assume that π is a stationary measure of (�,F). Let x = 	+ (ω− + 1), 	 ∈Z, and let
j = k + (ω− + 1) with j ∈ {ω− + 1, . . . , ω+}. Then, x − j = 	− k, and it follows that (4.10)
is equivalent to

m∗∑
k=0

sgn

(
ω− + k + 1

2

)
π (	− k)

∑
ω∈Ak+ω−+1

λω(	− k) = 0, (4.11)

where sgn(ω− + k + 1/2) = 1 if ω− + k ≥ 0, and −1 otherwise. It implies that

(k +ω− + 1)>ω ⇐⇒ (
k +ω− + 1

2

)
>ω,

(k +ω− + 1) ≤ω ⇐⇒ (
k +ω− + 1

2

)
<ω.

Hence, it also follows from the definition (4.7) of Bk that

Ak+ω−+1 = Bk, k = 0, . . . ,m∗.

Thus, (4.11) is equivalent to

m∗∑
k=0

π (	− k)ck(	− k) = 0, 	 ∈N0, (4.12)

using the definition of ck(	). Since 	= x − (ω− + 1) = x + U − L and (4.10) is trivial for x ≤
0, then (4.12) is also trivial for 	= 0, . . . ,U − L (all terms are zero). This proves the bi-
implication and the proof is completed. �

For 0 ≤ 	≤ U − L, all m∗ terms in (4.9) are zero, hence, the identity is a triviality. We
express π in terms of the generating terms, π (L), . . . , π(U).

Theorem 4.1. A nonzero measure π on N0 is a stationary measure of (�,F) on N0 if and
only if

π (	) =
U∑

j=L

π (j)γj(	) for 	 ∈N0, (4.13)

where γj is defined as in (4.4).

Proof. Assume that π is a stationary measure. The proof is by induction. We first prove
the induction step. Assume that (4.13) holds for 	− 1 ≥ U and all 	′ such that 	− 1 ≥ 	′ ≥ 0.
Then, from Proposition 4.1, (4.4), (4.5), (4.6), and the induction hypothesis, we have

π (	) = −
m∗∑

k=1

π (	− k)
ck(	− k)

c0(	)
= −

m∗∑
k=1

U∑
j=L

π (j)γj(	− k)
ck(	− k)

c0(	)
=

U∑
j=L

π (j)γj(	).
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Stationary measures of CTMCs with applications to SRNs 11

We next turn to the induction basis. For 	= L, . . . ,U, (4.13) holds trivially as γj(	) = δ	,j
in this case. It remains to prove (4.13) for 	= 0, . . . , L − 1. Since π is a stationary measure, it
fulfills the master equation (2.2) for (�,F). By rewriting this, we obtain

π (	) =
∑
ω∈� λω(	−ω)π (	−ω)∑

ω∈� λω(	)
, 	 ∈N0.

The denominator is never zero because for 	≥ 0, it holds that λω(	)> 0 for at least one ω ∈�
(otherwise zero is a trapping state).

In particular, for 	= 0, . . . , L − 1, using (4.2), it holds that 	−ω− < iω− . Hence, λω−(	−
ω−) = 0, and

π (	) =
∑
ω∈�\{ω−} λω(	−ω)π (	−ω)∑

ω∈� λω(	)
, 	= 0, . . . , L − 1.

Now, defining n = 	−ω, we have n< L − 1 −ω− = U for ω ∈� \ {ω−}, using U − L =
−(ω− + 1); see (4.2). Hence,

π (	) =
∑U−1

n=0 λ	−n(n)π (n)∑
ω∈� λω(	)

, 	= 0, . . . , L − 1,

with the convention in (2.1). Evoking the definition of H in (4.8), this equation may be
written as

H

⎛⎜⎝ π (0)
...

π (U − 1)

⎞⎟⎠= 0.

Recall that G = −(H1)−1H2 with H = (H1 H2). Noting that γU(	) = 0, 	= 0, . . . , L − 1,
yields that (4.13) is fulfilled with γj(	) = G	,j−L, 	= 0, . . . , L − 1, and j = L, . . . ,U − 1, and
the proof of the first part is concluded.

For the reverse part, we note that for 0 ≤ x − 1 ≤ L − 1, the argument above is ‘if and only
if’: π (x − 1) =∑U

j=L π (j)γj(x − 1) if and only if the master equation (2.2) is fulfilled for x − 1.
As noted in the proof of Proposition 4.1, this is equivalent to (4.10) being fulfilled for x, which
in turn is equivalent to (4.3) being fulfilled for 	= x + U − L (the equation is replicated here),

m∗∑
k=0

π (	− k)ck(	− k) = 0. (4.14)

As 0 ≤ x − 1 ≤ L − 1, then (4.14) holds for 	= U − L + 1, . . . ,U.
For 	 >U, we have, using (4.4) and (4.5),

m∗∑
k=0

π (	− k)ck(	− k) =
m∗∑

k=0

U∑
j=L

π (j)γj(	− k)ck(	− k)

=
U∑

j=L

π (j)
m∗∑

k=0

γj(	− k)ck(	− k)

=
U∑

j=L

π (j)γj(	)c0(	) +
U∑

j=L

π (j)
m∗∑

k=1

γj(	− k)ck(	− k)

= 0;
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12 M. C. HANSEN ET AL.

hence, (4.14) holds for all 	 >U − L. According to Proposition 4.1, π is then a stationary
measure of (�,F). �

For completeness, we apply Proposition 4.1 to Example 4.2. The SRN has ω− = −2 and
ω+ = 2, such that m∗ =ω+ + −ω−1 = 3. Equation (4.14) for 1 = U − L< 	≤ U = 3 becomes

−κ2π (1) + κ1π (0) = 0, −2κ2π (2) + κ1π (1) = 0,

in agreement with the equations found in Example 4.2.

5. Skip-free Markov chains

5.1. Downwardly skip-free Markov chains

An explicit iterative formula can be derived from Theorem 4.1 for downwardly skip-free
Markov chains.

Corollary 5.1. Assume that ω− = −1, and let π (0)> 0. Then, π is a stationary measure of
(�,F) on N0 if and only if

π (	) = π (0)γ0(	) for 	 ∈N0,

where

γ0(0) = 1, γ0(	) =
ω+∑
k=1

γ0(	− k)fk(	), 	 > 0,

and fk is as defined in (4.5). Consequently, there exists a unique stationary measure of (�,F)
on N0. Furthermore, if π is a stationary distribution then π (0) = (

∑∞
	=0 γ0(	))−1.

Proof. Since ω− = −1, then L = U; see (4.2). Moreover, iω− = 1 as otherwise the state
zero could not be reached. Hence, L = U = iω− − 1 = 0 from (4.2). Consequently, π (	) =
π (0)γ0(	), 	 ∈N0, from Theorem 4.1. Furthermore, m∗ =ω+ −ω−1 =ω+ such that the
expression for γ0(	), 	 ∈N0, follows from (4.4). Positivity of γ (	), 	 ∈N0, follows from
Theorem 6.1. If π is a stationary distribution then 1 =∑∞

	=0 π (	) = π (0)
∑∞
	=0 γ0(	), and the

conclusion follows. �
Corollary 5.1 leads to the classical birth–death process characterization.

Corollary 5.2. Assume that�= {−1, 1}. A measure π on N0 is a stationary measure of (�,F)
on N0 if and only if

π (	) = π (0)
	∏

j=1

λ1(j − 1)

λ−1(j)
for 	 > 0,

where π (0) = (1 +∑∞
	=1

∏	
j=1 λ1(j − 1)/λ−1(j))−1 in the case of a stationary distribution.

Proof. In particular, the process is downwardly skip free. Furthermore, ω+ = 1, such that
for 	 > 0, we have, from Corollary 5.1, (4.5) and (4.6),

γ0(	) =
ω+∑
k=1

γ0(	− k)fk(	) = γ0(	− 1)f1(	) =
	∏

j=1

f1(j) = (−1)	
∏	

j=1 c1(j − 1)∏	
j=1 c0(j)

.

By definition of Bk and ck(	), k = 0, 1 (m∗ = 1), we have B0 = {−1}, B1 = {1},
c0(	) = −λ−1(	), c1(	) = λ1(	).
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Stationary measures of CTMCs with applications to SRNs 13

By insertion, this yields

γ0(	) =
	∏

j=1

λ1(j − 1)

λ−1(j)
, 	 > 0,

and the statement follows from Corollary 5.1. �

5.2. Upwardly skip-free Markov chains

In general, we are not able to give conditions for when an upwardly skip-free Markov chain
has a unique stationary measure (up to a scalar) and when it has more than one or even infinitely
many linearly independent stationary measures. However, in a particular case, if there is not a
unique stationary measure, we establish all stationary measures as an explicit one-parameter
family of measures (Corollary 5.3). If the transition functions are polynomial then we show a
stationary measure is always unique (Corollary 5.4). Thus, we need nonpolynomial transition
rates for nonuniqueness and give one such example in Example 8.5.

