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AND NONHOMOGENEOUS DELAY DIFFERENTIAL EQUATIONS
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Abstract

In this paper we consider the (non)oscillation properties of two general nonhomogeneous
nonlinear delay differential equations of order 2M

( N J D"[r(()D"y(t)]±y,(0/[ ' .y ,W] = O(l),

using as background and motivation the techniques previously applied to the associated homogene-
ous delay differential equations H+ and H . The equations N+ and JV_ are each reduced to
homogeneous form by the introduction of transformations u(l)= y(t)- R(f)and v(t) = R(t)- y(f),
where R(t) is a solution of the associated nonhomogeneous differential equation (N). We first
extend certain results for the equation H* and then develop a classification of the positive solutions
of equation H . Using this classification and the one developed by Terry (1974) for H» we develop a
natural classification of the positive solutions of N* and N_ according to the sign properties of the
derivatives of u(t) and v(t). For each choice of R(t), it is seen that there are 2n + 1 types of positive
solutions of N+ or N_. An intermediate Riccati transformation is employed to obtain integral criteria
for the nonexistence of some of these solutions. Analysis of the Taylor remainder results in sufficient
conditions for the nonexistence of other such solutions.

The purpose of this paper is to discuss the oscillatory and nonosciUatory
behavior of solutions of the nonlinear delay differential equations of order In:

(N+) D"[r(t)D"y(t)] + yT(/)/[r, yT(r)] = O(0

and

(N-) D"[r(t)D"y(t))-yT(t)f[t,yr(t)]=Q(t),

where Q(t)^O, 0<m Sr(t)^M, yr(t) = y[t - -r(f)] and Og r(t)< t. Through-
out the paper f(t, u) is assumed to satisfy the following three hypotheses:

(i) f(t, u) is a continuous real valued function on [0, °°) x R, R = ( - oo, oo);
(ii) for each fixed f G [0, =»), f(t, u) < f(t, v) for 0 < u < v; and
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[2] Differential equations 283

(iii) for each fixed t G [0,«), f(t, u) > 0 and f(t, u) = f(t, - u) for u ̂  0.
Before considering the nonhomogeneous equations N+ and N_ we first review
and extend some results concerning the associated equations

y40] = 0 and

D"[r(0D-y(f)] - yr(t)f[t, yT(0] = 0.

A solution y (/) of H+, H , N+ or N is said to be oscillatory on [a, o°) if for
each a > a, there exists a /3 > a such that y(/3) = 0; it is called nonoscillatory
otherwise. Following Terry (1974), we say that a solution of H+ is of type B, if for
sufficiently large t, yk(t)>0 for k = 0, • • • , 2 / + 1 and (-l)k+lyk(t)>0, k =
2/ + 2, • • • ,2n - 1 where

f D"y(f), k = 0 , • - , n - l and
yt(0 =

[Dk"[r(t)Dny(t)], k = n, • • -,2n - 1.

For definiteness, we say that y(t) is of type By on [To,°°) if the y t (0 have the
appropriate sign properties for t s T,,. It has been shown in Terry (1974) that a
positive solution of H+ is necessarily of type B, for some / = 0, • • - , « - 1.
Moreover, under the assumption that 0 g r ( f ) S T < °°, the following lemmas
were proved:

LEMMA 1.1. Let y(t) be a Brsolution of H+ on [To,°°). Then there exist
positive constants Nk,k-, such that

(t - r,)y* (0 S Nk,k_,yk_,(f), k = 1, • • •, 2j + 1

for i s r , = To+T.

LEMMA 1.2. Let y(f) fee a Brsolution of H+. Then there exist constants
K,>0 and u > 0 such that

for t a u.

> K ; -
y,(0 = "

In an analogous manner we may define a solution of H to be of type
5 S , ( 0 ; S / g n - l ) if for t sufficiently large, y k ( r )>0 , k = 0, • • • ,2j and
( - l ) k y i ( r ) > 0 , k =2j + !,••• ,2n-l. A solution is of type $„ if yk(t)>
0, • • •, 2n — 1 for large /. We observe that when n =2, r(t) = 0 and r(t) = 1, the
solutions of type S80 reduce to those investigated in Wong (1969), where they
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were referred to as proper solutions of type I. The solutions of type 38i and S82

were collectively referred to as proper solutions of type II. It is easily seen that a
positive solution of H is necessarily of type 38/ for some / = 0, • • •, n and that
the following analogues of Lemmas 1.1 and 1.2 can be derived when 1 S / S
n - 1 .

LEMMA 1.1.' Let y(r) be a SSj-solution of H on [T(),°°). Then there exist
positive constants 17 ,,,/<_, such that

( r - T O y t C O ^ T j ^ - ^ - . f r ) , k = l , - - , 2 ;

for [ 2 T , = To+T.

LEMMA 1.2.' Let y(t) be a 3br solution of H . Then there exists constants
K, > 0 and t, > 0 such that

§ u.

