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Abstract

We extend the results obtained by Hines and Thompson for a Markov chain which has a single reflecting
barrier at the origin, nearest neighbour transitions and which moves from {j} to {j + 1} with probability
j/{j +1). Martingale limit theorems are used to work out an asymptotic theory for a more general class of
such chains for which the probability above has the form 1 —/.(j), 0 < /.(j) < 1 ( jeN) , /.(j) ->0( j -> x )
and Y.MJ) = x. We discuss the case where the last sum is finite and some alternative versions of the
general case.

7980 Mathematics subject classification (Amer. Math. Soc): primary 60 J 15; secondary 60 F 05, 60 G 42.

1. Introduction

Recently Hines and Thompson (1978) considered the following stochastic version of
a self-avoiding random walk on Z; see Barber and Ninham (1970). They consider a
sequence {Xn} of Z +-valued random variables where Xo = 0 and if J*,, is the a-
algebra generated by (X0,...,Xn) then

P(xn+1-xn = - l | j%) =i-p(xn+1~xn = 11 JS,) = ;.(*„),

where X(j) = (j+ 1)~' if/eN and A(0) = 0. This is a random walk in the sense of, for
example, Harris (1952) or Karlin and McGregor (1959) which has the feature that
the drift away from the origin becomes stronger with distance from the origin.

Let [pj-"'] denote the n-step transition matrix and let

F(s,t)= T. t"E(sx"(l+Xn)-
1)-

Hines and Thompson obtained a linear differential equation satisfied by F(; •) but
did not completely specify its solution. They also prove that Goo =
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and EXn = n — 21ogn(l +o(l)). The last result illustrates the essence of the
Hines-Thompson model, namely, that although it possesses a classical linear trend,
the fluctuations about this trend are very small.

In this paper we refine and extend the results of Hines and Thompson (1978) by
making extensive use of generating function techniques. The main goal is to show
that varXn ~ 41ogn (Section 5) which then yields some limit theorems for {Xn}
(Section 6). This goal requires a much finer asymptotic development of £An than
that above and in turn this requires the generating function of [£(1+A',,)"'}
(Section 4) and of the probability of first return to the origin (Section 2). In Section 3
we show that the p\f decay geometrically fast and in Section 2 we improve the
inequality above by showing that Goo = e. Thus the bound given by Hines and
Thompson is very close to the true value

The techniques used in Sections 2-6 do not seem able to yield detailed results on
the asymptotic behaviour of {Xn} although this may be attainable by suitably
modifying the techniques used by Garding (1961). In Section 7 we show that
Martingale techniques yield limit theorems for the general random walk with
repulsion as denned above but assuming only that /.(0) = 0, 0 < /.(j) < 1 (jeN),
k{j) ->0 and Y./.(j) = oc. We shall obtain an almost sure convergence result and
corresponding central limit and iterated logarithm theorems. The Martingale
techniques do not seem capable of yielding the behaviour of var Xn and the detailed
analysis of specific cases such as is executed in Sections 2-6 appears to be necessary
for this. Nevertheless the Martingale techniques will yield an expansion for EXn of
the same finesse as that obtained by Hines and Thompson (1978) for the case
/.(A = ( /+1)" 1 . Finallv in Section 8 we shall discuss the case where £/•.(_/) < x
which has as its essential property that the increments are eventually always unity.

In Section 9 we discuss an extension of the general process of Section 7. This
extension allows jumps to the right which may exceed unity but are uniformly
bounded. The results obtained indicate that if the distribution of the positive part of
the increments has positive variance then the associated variability swamps the
small deviations about the linear trend obtained in Section 7 and classical central
limit results obtain. We shall end Section 9 by briefly discussing the maximum
process {Vn} where Vn = maxm<nXm. In particular we shall show that classical
renewal theory arguments show that {Vn} possesses the same limit behaviour as

2. Passage probabilities

Let P,( •) = P{ • | Xo = i) and qf = P< (Xn = 0 for some /; > 1) be the probability of
eventual entry into {0}. Since p0 1 = 1, q0 = qv The following result gives the qt.
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THEOREM 1. qt = e"'Xl..,- 1 ,/7c! (i eN), q0 = 1 — e~x.

PROOF. Let

J If J \
p(0) = 1 and p(j) = n /-(') / El (1 " '•(«)) •

i=i / \ ; = i /

In our case p(j) = 1/y! In general

and the theorem follows immediately; see Chung (1967), p. 76.
Since Goo = (1 -qo)~\ see Chung (1967), p. 55, we obtain

COROLLARY 1. Goo = e.