Proposition 5.1. Assume that ω− = −2 and ω+ = 1, hence, U = L + 1. A nonzero measure π
on N0 is a stationary measure of (�,F) on N0 if and only if

h(x)(φ(x + 1) + 1) = φ(x)φ(x + 1), x ≥ U + 2, (5.1)

where

φ(x) = π (x − 1)

π (x)

λ−1(x − 1) + λ−2(x − 1)

λ−2(x)
,

h(x) = (λ−1(x − 1) + λ−2(x − 1))(λ−1(x) + λ−2(x))

λ1(x − 1)λ−2(x)
, (5.2)

for x ≥ U + 2, and

π (x) = π (x + 1)(λ−1(x + 1) + λ−2(x + 1)) + π (x + 2)λ−2(x + 2)

λ1(x)
, 0 ≤ x ≤ U, (5.3)

with λ−1 ≡ 0 for convenience if there are no jumps of size −1. If this is the case then

π (x) = π (U + 1)
x−1∏

j=U+1

λ−1(j) + λ−2(j)

λ−2(j + 1)φ(j + 1)
, x ≥ U + 2. (5.4)

Proof. Recall the master equation for a stationary measure π , in the form of (4.11):

π (x)(λ−1(x) + λ−2(x)) + π (x + 1)λ−2(x + 1) = π (x − 1)λ1(x − 1), x ≥ 1. (5.5)

Define φ and h as in the statement for x ≥ U + 2 (if x = U + 1 then φ(x), h(x) might be zero; if
x<U + 1 then division by zero occurs as U + 1 = iω− ). Dividing π (x + 1)λ−2(x + 1) on both
sides of (5.5) yields

π (x)

π (x + 1)

λ−1(x) + λ−2(x)

λ−2(x + 1)
+ 1 =π (x − 1)

π (x)

λ−1(x − 1) + λ−2(x − 1)

λ−2(x)

× π (x)

π (x + 1)

λ−1(x) + λ−2(x)

λ−2(x + 1)

× λ1(x − 1)λ−2(x)

(λ−1(x − 1) + λ−2(x − 1))(λ−1(x) + λ−2(x))
,
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14 M. C. HANSEN ET AL.

and the identity (5.1) follows. By rewriting the master equation, then (5.3) follows. The cal-
culations can be done in reverse order yielding the bi-implication. Equation (5.4) follows by
induction. �
Lemma 5.1. Let h : [N,∞) ∩N0 → (0,∞) and φ : [N,∞) ∩N0 →R be functions with N ∈
N0, and such that

h(x)(φ(x + 1) + 1) = φ(x)φ(x + 1), x ≥ N. (5.6)

Let φ∗ be a positive number. Then, φ is a positive function with φ(N) = φ∗, if and only if

2(N) ≤ φ∗ ≤1(N),

where 1(x) = limk→∞ ψ(x, 2k − 1), 2(x) = limk→∞ ψ(x, 2k), and ψ(x, k) is determined
recursively by

ψ(x, k) = h(x)

(
1 + 1

ψ(x + 1, k − 1)

)
, x ≥ N, k ≥ 1, (5.7)

with ψ(x, 0) = h(x).

Proof. Let ψ(x, k) be as in the statement and φ a positive function fulfilling (5.6). Note that
ψ(x, k) is the kth convergent of a generalized continued fraction, hence, ψ(x, 2k) is increas-
ing in k ≥ 0 and ψ(x, 2k + 1) is decreasing in k ≥ 0. Indeed, this follows from Theorem 4
(monotonicity of even and odd convergents) of [18]. See also the proof of Corollary 5.3.

By induction, we show that

ψ(x, 2k)<φ(x)<ψ(x, 2k + 1), x ≥ N, k ≥ 0,

from which it follows that

2(x) = lim
k→∞ψ(x, 2k) ≤ φ(x) ≤1(x) = lim

k→∞ψ(x, 2k − 1), x ≥ N. (5.8)

For the base case, it follows from (5.6) that ψ(x, 0) = h(x)<φ(x) for x ≥ N, and thus,

ψ(x, 1) = h(x)

(
1 + 1

ψ(x + 1, 0)

)
> h(x)

(
1 + 1

φ(x + 1)

)
= φ(x).

For the induction step, assume that ψ(x, 2k)<φ(x)<ψ(x, 2k + 1) for x ≥ N and some k ≥ 0.
Then, using (5.7),

ψ(x, 2k + 2) = h(x)

(
1 + 1

ψ(x + 1, 2k + 1)

)
< h(x)

(
1 + 1

φ(x + 1)

)
= φ(x),

ψ(x, 2k + 3) = h(x)

(
1 + 1

ψ(x + 1, 2k + 2)

)
> h(x)

(
1 + 1

φ(x + 1)

)
= φ(x).

If φ(N) = φ∗ then the first implication follows from (5.8). For the reverse implication, assume
that 2(N) ≤ φ(N) ≤1(N). Note from (5.6) that φ(x + 1) is positive only if h(x)<φ(x). We
showed that 2(N) ≤ φ(N) ≤1(N) implies 2(x) ≤ φ(x) ≤1(x) for all x ≥ N, hence, also
h(x) =ψ(x, 0)<2(x) ≤ φ(x) for all x ≥ N, and we are done. Letting k → ∞ in (5.7) yields

1(x) = h(x)

(
1 + 1

2(x + 1)

)
, 2(x) = h(x)

(
1 + 1

1(x + 1)

)
, x ≥ N.
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Stationary measures of CTMCs with applications to SRNs 15

Hence, it follows from the induction hypothesis that

2(x + 1) = 1

(1(x)/h(x)) − 1
≤ 1

(φ(x)/h(x)) − 1
= φ(x + 1) ≤ 1

(2(x)/h(x)) − 1
=1(x + 1),

using (5.6), and the claim follows. �
Below, we give a general condition for uniqueness and show that uniqueness does not

always hold by example. In Section 6 we give concrete cases where uniqueness applies.

Corollary 5.3. Assume that ω− = −2 and ω+ = 1. Choose π∗ > 0 and 2(U + 2) ≤ φ∗ ≤
1(U + 2), where1, 2 are as in Lemma 5.1 and h as in (5.2). Let φ be a solution to (5.6) in
Lemma 5.1 with φ(U + 2) = φ∗. Then, (5.4) and (5.3) define a stationary measure π of (�,F)
on N0 by setting π (U + 1) = π∗.

The measure is unique if and only if 2(U + 2) =1(U + 2), if and only if the following
sum is divergent for x = U + 2,

H(x) =
∞∑

n=0

(
h(x + 2n + 1)

n∏
i=0

h(x + 2i)

h(x + 2i + 1)
+

n∏
i=0

h(x + 2i + 1)

h(x + 2i)

)

=
∞∑

n=0

(λ−1(x + 2n) + λ−2(x + 2n))(λ−1(x − 1) + λ−2(x − 1))

λ1(x + 2n)λ−2(x + 2n + 1)

1

Qn(x)

+
∞∑

n=0

λ−1(x + 2n + 1) + λ−2(x + 2n + 1)

λ−1(x − 1) + λ−2(x − 1)
Qn(x),

where

Qn(x) =
n∏

i=0

λ1(x + 2i − 1)λ−2(x + 2i)

λ1(x + 2i)λ−2(x + 2i + 1)
.

Proof. The first part of the proof is an application of Proposition 5.1 and Lemma 5.1 with
N = U + 2. The last bi-implication follows by noting that ψ(x, k) in Lemma 5.1 is the kth
convergent of a generalized continued fraction,

b0 + c1

b1 + c2

b2 + c3

b3 + · · ·

= h(x)(1 + 1

h(x + 1)(1 + 1

h(x + 2)(1 + 1

h(x + 3)(1 + · · ·
that is, bn = cn+1 = h(x + n), n ≥ 0. By transformation, this generalized continued fraction is
equivalent to a (standard) continued fraction,

a0 + 1

a1 + 1

a2 + 1

a3 + · · ·
with

a2n = h(x + 2n + 1)
n∏

i=0

h(x + 2i)

h(x + 2i + 1)
, a2n+1 =

n∏
i=0

h(x + 2i + 1)

h(x + 2i)
, n ≥ 0.
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By [18, Theorem 10], the continued fraction converges if and only if
∑

n=0 an = ∞, which
proves the bi-implication, noting that by the first part of the proof it is sufficient to check
x = U + 2, and using the concrete form of h(x) in (5.2). �

We give a concrete example of a nonunique Markov chain in Example 8.5 in Section 8.

Corollary 5.4. Assume that ω+ = 1, ω− = −2, and that λω(x), ω ∈�, is a polynomial for large
x. Then, there is a unique stationary measure of (�,F) on N0.

