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Infra-red safety and non-safety

In this chapter we examine the simplest measurable quantity that can be computed purely
perturbatively in QCD: the total cross section for e+e− annihilation at high energy Q to
hadrons. This is the paradigm of physical single-scale problems: when the renormalization
scale μ is of order Q, low-order perturbation theory in αs(Q) gives a valid estimate of the
cross section.

Since the calculation involves quark and gluon final states in a confining theory, we will
examine how to justify the use of perturbation theory with apparently incorrect states. There
are divergences in individual terms in the calculation. But, in the total cross section, the
divergences cancel after a sum over all terms of a given order of αs . This property is called
“infra-red (IR) safety”, and in this case is a version of the theorem of Kinoshita (1962) and
Lee and Nauenberg (1964) (KLN theorem).

More general situations need a systematic analysis of non-IR-safe situations, and are the
primary concern of the rest of this book.

4.1 e+e− total cross section

We consider the process e+e− → hadrons, to lowest order in electromagnetism.1 The
amplitude, Fig. 4.1, involves an s-channel exchange of a photon of momentum qμ, and an
incoming electron and positron of momenta l1 and l2, with the center-of-mass energy being
Q =

√
q2. The leptonic and hadronic parts of the cross section factorize, as in DIS:

σ = e4

2Q6
LμνW

μν, (4.1)

where (with neglect of the electron mass, and with unpolarized beams)

Lμν = l
μ
1 lν2 + l

μ
2 lν1 − gμνl1 · l2, (4.2)

and

Wμν(q) =
∫

d4x eiq·x 〈0 jμ(x) jν(0) 0〉 . (4.3)

1 There can be large IR-dominated higher-order electromagnetic corrections when the cross section is rapidly varying,
e.g., near a narrow resonance. The techniques for unfolding such radiative corrections are standard, and we will not
treat them here. A full treatment needs the addition to the amplitude of the Z exchange graph. This does not change
the principles, so the reader is referred elsewhere, e.g., Ellis, Stirling, and Webber (1996), for details.
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q
l1

l2

Fig. 4.1. Amplitude for e+e− −→ hadrons.

Conservation of jμ gives qμWμν = 0, so that we can decompose Wμν in terms of a
scalar structure function R(Q2) as

Wμν = (−gμνq2 + qμqν
) 1

6π
R(Q2)θ (q0). (4.4)

Hence the cross section is

σ = 4πα2

3Q2
R(Q2). (4.5)

The normalization coefficient in (4.4) is chosen so that R is the ratio of σ to the lowest-order
cross section e+e− −→ μ+μ−:

R = σ (e+e− −→ hadrons)

σ (e+e− −→ μ+μ−, LO, em)
. (4.6)

Some authors define the denominator to be the complete cross section for e+e− −→ μ+μ−;
the definition here is the PDG one.

A compilation of the data is shown in Fig. 4.2. At low energies, there are several large
peaks, resonances corresponding to mesons made of light quarks. After that, the cross
section generally decreases with energy, approximately as 1/Q2 as is generic for processes
involving a large virtuality like the photon in Fig. 4.1. The trends are easier to see in the
plot of R, whose basically constant value is interrupted at around 4 GeV and 10 GeV
by jumps that correspond to the thresholds for production of charm and bottom quarks,
preceded by sharp peaks for the bound states of these quarks with their antiquarks. Finally,
the addition of a graph with the exchange of a Z instead of a photon in Fig. 4.1 gives rise
to the prominent peak at Q = mZ � 91 GeV that interrupts the fall of the cross section.

4.1.1 Short-distance dominance in averaged cross section

When Q is large, the high virtuality of the photon in Fig. 4.1 suggests that it has a short
lifetime, of order 1/Q in its rest frame, and hence that the process occurs over a short scale
in time and distance. This makes it suitable for exploiting asymptotic freedom, so that a
first approximation is obtained from the lowest-order graph, Fig. 4.3, for e+e− → qq̄.

However, the two currents in (4.3) need not actually have a small space-time separation.
Consider a semi-classical approximation in which a quark and antiquark are assigned
trajectories after their creation at a particular time and position. Suppose that the quark-
antiquark force were such that they repeatedly bounce back to their creation position,
as in Fig. 4.4. Now the incoming electron and positron have almost definite momenta

https://doi.org/10.1017/9781009401845.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.004


4.1 e+e− total cross section 71

(a)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

1 10 10
2

ρ

ω
φ

ρ

J/ψ ψ(2S)

Z

σ
m

b

(b)

10
-1

1

10

10 2

10 3

1 10 10
2

ρ

ω
φ

ρ

J/ψ ψ(2S)
ZR

S    GeV

Fig. 4.2. (a) Total cross section and (b) R, for e+e− −→ hadrons. Reprinted from Amsler
et al. (2008), with permission from Elsevier. The dashed line is the lowest-order “parton-
model” prediction, and the solid line is the 3-loop pQCD prediction from equations (1)–(3)
of Chetyrkin, Harlander, and Kuhn (2000).