K ; = n .
y,(0

The proof of Lemma 1.1' depends only on the technique of integration by
parts and the definition of a 39;-solution and is an imitation of the proof of
Lemma 1.1. Moreover, the proof of Lemma 1.2' follows from Lemma 1.1' in the
same manner that Lemma 1.2 followed from Lemma 1.1 in Terry (1974).

In Section two the basic lemmas given here are extended to the case where
r(f) is unbounded in a prescribed manner. The resulting lemmas are then used to
obtain integral criteria for the nonexistence of solutions of H+ of type Bt as well
as for the oscillation of all solutions of H+. Section three provides sufficient
conditions for the nonexistence of 5#,-solutions of H-. In Sections four and five
we let R(t) be a solution of the nonhomogeneous differential equation

for each choice of R(t), the positive solutions of N+ or N- may be classified
according to 2n + 1 types. The methods of the previous sections are then
employed to exclude some of these solutions. If, for a specific choice of R(t),
conditions can be given to exclude all 2n + 1 types, we can conclude that N+ (or
N-) has no positive solutions. We note that even when this is not possible the
exclusion of some of the solutions will necessarily give information concerning
the asymptotic behavior of the remaining types. With each choice of R(t)
additional information is obtained concerning the behavior of the functions yk (t)
for large /. The results are valid for ordinary differential equations as well and
are applied to show the nonexistence of bounded positive solutions of certain
equations or to show that bounded positive solutions tend to zero ultimately.
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[4] Differential equations 285

The homogeneous equation H+ has been studied by Terry and Wong (1972)
when n = 2 and by Terry (1974) for arbitrary n. A slightly different form of H+
has been considered by Ladas (1971b) when r(f)= 1- An initial investigation of
the oscillation and separation properties of the nonhomogeneous equation is due
to Burton (1952) for the case r(t) = 0, n = 1 and f(t, u) = p(t)u(t). More recent
studies include those by Howard (to appear) for the second order differential
equation and by Kartsatos (1971) and Kartsatos (1972) in the n-th order case
when the forcing term is assumed to be small or periodic.

Since submitting the first draft of this paper, additional papers on
nonhomogeneous delay differential equations have been authored by Kusano
(1973), Kusano and Onose (1974), Singh (to appear), Singh and Dahiya (to
appear) and others.

In this section we extend the basic lemmas of section one to the case where
lim,_«,T(r) = lim,_«[f - r{t)\ = °°. Specifically, r(f)is assumed to satisfy either

(Tl) 0 g T ( ( ) S / i ( , 0 S ^ < l or

(T2) 0^T(t)S(ite,0S^ <°° and 0^/3 <1.

LEMMA. 2.1. Suppose r(t) satisfies (Tl) or (T2) and that y(t) is a
Brsolution of H+ on [To,°°). Then there exist constants NKk-,>0 such that
(f-r,)yk(0=;Vk.*->y*-i(0 for ( gT , and tyk(t)S 2Nk.k-,yk-,(t) for (S2T,,
where

T, g min {t g To: t - r(t) g To for t g T,}.

PROOF. Suppose that y(f) is a solution of H+ of type Bt on [To,°°). If r(t)
satisfies (Tl), then t - T ( ( ) ^ (1 - M)'- O° the other hand, if r(t) satisfies (T2),
then

Let e be chosen so that 0< e < 1. Since

lim-

t'~p- IJL g ( l - e)tl~" for t sufficiently large. Hence, there is a T* g Tosuch that
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for t g TV It follows that there is a T, g T* such that t - r(f) g To for t g T,.
For the assumption (T2), T, = max(7^,(1 - e^'To). For (Tl), T, = (1 - /x)"T0.
The proof given in Terry (1974) is now valid verbatim with the estimates holding
for t g Ti. As before, we obtain the intermediate inequalities

(t - T,)yk(O g N*.t-,yt-,(r), k = 1, • • •, 2/ + 1

for f g Ti.
We note that the estimates on the constants Nkk_i are the same as given in

Terry (1974) since the estimates are obtained as part of the proof.

LEMMA 2.2. Let y(t) be a Brsolution of H+. Let i be an integer ( O ^ i g 2 / )
and r(t) satisfy (T2) or (Tl), where /J, < [ m X , - l + l ]"1 , if n is odd, y g
(n - l)/2 and i = n - 1; /u. < [N, + i,,+ I)"1)"1, otherwise. Then there exist positive
constants K, and U such that

y,r(t)^KMt),t*t, ( i = 0 , ••-,2j).