Proof. We prove that the first series in H(x) in Corollary 5.3 diverges for x ≥ U + 2, and
hence, H(x) = ∞. Let m1 = deg λ1(x), m2 = deg λ−2(x). We first provide asymptotics of Qn(x)
for large n. By the Euler–Maclaurin formula with x ≥ U + 2,

Qn(x) = exp

( n∑
i=0

log

(
1 − λ1(x + 2i − 1)

λ1(x + 2i)

)
+ log

(
1 − λ−2(x + 2i)

λ−2(x + 2i + 1)

))

= exp

( n∑
i=0

log

(
1 − m1

x + 2i
+ O((x + 2i)−2)

)
+ log

(
1 − m2

x + 2i
+ O((x + 2i)−2)

))

= exp

( n∑
i=0

− m1

x + 2i
+ O((x + 2i)−2) − m2

x + 2i
+ O((x + 2i)−2)

)
= exp (−m1 log (x + 2n) − m2 log (x + 2n) + O(1))

= C(x, 2n)(x + 2n)−(m1+m2),

where 0<C1(x)<C(x, 2n)<C2(x)<∞ for all n, and C1(x),C2(x) are positive constants
depending on x. This implies that the terms in the first series of H(x) are bounded uniformly in
n from below, i.e.

lim inf
n→∞

λ−2(x + 2n)λ−2(x − 1)

λ1(x + 2n)λ−2(x + 2n + 1)

1

Qn(x)
> 0,

and hence, the first series in H(x) diverges. �

6. Invariant vectors and existence of stationary measures

In the previous section we focused on nonzero measures on N0 and conditions to ensure
stationarity. However, the requirement of a nonzero measure is not essential. In fact, the con-
ditions of Proposition 4.1 and Theorem 4.1 characterize equally any real-valued sequence that
solves the master equation (2.2). Henceforth, we refer to the vector (vL, . . . , vU) ∈R

U−L+1 as
a generator and the sequence as an invariant vector. This implies that the linear subspace in
	(R) of invariant vectors is (U − L + 1)-dimensional. Such a vector might or might not be a
signed invariant measure depending on whether the positive or the negative part of the vector
has a finite 1-norm.

We assume that (A1)–(A3) hold throughout Section 6. If the CTMC is recurrent (posi-
tive or null) then it is well known that there exists a unique stationary measure. For transient
CTMCs, including explosive chains, there also exists a nonzero stationary measure in the
setting considered.

Proposition 6.1. There exists a nonzero stationary measure of (�,F) on N0.

Proof. It follows from [15, Corollary] and [23, Theorem3.5.1], noting that the set of states
with nonzero transition rates to any given state x ∈N0 is finite, in fact ≤ #�. �
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Stationary measures of CTMCs with applications to SRNs 17

Lemma 6.1. Let π be a nonzero invariant measure of (�,F) on N0 such that π (x) ≥ 0 for all
x ∈N0. Then, π (x)> 0 for all x ∈N0. In fact, π is a nonzero stationary measure of (�,F).

Proof. Assume that π (x) = 0. By rewriting the master equation (2.2), we obtain

π (x) = 1∑
ω∈� λω(x)

∑
ω∈�

λω(x −ω)π (x −ω) = 0.

Let x be reachable from y ∈N0 in k steps. If k = 1 then it follows from above that y = x −ω for
some ω ∈� and π (y) = 0. If k> 1 then π (y) = 0 by induction in the number of steps. Since
N0 is irreducible by assumption, then any state can be reached from any other state in a finite
number of steps, and π (x) = 0 for all x ∈N0. However, this contradicts the measure is nonzero.
Hence, π (x)> 0 for all x ∈N0. �
Theorem 6.1. The sequences γL, . . . , γU form a maximal set of linearly independent invariant
vectors in 	(R). Moreover, γj has positive and negative terms for all j = L, . . . ,U if and only
if ω− <−1, that is, if and only if L = U. If L = U then γL has all terms positive. In any case,
γ (n) = (γL(n), . . . , γU(n)) = 0 for n ∈N0.

Proof. The former part follows immediately from Theorem 4.1, since (γj(L), . . . , γj(U))
is the (j − L + 1)th unit vector of R

U−L+1, for j = L, . . . ,U, by definition. The latter part
follows from Lemma 6.1 and the fact that γj(j) = 1 and γj(	) = 0 for 	 ∈ {L, . . . ,U} \ {j}.
If L = U then the linear space is one-dimensional and positivity of all γL(	), 	 ∈N0, fol-
lows from Lemma 6.1 and the existence of a stationary measure; see Proposition 6.1. The
equivalence between ω− < 1 and L = U follows from (4.2). If γ (n) = 0 then π (n) = 0 for any
invariant vector π , contradicting the existence of a stationary measure. �
Theorem 6.2. Let G ⊆R

U−L+1 be the set of generators of stationary measures of (�,F)
on N0. Then, G ⊆R

U−L+1
>0 is a positive convex cone. Let G0 = G ∪ {(0, . . . , 0)} be the set

including the zero vector, which generates the null measure. Then, G0 is a closed set. The set
{v ∈ G0 : ‖v‖1 = 1} is closed and convex.

Proof. Positivity follows from Lemma 6.1. It is straightforward to see that G is a positive
convex cone. Assume that v(m) ∈ G0, m ∈N0, and v(m) → v = (vL, . . . , vU) ∈ G0 as m → ∞.
Using Lemma 6.1, there exists 	 ∈N0, such that

∑U
j=L vjγj(	)< 0. Then, there also exists

m ∈N0 such that
∑U

j=L v(m)
j γj(	)< 0 with v(m) = (v(m)

L , . . . , v(m)
U ), contradicting that v(m) ∈ G0.

Hence, G0 is closed. The last statement is immediate from the previous. �
Part of Theorem 6.2 might be found in [8, Theorem 1.4.6]. In general, we do not have

uniqueness of a stationary measure of (�,F) on N0, unless in the case of recurrent CTMCs.
For downwardly skip-free processes, we have L = U = 0, hence, the space of signed invariant
measures is one-dimensional and uniqueness follows, that is, there does not exist a proper
signed invariant measure taking values with both signs.

We end the section with a few results on uniqueness of stationary measures. For this, we
need the following lemma.

Lemma 6.2. Let v = (vL, . . . , vU) ∈R
U−L+1
≥0 be a nonzero generator and assume that ω+ = 1.

Let

ν(	) =
U∑

j=L

vjγj(	), 	 ∈N0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2024.70
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.74, on 18 Jun 2025 at 09:25:28, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2024.70
https://www.cambridge.org/core


18 M. C. HANSEN ET AL.

If, either
ν(	) ≥ 0, 	= n − (U − L), . . . , n, (6.1)

for some n ≥ U − L, or

ν(	) = 0, 	= n − (U − L − 1), . . . , n, (6.2)

for some n ≥ U − L − 1, then

ν(	) ≥ 0, 	= 0, . . . , n. (6.3)

Proof. Since ω+ = 1, then m∗ =ω+ −ω−1 = −ω− = U − L + 1. We use −ω− rather than
U − L + 1 in the proof for convenience. From Lemma A.1, we have ck(	) ≤ 0 for 	 ∈N0 and
0 ≤ k<−ω−, and c−ω− (	)> 0 for 	 ∈N0. The latter follows from �+ = {ω+} and iω+ = 0 in
this case. Furthermore, since ν defines an invariant vector, then from (4.9),

0 =
−ω−1∑
k=0

ν(n − k)ck(n − k) + ν(n +ω−)c−ω− (n +ω−). (6.4)

Assume that (6.1) holds. If n = U − L then there is nothing to show. Hence, assume that n ≥
U − L + 1. By assumption the sum in (6.4) is nonpositive, while the last term is nonnegative
and c−ω− (n +ω− + 1)> 0 as n +ω− = n − (U − L + 1) ≥ 0. Hence, ν(n +ω−) ≥ 0. Continue
recursively for n: = n − 1 until n +ω− = 0. Note that ν(	) = v	 ≥ 0 for 	= L, . . . ,U, in
agreement with the conclusion.

Assume that (6.2) holds. If n = U − L − 1 then there is nothing to prove. For n ≥ U − L, we
aim to show (6.1) holds from which the conclusion follows. By simplification of (6.4),

−ν(n − (U − L))cU−L(n − (U − L)) = ν(n +ω−)c−ω− (n +ω−).

If cU−L(n − (U − L))< 0 then either ν(n − (U − L)) and ν(n +ω−) take the same sign or
are zero. Consequently, (a) ν(	) ≥ 0 for all 	= n +ω−, . . . , n or (b) ν(	) ≤ 0 for all 	=
n +ω−, . . . , n. Similarly, if cU−L(n − (U − L)) = 0 then ν(n +ω−) = 0. Consequently, (a) or
(b) holds in this case too. If (a) holds then (6.3) holds. If (b) holds then (6.3) holds with reverse
inequality by applying an argument similar to the nonnegative case. However, ν(	) = v	 ≥ 0,
	= L, . . . ,U, and at least one of them is strictly larger than zero, by assumption. Hence, the
negative sign cannot apply and the claim holds. �

For n ≥ U, define the (U − L + 1) × (U − L + 1) matrix by

A(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ (n − (U − L − 1))T

‖γ (n − (U − L − 1))‖1
...