(in a normal experiment), so that their states can be represented by long wave packets,
Fig. 4.5. Therefore their collision and the production of quark-antiquark pairs occurs over
an extended time.

Now a pair produced late in the collision is in the same spatial position as a pair that
is produced early but that has bounced back, and we get interference when we add the
quantum-mechanical amplitudes for pair production at different times. At certain energies
the phases of the interfering terms could all be the same, giving constructive interference,
and a resonance peak. Off-resonance, the phases vary, giving destructive interference. Thus
we can get sharp resonances, as seen at certain energies in the data in Fig. 4.2. These
correspond to interference between quark-antiquark pairs produced at very different values
of space-time positions.

For example, the sharp J/ψ and ϒ peaks occur just below the thresholds for the
production of c and b quark pairs, respectively; there, the heavy quarks are slowly moving
and are easy to bring back to the production point. However, resonances are not present
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q

t

z

Fig. 4.3. Lowest-order diagram for
e+e− → qq̄ (or e+e− → μ+μ−).

Fig. 4.4. Space-time evolution of semi-classical
trajectory of a qq̄ pair created at the origin, if the
quark-antiquark force caused them to bounce back.

Fig. 4.5. Representation of wave packets for incoming electron and positron.

much above the heavy-quark thresholds, so that we deduce from the data that fast-moving
quarks and antiquarks do not bounce back.

Unfortunately, the relevant long-distance phenomena in QCD are non-perturbative, and
not readily susceptible to a first-principles analysis. So we ask what properties of the cross
section are predicted purely perturbatively without any need to understand long-distance
phenomena. A solution (Poggio, Quinn, and Weinberg, 1976) is to use a local average of
the cross section in energy.

To understand this idea, we investigate the relation between the space-time structure
of the scattering and the momentum spread in a physical initial state. This exemplifies a
general issue that intuition and understanding can be obtained by studying the evolution
of states in coordinate space, even though actual calculations are typically performed in
momentum space.

Now a physical incoming e+e− state cannot be exactly a state with particles of defi-
nite momenta. We must use a superposition of momentum eigenstates corresponding to
coordinate-space wave packets, as in Fig. 4.5:

|ψ〉 =
∑

l ′1,l
′
2,λ1,λ2

∣∣l ′1, λ1, l ′2, λ2; in
〉

ψ1(l ′1, λ1) ψ2(l ′2, λ2). (4.7)

Here l′1 and l′2 are the momenta of the incoming electron and positron, and λ1 and λ2

label their spin states. The momentum-space wave functions ψ1(l ′1, λ1) and ψ2(l ′2, λ2)
are narrowly peaked around central values of momentum l1 and l2. We let q = l1 + l2
be the corresponding central value of total momentum. The notation

∑
l ′1,l
′
2

is the usual
Lorentz-invariant integral over a particle’s momentum, (A.15).

As in (4.1) and (4.3), we treat electroweak interactions perturbatively. The initial state
|ψ〉 evolves to a slightly depleted version of |ψ〉 plus a hadronic component |φ〉, plus
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1/Δ

Fig. 4.6. A component of the wave function φμ for the state in (4.9), as a function of a
component of position x in the overall center-of-mass.

components with scattered leptons:

|final state〉 = |φ〉 + |ψ〉 (1− . . .)+ |leptonic part〉 . (4.8)

In the graph Fig. 4.1, the hadronic factor is a vacuum-to-X matrix element of the electro-
magnetic current, 〈X, out|jμ(x)|0〉, for a general hadronic out-state X.

Hence the hadronic final state |φ〉 is jμ(x) |0〉 integrated with an x-dependent factor to
be computed from the Feynman rules for Fig. 4.1, and the wave packet state (4.7). Now the
creation of the hadronic final state occurs in the space-time region where the beams collide.
So at later times, the QCD part |φ〉 of the state in e+e− → hadrons is a time-independent
Heisenberg state. We write this as

|φ〉 def=
∫

d4x jμ(x) |0〉 e−iq·xφμ(x), (4.9)

where we have extracted a factor e−iq·x , anticipating that it is the dominant oscillatory
factor in the coefficient, with q being the central value of the total momentum. Lowest-
order electromagnetic perturbation theory gives

φμ(x) =
∑

l ′1,l
′
2,λ1,λ2

−ie2v̄l ′2λ2
γμul ′1λ1

(l′1 + l′2)2 + i0
ψ1(l ′1, λ1) ψ2(l ′2, λ2) ei(q−l′1−l′2)·x. (4.10)

Here the e−i(l′1+l′2)·x factor arises from Fourier-transforming the leptonic part of the Feynman
graph, and the eiq·x factor compensates the corresponding factor in (4.9).

The beams have approximately definite momenta, centered at l1 + l2 = q, so the oscilla-
tory factor mostly cancels. Let the states be localized to within � in momentum. Then each
component φμ is a smooth function with little oscillation, as in Fig. 4.6. Correspondingly
the position x in (4.9) is localized to about 1/�.