It follows that {.YJ is transient, a comment relevant to the sentence containing
equation (3.5) in Hines and Thompson (1978).

In the sequel we shall require an expression for the generating function

THEOREM 2. P(t) = tl-'2Hl-t2)$'oe~y'(t-y)~r~dy~]-1 (0 sc t < !).

PROOF. Let f(n) be the probability of a first return to {0} at time n. If

F(t)= Z /('Of"
n» 1

then

(2.1) P(r) = ( l - F ( r ) ) - ' ,

see Chung (1967), p. 55, and F( •) is calculated as follows.

Let {Z,,J be the Markov chain obtained from {A'n} by making {0} absorbing and

where

Clear ly / ( / i ) = y ( l , / i - l ) - y ( l . / i - 2 ) ( n ^ 2 ) , / ( l ) = 0 and hence

(2.2) F(t) = t(l-t)Q](t),

where £>;(r) = Z ^ o </('»'"• Finally if Q(s, t) = Z ^ 0 ^ 6 , ( 0 then
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Clearly, for I G N ,

and it follows that

(s -f) dQ/ds + (1 + ts ~' - ts) Q = (t + s)/s( 1 - 1 )

and g(0, t) = (1 — t)~l. The integrating factor of this differential equation is

= s s-t
2~'2e~sl

Since I(t, t) = 0 it follows that if s sj t then

(2.3) I(

We use

s->0

where / , and I2 are the first and second integrals, respectively, at (2.3). Partial
integration yields

whence

e-'y(t-y)-' dy

+ t2 e-'>(t-y)-tldy.

The assertion of the theorem now follows from (2.2) and then (2.1).
Partial integration yields

p
C O R O L L A R Y 2. F(t) = t2 \ (1-v)1 ~ ' 2 (exp ( - 1 2 y)) dy.

Jo

3. Geometric ergodicity

Later we shall need to have an estimate of the rate at which the pj"1 decay to zero. It
is known for simple, restricted and self-avoiding walks on most lattices that the
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probability of returning to the origin at time n decreases algebraically fast; see
Barber and Ninham (1970). For transient one-dimensional random walks restricted
by a reflecting barrier at the origin it is known that this probability behaves, for large
n, like p"~'\ where 0 < p < 1 (Veraverbeke and Teugels (1976)), that is, it is p~l-
transient; see Seneta (1973), pp. 163,4 for the terminology and theory. In the present
case we have t-positivity, namely that pffi behaves, for large n, like x~n where
1 < T < 2; obviously pffl = 0 when n is odd. The following theorem gives full
details.

THEOREM 3. There is a unique number re(1,2) such that

T

Jo

IfR = ^/T then

(3.1)
k

where n -> x through the even integers if(i—j) is even and through the odd integers
otherwise, and if s ̂  l/R then

(3.2) £xjsj+1(j+l)-1

"l/R

= Rxosr(l-Rs)"te 'R / s

and

fR

(3.3) Y. >'is' = Ky o s(K-s) - 2 + t e f o y'2(R-y)l~re~Rydy.

PROOF. The integral representation of F( •) in Corollary 2 is holomorphic in
1112 < 2 and, moreover, F(t) -> oo (t -> ^2). Since F(\) = 1 -e~' it follows that T
exists and F(R) = 1. Furthermore, 'E,f(n)nRn < oo whence {Xn} is R-positive; see
Seneta (1973), p. 163. It follows that (3.1) holds and also that {xj} and {yt} satisfy the
systems

(3-4) RZxtPtj = xj, RUPijyj^yi,
i >0 j>Q

T. xk Yk < x a n d ixi} an(^ !)'i\ a r e ^ne unique solutions, up to constant multipliers, of
these systems.

By expressing (3.4) as difference equations and assuming for the moment that the
generating functions V{s) and W(s) at (3.2) and (3.3), respectively, both exist, it is easy
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to show that they must satisfy the differential equations

(l-Ks)F'(s) + (l-s"2)K(s) = -Rx0s-\l-s2)

and

These are solved by the right-hand expressions at (3.2) and (3.3) respectively and
since these solutions are both holomorphic at the origin, it is possible to argue back
to the existence of V{ •) and W{ •).

4. The first and second moments

Our aim in this section is to find expressions for the first and second moments
of {Xn}. In principle these can be obtained from the generating function
P[s,t) = Y.n>ot"Eo(s

x''), where £,-(•) = £(• |Xo = i). This function satisfies a
first-order linear differential equation which in turn can be obtained from that
satisfied by F(s,t):

(4.1) (1 - ts) cF/cs +1( 1 - 5~ 2) F = 1 + t(s - s ') P{t).