γ (n − 1)T

‖γ (n − 1)‖1
γ (n)T

‖γ (n)‖1
1T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where γ (	) = (γL(	), . . . , γU(	)), 1 = (1, . . . , 1), with ‘T ’ denoting transpose. This matrix is
well defined by Theorem 6.1. The rows of A(n), except the last one, has 1-norm one, and all
entries are between −1 and 1.

Theorem 6.3. Assume that there exists a strictly increasing subsequence (nk)k∈N0 , such that
A(nk) → A as k → ∞, with det (A) = 0. Then the following hold.
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Stationary measures of CTMCs with applications to SRNs 19

1. There is at most one stationary measure of (�,F) on N0, say π , with the property

lim
k→∞

π (nk)

‖γ (nk)‖1
= 0. (6.5)

2. If ω+ = 1 and π is a unique stationary measure of (�,F) on N0, then (6.5) holds.

Proof.

(i) Let

σ (n) =
(

π (n − (U − L − 1))

‖γ (n − (U − L − 1))‖1
, . . . ,

π (n)

‖γ (n)‖1

)
,

and let π∗ = (π (L), . . . , π (U)) be the generator of the stationary measure π . We have

A(nk)π∗ =
(
σ (nk)

1

)
→ Aπ∗ =

(
0
1

)
as k → ∞, where 0 is the zero vector of length U − L. Since A is invertible, then

π∗ = A−1
(

0
1

)
.

Consequently, as this holds for any stationary measure with the property (6.5), then π is
unique, up to a scalar.

(ii) According to Proposition 7.1 below, A(n) is invertible and there is a unique nonnegative
(componentwise) solution to

A(n)v(n) =
(

0
1

)
for all n ≥ U. It follows that

Avnk = (A − A(nk))v(nk) + A(nk)vnk = (A − A(nk))v(nk) +
(

0
1

)
→
(

0
1

)
as k → ∞, since ‖v(nk)‖1 = 1. Define

v = A−1
(

0
1

)
,

then v is nonnegative and ‖v‖1 = 1, since v(nk) is nonnegative, ‖v(nk)‖1 = 1 and v(nk) → v
as k → ∞. We aim to show that v is the generator of the unique stationary measure π .

Define an invariant vector νk, for each k ∈N0, by

νk(	) =
U∑

j=L

v(nk)
j γj(	), 	 ∈N0.

We have νk(	) = 0 for all 	= nk − (U − L − 1), . . . , nk. Hence, by Lemma 6.2, νk(	) ≥ 0 for
	= 0, . . . , nk. Fix 	 ∈N0. Then for all large k such that nk ≥ 	, we have νk(	) ≥ 0 and

νk(	) → ν(	) =
U∑

j=L

vjγj(	) for k → ∞.
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20 M. C. HANSEN ET AL.

Hence, ν(	) ≥ 0 for all 	 ∈N0. Consequently, using Lemma 6.1, ν is a stationary measure and
by uniqueness, it holds that ν = π , up to a scaling constant. �

To state the next result, we introduce some notation. Let

I+
j = {n ∈N0 : γj(n)> 0}, I−

j = {n ∈N0 : γj(n)< 0}, j = L, . . . ,U.

If L = U then I+
L =N0 and I−

L = ∅. If L = U then by the definition of γj, I+
j = ∅ and I−

j = ∅
(Theorem 6.1). In general, it follows from Theorem 4.1, Proposition 6.1, and Lemma 6.1, that
I−
j ⊆ ∪i =jI

+
i , ∪U

i=LI+
i =N0, and ∩U

i=LI−
i = ∅. In particular, for U − L = 1, that is, ω− = −2,

then I−
U ⊆ I+

L and I−
L ⊆ I+

U . Below, in the proof of Lemma 6.3, we show these four sets are
infinite. Hence, we may define

r1 = − lim sup
n∈I−L

γL(n)

γU(n)
, r2 = − lim inf

n∈I−U

γL(n)

γU(n)
. (6.6)

Lemma 6.3. Assume that ω− = −2, that is, U = L + 1. It holds that 0< r1 ≤ r2 <∞. A
nonzero measure π is a stationary measure if and only if

π (U)

π (L)
∈ [r1, r2]. (6.7)

Furthermore, a stationary measure π is unique if and only if r1 = r2, if and only if

lim
n∈I−L ∪I−U

π (n)

‖γ (n)‖1
= 0. (6.8)

If this is the case then limes superior and limes inferior in (6.6) may be replaced by limes.

Proof. Let π be a stationary measure, which exists by Proposition 6.1. Then π (n) =
π (L)γL(n) + π (U)γU(n)> 0, which implies that

π (U)

π (L)
>− γL(n)

γU(n)
for all n ∈ I−

L and
π (U)

π (L)
<− γL(n)

γU(n)
for all n ∈ I−

U .

By taking supremum and infimum, respectively, this further implies that

r̃1 = sup

{
− γL(n)

γU(n)
: n ∈ I−

L

}
≤ inf

{
− γL(n)

γU(n)
: n ∈ I−

U

}
= r̃2,

and that π (U)/π (L) is in the interval [̃r1, r̃2]. Note that r̃2 <∞ and r̃1 > 0, since I−
U and I−

L are
both nonempty, using Theorem 6.1. For the reverse conclusion, for any invariant vector π such
that (6.7) holds, we have, using Theorem 4.1,

π (n) = π (L)γL(n) + π (U)γU(n) ≥ 0 for all n ∈N0,

which implies that π is a stationary measure; see Lemma 6.1.
Assume that either r̃1 or r̃2 is attainable for some n ∈N0. Then, there exists a stationary

measure π such that
π (U)

π (L)
= − γL(n)

γU(n)
,
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Stationary measures of CTMCs with applications to SRNs 21

that is, π (n) = π (L)γL(n) + π (U)γU(n) = 0, contradicting the positivity of π ; see Lemma 6.1.
Hence, I−

L and I−
U both contain infinitely many elements, and since neither r̃1 nor r̃2 are attain-

able, then sup and inf can be replaced by lim sup and lim inf, respectively, to obtain r1 and r2
in (6.6). Hence, also I+

L and I+
U are infinite sets, since I−

U ⊆ I+
L and I−

L ⊆ I+
U .

For the second part, the bi-implication with r1 = r2 is straightforward. Assume that π is a
stationary measure, such that π (L), π (U)> 0. Note that

g1 = lim inf
n∈I−L

γU(n)

‖γ (n)‖1
> 0, g2 = lim inf

n∈I−U

γL(n)

‖γ (n)‖1
> 0,

as otherwise π (n) = π (L)γL(n) + π (U)γU(n)< 0 for some large n. For n ∈ I−
L ,

π (n)

‖γ (n)‖1
= π (L)

γL(n)

‖γ (n)‖1
+ π (U)

γU(n)

‖γ (n)‖1
=
(
γL(n)

γU(n)
+ π (U)

π (L)

)
π (L)γU(n)

‖γ (n)‖1
(6.9)

≥ π (L)(g1 − ε)

(
γL(n)

γU(n)
+ π (U)

π (L)

)
≥ 0

for some small ε > 0 and large n. Similarly, for n ∈ I−
U ,

π (n)

‖γ (n)‖1
= π (L)

γL(n)

‖γ (n)‖1
+ π (U)

γU(n)

‖γ (n)‖1
=
(
π (L)

π (U)
+ γU(n)

γL(n)

)
π (U)γL(n)

‖γ (n)‖1
(6.10)

≥ π (U)(g2 − ε)

(
π (L)

π (U)
+ γU(n)

γL(n)

)
≥ 0

for ε > 0 and large n. Taking lim sup over n ∈ I−
L in (6.9) and lim sup over n ∈ I−

U in (6.10),
using (6.8), yields

r1 = − lim sup
n∈I−L

γL(n)

γU(n)
= π (U)

π (L)
,

1

r2
= − lim sup

n∈I−U

γU(n)

γL(n)
= π (L)

π (U)
,

or with lim sup replaced by lim inf. Hence, (6.6) holds with lim sup and lim inf replaced by
lim. It follows that r1 = r2 and that π is unique. For the reverse statement, change the first
inequality sign ≥ in (6.9) and (6.10) to ≤, and (g1 − ε) and (g2 − ε) to 1, and the conclusion
follows. �

7. Convex constrained optimization

When the Markov chain is sufficiently complex, an analytical expression for a stationary
measure may not exist. In fact, this seems to be the rare case. If an analytical expression is
not available, one may find estimates of the relative sizes of π (L), . . . π(U), which in turn
determines π (	), 	≥ 0, up to a scaling constant, by Theorem 4.1. If π is a stationary distribu-
tion, this constant may then be found numerically by calculating the first n probabilities π (	),
	= 0, . . . , n, for some n, and renormalizing to obtain a proper distribution. Here, we examine
how one may proceed in practice.