Once the hadronic state |φ〉 has been created by the current and the current is no longer
acting because the coefficients φμ(x) have become zero, the state cannot be destroyed, to
lowest order in electroweak interactions. Thus the probability of the transition e+e− →
hadrons is just 〈φ φ〉. This is genuinely a scattering probability, not a cross section. The
concept of a cross section arises when one observes that experiments are done with beams
of particles which are distributed over an area that is large compared with the scattering
region. The relative transverse separation of the beam particles has a broad distribution.
The cross section is obtained by displacing one beam transversely with respect to the other,
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and then integrating over the displacement bT. Let the hadronic state with a displaced beam
be |φ

bT
〉, with wave function φμ(x; bT). The cross section is

σ =
∫

d2bT 〈φbT
|φ

bT
〉 =

∫
d4x eiq·x 〈0 jμ(x) jν(0) 0〉 t̃μν(x), (4.11)

where

t̃μν(x) =
∫

d2bT

∫
d4w φμ

(
w + 1

2
x; bT

)∗
φν

(
w − 1

2
x; bT

)
, (4.12)

which is localized in x to within 1/�. After a Fourier transformation

t̃μν(x) =
∫

d4k

(2π )4
tμν(k)ei(k−q)·x, (4.13)

we find that the cross section is a weighted average in momentum space:

σ =
∫

d4k

(2π )4
tμν(k)Wμν(k) = 1

6π

∫ ∞
0

dM2 R(M2) f (M2), (4.14)

where

f (M2) = −
∫

d4k

(2π )4
tμμ (k)θ (k0)δ(k2 −M2). (4.15)

We now see one result of the wave-packet construction: that a local average of R(Q) over a
range of Q of width � corresponds to a localization of the positions of the current operators
to x ∼ 1/�. Of course, real particle beams are very narrow in momenta. But a broader
averaging applied to the measured cross section gives a quantity with better localization in
position and therefore with better perturbative calculability.

The standard momentum-space analysis gives the cross section in terms of R, from
which we deduce the correct normalization of the averaging function f without needing
the detailed wave-packet analysis:∫ ∞

0
dM2 f (M2) = 8π2α2

Q2
, (4.16)

up to terms that vanish when �/Q→ 0.
It is convenient to consider as a standardized quantity, one particular normalized local

average of R:

R̄(Q2,�2)
def=
∫

ds F (s −Q2,�2) R(s). (4.17)

Here F (s −Q2,�2) is one particular averaging function, of unit integral, centered at
s = Q2, and of width �2. I choose

F (s −Q2,�2) = �2

π
[
(s −Q2)2 +�4

] . (4.18)

We assume � is somewhat less than Q2, but not enormously so. If R is smooth in a region
of Q, as is the case experimentally for most large values of Q, then the local average R̄ is
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almost equal to R; the averaging does nothing. But where R has sharp features, e.g., near
the thresholds for c and b quark production, the average smooths out the sharp peaks and
the thresholds.

4.1.2 When is perturbation theory good?

To put the concept of perturbative calculability in a general context, current ideas can be
summarized in the following assertion:

Consider a situation where all vertices in a perturbative calculation are dominantly separated
by small distances, of order 1/M , and that we set μ ∼ M . Then QCD perturbation theory in
powers of the weak coupling αs(M) provides a good approximation.

That is, short-distance-dominated quantities are perturbatively computable. The integration
over the positions of vertices is, of course, unrestricted. What matters for the above assertion
is whether the vertices are dominantly close to some external vertices determined by the
problem.

A similar assertion could be made about momentum-space Green functions, where the
premise would be about the lines of the graph being dominated by high virtualities, of order
M2. However, this assertion is not so general. This can be seen from the matrix element
(4.3) defining Wμν . The currents have fixed ordering and perturbation theory gives final
states with on-shell quarks and gluons, so that not all propagators are far off-shell, even
when the positions of the current operators are arbitrarily close, a situation that is different
for the time-ordered product of operators.

4.2 Explicit calculations

Since the locally averaged quantity R̄ is short-distance-dominated, we can use perturbation
theory to predict it reliably. Therefore, to the extent we are away from resonances, we
predict the unaveraged R(Q2), in both cases at large Q. The electromagnetic current has
zero anomalous dimension within pure QCD.2 So we change the renormalization scale μ

to be of order Q, without changing R, and then expand in powers of the small coupling.
We also approximate light-quark masses by zero. Thus:

R(Q2, μ, g(μ),m(μ)) = R(Q2, cQ, g(cQ),m(cQ))

� R(Q2, cQ, g(cQ), 0)

=
∑
n≥0

αs(cQ)nR[n](c). (4.19)

If we truncate the series at order N , then the error is of order αN+1
s , so that we have

an effective method of calculation given that αs(cQ) is small. From Sec. 3.4, we expect
(in the MS scheme) optimal applicability of perturbation theory when μ2 is of order a

2 This is not true beyond QCD (Collins, Manohar, and Wise, 2006), contrary to many statements in the literature.
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Fig. 4.7. Lowest-order graph for amplitude used in R.

typical internal virtuality. This could be governed by the width of the smoothing function,
so in (4.19) μ is a constant c times Q, and a good value could be c = 1

2 or 1
4 . RG

invariance implies that the value of c is irrelevant in an exact calculation, while in a truncated
perturbation calculation the effect of a modest change in c is of order the expected truncation
error.