A partial solution of (4.1) was given by Hines and Thompson (1978). The difficulty in
writing down an explicit solution lies in the fact that its integrating factor is not zero
in {|s| ^ 1, |f | < 1} whereas that for the equation satisfied by P(s,t) is more
tractable in this respect. However, the solution of this equation is not completely
straightforward since it requires a preliminary estimate of the rate of convergence of
Pft) = T. P{OJ t": lirnj-xJt ^ Pft) exists and is positive. Even though an explicit
expression for Pis, t) can be obtained it is too complicated to be useful and the
generating function for //(«) = E0(Xn) which it provides is of no use for our purposes.

Let M(t) = Zn>oM")t"- Hines and Thompson (1978) used (4.1) to show that

(4.2) M(t) = til-t)-2+2til-tyl[P(t)-F(l,t)l

It is not difficult to use this to obtain the representation

(4.3) n-n(n) = 2 X j,(m),
m s = n - 1

where t](n) = #(/i)-p(
0"^ 0(n) = £0((l +Xn)~

l) and hence ri(n) = EA(XJ. This re-
presentation also follows from Proposition 3 below; see (7.2). Equation (4.3) shows
that {n-fiin)} is nondecreasing, which also follows from the fact that {n — Xn) isa.s.
nondecreasing.

Let Nit) = Sn^o i(n)l"- We shall obtain an explicit expression for N( •) in
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THEOREM 4. 7/0 ^ t sg 1 then

(4.4)

where

(4.5) /?(t) = r 2 [
Jo

PROOF. By definition »/(«) = Zj>i Po/(i+ I )" 1 and

m = 1

where 0//0"j is the probability of hitting {j} at « without returning to {0} in the
intervening time. Clearly oP^j = q{"fl), where q\f = Pi(Zn = j), and hence

where qj[t) = Y.n>o 4\)f" a n d (4-4) nows follows from (2.1) and with /j(t) defined as

Let )?(i, n) = "Zj»i 4$(i + 1)~'. The backward equations for the <$> yield

)S(1,O + 1) = /?(2,H)/2 and p(i,n+ 1) = (i/?(i+ l,n) + P(i- 1,«))/(; + 1) (i > 2).

If B(s, 0 = Xi. „ 3 o «' t" PU + !.") w e o b t a i n

(f - s) cB/cs - (2 - ts) B = - l/( 1 - s).

Observing that the integrating factor of this equation vanishes when s = t and that
Pit) = B(0, t), it is easy to verify (4.5).

We now obtain an expression for ju2(«) = £ 0 %l- This follows by a double
differentiation with respect to s of (4.1) and then letting s = 1. If

M2(t)= X n2in)'n = idild
l!»0

then

(l-f)(M2(r)-M(t))-2tM(0-6F(l, 0 + 41(1-0"' = -2tP(0-

Using (4.2) and F(l,0 = N{t) + Pit) we obtain

M2(0 = 2 ( l - f ) - 1 M(0-4M(0- t ( l -0" 2 +4 t ( l -0" 1 P(0 -

This yields

THEOREM 5.

H2{n) = 2 1 n(k)-4n(n)-n +4G00(n - 1), where G00(n) = Z p{
ot
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5. Asymptotic behaviour of the mean and variance

We begin by proving the following refinement of Hines and Thompson's (1978)
expansion of n(ri).

THEOREM 6.

(5.1) n-n(n)-2H{n) = 2 £ (m-m!)"1+o(l) (n - x),

where

H(n)= £ 1/m.
m = 1

PROOF. We begin by determining the asymptotic behaviour of {/?(«)} where
P(t) = 11PJ"- By letting y = tx in (4.5) we obtain

(5.2) fi(t)=
o

= -(et)'l\og(\-t)-e-1

Jo

Jo

The integrand in the last integral at (5.2) is

^ ^ - ' [ ( l - x t ^ A l - x f ) ] sS<r ' [ ( l -x 2 r 2 ) / ( l -x f ) ] ^2e~\

and hence dominated convergence shows that this integral converges to
e ~' j o(e ' ~ x — 1)/(1 — x) dx. Denote the integral by c. Expanding the exponential term
as a power series in (1— x) and using Fubini's theorem we find that

<• = £.>,(«.«!)-'.
Denote the second integral at (5.2) by I(t), split its range of integration at 1 — e +et

and denote the resulting integrals by l^ and /2. Now
E + a

(\-tx)~ldx
o

^ [1 -(e(l -r))1-'2] C-t"1 log(l - t ) ] .