PROOF. Let y(t) be a By-solution of H+ on [To,°°). Suppose «V n - 1 if n is
odd. Then y(t), yr(t), yk(t)(k = 1, • • - ,2/ + 1) are all positive for t g T, (chosen
as in Lemma 2.1). Since T ( ( ) ^ 0 , y.T(0 = y,[f - r(t)] g yt(t) for i = 0, •••,2j.
Moreover, s - T, g t - r(t) - T, for any s in the interval / T ( 0 = [t - r(t), t]. An
application of Lemma 2.1 and a mean-value theorem shows that there is an
s £ /T(f) such that

y,(0 l

-iyi+Xit-T{t)-Ti-

We first consider the condition (Tl). Suppose that O g r ( l ) S fit,
[Ni+hi+ I]"1. Then we define 8 by

where 0< S < [Ni+hi+ I]"1 < 1. Let a > 1 and define e >0 by

~ aeNi+i,!
= Tiv

It follows that

0 < as = -
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[6] Differential equations 287

This expression is of the form b28(a + b8)~\ where a = Ni+Ui and b = a + 1.
Since b8 < 1, abS < a. Also, since b = a + 1,

/>2S = fc(a + 1)5 = bS + abS<bS+a

and a t = b28(a + bSy1 < 1. Since a > 1, e < a"1 < 1.
For this choice of e and for t sufficiently large (t § f,)

=
- T, - W l + M ( l -n)t-Tt (l-n)[t- TJ(1 -

= I " + 1 1 l - e l - ^ '

T h e n

1 - ae , y^(s) _ 1 - ae
+ ( l ) T~ N

It follows that

and we may take K, = 1 — (1 — ae)/(l — e).
If n is odd, /' g (n - l)/2 and i = n - 1,

-I*-*)-* s — Ti m

we may repeat the procedure above replacing N i t l i i by w"'iVn „_, and thus
obtain the proof of the second assertion.

Now suppose T(<) satisfies (T2). Let ei and e2 be chosen so that 0 < e, < 1,
i = 1,2. Since lim,^»[f-T(O] = °°, we have f - T ( f ) - T, g (1 - e,)[f - r(r)]for r
sufficiently large. Since 0 S /3 < 1, lim ,_„ ?'"p = «= so that r1^ - /u, g (1 - e2) <

1"^

for f sufficiently large. Thus

t-T(0g(-/xrs = r p [ / l - p - / u , ] s ( 1 - e2)f.

Hence,

- T(r)- T, ~ (1 - e,)[r -

- c- \-nw-p)
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288 Raymond D. Terry [7]

We now state an extended version of Theorem 2.5 of Terry (1974), which
was previously proved for T(()gfl and bounded.

THEOREM 2.3. Let k be an integer (k = 0, • • •, n - 1). Let T(J) satisfy (T2)
or (Tl) with

iu < [m 'N„,„-, + I]"1, if n is odd and k =*—-—*•

or

M < [N2k+t.2k+ l p 1 , otherwise.

Suppose that for all constants C > 0

{~ t2kf(t,Ct2k)dt= +oo.

Then H+ has no solutions of type B, (r = k, • • •, n - 1).

The proof is accomplished by using the intermediate Riccati transformation
z(t)= u2n-i(t)u2k(t) and is the same as in Terry (1974) except for the use of
Lemmas 2.1 and 2.2 instead of Lemmas 1.1 and 1.2. The crucial step of the proof
is the consideration of the term u2k, T(f )u2k(t). In the event that r(t) satisfies (Tl)
with 0 g /̂  g [N2k+i,2k + I]"1, we may conclude by Lemma 2.2 that this term is
bounded away from zero.

In attempting to eliminate B, -solutions, where j § k + 1, we are led to
consider the term u2i,J(t)u2f(t). We note, however, that if y(t) is a Bk-solution of
H+ and k^ (n — l)/2, then we may take N2k+i,2k = 1: for in this case y2k+i(f) is a
positive decreasing function of t for t g 7\ and an integration from Tx to t shows
that

= I y2*+i(
JT,

Since y » ( T , ) > 0 , (t - T,)y2i,+i(r)^ y2*(r).
Similarly, if y(f) is a B/-solution of H+, where / g It + 1 , we may take

N2j+U2i= 1. If fc = (n - l)/2, then we may take N2k+y2k = Nn,n-i = M since

( r -T 1 )y n (O=U-T, )y 2 1 t + 1 (O^f ' y2k+i(s)ds = f' yn(S)ds
JT, JT,

Dyn-,(s)ds= f'
JT,

https://doi.org/10.1017/S1446788700014749 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014749


[8] Differential equations 289

The condition OS /u < [mHJV2k+i.2k+ I)"1 becomes OS/* <m/(m + M). If j g
k+l, the required condition is 0 S / A < 1 / 2 , which is already existent since
ml(m + M)< 1/2. Thus, we may replace the condition of Theorem 2.3 by the
slightly stronger condition

0 S T ( 0 S M where

(T3) 0 § ft < m (m + M) ', if n is odd;

0 S /u, < 1/2, otherwise.

We will assume in the sequel that r(t) satisfies either (T2) or (T3).

THEOREM 2.4. Let r(f) satisfy (T2) or (T3) Suppose that for some k =
0, • • •, n — 1 and for all positive constants C

(2.1) j t2"'f(t,Ct2k)dt =».

Then H+ has no positive Bk-solutions y(t) such that y2k(O is bounded.