Theorem 7.1. Assume that (A1)–(A3) hold and, for n ≥ 0, let

Kn =
{

v ∈R
U−L+1
≥0 :

U∑
j=L

vjγj(	) ≥ 0, 	= 0, . . . , n, ‖v‖1 = 1

}
. (7.1)
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Then, Kn = ∅, Kn ⊇ Kn+1, n ≥ 0, and ∩∞
n=1Kn ⊆R

U−L+1
>0 is nonempty and consists of all gen-

erators of nonzero stationary measures of (�,F) on N0, appropriately normalized. In fact,
G0 = ∩∞

n=1Kn with G0 as in Theorem 6.2.

Furthermore, there is a unique minimizer v(n) to the following constraint quadratic
optimization problem:

min
v∈Kn

‖v‖2
2. (7.2)

Moreover, the limit v∗ = limn→∞ v(n) ∈ ∩∞
n=1Kn exists and equals the generator of a stationary

measure π of (�,F) on N0, that is, v∗ = (π (L), . . . , π(U)).

Proof. The sets Kn are nonempty by Proposition 6.1 and obviously nonincreasing: Kn ⊇
Kn+1. Hence, since all Kns have a common element, the intersection ∩∞

n=1Kn is also nonempty.
Lemma 6.1 rules out the fact that the intersection contains boundary elements of RU−L+1

≥0 .

Furthermore, the sets Kn are nonempty, closed, and convex. Since ‖ · ‖2
2 is strictly convex,

there exists a unique minimizer v(n) ∈ Kn for the constrained optimization problem (7.2)[6,
p.137 or Example 8.1 on p.447].

Since the sets Kn are nonincreasing, then v(n) is nondecreasing in 	2-norm: ‖v(n)‖2
2 ≤

‖v(n+1)‖2
2 for all n ≥ 1. Furthermore, since the sets Kn are closed subsets of the simplex and

hence compact, any sequence v(n), n ≥ 1, of minimizers has a converging subsequence v(nk),
k ≥ 1, say v∗ = limk→∞ v(nk) ∈ ∩∞

n=1Kn (the intersection is closed). To show uniqueness, sup-
pose that there is another converging subsequence v(mk), k ≥ 1, such that ṽ∗ = limk→∞ v(mk) ∈
∩∞

n=1Kn and v∗ = ṽ∗. Then, it follows that ‖v∗‖2
2 = ‖̃v∗‖2

2, since the norm is nondecreas-
ing along the full sequence. By convexity of Kn, the intersection ∩∞

n=1Kn is convex and
v∗
α = αv∗ + (1 − α)̃v∗ ∈ ∩∞

n=1Kn for α ∈ (0, 1). By strict convexity of the norm and v∗ = ṽ∗,
then

‖v∗
α‖2

2 <α‖v∗‖2
2 + (1 − α)‖̃v∗‖2

2 = ‖v∗‖2
2, α ∈ (0, 1). (7.3)

Let v(k)
α = αv(nk) + (1 − α)v(mk). By convexity and monotonicity of Kn, we have

v(k)
α ∈ Kmin{nk,mk} for k ≥ 1,

v(k)
α → v∗

α ∈ ∩∞
n=1Kn for k → ∞.

By assumption, ‖v(k)
α ‖2

2 ≥ min{‖v(nk)‖2
2, ‖v(mk)‖2

2}. Hence, ‖v∗
α‖2

2 ≥ ‖v∗‖2
2, contradicting (7.3).

Consequently, v∗ = ṽ∗.
Since v∗ ∈ ∩∞

n=0Kn, then v∗ = (π (L), . . . , π(U)) for some nonzero stationary measure π of
(�,F) on N0. �

If the process is downwardly skip free then L = U and π (L) might be set to 1. Consequently,
π (	), 	≥ 0, can be found recursively from (4.13). Hence, it only makes sense to apply the
optimization scheme for L<U.

The quadratic minimizing function is chosen out of convenience to identify a unique ele-
ment of the set Kn. Any strictly convex function could be used for this. If there exists a unique
stationary measure then one might choose a random element of Kn as any sequence of ele-
ments in Kn, n ∈N, which eventually converges to the unique element of ∩∞

n=1Kn. If there is
more than one stationary measure, different measures might in principle be found by varying
the convex function. In the case two different stationary measures are found, then any linear
combination with positive coefficients is also a stationary measure.
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In practice, the convex constrained optimization approach outlined in Theorem 7.1 often
fails for (not so) large n; see the example given in Section 8. This is primarily because the
coefficients γj(	) become exponentially large with alternating signs, and because numerical
evaluation of close to zero probabilities might return close to zero negative values, hence
violating the nonnegativity constraint of the convex constrained optimization problem. The
numerical difficulties in verifying the inequalities are nonnegative are most severe for large n,
in particular, if π (n) vanishes for large n. To face the problems mentioned above, we investigate
an alternative approach to the optimization problem.

Lemma 7.1. Assume that (A1)-(A3). Define the sets Mn, n ≥ U, by

Mn =
{

v ∈R
U−L+1
≥0 :

U∑
j=L

vjγj(	) = 0 for 	= n − (U − L) + 1, . . . , n, ‖v‖1 = 1

}
.

If Mn = ∅ then there is a unique minimizer w(n) to the following constraint quadratic
optimization problem:

min
v∈Mn

‖v‖2
2.

Moreover, if ω+ = 1 then Mn is a singleton set, and Mn ⊆ Kn for n ≥ U, where Kn is as
in (7.1). Furthermore, if there exists a unique stationary measure π of (�,F) on N0, then
w∗ = limn→∞ w(n) ∈ ∩∞

n=1Kn exists. In particular, w∗ equals the generator of π , that is, w∗ =
(π (L), . . . , π(U)), appropriately normalized.

Proof. Existence of the minimizer follows similarly to the proof of Theorem 7.1. If ω+ = 1
then it follows from Proposition 7.1 below that Mn is a singleton set for n ≥ U. It follows
from Lemma 6.2 that Mn ⊆ Kn. Since w(n) ∈ Mn ⊆ Kn, and ∩∞

n=1Kn contains the generator of
the unique stationary measure π only, then v∗ = limn→∞ w(n) exists and equals the generator
of π . �

We refer to the optimization problem outlined in Lemma 7.1 as the linear approximation
scheme. For ω+ = 1, a solution v(n) to the linear approximation scheme automatically ful-
fills ν(	) =∑U

j=L v(n)
j γj(	) ≥ 0 for all 	= 0, . . . , n. In general, these inequalities need to be

validated.

Proposition 7.1. If ω+ = 1 then Mn, n ≥ U, is a singleton set.

Proof. For n ≥ U, let G(n) be the (U − L + 1) × (U − L + 1) matrix,

G(n) =

⎛⎜⎜⎜⎜⎜⎝
γL(n − (U − L − 1)) γL+1(n − (U − L − 1)) · · · γU(n − (U − L − 1))

...
...

...

γL(n − 1) γL+1(n − 1) · · · γU(n − 1)
γL(n) γL+1(n) · · · γU(n)

1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎠ ,
and let ci(n) be the cofactor of G(n) corresponding to the (U − L + 1)th row and ith column,
for i = 1, . . . ,U − L + 1. Then, det (G(n)) =∑U−L+1

i=1 ci(n), and there exists a unique solution
v(n) to G(n)v = eU−L+1, where eU−L+1 is the (U − L + 1)th unit vector in R

U−L+1, if and only
if det (G(n)) = 0. If this is the case, then by Cramer’s rule,

v(n)
i = ci(n)∑U−L+1

j=1 cj(n)
for i = 1, . . . ,U − L + 1,
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and hence, v(n) ∈R
U−L+1
≥0 if and only if all cofactors have the same sign or are zero. Hence,

we aim to show at least one cofactor is nonzero and that all nonzero cofactors have the same
sign. In the following, for convenience, we say the elements of a sequence a1, . . . , am have the
same sign if all nonzero elements of the sequence have the same sign.

For n ≥ U, define the (U − L + 2) × (U − L + 1) matrix

�(n) =

⎛⎜⎜⎜⎜⎜⎝
γL(n − (U − L)) γL+1(n − (U − L)) · · · γU(n − (U − L))

...
...

...

γL(n − 1) γL+1(n − 1) · · · γU(n − 1)
γL(n) γL+1(n) · · · γU(n)

1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎠ ,

and the (U − L + 1) × (U − L + 1) matrices �	(n), 	= 0, . . . ,U − L, by removing row m =
U − L + 1 − 	 of �(n) (that is, the (	+ 1)th row counting from the bottom). For notational
convenience, noting that the columns of �(n) take a similar form, we write these matrices as

�	(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γj(n − (U − L))
...

γj(n − (	+ 1))
γj(n − (	− 1))

...

γj(n)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 	= 0, . . . ,U − L.

Note that
G(n) = �U−L(n) and �0(n) = �U−L(n − 1). (7.4)

Let �	i (n) be the (U − L) × (U − L) matrix obtained by removing the bottom row and the ith
column from �	(n). Hence, the cofactor C	i (n) of �	(n) corresponding to the (U − L + 1)th
row and ith column is

C	i (n) = (−1)U−L+1+i det (�	i (n)) and CU−L
i (n) = ci(n), (7.5)

i = 1, . . . ,U − L + 1. By induction, we show that the signs of C	i (n), i = 1, . . . ,U − L + 1,
are the same, potentially with some cofactors being zero, but at least one being nonzero.