But

l - (£( l - t ) ) ' - ' 2 = l-exP[(l-t2)(log£ + log(l-r))]
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and it follows that lx -> 0 (t -» + 1). In addition

Now let £ -> 0 to obtain I(t) -> 0 (t ->• 1).
It follows from these results that

(5.3) b(n)= X P(m) = e~1H(n) + e~1c + o(l) {n -* oo)
m ^ n - 1

Let d(«) = Xmsn»?(w). Then

(5.4)

where # n / ( r ) denotes the coefficient of t" in f{t). We have seen (Corollary 1) that
P(\) = e and Theorem 3 shows that the power series expansion of tP(t) has a radius
of convergence exceeding unity. Finally, it follows from (5.3) that
b(n + l)/b(n) -> 1 (n ->• oc) and b{n) = %n P(t)/(l -1). It is now clear that the conditions
of the following result of Bojanic and Lee (1974) are fulfilled and hence Theorem 6
follows from (5.2) to (5.4):

PROPOSITION 1. If {a(n)} is a positive sequence,

a(n + l)/a(n) = 1 + O(A(n)), A(n) -> 0 (n-> ao), A(t) = £ a(n)t"

and A(t) = XC(«)t" has a radius of convergence exceeding unity, then

Later we shall use the expansion

(5.5) H(n) = log n + y + (2nyl+O(n-2),

where y is Euler's constant. This yields

COROLLARY 3. n(n) = n-2\ogn-2(y + c) + o(l)(n -> oo).

We shall now establish the following result:

THEOREM 7. var Xn ~ 4 log n (n -> oo).

The proof depends on a further refinement of Theorem 6. Let
S(n) = n-i4n)-2H(n)-2c and D(t) = E<5(n)^" It follows from (4.3), (4.4) and (5.2)
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that

(5.6) D(t) = - 2t<p(t) (log (1 - r))/( 1 - 1 ) + 2 (log (1 -1))/( 1 - 1 ) + let2 <p(t)/( 1 - 1 )

- 2c /(1 - 1 ) + 2t2 p(t) (J(t) - I(t))/{ 1 -1) ,

where <p(f) = P(i)/e, which is a probability generating function, I(t) is the second
integral at (5.2) and

= f
Jo

J(t) = f Rexpd• -*«*)) - 1 (1 _x), - „ _(gxp( ^ ) L - J
J L l—tx 1 — x

We have seen above that I(t), J(f)—>0(t—> oo). The key step in the proof is to

establish

PROPOSITION 2. S(n) = — An'1 logn — 4n~\l +y + c) + o(n~1).

The proof makes repeated use of Proposition 1. The first two terms on the right
at (5.6) can be written as K(t) = 2[_q>(t) + (\ -<p(t))/(l -f)] log(l -t)- Now </>(l) = 1
and using (2.1) and Corollary 2 we find that q>'(\) = 2(1 +c). Proposition 1 then
yields
(5.7) <

The next two terms in D(t) together equal - 2c( 1 - <p{t))/{ 1 -1) - 2c( 1 +1) q>(t) and
hence, by Theorem 3, the coefficient decays geometrically fast.

Write the integrand of J(t) as

(5«) e x p ( l - x f 2 ) - ! e x p ( l - x ) - ! e x p ( l - x t 2 ) - ! ,_,,
K ' ' l-tx 1 - x 1 -1x > >•

Denote the last term by A(X, t). Observing that

(5.9) l - O - ^ ' - ' ^ O D l - ^ M - l o g O - * ) ) ] ,

dominated convergence shows that lim, -1 (1 — 0 ~' Jo /'-(x' 0 dx is finite. Rewrite the
first two terms at (5.8) as

fexp(l — xt2)— 1 exp(l— x)—1\ ,
• - — j — - ^ ~ i^3T h(

= a(x, t) - b(x, t).
Partial integration yields

f1
l (log(l-xt))(exp(l-x)-f2exp(l-xt2))dx

Jo
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[11] One-dimensional skip-free process with repulsion 117

whence

Now
fi

o Jo

x"+1dx + O( ( l-x)x"+ 1dx

= n" '(1+0(1)).