PROOF. Suppose that y(f) is a positive Bk-solution of H+ for f g To. Then
for ( g T , , yT(r) and y<(t) are positive (i = 0, • • • ,2k + 1) and ( - l ) ' + I y i ( 0 >
0(i = 2k +2, • • • ,2n - 1). We note that the hypotheses on r(t) are not used
explicitly below. They are necessary only for the application of Lemma 2.1.
Multiplying both sides of H+ by t2n~2k~' and integrating from T, to t yields

(2.2) I"' s2"-2k-'D"[r(s)D"y(s)]ds+r 52"-21-yT(s)/[s, y ^ o 1 * = 0.
JT, JT,

Since y2i<+i(s)>0, there is a constant O 0 for which yT(s)g Cs2k. Moreover, if
k S n/2,

where

P1(s)=s2-2k-1y2n-,(s)

^ 2.-2*-,

i-2

If k < n/2, we have

2n2klDn[r(s)Dny(s)]ds S [P2(s)]V, - [M(2n - 2k -
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290 Raymond D. Terry [9]

where

P2(s) = s2-2k-ly2n-l(s)
(2.4)

+ 2 ( - iy+1(2« - 2Jfc - 1) • • • (2n - 2* + 1 -y)s2"-2l-'y2-,(s)

- M 2 " 2 ' ( - 1)*(2n - 2fc - 1) • • • (2n - 2fc + 1 - /)s2-2k-%,-,(*).
/ = n + l

We consider the products ( - iy+1y2n-,-(0, / = 2, • • • ,2n -2/c - 1. Letting

l = 2n-j,(- iy+1 = ( - I)2""'*1 = ( - 1)"'+1 = ( - 1)'+'-
Thus

( - iy+ 1y2 n-/(0 = ( - l ) l + 1 y , (0>0 , / = 2k + 1, • • • ,2n -2

since y(t) is a Bk-solution of H+. So each term of the sum(s) in (2.3) or (2.4) is
positive. Substituting the estimates above in (2.2), we have

, , ^ i ..v..; • (2n-2k-iy.yM(t)

1 lp2(T,)+M(2n-2fc - I)!y2k(f)

which is in contradiction to (2.1) for large t if y2k(f) is bounded.
Letting k = 0, we obtain a familiar criterion for the nonexistence of

bounded positive solutions of H+, and hence for bounded negative solution of
H+ by condition (iii). We state this as a corollary.

COROLLARY 2.5. Let T(/) satisfy (T2) or (T3). Suppose that for all C>0

j°°t2-lf(t,C)dt = +00.

Then all bounded solutions of H+ are oscillatory.

This corresponds to Theorem 4.1 of Ladas (1971a) in the case of the simpler
equation

D"y(t) + p(r)/[y(O. y («(*))] = 0'

where p(t) is a positive continuous function on [0, o°), / £ C[R x i?,/?], g ( 0 e

C[[0,oo), R], g ( ( ) g | for (SO and l i m , ^ g(0 =

Criteria for the exclusion of B,-solutions of H- are formulated in this
section.
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THEOREM 3.1. Let r(t) satisfy (T2) or (T3). Suppose that for some
k = 1, • • •, n - 1 and for all C > 0

(3.1) f" t2n'2f(t,

Then H- has no solutions of type 8&k- If (2.1) holds with k = 0 and y(t) is a
solution of H- of type Sfto, then y(t) tends to zero as t —*•<».

PROOF. Let y(t) be a positive solution of H- of type 98k. Then there is a
T o > 0 such that y,-(f)>0 for / = 0 , - - - , 2 f c and ( - l ) / y / ( f ) > 0 for / =
2/c + 1, • • •, In - 1 provided t g To. Let r g Ti and i ^ n. Integrating HI i times
over (/, b) results in

(3.2)

I 1 J' ( ,

i.e.,

Since (3.2) is valid for 1 = n and yn(f)gMoDyn_,(0, where Mo = M if y n ( f )>0
and Mo= m if y n ( / )<0 , it follows that

) / - 0

1

In the case 1 > n, an additional i — n integrations of this will result in the
analogous inequality
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292 Raymond D. Terry [11]

If It g n/2, 2(n-k)^n and we may let i = 2(n-k) in (3.3). Similarly, if
k < n/2, we may let i = 2(n - k)in (3.4). In either case, 2n - i + j =2k + j . Each
term of each sum is positive since (— iyy2k+/(b) > 0 for j = 0, • • •, 2n — 2k — 1.
Moreover, y2 t + ,(0<0 for t ^ T,, so that y2k(T,)s y2k(r). It follows that

y2t (T.) S aV ̂ ( s - r f ^ - y ^ s ^ s , yr(s)]d$,

where

r (2n -2 fc - l ) ! if k s n/2

[M0(2n-2k -1)! if k<n/2.

If fe = 1, • • •, n - 1, then lim ,_„ y2t_,(f) = °o; so there is a C > 0 such that
y(0>0 2 k ~ ' fo r f = T,. By Lemma 1.2'there is a fco>0 and a T2S T, such that

Thus, for fc = 1, • • •, n - 1 and s ^ T2

(s - tf"-2k-'yr(s)^(s - tf-2k-lk0Cs2k-'.