Induction basis: for n = U, we have

�(U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0
0 0 · · · 0 1
1 1 · · · 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and it follows by tedious calculation that

C	U−L+1−	(U) = ( − 1)	, C	i (U) = 0 for 	 = U − L + 1 − i,
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i = 1, . . . ,U − L + 1 and 	= 0, . . . ,U − L. It follows that the C	i s have the same sign for 	
fixed and all i = 1, . . . ,U − L + 1 (all cofactors are zero, except for i = U − L + 1 − 	).

We postulate that the nonzero elements fulfill

sign(C	i (n)) = (−1)(n−U)(U−L)+	 for n ≥ U,

and 	= 0, . . . ,U − L, i = 1, . . . ,U − L + 1. The hypothesis holds for n = U.
Induction step: Assume that the statement is correct for some n ≥ U. Using m∗ =ω+ −

ω−1 = U − L + 1 and (4.4), we obtain, for 	= 1, . . . ,U − L (excluding 	= 0),

�	(n + 1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γj(n + 1 − (U − L))
...

γj(n + 1 − (	+ 1))
γj(n + 1 − (	− 1))

...

γj(n)
γj(n + 1)

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γj(n + 1 − (U − L))
...

γj(n + 1 − (	+ 1))
γj(n + 1 − (	− 1))

...

γj(n)
U−L+1∑

k=1

γj(n + 1 − k)fk(n + 1)

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, using the linearity of the determinant, we obtain, for 0< 	≤ U − L (excluding
	= 0),

det (�	i (n + 1)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γj(n + 1 − (U − L))
...

γj(n + 1 − (	+ 1))
γj(n + 1 − (	− 1))

...

γj(n)
γj(n + 1 − 	)f	(n + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γj(n + 1 − (U − L))
...

γj(n + 1 − (	+ 1))
γj(n + 1 − (	− 1))

...

γj(n)
γj(n + 1 − (U − L + 1))fU−L+1(n + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= f	(n + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γj(n + 1 − (U − L))
...

γj(n + 1 − (	+ 1))
γj(n + 1 − (	− 1))

...

γj(n)
γj(n + 1 − 	)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ fU−L+1(n + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γj(n + 1 − (U − L))
...

γj(n + 1 − (	+ 1))
γj(n + 1 − (	− 1))

...

γj(n)
γj(n + 1 − (U − L + 1))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= f	(n + 1)( − 1)	−1

∣∣∣∣∣∣∣
γj(n − (U − L − 1))

...

γj(n)

∣∣∣∣∣∣∣
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+ fU−L+1(n + 1)( − 1)U−L−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γj(n − (U − L))
...

γj(n − 	)
γj(n − (	− 2))

...

γj(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= f	(n + 1)(−1)	−1 det (�U−L

i (n)) + fU−L+1(n + 1)(−1)U−L−1 det (�	−1
i (n)),

where the remaining terms from the linear expansion of the determinant are zero. In the com-
putation of the determinant above, we abuse γj(n + 1 − k) for the row vector with the ith
coordinate deleted. For 	= 0, then using (7.4),

det (�0
i (n + 1)) = det (�U−L

i (n)).

The above conclusions result in the following for the sign of the cofactors, using (7.5):

C	i (n + 1)) = f	(n + 1)(−1)	−1CU−L
i (n) (7.6)

+ fU−L+1(n + 1)(−1)U−L−1C	−1
i (n), 0< 	≤ U − L

C0
i (n + 1) = CU−L

i (n). (7.7)

We recall some properties of f	(n). According to Lemma A.1(vi), fU−L+1(n)> 0 for n ≥
U + 1, using i+ = 0 (otherwise zero is a trapping state) and −ω− = U − L + 1. For 0 ≤ 	 <
−ω−, we have sgn(ω− + 	+ 1/2) = −1, and hence, f	(n) ≤ 0 for n ≥ U + 1, according to
Lemma A.1(vii) and 6(viii) in the Appendix. Consequently, the sign of the two terms in (7.6)
are

(−1)(−1)	−1(−1)(U−L)(n−U)+(U−L) = (−1)(U−L)(n+1−U)+	,
( + 1)(−1)U−L+1(−1)(U−L)(n−U)+	−1 = (−1)(U−L)(n+1−U)+	;

hence, the sign of C	i (n + 1) corroborates the induction hypothesis. The sign of the term in
(7.7) is

( − 1)U−L( − 1)(U−L)(n−U) = ( − 1)(U−L)(n+1−U)+0,

again in agreement with the induction hypothesis.
It remains to show that at least one cofactor is nonzero, that is, CU−L

i (n) = 0 for at least one
1 ≤ i ≤ U − L + 1 and n ≥ U. Let an,	 =∑U−L+1

i=1 |C	i (n)|. From (7.4) and (7.6), we have

an+1,	 = |f	(n + 1)|an,U−L + |fU−L+1(n + 1)|an,	−1, 1 ≤ 	≤ U − L, (7.8)

an+1,0 = an,U−L,

for n ≥ U. We show by induction that an,	 = 0 for n ≥ U and 0 ≤ 	≤ U − L. Hence, the desired
conclusion follows. For n = U, we have aU,	 = 1 for all 	= 0, . . . ,U − L. Assume that an,	 =
0 for 	= 0, . . . ,U − L and some n ≥ U. Since fU−L+1(n + 1)> 0 for n + 1 ≥ U + 1, then it
follows from (7.8) that an+1,	 = 0 for 	= 0, . . . ,U − L. The proof is completed. �

8. Examples

To end, we present some examples using the linear approximation scheme and the convex
constrained optimization approach. We use the criteria in [28, Theorem 7] to check whether
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a CTMC with polynomial transition rates is positive recurrent, null recurrent, transient and
nonexplosive, or explosive. These properties hold for either all PICs or none, provided the
transition rate functions are polynomials for large state values, as in mass-action kinetics [28,
Theorem 7].

We have made two implementations of the numerical methods. One in R and one in Python
(only mass-action kinetics) with codes available on request. In all examples, the code runs in
a few seconds on a standard laptop. The two codes agree when run on the same example. We
have not aimed to optimize for speed. In Figures 1–5, ‘State x’ refers to the state of the original
Markov chain, and ‘Index n’ refers to the translated Markov chain, the index of, for example,
γ s

j (n). The index s refers to the irreducibility class in Proposition 7.1.

Example 8.1. Consider the SRN with mass-action kinetics,

S
κ1−→ 2S

κ2�
κ4

3S
κ3−→ S.

We have ω+ = 1 and ω− = −2 with s = 1 (zero is a neutral state), and L1 = 0,U1 = 1.
Furthermore, a unique stationary distribution exists since the SRN is positive recurrent for
all positive rate constants [28, Theorem 7], and π1(x) = π (1 + x). As the reaction network is
weakly reversible (the reaction graph consists of a finite union of disjoint strongly connected
components), then it is complex balanced for specific choices of rate constants, yielding a
Poisson stationary distribution [2]. This is the case if and only if κ1(κ3 + κ4)2 = κ2

2κ3.

Here, we focus on the stability of the numerical approximations using the linear approxima-
tion scheme and convex constrained optimization for a single set of parameters, κ1 = 40, κ2 =
22, κ3 = κ4 = 1; see Figure 4. Convex constrained optimization fails for n> 18 in (7.2) due to
exponentially increasing γ 1

j (	) values with alternating signs. In contrast, the linear approxima-
tion scheme is quite robust and returns accurate estimates for the generating terms π1(0), π1(1)
(= π (1), π (2)), even for n = 70. However, in this situation, inaccurate and negative probability
values for large state values are returned; see Figure 4. The estimated values of π (32) and π (33)
are zero to the precision of the computer and the first negative estimate is π (34) = −8.4 · 10−13.
From then on, the estimated probabilities increase in absolute value. The estimated generating
terms for the convex constrained optimization problem with n = 18 and the linear approxi-
mation scheme with n = 25 deviate on the seventh decimal point only. In the latter case, the
estimates remain unchanged for 25 ≤ n ≤ 70 for up to seven decimal points, despite the fact
that negative probabilities are found for large n.

It is remarkable that, for n = 70 with γ 1
j (n) of the order e50 ≈ 1022, we still numerically find

that Mn is a singleton set, as postulated in Proposition 7.1, despite the fact that the solution gives
rise to instabilities in calculating the probabilities. Also the numerical computations confirm
that the limit in (6.8) in Lemma 6.3 is zero, as γ 1

j (n) increases beyond bound.
The following example demonstrates that both the linear approximation scheme and the

convex optimization approach can be efficient in practice for ergodic CTMCs.