We thus obtain

^n(l-«

Turning now to /(f), we write

(5.10)

( l - t )" ' / ( t ) = ( l - f ) " 1 I [ l - ( f - x ) 1 - ' 2 + (l-r2)log(l-x)]/[l-fx]rfx

1 (\og(\-x)W-xt)dx.
_0

Now

-x))l(\-xt)dx) = - \ x"\og(\-x)dx' / - r(iog(i-x))/(i-xt)rfxj=- r.

= n~l \ogn + y/n + O(n~2).

By refining (5.9) to

1 - ( 1 - x ) 1 - ' 2 = - ( 1 - ( 2 ) log( l - x ) + O[(l -f2)2(log(l -x)) 2 ]

we infer that the first term on the right at (5.10) ->0 {t -> 1). Using Proposition 1
again we obtain

«"„( 1 -1) ~' I(t) = (2/n) log n + 2y/n + o(n ~l).

By putting these results together and using Proposition 1 where appropriate we
obtain Proposition 2.
Using the refined expression for /z(n) obtained from Proposition 2 we obtain

(5.11) (/4M)2 =
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To calculate ]T£= , n(k) it is convenient to express /u(/i) as

H(n) = n-2H{n)-2c+4H(n)/n+4(1+c)/n+o{n~').

Now

I.Hlk)= £ £i-1=(«+l)H(n)-n
k = 1 i = i k = i

= /i log n + (y — 1) n + log n + O( I),

where we have used (5.5) and

£ H{k)/k = £ r 1 £ k~l = £ rl(H(n)-H(i-l))
k= 1 i = 1 k = i i = 1

= (H(N))2-£<
i = 1

whence

Y. H(k)/k = {H(n))2/2 + O(l)
k= 1

It follows that

£ n(k) = n(n + l ) / 2 - 2 « l o g / i - 2 ( v - \ + c ) n + 2(log»))2

Theorem 7 now follows from the last expression, (5.11) and Theorem 5.

6. Limit theorems

It is intuitively clear that Xn is asymptotically proportional to n. Theorem 7
enables us to prove this.

THEOREM 8. XJn3^* 1 (n-> oo).

PROOF. £((«"' Xn- I)2) = ; r 2 (varX n + (/i(n)-n)2) ~ 4(logM)2/"2 and hence
Chebychev's inequality yields

for each <5 > 0. Thus the sequence {n~' Xn— 1} converges completely to zero, and
hence almost surely; see Lukacs (1975), p. 51.
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[13] One-dimensional skip-free process with repulsion 119

Using Theorems 6 and 7 again it is not hard to show that
£{[(2logn)"'( 'i-A"„)- I]2} ->0 whence the following result:

THEOREM 9. (n-Xn)/2\ogn--^-* 1 (n -> oo).

We may conjecture that this result can be strengthened to almost sure
convergence and that (11 —A"n —21ogn)/2(logn)i=> N(0,1) and we now show that
these results are true by using a different tool kit.

7. A generalized skip-free walk with repulsion

We now let {Xn} be as defined in Section 1 but assume only that for j e N ,
0 <;.(./) < 1 and ;.(;)->0(./-»oo). Let A(n) = £?= i <*(»)• The essence of the
Hines-Thompson model is that A(n) -» oc (n -* oo), which we assume throughout
this section. As above we always assume that Xo = 0.

Let Wo = 0 and

Wn = Xn-n + 2 £ A(Xm_l) (neN).
m = 1

PROPOSITION 3. {Wn, 3?n} is a zero-mean martingale.

PROOF. Let Zn = Wn-Wn_i = A'II-Ar
)I_1-H-2;.(A'B_1). Then

and Wl = 0 (a.s.), thus proving the proposition.
We first observe that the state space Z + is transient. To see this observe that if

a(n) = El"-1 -̂(OA1 - A(i)) then a(n + \)/a(ri) ->• 0 and hence Y. a(n) < °°> which con-
dition is necessary and sufficient for transience; see Karlin and McGregor (1959), p.
71. Thus A",,-^* co and hence

(7-1) /i"1 £ k(Xm_l)^0 (n^oo)
m= 1

Proposition 3 yields

(7.2) EXn = n-E[ i A(Xm_i)
\m= 1

and (7.1) with dominated convergence yields n ~1 EXn -» 1. We shall refine this result
below; see Corollary 4.
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Since the sequence of martingale differences {Zn} is orthogonal and Wj = 0 it
follows that EWn

2 =Z"m=i EZ2
m and hence that

By working as in the proof of Proposition 3 it is easy to demonstrate

LEMMA 2. E(Z2
n 13Fn_,) = 4A(Xn_ ,)(1 -k(Xn_,)).