By (ii) f[s, yT(s)] g/(5, fc0Cs2k"') for s g T2. Furthermore, s - t g s/2 for s g 2f.
Now let f g T2 and b > 2t = T^. It follows that

y2k(Tl)Sk0C(ok
1 I (s - t)2n-2k-'s2k-'f(s, k0Cs2k-')ds

_,,_2n+2k+, f" 2n.2fl , n „ _ , . .

a n d

r" s2n-2f(s,k0Cs2k~l)ds ^ 2 2 n 2 k ' <ok(knC)-' y 2 k ( T , ) ,

which is incompatible with (3.1).
If k=0 and lim,^»y(r) = C > 0 , then yT(f)gy(f)SC for t^Tt since

y'(/) < 0 if y (f) is of type S80. By (ii) /[f, yT(t)] S /(r, C) for t S T,. For f g T, and
fe > 2t = T* it follows as before that

Jr.

which is again a contradiction.
In the next corollary, as in the preceding theorem, we assume tacitly that
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COROLLARY 3.2. Let r(t) satisfy (T2) or (T3). Suppose that for some
k = 1, • • •, n - 1 and for all C > 0

PV" lf(t,Ct2k)dt = +oo.

Then H has no 3ftk-solutions y(f) such'that lim,_«, y2*(0= T > 0 .

THEOREM 3.3. Let r(t) satisfy (T2) or (T3). Suppose that for all B>0 and
m =2n — i, i = 1,2,3

(3.5) lim t~m I s2n-l+mf{s,Bsm)ds=°°.

Then H has no solutions of type $)„-, or Sft„ which are asymptotic to Ctm, where
C > 0 .

PROOF. Let y(t) be a $„-solution of H-. Then for r , g ( g s g ( )

which is (3.4) with i = In. Since ( - gO for k even,

where p = [(n - 2)/2]. Suppose that y(t) ~ Ctm, C > 0. Then there is a T2 g T,
such that

Using a familiar Tauberian theorem (See Lemma 2.2 of Wong (1969), for
example.), there is a A > 0 and a T* > 0 such that

;(t-bf'+l

for b a T*. We see that
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\ Cf" g y(f) g yT(0 g £[t - r(0]m, / g T3,

where T3 = min {t > 0: t - r(t) g T2, f g T3}. If r(f) satisfies (T3), then f - r(t) g
(1 - fji)t, on the other hand, if r(t) satisfies (T2), there is a T4g T3 such that
t - T(t) § f/2 for t g T4 and

where

f ( l - ^ ) m if T ( 0 satisfies (T3)

[ 2"m if T ( 0 satisfies (T2)

Let t g T4, T* = It and Z> > max (T*, T*). Then

k 2 - A x o>o'r" f 6(s - 02""'yT(s)

( | ) ^ j s - tf^f(s, vCsm/2)ds

and

t m\" s2nl+mf(s, C,sm)ds g 22""1 «oC7' ( | C + A),

where Ct = vC/2. Letting b —> °o we obtain a contradiction to (3.5).
When r(f) = 0, n = 2 and fc = 0, Theorem 3.1 reduces to the necessity of

Theorem 2.1 of Wong (1969). When r(f) = 0 and n = 2, Theorem 3.3 reduces to
the necessity of Theorem 2.3 of Wong (1969).

In this section we consider the nonhomogeneous delay equation N+ under
the assumption that R(t) is a solution of the ordinary differential equation

(4.1) D"[r(t)D"R(t)]=Q(t).

This permits the transformation of N+ to a homogeneous delay differential
equation of order 2« for which the methods of the previous selections may be
applied. Since the resulting delay equation does not have exactly the same form
as H+ or H~ the arguments have to be duplicated but are entirely analogous. Let
us assume that y(t) is a positive solution of N+ and let u(t) = y ( 0 ~ R(0- Then
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D"[r(t)D"u(t)] = D"[r(t)D"y(t)]- D"[r(t)D"R(t)]

= -yr(t)f[t,yr(t)]

= -(u + R)T(t)f[t,(u+R)r(t)],

so that u(t) is a solution of the homogeneous equation

(HI) D"[r(t)D"u«)] + (u + R)T(t)f[t,(u + R)A0) = 0.

Since y(0>0 , t^T0, (u + R)T(t)>0 for ( S T , and Dn[r(t)Dnu(t)] < 0 for
( g T , so that u(f) is a nonoscillatory solution of Ht. Either u(t)>0 (i.e.,
y(f)> i?(r)) or u(t)<0(y(t)< R(0) f o r sufficiently large t. If «(f) is a positive
solution of H+ of type B, (j = 0, • • •, n - 1), we will say that y(t) is a solution of
N+ of type Bf (j = 0, • • •, n - 1). If u(f)<0, then we further transform the
equation by letting v(t)= - u(t). It follows that v(t) is a positive solution of

(HI) D*[r(t)D"v(t)] ~(R- v)T(t)f[t, (R ~ v)r(t)] = 0.

If v(t) is of type 58, (/ = 0, • • •, n), we will say that y(t) is a solution of N+ of type
$)*. A solution of N+ is then either oscillatory, negative nonoscillatory, of type
Bf (j = 0, • • •, n - 1) or of type 38? (j =0,-• • ,n). V/e now seek to exclude
solutions of N+ of types B* and 58?.