In the remainder of this section, we perform the perturbative calculation of R to
order αs .

4.2.1 Lowest order

The single graph for the lowest-order calculation, Fig. 4.7, is the same as for μ+μ−

production, with the replacement of a muon line by a quark line. So with the neglect of
quark particle masses, the lowest-order value of R is

R[0] = 3
∑
f

e2
f . (4.20)

The factor 3 is for the sum over quark colors, and the sum is over the accessible flavors of
quark, which depends on the value of Q relative to the quark masses.

Some complications now occur because of the non-negligible masses of the c, b and t

quarks. Any quark that is not accessible kinematically, i.e., for which mf > Q/2, should
certainly be dropped from the sum. The remaining quarks we term “accessible”. Provided
that Q is much larger than the other quark masses, these masses may be neglected, as in
the calculation giving (4.20).

The remaining case is when Q is comparable to 2mf for one of the quarks. As regards
perturbation theory, there is a threshold at Q = 2mf for production of quark f . Since
there are sharp resonances just below threshold (Fig. 4.2) we should apply the averaging
procedure in Q before using the elementary perturbative prediction.

Hence we deduce that it is a good first approximation to restrict the sum in (4.20) to
those quarks with 2mf < Q, and to otherwise ignore the effects of quark masses. The
known quark charges and masses then give a first prediction of R:

R[0] =

⎧⎪⎪⎨
⎪⎪⎩

2 if Q � 3 GeV,

3 1
3 if 3 GeV � Q � 10 GeV,

3 2
3 if 10 GeV � Q.

(4.21)

Once Z exchange effects become important, this prediction needs changing, so we do not
include a possible last line, to include the t quark. For the inclusion of masses at lowest
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Fig. 4.8. NLO graphs for amplitudes for R.
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Fig. 4.9. Momentum configuration for 3-body final state.

order, see problem 4.2. For masses and the effects of Z at higher order, see Chetyrkin,
Harlander, and Kuhn (2000).

4.2.2 Next-to-leading order: real gluon

The next-to-leading order (NLO) terms arise from the graphs of Fig. 4.8. One contribution
is from the real-gluon emission graphs, (a) and (b), with a qq̄g final state:∫

dfsps |(a)+ (b)|2 , (4.22)

with dfsps given by (A.17). The other contribution is from the virtual corrections, (c) and
(d), with a qq̄ final state.

All of the terms individually have divergences which we regulate by using a space-time
dimension 4− 2ε.

Provided that the integrand involves only Lorentz scalars, the (5− 4ε)-dimensional
integral for real-gluon emission can be simplified to a two-dimensional integral, so that
angular averages can be performed to give (A.44). So we calculate the trace of Wμν :

W
def= −gμνWμν = (3− 2ε)

Q2

6π
R(Q2). (4.23)

In the overall center-of-mass, the 3-momenta of the final state form a triangle – Fig. 4.9,
whose perimeter is

∑
i |ki | = Q, from energy conservation. The integration variables in

(A.44) are the relative deficits of the spatial momenta relative to their maximum Q/2:

yi = 1− 2|ki |
Q

. (4.24)

The integral is over positive values subject to
∑

i yi = 1. We have

(k1 + k2)2 = y3Q
2, (k2 + k3)2 = y1Q

2, (k3 + k1)2 = y2Q
2. (4.25)
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It is also convenient to factor out the lowest-order calculation in 4− 2ε dimensions,
derived from (A.43) for the 2-body phase space:

W [0] = R0
Q−2ε

24−4επ1/2−ε�( 3
2 − ε)

(−gμν) Tr γ μ/k1γ
ν/k2

= R0
Q2−2ε(1− ε)

22−4επ1/2−ε�( 3
2 − ε)

. (4.26)

After a standard application of Feynman rules, etc., we find that the contribution of
graphs (a) and (b) to W is

W [1](qq̄g) = W [0] αsCF

4π�(1− ε)

(
Q2

4πμ2

)−ε ∫ 1

0
dy1

∫ 1−y1

0
dy2 (y1y2y3)−ε

× 4(y3 + y1y2ε)+ 2(1− ε)(y2
1 + y2

2 )

y1y2
. (4.27)

The sum over flavors and a factor e2
f are the same as in lowest order, and are in the factor

W [0]. Thus, the order-αs correction factor is the same for all flavors of massless quark.
The integrand is singular when y1 and/or y2 is zero, and gives a divergence in the

integral for space-time dimension 4 or less, i.e., when ε > 0. In Ch. 5, we will analyze the
physics of these and other divergences more generally. But for calculational purposes, it
suffices that the divergence can be regulated and hence quantified by using a space-time
dimension above 4, i.e., ε < 0. In the ultimate result, for R, we will find a cancellation
against divergences from the virtual-gluon graphs. The configuration of momenta at the
singularities is easily deduced from the geometry of Fig. 4.9:

y1 = 0 gluon parallel to k2,
y2 = 0 gluon parallel to k1,

y1 = y2 = 0 gluon of zero momentum.
(4.28)

In Ch. 5, we will analyze such singularities. The first two give “collinear divergences”, where
two final-state massless particles are parallel, and the last one gives a “soft divergence”,
where the gluon has zero momentum.