Now \W2
n,3F^ is a submartingale and

and hence if {A(n)} is any positive sequence such that the series XB> i '-(Xn-1
is a.s. convergent then the conditional version of Chow's strong law for martingales,
due to Stout (1974), p. 156, shows that WJA(n)^+0. Taking A(n) = n and using
(7.1) we immediately obtain

PROPOSITION 4. XJn-^+ 1.

A regularity condition on the /.(•) allows us to obtain the following refinement of
this result.

THEROEM 10. / /

(7.3) A(n) = n-dUn),

where 0 ^ S < 1 and L( •) is slowly varying at infinity, then

n~xna^2
A(n)

REMARKS.

(i) The condition S ^ 1 is necessary since A(oo) = oc.
(ii) The Hines-Thompson model satisfies (7.3) with 6 = 1 and

(iii) It follows from Seneta (1976), p. 47, that L( •) can be regarded as a function
with domain R+.

PROOF. Proposition 4 and the regular variation hypothesis show that for each co in
a set of probability one we have M.X,,^.^ ^ (l+£)A(/e) for each k > K(e,co) and
hence if S * ^ A(fc)/(A(/c))2 < oo we can conclude from Stout's theorem that

- ^ > 0. If k ^ 2 the terms of the series are bounded above by the terms of the
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telescoping series

£ A(k)/A(k)A(k~\) = X [l/A(/c-l)-l/A(/c)] = 1//.(1).

Our assertion will follow once we show that

n

m = 1

Let a> be such that n~l Xn(co) ~* 1. The uniform convergence theorem for regularly
varying functions, see Seneta (1976), p. 2, shows that

1 - e < A(Xm..l)//.(m) < l+e ifm^/i(e).

It follows, for example, that

lim inf Un(co) ^ (1 - E) lim inf (A(M)) " * £ A(m) = 1 - e.

Similarly the limsup is bounded above by 1 +e and the assertion now follows.
Minor changes to the proof above show that

(7.4) (4A(n))"' £ E(ZJ \ 3F^,) - ^ > 1.

We shall now use a classical truncation argument to prove the following companion
result.

PROPOSITION 5. Under the conditions of Theorem 10,

PROOF. Let d > 1 and Zfn) = Z, I(Vj < 4dA(n)) where Vn
2 is the sum at (7.4). Since

Fn
2 is !Fn-] —measurable we have

E(Zj(n)\ &j_,) = 4A(X,._,)(1 - A ( X ; . _ ,))/(^-2 < 4dA(n)).

Now

0 ^ Qn = (A(ny' £ HXj. JliVj2 > 4dA(n)) ^ I(Vn
2 > 4dA(n)) Un ^* 0

and hence
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Next

(7.5)

Anthony G. Pakes

£ E(Z](n)\ J V ,) = Y. (V? - Vf_ x)l{V2 ^ 4dA{n))

= V2I(V2^4dA(n)) +

[16]

Let a{n) denote the last sum. Then

0 < (Ea(n))/4A(n) ^ d \ P(Vj2 ^ 4dA(n) < V2 ,)
7 = 1

= d[P(V? «S 4dA{n))-P(V2 ^ 4dA(«))] - 0 .

The penultimate term at (7.5) is bounded above by 4dA{n) whence from (7.4) and
dominated convergence we can conclude that

E | (4A(n))"' X
7 = 1

0

Now

0 < lim

= E

= E

lim £ I
n->co j= l

4dA(n))

lim /(Kn
2 > 4dA(n)) Kn

2 i = 0,

since the indicator function is zero for all sufficiently large n. This completes the
proof.

It follows from the working above that Y.m=i £'-(^m- i)AV«) -»• 1 and hence we
have the following generalisation of Hines and Thompson's result quoted in the
Introduction; see (7.2)

C O R O L L A R Y 4 . E l " * " ) - > 1.
V 2A(n) /

We now turn to the question of asymptotic normality.

PROPOSITION 6. Under the conditions of Theorem 10,
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PROOF. We verify that the conditions of Brown's (1971) martingale central limit
theorem are fulfilled. Proposition 5 shows that EWl/4A(n) -* 1 and hence Brown's
conditions can be expressed in terms of A(n) instead of EWj. In particular, in
addition to (7.4), we need only verify the conditional Lindeberg condition in the form

(7.6) ( A ( n ) ) " ' £ E(Z2
mI(\Zm\> zjA(m))\3Fm.t) ~*U 0.

m = 1

The conditional expectation is

Since the upper bound is zero for all sufficiently large m condition (7.6) is satisfied,
whence the proposition.