THEOREM 4.1. Let r(t) satisfy (T2) or (T3). Let R(t) be a bounded solution
of (4.1) and suppose that for some k = 1, • • •, n - 1 and for all C>0

(4.2) f"r27(f, «,(*)+Cf2*)* = ».

Then N+ has no Bf solutions for j = k, • • •, n — 1.

PROOF. Let y(t) be a positive solution of N+ of type B j . Then u(t) =
y(t)-R(t) is a Bk-solution of equation HX. Let z(f)= u2n-i(t)/u2k(ty, z(t) is
positive for all t sufficiently large, i.e., t S Tt. It follows upon differentiating z(t)
that

,, v . u2n-,(t)Du2k(t) Du2n-i(t) _ n
Z ( 0 + [D«2k(f)]

2 K2*(0

Since w(/) is of type Bk, u2n-i(t) and Du2k(0 are both positive. Moreover,
D«2B-,(f)=D"[r(r)D"M(r)]. Thus

(4.3) z'(t)+ (U Xf(O( O / [ f ' ( M +RW\ = °>l = T-
We now consider the term
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=

u2k(t) uT(t) u2k(t)
By Lemma 2.1, t2ku2k(t)S Nu(t), where

N= [I
i-0

Then, assuming r(f) satisfies (T3)

If T ( 0 satisfies (T2), then fj.te'1 < 1/2 for r sufficiently large, so that

for t g T2g T,. It follows that

where

I
2 2k if T ( 0 satisfies (T2)
(1 -/u,)21 if T ( 0 satisfies (T3) "

By Lemma 2.2, there is a ko>0 such that M2(c,r(0u2<!(0= ^o.
So for t § T3 S T2

(4.4) ~ ( \ =

Next we consider the expression

(4-5) ( u + R ) (f) =

If R(t) is bounded and y(() is of type B?, (fc = 1, • • • , « - 1), then u(t) is
unbounded, which implies that Ru'1—*0 as t—**>. So for e >0 , l + RM"'g
1 — e = Co for f sufficiently large. Thus there is a T* g T3 such that

(4.6) (u + « ) T ( r ) u ; 1 ( O ^ C o , r g r » .

Moreover, u2k(t) and M2ii+i(0 a r e positive; so there is a C i > 0 such that
(u + R)T(f) = Rr (O + C,/2k. Substitution of this estimate together with (4.4) and
(4.5) via hypothesis (ii) in (4.3) yields

z'{t) + Cofi^N'1 t2kf(t, RT(t) + C,t2k) § 0.

An integration of this from T* to t results in
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t2kf(t, RT(t) + Clt
2k)dt S (Calxkkoy

x N[z(Tm)- 2(0] ^ (CoMo)"' Nz(TJ,

which is in contradiction to (4.2).
By hypothesis (ii), the divergence of t2kf(t, RT(t)+ C,t2k) implies that of

t2(k+i)f(t, RT(t) + C,t2(k+')) for i = 0, • • •, n - k - 1. So condition (4.2) is sufficient
to exclude B* -solutions (J = fc, • • • ,n — 1) of N+. If n = 1, / = 0 is the only
possibility and the theorem is vacuously true.

By considering (4.5) more carefully we are able to obtain the following
corollaries to the proof of Theorem 4.1.

COROLLARY 4.2. Let r(t) satisfy (T2) or (T3) and R(t) be a solution of
(4.1). Then N+ has no Bt -solutions y(t) such that (y - R)2k(t) is bounded if for
all positive constants C

(4.7) j(RT(t)+ Ct2k)f(t, RT(t)+ Ct2k)dt = oo.

COROLLARY 4.3. Let r(t) satisfy (T2) or (T3) and R(t) be a bounded
solution of (4.1). Then N+ has no bounded B*-solutions if for all positive
constants C

(4-7') T(RT(t) + C)f(t, RT(t)+ C)dt = oo.

COROLLARY 4.4. Let r{t) satisfy (T2) or (T3) and R(t) be a bounded
solution of (4.1). Suppose that for all positive constants C

f(t,Rr(t)+C)dt=<*.
J

Then no bounded B"-solution of N+ is bounded way from zero as t—*°°.

REMARK 1. In Theorem 4.1 the hypothesis that R(t) is bounded may be
replaced by /?(/) = 0(t2k~'), for some e > 0 .

REMARK 2. The conclusion of Theorem 4.1 may be restated as: A positive
solution y(f) of N+ either satisfies 0<y(t)< R(t) for large / or is of type B?,
where / = 0, • • •, k. — 1.

REMARK 3. If R(t) is oscillatory or negative, then u(t)>0 and the
conclusion of Theorem 4.1 becomes: A positive solution of N+ is of type B*
f j = O , - - - , k - l ) .

It may be easily seen that the integral condition (4.7') is sufficient to
guarantee the nonexistence of all positive solutions of N+ of types B j (k =
D, • • •, n - 1). We suppose that y(/) is of type B" on (T*,°o). An integration of
H* over (T*, t) results in
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M2n-i(0-«2»-i(71*)+[' (u + R\(s)f[s,(u + R)T(s)]ds =0,

i.e.,

[ (U +R)T(s)f[5,(U + R)r(s)]dS g M2n-l(TJ.