The integral is readily computed in terms of � functions. Its expansion in powers of ε

exhibits the divergence quantitatively:

W [1](qq̄g) = W [0] αsCF

π

(
Q2

4πμ2

)−ε
�(−ε)2

�(2− 3ε)

[
1− ε(3− 5ε)

2− 3ε

]

= W [0] αsCF

4π

(
4πe−γE

)ε [ 4

ε2
+ 1

ε

(
−4 ln

Q2

μ2
+ 6

)
+ 2 ln2 Q2

μ2

− 6 ln
Q2

μ2
+ 19− 7π2

3
+O(ε)

]
. (4.29)

That we obtain a relatively simple analytic result is associated with the masslessness of the
quarks and gluons in the calculation.
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4.2.3 Next-to-leading order: virtual gluon

For the virtual-gluon corrections, from Fig. 4.8(c) and (d), it is convenient to compute the
matrix elements from Green functions with bare fields, rather than using the full counterterm
structure of (3.13)–(3.15). One reason is that the electromagnetic current is simplest in
terms of bare fields: j

μ
em =

∑
f ef ψ̄f,0γ

μψf,0. Another is that the implementation of LSZ
reduction for massless theories is trivial.

The LSZ reduction formula tells us that to get an on-shell matrix element, we amputate
complete external propagators and replace each by the square root of the residue of the
particle pole. Let z2 = 1+ g2z

[1]
2 + . . . be the residue of the pole in the propagator of a

bare quark field. The one-loop term is

g2z
[1]
2 = lim

p2−→0

i /p

p2

g2CF (2πμ)2ε

16π4

∫
d4−2εk

−γ ν/kγν

(k2 + i0) [(p − k)2 + i0]

= coefficient× lim
p2−→0

(−p2)−ε

= 0. (4.30)

Since dimensional regularization is used here to regulate infra-red-related divergences, we
take ε negative, which gives the zero result in the last line. No UV counterterm is applied,
since we work with bare fields.

The result (4.30) generalizes to all orders: an N -loop calculation gives a factor of
g2Nμ2Nε , and hence dimensional analysis shows that the power of p2 is (−p2)−Nε . Thus
to all orders in perturbation theory the residue of the pole in the bare propagator is exactly
z2 = 1.

The only non-zero one-loop virtual contribution to R is therefore from the vertex graph
(d). To get its contribution at order αs to W , we multiply the graph by the complex conjugated
LO graphs, then we add the complex conjugate, we take the trace of Wμν with −gμν and
perform the angular integral in 3− 2ε spatial dimensions. This gives

W [1](qq̄) = W [0]� ig2CF (2πμ)2ε

32π4Q2(1− ε)

∫
d4−2εk

Tr /k1γ
κ (/k1 − /k)γμ(/k2 + /k)γκ/k2γ

μ

(k2 + i0) [(k1 − k)2 + i0] [(k2 + k)2 + i0]
.

(4.31)

There is an extra factor of 4Q2(1− ε) in the denominator of the prefactor because of the
normalization to W [0]. Standard manipulations give

W [1](qq̄) = W [0]�αsCF

4π

(−Q2 − i0

4πμ2

)−ε
�(1+ ε)�(1− ε)2

ε2�(1− 2ε)

[ −4

1− 2ε
+ 2ε

]

= W [0] αsCF

4π

(
4πe−γE

)ε [− 4

ε2
+ 1

ε

(
4 ln

Q2

μ2
− 6

)
− 2 ln2 Q2

μ2

+ 6 ln
Q2

μ2
− 16+ 7π2

3
+O(ε)

]
. (4.32)
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4.2.4 Leading and next-to-leading order: total

In the total for R[1], the divergences cancel, and at ε = 0 we find

R = R[0]

[
1+ 3αs(μ)

4π
CF +O(α2

s )

]
= R[0]

[
1+ αs(μ)

π
+O(α2

s )

]
, (4.33)

with the physical value of CF . Notice that both logarithms of Q/μ have canceled. This
follows from the RG invariance of R, which implies that a logarithm of Q/μ first appears
in the coefficient of α2

s (problem 4.5). We have left the renormalization scale μ arbitrary,
but, as explained earlier, a value for μ of order Q should be used to ensure that higher-order
calculations do not get large logarithms. Thus O(α2

s ) correctly represents the expected size
of the error due to omission of higher-order perturbation theory.

This result is both reassuring and disturbing. It is reassuring that the divergences cancel
in a quantity that was supposed to have a valid perturbation expansion. But it is also
disturbing: the intermediate steps involve totally unphysical states. In another arena, QED,
there are somewhat similar IR divergences because of the masslessness of the photon; but
at least electrons and photons are actual identifiable particles. See Sec. 4.3 for a detailed
analysis.