For the next result we shall assume that there is a function 1{ •): [1, x ] -> (0,1)
such that /.(n) = ~/,(n) (n e N).

THEOREM 11. Assume that /.(•) has an ultimately monotone derivative and that
l(x) = x ~d L(x) where L( •) is slowly varying at infinity. If 1/3 < S ^ 1 or 6 = 1/3 and
L(x) ->0 (x ->• oc) then

REMARK. The Hines-Thompson walk satisfies the hypotheses with 5 = 1 and we
can replace A(n) by log n.

PROOF. The theorem follows from Proposition 6 and Slutsky's theorem once we
show that

(7.7) ( A ( ' j ) ~ ? ~A{Xm- >))/V(A(")) - ^ 0.

Since !{•) has a monotone derivative it follows that — l'{x) ~ S7.(x)/x (x -> x ) , see
Seneta (1976), p. 60, whence using Theorem 10, the mean value theorem and the
uniform convergence theorem for regularly varying functions we obtain a.s.

- , v ^ -i \ i s * , w f 2 5 ( 1 — 5 ) " J » " 2<5 Z ? ( / l ) i f < 5 < l ,
4Xn)-,(n) ~ M ( # - {2Sn->A(n)L(n) if 6 = 1

and A( ) is slowly varying if 5 = 1. Thus if <5 > \ the series T.^=1{/.{Xm) — /.(m))
converges a.s. and (7.7) holds. If 6 = \ this series either converges, or its partial sums
diverge to infinity in a slowly varying manner and (7.7) again holds. If S < \ then the

https://doi.org/10.1017/S1446788700021960 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021960


124 Anthony G. Pakes [18]

nth partial sum of the series behaves like 25(l-S)(l-2d)ni~2Sl3(n). But
VA(n)~ [(l-c>)-1H1- '5L(n)]1 / 2andsince(l-<5)/2^ 1 - 26 if and only if 3 ^ 1/3,
we see again that (7.7) is valid.

The last lines of the proof yield

COROLLARY 5. IfO<6< 1/3 and a(n) = 2<5(1 -8)-l(l-2S)- ' n1 ~2dl3{n) then

This result simply means that if S < 1/3 the deterministic centering sequence
{2A(n)} used in Theorem 11 is inappropriate and the random centering inherent in
Proposition 6 should be retained.

The next result is a law of the iterated logarithm for {Xn}.

THEOREM 12. Under the conditions of Theorem 11

Xn = n-2A

where {£„} has for its set of a.s. limit points the interval [ — 1 , 1 ] and
limsupCn = — liminfC = 1, a.s.

PROOF. Consider the following conditions:

I(A(y))-± £(| Zj| / ( |Zj \>e jMj))) < cc V e > 0

and

Z ( A O ) ) - 2 E(Z*I(\ Zj\^S JMJ))) < oo for s o m e 6 > 0.

These together with Proposition 5 and the conditional Lindeberg theorem imply
that the law of the iterated logarithm of Heyde and Scott (1973) holds for the
martingale {Wn,?Fn} and this together with (7.7) imply Theorem 12.

Thejth term of the first series ^ / ( 2 > eA(y')*) which is eventually zero. Thus the
first series is a finite sum. It is easy to show that the expectation in thejth term of the
second series is bounded above by 32/(;'—1) and we have already seen that

8. The ultimately deterministic case

We shall now consider the case where £ i (n ) < oo. Observe that the proof of
Proposition 4 is still valid. Let Bn = {Xn+, -Xn = - 1}.
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PROPOSITION 1. P{Bn\.o.} = 0.

PROOF. Clearly P(Bn | J%) = /.{Xn) and hence the assertion will follow from the
Borel-Cantelli lemma, see Stout (1974), p. 11, once we show that X n ? i E/\Xn) < GO.
If p(n,j) = P0(Xn =j), then Fubini's theorem allows us to rewrite the last sum as

Z I P(nj)/U)= I M J )
j S l n = s l j»l

The Green's functions Goj are evaluated as follows.
Clearly

G0; = GO ] J-1(1-; .( ;-1)) + GO,,.+,;.(;+ 1), G O o- l =A(1)GO1

and Goo = (1 -qo)~' where q0 is the probability of eventual return to zero. By using
the general results quoted in connection with Theorem 1 we see that

Goo = 1 + Z P(k).
i> 1

By working inductively it is easy to see that

r,. = GOJ- ;.(;)= I n;.(/c)/(i-;.(/c).
i»jk=j

Let Q = n s , ( l -M) > 0. Then r , < Q-'Aij) where A(j) = I . ^ n t - j ^ f c ) . If
v( j) = max {A(fc), k ^ j} we see that A(j) «c v( j)/(l - v(j)) -• 0( j -^ oo). In addition,
^(j) = '4j)(l +-4(j)) < (1 +E)M.J) for some e > 0 all sufficiently large j . Thus
X Tj < cc and the proof is complete.