Since «'(f) is positive for r g T,,,, there is a constant O O such that «T(0= C
for t & T* and

r,(RT(s)+ C)f(s, RT(s)+ C)ds =i «,„-,

The divergence of the integral above as t —»°° will result in a contradiction. We
have thus proved the following theorem:

THEOREM 4.5. Let r{t) satisfy (T2) or (T3). Let R(t) be a solution of (4.1)
and suppose that for all C >0

77ien N+ has no B"-solutions (/ = 0, • • •, n - 1).

REMARK 4. If R(f) is oscillatory or negative, the conclusion of Theorem
4.5 may be strengthened to: N+ has no positive solutions. If, in addition, it is
assumed that for all C > 0

f (RAt)-C)f(t,R.(t)-C)dt= -oo,

then N+ cannot have any negative solutions for large t, i.e., N+ is oscillatory. The
result is essentially part of a theorem due to Kartsatos and Manougian (to
appear) provided f(t, u) = p(t)F(u).

Another approach to the question of bounded solutions of N+ results from
applying to equation HI the method used to obtain Theorem 2.4 and Corollary
2.5. We obtain the analogous results:

THEOREM 4.6. Let r(t) satisfy (T2) or (T3) and R (t) be a solution of (4.1).
Suppose that for some k = 0, • • •, n — 1 and for all positive constants C

(4.8) | t2n-2k-'(RT(t) + C)f(t, RT(f) + C)dt = oo.

Then N+ has no B*-solutions y(t) for which [y(t)~ R(t)]2k is bounded.

COROLLARY 4.7. Let r(t) satisfy (T2) or (T3) and R(t) be a bounded
solution of (4.1). Suppose that (4.8) holds with k = 0. Then N+ has no bounded
positive B*-solutions.
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The corollary follows upon observing that since R(t) is bounded, a
Bk-solution y(0 is bounded if, and only if, u(t) is bounded. For k S 1, u(t) is
unbounded by Lemma 2.1. The case k = 0 is excluded by Theorem 4.6.

REMARK 5. In view of Remarks 3 and 4 we may assume, without loss of
generality, that R(t)>0 in attempting to exclude 58 * -solutions of N+.

THEOREM 4.8. Let r(t) satisfy (T2) or (T3) and R(t) be a positive solution
of (4.1). Suppose that for some k = 0, • • •, n - 1 and for all C > 0

(4.9) I" t2"'2"-1 f(t,

Then no positive solution ofN+ of type Sfc* is bounded away from zero as f —»°o.

PROOF. Let y(t) be a positive solution of N+ of type $ £ on [To, °°). Then
v(t)= R(t)~ y(t) is a positive solution of HI of type S8k on [To,00) and
£>U2n-i(0 for t S 7V Suppose that y(f) is bounded away from zero as t —»°c. Let
t ^ Tu b >2t and i S n. Integration of H ; over (f, fc) results in

(4.10)

For the case / > n, we obtain

(4.10')

Letting i = 2(n - k) in (4.10) if /c a n/2 or in (4.10') if k < n/2, we obtain

v2k(Tl)^ v2k(t)^ wl' j\s - tf-2k-l(R - v)T(s)f[s,(R - v%(s)]ds

^22 ll I" s2"'2"-1 (R - v)T(s)f[s,(R - vUs)]ds.
IT
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Since y(f) = R(t)— v(t) is bounded away from zero as f —»<», there is a constant
C > 0 such that (R - v)T(t)g C for t g T. Thus

which is in contradiction to (4.9) as b—»°°.
We now apply some of the theorems above to investigate the asymptotic

behavior of bounded solutions of the ordinary differential equation

(4.11) (D 4 + l )y ( r )=e - .

The general solution of (4.11) is given by

yN(t) = c,e ' / v \os (t/V2 + c2e
 r/V5sin (t /V2) + c3e "1/v5cos (t /V2)

1

Since e~'/V2> e~', a bounded solution y(f) of (4.11) is either oscillatory (if
c\ + c\+ cl+ c\^ 0) or else positive nonoscillatory. In either event,

We have Q(t) = e~' and r(t)= 1, the general solution of D*R(t) = e~' is

R(t)= e ' + att
3+ a2t

2+ait + at.

Let us choose R(t) = e~' and let y(t) be a bounded solution of (4.11). If y(f) is a
B i-solution, then 0< y(/)< -R(0 and lim,^»y(f) = 0. This fact is confirmed by
Theorem 4.8 in the case k = 0, 1 since

If y(r) is of type Bf, then y ( / ) - R(t) is necessarily unbounded; since R(t)
is bounded, this would imply that y(/) is unbounded. Theorem 4.1 shows that
there are, in fact, no B? -solutions:

t2(e-(l-T(0) + C)dt = *.