The calculation evidently makes important predictions. Among these is that measuring
the ratio R gives an estimate of the sum of the squared charges of the accessible quarks.
When first obtained, this was a rather dramatic result, and the data (Fig. 4.2) confirm the
charge assignments of the quarks. Deviations from this value can be used to measure the
strong coupling and to test its evolution with scale.

4.2.5 Full result, and phenomenological implications

The currently most accurate calculations may be traced from Chetyrkin, Harlander, and
Kuhn (2000), where the calculation is extended at order α3

s to include quartic mass correc-
tions (i.e., of order m4/Q4). With massless quarks the current results are

R

R[0]
= 1+ αs

π
+
(αs

π

)2
[

365

24
− 11 ζ3 + nf

(
−11

12
+ 2

3
ζ3

)]

+
(αs

π

)3
[

87 029

288
− 121

8
ζ2 − 1103

4
ζ3 + 275

6
ζ5

+ nf

(
−7847

216
+ 11

6
ζ2 + 262

9
ζ3 − 25

9
ζ5

)
+ n2

f

(
151

162
− 1

18
ζ2 − 19

27
ζ3

)]

+O
(αs

π

)4

≈ 1+ αs

π
+
(αs

π

)2 (
1.985 71− 0.115 295nf

)
+
(αs

π

)3 (−6.636 94− 1.200 13nf − 0.005 178 36n2
f

)+O
(αs

π

)4
. (4.34)
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Fig. 4.10. (a) Matrix element of qq̄qq̄ fields used to obtain two-pion production. (b) An
example of a perturbative graph for the matrix element.

Here, the MS unit of mass was set to μ = Q, so that αs = αs(Q). The logarithmic depen-
dence on Q/μ can be restored with the aid of the renormalization group (problem 4.5).

4.3 Evolution of state

Individual terms in the perturbative calculation of R involve quarks and gluons rather than
the hadrons that actually appear in the final state. To understand better why we nevertheless
obtain a valid prediction of QCD, we examine the evolution of the hadronic final state,
between the jμ(x) and jν(0) operators in (4.11). The arguments in this section are not
intended to be precise and rigorous.

Although the hadronic Heisenberg-picture state, |φ〉, is time independent, its interpre-
tation in terms of localized particle content does evolve. It can be analyzed by matrix
elements of products of field operators between |φ〉 and the vacuum. For example, consider
[Fig. 4.10(a)] 〈

0 T ū(w1)d(w2)d̄(w3)u(w4) φ
〉
, (4.35)

where the fields annihilate ū, d , d̄ , and u quarks respectively. Fourier transformation gives
a function of momenta p1, p2, p3, p4. Poles in this function correspond to particles in the
asymptotic out-states. For example, a state with a π− and a π+ gives a pole in the exact
matrix element at (p1 + p2)2 = m2

π and at (p3 + p4)2 = m2
π . The poles are related to the

coordinate-space asymptotics when the times of all the four fields are taken to +∞; in the
π−π+ example, the spatial components of w1 and w2 are close together and in the direction
of the π−, and similarly for w3 and w4 and the π+.

In finite-order perturbation theory, we have diagrams like Fig. 4.10(b). This has no poles
for pions, but only for quarks and gluons, for example at p2

1 = p2
4 = m2

u and p2
2 = p2

3 = m2
d .

Such poles give a large-time behavior for the individual graph that corresponds to a state
that does not exist in a theory with color confinement; fixed-order perturbation theory gives
an entirely incorrect approximation to asymptotic large-time Green functions and matrix
elements. However, if the times are not too large, perturbation theory should approximate
the true results. Thus the poles in fixed-order graphs imply that we do have, but only
approximately, the propagation of the corresponding quarks and gluons.

Returning to the lowest-order graph for R, Fig. 4.7, we deduce in a rough fashion that
at the earliest times we have predominantly an outward-moving q and q̄, as at the lower
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Fig. 4.11. Three semi-classical scenarios for evolution of qq̄ system: (a) approximately
free, (b) string, (c) spring. In case (b), extra qq̄ pairs are produced in the middle.

end of Fig. 4.4. We can reasonably assign them a virtuality of some size M2 that is much
less than Q2. The Lorentz boost to energy Q/2 implies that the lifetime of the qq̄ state
is of order Q/M2. Perturbative corrections, like those in Fig. 4.8 or Fig. 4.10(b), alter the
state, for example by changing the probability of the qq̄ state and by adding a component
with a gluon. At late times, QCD perturbation theory is entirely inapplicable, in the domain
where, in the real world, the system non-perturbatively hadronizes into a set of isolated
color-singlet hadrons.

4.3.1 String model for hadronization

If we ignored any knowledge of the real world we could imagine at least three scenarios
for the time development, as illustrated in Fig. 4.11:

• The quarks and gluons continue basically unhindered into the observed final state, as in
QED, where there is no confinement. Let us call this the “unconfined” or “free-quark-
and-gluon” picture.