Proposition 7 states that the random variable

iV = sup{«|/(Bn_1)= 1},

the last time the random walk moved toward the origin, is nondefective. If
D = N — Xn, which is non-negative, then

Xn = n-D (n^N).

Let t(n,j) = P0(N = n,XN =j). Since {N = n,XN =;'} occurs if and only if the
walk steps back from j + 1 to j during (n — 1, n) and then steps to the right thereafter,
we obtain

Explicit determination of even the marginal distributions of N, XN or D, or their
generating functions, presents difficulties. We now prove the following more modest
result.
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THEOREM 13.

(a)

(b)

lim (n - EXJ = 2 £ T- = ED;

EN < x if and only if£jM.j) < x .

PROOF. The first equality of (a) follows from (7.2) and the proof of Proposition 7.
Let Yn — n — Xn. Clearly {Yn) is nondecreasing and

EYn = E(Yn; N «c n) + E(Yn; N > n).

On the set {N ^ n}, Yn = D and hence by monotome convergence

ED = lim E(D; N < n) ^ lim EYn < oo.
n-* <XJ n-* co

It follows from this that

E{ Yn; N> n)^ E( YN; N > n) = E(D; N > ri) -> 0 (n -+ x•),

whence the second equality in (a).
We shall prove (b) by showing that EXN < co if and only if Y.)'•(}) < x - Clearly

n

n (i-^(0

whence the 'only i f part of our assertion.
Now

n A

The 'if part of our assertion now follows.

1)) x),

9. Further comments

We might expect that the spirit of the Hines-Thompson model is still preserved if
we allow its increments to take values larger than unity but insist that they be
uniformly bounded, by M say. Thus for i = l,...,M we specify the probabilities

P(Xtt+l-Xn = i), = 1 -k(Xn)

and <x(j, M) > 0 for some/ By suitably restricting the behaviour of these increment
distributions we might hope to carry through a development similar to that in the
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previous section. It transpires that there can be a substantial qualitative difference in
the behaviour of the extended walk.

To see this consider the special case where a(Xn, i) = (1 — /.(Xn)) a(i) where {a(i)} is
a distribution on (1,..., M) having mean a ^ 1 and variance v 5= 0. It is easily seen
that {Wn,^n} is a martingale where

andifZn= Wn-Wn.l then

E(Z2
n | #•„_,) = D (1- / (A- 1 I

Stout's theorem again shows that WB/n -^>0. Moreover by comparison with the
case M = 1 we see again that {Xn} is transient and we conclude that XJn -^-^ a.
However, if v > 0 there can be no result corresponding to Theorem 10, the
variability in the distribution {oe(i)} swamps the effect arising from the decreasing
likelihood of stepping to the left. Furthermore, with appropriate conditions on the
A( •), Brown's central limit theorem yields the classical behaviour

If v = 0 the postive part of the increment is concentrated at a = M and the
random walk behaves similarly to the M = 1 case. Thus under the conditions of
Theorem 10 we now have [an — Xn)/A(n) - ^ » 1 + a and corresponding to Theorem
11 we have the result

Xn — an+(a + M.,I*V.,_ xr/n i\

&+l)y/Mn) ~"V>1>-

We now comment briefly on the maximum process {Ĵ } where Vn = maxm>BXm

and {Xn} is as defined in Section 7. In contrast to the methods used in Section 7, it
can be shown by using classical renewal theory methods that{ Vn} possesses the same
limit behaviour as {Xn}. To see this let Nj denote the first passage time from {j) to
{y' +1} and (pfs) its generating function, It follows that

and this can be used to show that

(./-oo).

These results can be used in conjunction with Kolmogorov's criterion for
convergence of random series and Kronecker's lemma to show that if
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(A(n)yl(S(n)-n-2A(n)) - ^ » 0.

A direct argument shows that

(A(n))" * (S(n) -n- 2 A(n)) => N(0,1).

By using the relations S(Vn) > n ^ S(Vn— 1) and (S(n) ^ /} = {Vj > n} we can obtain
restatements of Theorems 10 and 11, respectively, for {Vn}.
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