Example 8.2. For the SRN with mass-action kinetics

S
κ1−→ 3S

κ2−→ 2S
κ3−→ 4S

κ4−→ S, (8.1)

we obtain ω+ = 2, ω− = −3, and s = 1, L1 = 0, U1 = 2, such that there is one PIC with state
space N. Despite the fact that Proposition 7.1 does not apply (as ω+ = 1), numerically we find
that Mn is a singleton set. Using the linear approximation scheme or the convex optimization
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FIGURE 1. (a) The stationary distribution calculated using the linear approximation scheme with n = 25
(red dots) and convex constrained optimization with n = 18 (black circles). The latter results in wrong
probability estimates for the states x = 18 and x = 19. (b) The stationary distribution calculated using the
linear approximation scheme with n = 70 (red dots). The orange subfigure is a blow up of the first 50
states for n = 70, normalized to their sum, indicating that the correct form of the distribution is retrieved
even in the presence of instability, and the onset of instabilities. (c) Approximate values of π1(L1) and
π1(U1) as a function of n found using the linear approximation scheme. Convergence is very fast. (d) The
values of γ 1

L1
(n) and γ 1

U1
(n) for n = 0, . . . , 70. The coefficients are plotted as ϒ(x) = log (x + 1) for x ≥ 0

and ϒ(x) = − log (−x + 1) for x ≤ 0. Dots are connected by lines for convenience.

approach, we obtain a rather quick convergence; see Figure 2. In this case, the coefficients
γ 1

j (	), j = 0, 1, 2, decrease fast towards zero, taking both signs. Both algorithms run effi-
ciently even for large n as the coefficients vanish. Figure 2(d) shows γ (n)/‖γ (n)‖1. There
appears to be a periodicity of U1 − L1 + 1 = 3, demonstrating numerically that the matri-
ces A(3n), A(3n + 1), and A(3n + 2), n ∈N0, each converges as n → ∞; see Theorem 6.3.
The generator recovered from either of the three sequences A(3n), A(3n + 1), and A(3n + 2)
agree to high accuracy, and agree with the generator found using the linear approximation
scheme.
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FIGURE 2. (a) Stationary distribution for (8.1) with κ1 = 50, κ3 = 5, and κ2 = κ4 = 1. The linear
approximation scheme is shown in red, while the convex constrained optimization scheme is over-
laid in black. Dots are connected by lines for convenience. (b,c) Convergence of the generating terms
is fast as γ s

j (	) decreases fast to zero with 	 becoming large. (d) Shown here is γ (3n)/‖γ (3n)‖1
(red), γ (3n + 1)/‖γ (3n + 1)‖1 (green), and γ (3n + 2)/‖γ (3n + 2)‖1 (blue). The numerical computa-
tions clearly indicate periodicity. Note the fact that despite convergence has not been achieved for the
simulated values of n, the generators recovered from the three series A(3n), A(3n + 1), A(3n + 2) agree
with those found from the linear approximation scheme; see Theorem 6.3. Dots are replaced by lines for
visual reasons.

Although, in theory, it seems to make sense to use the linear approximation scheme only for
stationary measures for which π (n)/‖γ (n)‖ is vanishing, in practice, it seems that the linear
approximation scheme still captures the feature of a stationary measure with nonvanishing
π (n)/‖γ (n)‖1 decently, when the states are notr too large.

Example 8.3. Computing an unknown distribution. We give an example of a mass-action SRN,

0
10−→ S

12−→ 2S
1−→ 6S, 2S

2−→ 0,
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FIGURE 3. (a) The stationary measure computed with the linear approximation scheme and n = 150. For
large states, significant errors occur in the estimation. (b) The generating terms.

which is null recurrent by the criterion in [28, Theorem 7], and hence, there exists a unique
stationary measure due to [23, Theorem 3.5.1] and [7, Theorem 1]. In this case, ω1 = −2 and
ω+ = 4. Furthermore, s = 0 and L0 = 0, U0 = 1. We apply the linear approximation scheme
to the SRN with n = 150 and find that Mn is a singleton set, despite the fact that ω+ = 1;
see Proposition 7.1. For large states, the point measures are considerably far from zero; see
Figure 3. Moreover, instabilities occur. The inaccuracies in the values are due to small inac-
curacies in the estimation of the generating terms and the large coefficients γj(	) that increase
exponentially.

We know from Corollary 5.4 that there exists a unique stationary measure for CTMCs with
polynomial transition rates if ω− = −2 and ω+ = 1, it remains to see if such a stationary mea-
sure is finite. With the aid of our numerical scheme, we might be able to infer this information
in some scenarios.

Example 8.4. Computing an unknown measure. Consider the following SRN,

10S
5000−→ 12S

10−→ 13S
1−→ 16S, 13S

1−→ 10S.

It is explosive by the criterion in [28, Theorem 7]. We have s = 10, ω− = −3, ω+ = 3, L10 = 0,
and U10 = 2. The linear approximation scheme retrieves what appears to be a stationary
distribution; see Figure 4. The numerical computations confirm that the limit in (6.5) in
Theorem 6.3 is zero, pointing to the stationary distribution being unique.
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FIGURE 4. The stationary measure of an explosive SRN, the generating terms, and the coefficients γ s
j (	).

We end with an example for which there exists more than one stationary measure.

Example 8.5. Consider the SRN with reactions 0
λ1−→ S, 2S

λ−2−→ 0, and

λ1(0) = λ1(1) = 1, λ1(x) =
⌊

x

2

⌋2

, x ≥ 2,

λ−2(0) = λ−2(1) = 0, λ−2(x) =
⌊

x + 1

2

⌋−2

, x ≥ 2.

Then, (A1)–(A3) are fulfilled with ω− = −2, ω+ = 1, s = 0, L0 = 0, U0 = 1 (so π0 = π ). From
Corollary 5.3 with x = U0 + 2 = 3,

Qn(3) =
n∏

i=0

λ1(2 + 2i)λ−2(3 + 2i)

λ1(3 + 2i)λ−2(4 + 2i)
= 1,

H(3) =
∞∑

n=0

1

(n + 1)2
+ 1

(n + 2)2
= −1 +

∞∑
n=1

2

n2
= π2

3
− 1<∞.
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FIGURE 5. (a) The logarithm of the stationary measure with φ∗ = 2.67. This value is in the upper end of
the estimated interval [2(3), 1(3)]. The red line is the curve fitted to the log measure of the even states,
using regression analysis. The stationary measures retrieved using the linear approximation scheme in
Section 7 are visually identical to the plotted measure, not shown. (b) The difference in log (π (x)) between
the measure with φ∗ = 2.00 (in the middle part of the interval) to that with φ∗ = 2.67 (blue: even states;
light blue: odd states), and the log measure between the measure with φ∗ = 1.54 (in the lower end of
the interval) to that with φ∗ = 2.67 (red: even states; orange: odd states). An alternating pattern emerges.
(c) The generating terms estimated for different values of n, with red (even states)/orange (odd states)
showing π (L0) and blue (even states)/light blue (odd states) showing π (U0). (d) The normed measure,
π (n)/‖γ (n)‖1 for different values of φ∗: 2.67 (red: even states; orange: odd states), 2.00 (blue: even
states; light blue: odd states) and 1.54 (olive: even states; green: odd states). Dots are replaced by lines
for visual reasons.

Consequently, there is not a unique stationary measure of (�,F) on N0. Numerical computa-
tions suggest that [2(3), 1(3)] ≈ [1.5351, 2.6791], using (5.7) with k = 700. See Corollary
5.3 for a definition of 1, 2.

In the following, we explore the stationary measures using the theory of Section 5.2 and
compare it to results obtained from the linear approximation scheme. For any stationary
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measure π , by definition of φ(x) and φ(x)< h(x), we have, for x ≥ 3,

π (x)

π (x − 1)
=λ−2(x − 1)

λ−2(x)

1

φ(x)
>
λ−2(x − 1)

λ−2(x)

1

h(x)
=
(⌊x − 1

2

⌋⌊x + 1

2

⌋)2

,

hence,

π (x)>C
(x!)4

16x
, x ≥ 0,

for some constant C> 0, and π is not a distribution. This is shown in Figure 5(a) for the loga-
rithm of π (x) with φ∗ = 2.67, using Corollary 5.3. The red line is a fitted curve to log (π (x)) for
the even states: log (π (2x)) ≈ 3.504 + 2.009x log (x) − 3.429x, x ≥ 2. The errors between true
and predicted values are numerically smaller than 0.1 for all even states. Hence, the measure
appears to grow super-exponentially fast. The function log (π (x)) for the odd states grows at a
comparable rate as that for the even states, but not with the same regularity.

Additionally, we computed the difference in log (π (x)) for different values of φ∗, showing
again a distinction between odd and even states; see Figure 5(b).

We used the linear approximation scheme to estimate the generating terms (which we
know are not uniquely given in this case). Also here, an alternating pattern emerges with
even indices producing the generator (π (L0), π (U0)) ≈ (0.3764, 0.6235) (n = 100), while odd
indices produce the generator ≈ (0.4222, 0.5777) (n = 101). For each n, a unique solution
is found. Computing the corresponding φ∗ = φ(U0 + 2) yields another approximation to
[2(3), 1(3)], namely [1.5240, 2.7161], which is slightly larger than the previous approxi-
mation, [1.5351, 2.6791]. By nature of the latter estimate, the first coordinate is increasing in
n, while the second is decreasing in n, hence, the latter smaller interval is closer to the true
interval [2(3), 1(3)] than the former. Figure 5(c) also shows the estimated generating terms
for different values of n, providing a band for π (L0) and π (U0) for which stationary measures
exist, in agreement with Lemma 6.3.