• In the gluon field between the quark and antiquark, extra qq̄ pairs are made. We call
this the “breakable string” picture. The qq̄ pairs combine into color-singlet hadrons,
mostly pions. Nothing returns to the production point, and the general momentum flow
corresponds to the system at short times, which is little deflected. But the space between
the ends of the kinematic range is filled in with particles, and the detected particles are
hadrons, not quarks and gluons.

• A confining potential exists, which brings the quarks and gluons back. We can call this
the “unbreakable elastic spring” picture. The final states form a sequence of bound states.
After multiple bounces, it may be that the states decay, perhaps in the style of the string
picture, but the directions of the decay products need not be very correlated with the
initial qq̄ direction.

Purely perturbative calculations in QCD cannot decide between these scenarios. But we
can appeal to experiment, semi-classical intuition, modeling, and lattice gauge theory
calculations, at least. The unconfined scenario is ruled out experimentally. The increase in
αs in the infra-red is a precondition for a rising potential. But the bound states or resonances
in the spring picture do not appear to be relevant except close to quark thresholds, where
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there is little energy for producing extra particles, and where the initial q and q̄ are moving
slowly.

It is the string picture that seems to be approximately correct. Embodied quantitatively
in the semi-classical Lund string model (Andersson, 1998), it rather successfully describes
the hadronization of quarks and gluons. In this model, when the qq̄ separation is large
enough, the gluon field collapses to a flux tube (“string”) with a fixed cross-sectional area,
and with a constant energy per unit length. Without qq̄ production, this would correspond
to a linearly rising potential, which has significant phenomenological support from quark
models of hadrons, etc.

The Lund model postulates that creation of light qq̄ pairs occurs in the string with a
constant rate per unit length and unit time; this is the only Lorentz-invariant possibility. In a
strong coupling, strong field situation such as we have here, the string therefore breaks, we
have inelastic scattering, and the description in terms of a genuine potential breaks down.

A more detailed investigation shows that the string breaking and the hadronization occur
along a hyperbolic region t2 − z2 ∼ 1/�2. The fastest particles, with energies of order Q,
are generated at the ends of the string in a time of order Q/�2, while the slowest particles
are generated in the middle in a time of order 1/�.

The Lund model is plausible and natural as a first approximation to real QCD dynamics
in situations such as e+e− annihilation at high energies. For each outgoing parton, the
model leads to the production of a jet of hadrons with approximately the 4-momentum of
the parton. This can be seen in event pictures like Fig. 2.3 for a similar situation in DIS.

The validity of the string model depends on specific dynamical properties of real
QCD, with its light u and d quarks. In contrast, there is the solvable model of
’t Hooft (1974), pedagogically reviewed in Manohar (1998). This model is QCD but
in 1+ 1 space-time dimensions with a gauge group U(N ) taken in the limit N →∞.
This model provides an example of the “elastic spring” scenario;3 the large N limit
suppresses the qq̄ production that causes string breaking in the Lund model. In the
’t Hooft model, the final states in e+e− → hadrons form an infinite sequence of meson
bound states with no continuum, whereas a simple perturbative calculation gives a con-
tinuum. It is a local average of the true cross section that agrees with the perturbative
calculation, as we saw earlier. Explicit calculations support the general result, as was par-
ticularly clearly shown by Einhorn (1976), where the result was also extended to other
cases, like DIS.

4.3.2 Analysis in terms of final states

We decompose the averaged cross section (4.11) in terms of a basis for the hadronic final
states:

σ =
∑
X

∫
d4x eiq·x 〈0 jμ(x) X〉 〈X jν(0) 0〉 t̃μν(x), (4.36)

3 The ’t Hooft model is normally said to give an example of a string model. But I use the name “elastic spring” to
emphasize its unbreakability, to contrast with the fragility of the string in real QCD.
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and analyze the states in three bases:

• a momentum basis for the true out-states (involving hadrons);
• a spatially localized basis obtained using quark and gluon fields not too long after the

creation of |φ〉;
• a momentum basis for quark and gluon out-states, as seen in dimensionally regularized

weak coupling perturbation theory. Here we must go to a space-time dimension above
4, i.e., to ε < 0, so that the IR behavior is mild enough that the ordinary S-matrix
exists.

The first basis gives the true distribution of observed final-state particles, but its use in
calculations requires an unavailable non-perturbative solution of QCD. The second basis
is most fundamentally suited to perturbative calculations, by working only with objects
involving short distances. It completely justifies short-distance dominance for averaged
cross section, but there is no known formulation explicit enough for actual calculations.
The third basis, involving a momentum-space decomposition, is the easiest calculationally,
but it involves a basis constructed from the t →∞ behavior of Green functions when a
regulator is applied.

The low-order calculation of the individual terms in the ratio R in the third basis is only
appropriate when the coupling is small enough that higher-order terms are not larger than
lower-order terms. Given the double poles in ε that occur per loop, this implies that we
should only apply the calculation when αs � ε2 (with ε negative). When the IR regulator
is removed, the range of validity of the calculation shrinks to zero. So the cancellation of
divergences in R is not sufficient by itself to justify the use of the result for R at non-zero
αs(Q).