Corollary 4.4 shows that no Bo-solution is bounded away from zero since
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5 

We now consider the nonhomogeneous delay equation JV under the 

assumption that R(t) is a solution of the equation (4.1). As in the previous 

section, this permits the transformation of AL to a homogeneous delay equation 

for which the techniques of sections two- and three are applicable. 

Let us assume that y(t) is a positive solution of JV_ and let u(t) = 

y(t)-R(t). Then 

Since y(t)>0, (u + R),(t) is positive for sufficiently large t (( ê T,) and 

D"[r(t)D"u(t)] > 0 for t â 7 V It follows that u(t) is a nonoscillatory solution of 

HZ. Either u(t) > 0 or u(t) < 0 . If u(t) < 0 , we further transform the equation by 

letting v(t) = — u(t) = R(t) — y(t). Then v(t) is a positive solution of 

We say that a positive solution y ( / ) of AL is of type 3ft* if M ( I ) is a positive 

solution of H~ of type 3ft, ; it is of type if v(t) is a positive solution of of 

type Bj. A positive solution of N- is then of type 38" (j = 0 , • • • , « ) or of type B " 

(/' = 0 , • • •, n — 1). We now seek to exclude S8f- and B* -solutions of AL. 

THEOREM 5 .1 . Let r(t) satisfy ( T 2 ) or ( T 3 ) and R (t) be a solution of (4.1). 

Suppose that for some k = 1, • • •, n — 1 and for all C > 0 

D"[r(Or>"i.(0] = D"[r ( f )D"y( f ) ] -D"[r ( f )D -« (0 ] 

= yT(0/[',yT(0], 

so that u(t) is a solution of the homogeneous equation 

(HZ) D"[r{t)D"u{t)\ - (u +R)T(t)f[t,(u +R)r(t)] = 0 . 

(HZ) D"[r(t)D"v(t)} + (R- v)T(t)f[t,(R ~ v)r(t)] = 0 . 

(5.1) t2n-2k'(Rr(t)+ Ct2k-')f(t,R,(t)+ Ct2k~x)dt = +oo 

Then N- has no 3ft solutions. Furthermore, if 

(5.1') 

then any Sft*-solution y(t) satisfies 

( 5 . 2 ) Jim [ y ( r ) - K (01 = 0. 
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PROOF. Let y(t) be a 38£-solution of N_. Then u(t) = y(t)- R(t) is a

positive solution of HZ of type 55*. As in the proof of Theorem 4.3, we obtain

i 1

(5.3)

+jr=^y. \",{s ~ °"I(w+Rws)f\s>

where T^ t S s < b and i S n.
If ( > n, we may derive the analogous inequality

(5.4)

+ J ~ 1 )
n , f "(5 - 0'"'(« +RMs)f[s,(u +R)T(s)]ds.

M0(l — 1)1 J,

Letting i = 2(n - k) in the equality (5.3) if k g n/2 and in the inequality (5.4) if
/c < n/2 and recalling that Du2k(t)<0 for t g Ti, we have

•b

(s - tf~2k-l(u + R)r(s)f[s,(u +R)T(s)]ds g

For k = 1, • • •, n there is a constant C > 0 such that uT(s) g Cs2""1 for s g 2 T , =
T2. Let t^T2and b>2t = T*. Then s - | g s / 2 and

which is in contradiction to (5.1) as b—>».
If k = 0 and y (0~ ^ 0 ) does not tend to zero as r—>°o, there is a constant

C >0 such that u(f)g C for t sufficiently large (t g T*). As before we may
apply hypothesis (ii) to obtain a contradiction to (5.1').

Duplicating the arguments which led to Theorems 3.3 and 4.4, we may
obtain the following result:

THEOREM 5.2. Let r(f) satisfy (T2) or (T3) and let R(t) be a solution of
(4.1). Suppose that for some m =2n - i, where i = 1, 2, 3, and for all positive
constants B

l i m r " f s2"1 {RT(s) + Bsm)f[s,RT{s)+ Bsm)ds = + oo.
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Then N_ has no solutions of types B" or B?_, such that R(t)- y(t)~ Ctm, where
0 0.

If we let w(t) = v2n-,(t)v2k(t) in Ht and repeat the procedure which led to
Theorems 2.3 and 4.1, we may obtain the following analogue:

THEOREM 5.3. Let r(t) satisfy (T2) or (T3) and let R(t) be a bounded
solution of (4.1). Suppose that for some k = 0, • • •, n - 1 and for all positive
constants C

F t2kf(t, C)dt = oo.

Then any positive Bk-solution y(t) tends to zero as t—>°o.

Summary

We conclude this paper with some observations on the method. Use of the
preliminary transformation Y(t)= —y(t) and the techniques of Sections four
and five enable us to introduce a natural classification of the negative solutions of
N+ and N_ and to provide sufficient conditions for the nonexistence of such
solutions. If the hypothesis f(t, - u) = f(t, u) is omitted, we may still determine
conditions for the nonexistence of certain negative solutions. Moreover, the
method is applicable even if hypothesis (ii) is replaced by (ii') there is a p
(0 < p < 1) such that u"f(t, u) is nondecreasing in u. The precise statements and
proofs of these analogous results are left to the reader to discover.
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