Finally, we compute the ratio of π (n) to ‖γ (n)‖1 for different values of φ∗, and observe that
there appears to be one behavior for odd states and one for even. While one cannot infer the
large state behavior of the ratios in Figure 5(d) from the figure, it is excluded by nonuniqueness
of the measures, that they both converge to zero; see Lemma 6.3.

Example 8.6. Consider the SRN with non-mass-action kinetics

0
λ1�
λ−1

S, 2S
λ−2−→ 0,

with transition rates given by

λ1(x) = 2x, x ≥ 0,

λ−1(0) = 0, λ−1(1) = 2, λ−1(x) = 2 · 4x−1 − 2x, x ≥ 2,

λ−2(0) = λ−2(1) = 0, λ−2(x) = 2 · 4x−1, x ≥ 2.

For this SRN, ω− = −2, ω+ = 1, s = 0, L0 = 0, and U0 = 1. Hence, the conditions of
Proposition 7.1 are satisfied. The underlying CTMC is from [22], where it is shown that
ν(x) = ( − 1/2)x+1 for x ∈N0 is a signed invariant measure. This measure has generator
(ν(0), ν(1)) = ( − 1/2, 1/4). The space of signed invariant measures is U0 − L0 + 1 = 2-
dimensional, and a second linearly independent signed invariant measure has generator (1,0).
On the other hand, by the Foster–Lyapunov criterion [21], the process is positive recurrent,
and hence, admits a stationary distribution. Numerical computations show that the stationary
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distribution is concentrated on the first few states x = 0, . . . , 3. The uniqueness of the station-
ary distribution is also confirmed by Corollary 5.3 in that H(U + 2) = H(3) = ∞ by a simple
calculation.

Appendix A.

Lemma A.1. Assume that (A1)–(A3) hold. Then the following assertions hold.

(i) B0 = {ω−}, ω− ∈ Bk for 0 ≤ k<−ω−, and ω+ ∈ Bk for ω− ≤ k ≤ m∗.

(ii) c0(	)< 0 for 	 >U and c0(	) = 0 for 	≤ U.

(iii) ck(	)> 0 for −ω− ≤ k ≤ m∗ and 	≥ iω+ . Generally, ck(	) ≥ 0, 	 ∈N0.

(iv) ck(	)< 0 for 0 ≤ k<−ω− and 	≥ iω− = U + 1. Generally, ck(	) ≤ 0, 	 ∈N0.

(v) If ck(	)> 0 then ck(	+ 1)> 0, and similarly, if ck(	)< 0 then ck(	+ 1)< 0 for k ∈
{0, . . . ,m∗} and 	 ∈N0.

(vi) fk(	)> 0 for −ω− ≤ k ≤ m∗ and 	− k ≥ iω+ .

(vii) fk(	)< 0 for 0 ≤ k<−ω− and 	− k ≥ iω− = U + 1.

(viii) If fk(	)> 0 then fk(	+ 1)> 0, and similarly, if fk(	)< 0 then fk(	+ 1)< 0 for k ∈
{0, . . . ,m∗} and 	 >U.

Proof. (i) Since ω− ≤ −1, we have from (4.7),

B0 = {ω ∈� | (ω− + 1
2

)(
ω−ω− 1

2

)
> 0
}= {ω ∈� |ω≤ω−} = {ω−}.

For −ω− ≤ k ≤ m∗, we have k′ =ω− + k + 1/2> 0 and ω− k′ ≥ω− (ω− + m∗ + 1/2) =
ω−ω+ + 1/2> 0 if ω=ω+. Hence, ω+ ∈ Bk. For 0 ≤ k<−ω−, we have k′ =ω− + k +
1/2< 0 and ω− k′ ≤ω− (ω− + 1/2)< 0 if ω=ω−. Hence, ω− ∈ Bk. (ii) Since sgn(ω− +
1/2) = −1, then for 	 >U = iω− − 1, we have c0(	) = −λω− (	)< 0; see (4.6). Likewise, for
	≤ U.(iii, iv) The sign follows similarly to the proof of (ii). Using (i), the conditions on 	
ensure that λω+(	)> 0 and λω−(	)> 0, respectively, yielding the conclusions. (v) It follows
from (A2). (vi)–(viii) Similar to (iii) and (iv) using (4.5) and (4.7). �

For a matrix D = (dij) ∈R
n×n, the jth column, j = 1, . . . , n, is weakly diagonally dominant

(WDD) if |djj| ≥∑i =j |dij| and strictly diagonally dominant (SDD) if |djj|>∑i =j |dij|. In par-
ticular, a matrix is WDD if all columns are WDD. A WDD matrix is weakly chain diagonally
dominant (WCDD) if for each WDD column, say j, which is not SDD, there exists an SDD
column k such that there is a directed path from vertex k to vertex j in the associated digraph.
Every WCDD matrix is nonsingular [5].

Lemma A.2. Assume that (A1)–(A3) hold. Then, the row echelon form G of H, as defined in
(4.8), exists.

Proof. Recall that

Hm,n = δm,n − λ(m−n)(n)∑
ω∈� λω(m)

, m = 0, . . . , L − 1, n = 0, . . . ,U − 1.

Note that if ω<−m then m< iω and, hence, λω(m) = 0. Therefore, we might replace∑
ω∈� λω(m) by

∑∞
k=−m λk(m) in Hn,m.
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Define am,n = λ(m−n)(n) for n,m ∈Z. Then the row echelon form −H restricted to its first
L columns is invertible, that is, if⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − a0,1∑∞
k=0 ak,0

. . . − a0,L−1∑∞
k=0 ak,0

− a1,0∑∞
k=0 ak,1

1 . . . − a1,L−1∑∞
k=0 ak,1

...
...

. . .
...

− aL−1,0∑∞
k=0 ak,L−1

− aL−1,1∑∞
k=0 ak,L−1

. . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is invertible. Multiplying the above matrix by the invertible diagonal matrix

diag

( ∞∑
k=0

ak,0,

∞∑
k=0

ak,1, . . . ,

∞∑
k=0

ak,L−1

)
on the left side and its inverse on the right side gives a column diagonally dominant matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − a0,1∑∞
k=0 ak,1

. . . − a0,L−1∑∞
k=0 ak,L−1

− a1,0∑∞
k=0 ak,0

1 . . . − a1,L−1∑∞
k=0 ak,L−1

...
...

. . .
...

− aL−1,0∑∞
k=0 ak,0

− aL−1,1∑∞
k=0 ak,1

. . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that
∑∞

k=1 ak,0 =∑∞
k=1 λk(0)> 0. Furthermore, by (A2) the following property holds:

am,n > 0 implies that am+1,n+1 > 0 for any m, n ∈Z, or by contraposition, am+1,n+1 = 0
implies that am,n = 0 for any m, n ∈Z. Hence,

∞∑
k=1

ak+L−1,L−1 =
∞∑

k=L

ak,L−1 > 0,

and therefore,
L−1∑
k=0

ak,L−1 <

∞∑
k=0

ak,L−1.

Consequently, the Lth column sum of A is positive, implying A is a WDD matrix with a SDD
column L.

By Lemma A.3, A is invertible, and hence, the row reduced echelon form exists. �
Lemma A.3. Let n ∈N and assume that D is an n × n matrix, such that

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − d0,1∑∞
k=0 dk,1

. . . − d0,n−1∑∞
k=0 dk,n−1

− d1,0∑∞
k=0 dk,0

1 . . . − d1,n−1∑∞
k=0 dk,n−1

...
...

. . .
...

− dn−1,0∑∞
k=0 dk,0

− dn−1,1∑∞
k=0 dk,1

. . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where di,j ≥ 0 for i ∈N0, j = 0, . . . , n − 1,
∑∞

i=1 di,0 > 0, and di+1,j+1 = 0 implies that di,j = 0
for any i ∈N0, j = 0, . . . , n − 2. Then D is WCDD, and thus, nonsingular.
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Proof. Number rows and columns from 0 to n − 1. If n = 1 then the statement is trivial.
Hence, assume that n> 1.

Fact 1. If column j> 0 sums to zero then column j − 1 sums to zero. Indeed, that column j
sums to zero is equivalent to

∑∞
i=n di,j = 0, which by the property of di,j, implies that

∞∑
i=n

di−1,j−1 = 0. (A.1)

Hence, also
∑∞

i=n di,j−1 = 0 and column j − 1 sums to zero. Consequently, if column j is WDD,
but not SDD, then all columns 0, . . . , j are WDD, but not SDD.

Fact 2. If column j> 0 sums to zero then from (A.1) it holds that dn−1,j−1 = 0. Inductively,
using in addition fact 1, di,k = 0 for i − k ≥ n − j, corresponding to a lower left triangular corner
of size j. �
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