But the result for R is independent of the basis for the completeness sum
∑

X |X〉 〈X|,
so we can use the short-distance quark-gluon basis to justify the validity of perturbation
theory for R for non-zero αs(Q).

4.4 Dispersion relation and effective virtuality of
final-state quarks and gluons

A perturbative calculation of R(Q) involves cut graphs with an on-shell final state. In
this section, I show that after a local average in Q, R(Q) is given by an integral over an
uncut graph, in which the final-state quarks and gluons are effectively off-shell by order
Q2. The derivation provides general principles that we will frequently generalize to other
situations.

We consider a Green function �μν that is defined like Wμν , but with time-ordered
current operators. It has an associated scalar function �(q2):

�μν(q) = (−gμνq2 + qμqν
)
�(Q2) = i

∫
d4x eiq·x 〈0 T jμ(x) jν(0) 0〉 . (4.37)

Note the factor i in the last part. Diagrammatically, �μν and Wμν are notated in Fig. 4.12 .
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q q

(a) (b)

Fig. 4.12. (a) Uncut and (b) cut diagrams for the hadronic part of the photon self-energy,
i.e., for �μν and Wμν .

q
2

4m2

physical region

Fig. 4.13. Analyticity in Q2 for �(Q2). Fig. 4.14. Contour to relate R̄ to �. The
off-real-axis singularities are those in the
averaging function F (s −Q2, �2). The
dots represent the singularities of F .

Now, �(Q2) is an analytic function of Q2 with a cut and singularities along the positive
real axis, as in Fig. 4.13. When Q2 is below the threshold for physical final states, � is
real, in particular for space-like qμ. When Q2 is above threshold, the physical region is on
the upper side of the cut. Moreover, the cut amplitude is twice the imaginary part, as is
provable from a dispersion relation. Hence

R(Q2) = 2�(Q2 + i0)

i
= �(Q2 + i0)−�(Q2 − i0)

i
. (4.38)

Hence we can relate the averaged R to the uncut amplitude �:

R̄(Q2,�2) = 6π

i

∫
�

ds F (s −Q2,�2) �(s) [general F ]

= 6π

i

[
�(Q2 + i�2)−�(Q2 − i�2)

]
[standard F ]. (4.39)

In the first line, the contour � loops around the positive real axis inside of the singularities
of the averaging function F , as in Fig. 4.14. In the second line, F is chosen to have the
standard form in (4.18) and the contour is closed on the two poles of F .

Thus we have expressed R̄ in terms of � evaluated at non-physical values of the
momentum. If the averaging range � is large, then the momentum is correspondingly far
from the physical region. The Landau analysis of the singularities of Feynman graphs
(Ch. 5) shows that the contour for the loop-momentum integrals in � can then be chosen
to avoid the poles of the internal propagators. If � is of order Q, the internal lines have
(typically complex) virtualities of order Q2.
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Therefore in the calculation of R̄, we can treat the internal quark and gluon lines as far
off-shell, thereby justifying its perturbative treatment in an asymptotically free theory.

4.5 Generalizations

One simple generalization of the work in this chapter is to allow for Z exchange as well
as photon exchange. This is needed for fits to the high-energy parts of the data in Fig. 4.2.
Another generalization (Baikov, Chetyrkin, and Kuhn, 2008) is to the hadronic part of the
decay rate of the τ lepton, where the initiating boson is the W .

For these cases, the same principles apply as to the case we treated: There is a cancellation
of IR-sensitive regions, leaving a quantity for which perturbation theory is applicable. Such
quantities we call “IR-safe”.

To analyze more general situations, we use the Libby-Sterman argument to be explained
in Ch. 5; this determines both the nature and power-counting of the IR-sensitive regions.
The most interesting cases are where the cancellations of divergences fail to occur. For
many of these, we will be able to derive factorization theorems, where only part of an
amplitude or cross section is IR-safe.

One outcome will be a discussion of IR-safe jet cross sections in Sec. 12.13.4.

Exercises

4.1 Compute the contribution of a scalar quark to R, to lowest order. What is the angular
distribution of the qq̄ final state in both the spin-0 and spin- 1

2 cases?

4.2 Compute the value of R[0] with quark masses taken into account. You should get

R[0] =
∑

i: mi<Q/2

3e2
i

(
1− 2m2

i

Q2

)√
1− 4m2

i

Q2
. (4.40)

4.3 (**) Compute the order αs correction to R for scalar quarks.

4.4 (*) I wrote that near a resonance in e+e− annihilation, the outgoing state is obtained
by quantum-mechanical interference involving sources at a large range of time scales.
Despite a large value of Q, the separation x of the currents in (4.3) is not small, of order
1/Q. Verify these statements explicitly. You could use the following approximation to
the cross section near the resonance of mass M and width �:

C

(Q2 −M2)2 + �2M2
. (4.41)

4.5 (*) Using the RG β function for the effective coupling, find the Q/μ dependence of
the coefficients in the formula for R, equation (4.34).
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