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Introduction

M. H. Stone raised the problem ([1] Problem 70) of characterising the
class of distributive pseudo-complemented lattices J£ = <L; v, A, 0, 1> in
which a* v a** = 1 holds identically. Several solutions to this problem
have now been offerred — the first being by G. Gratzer and E. T. Schmidt
[6], who gave this class of lattices the name Stone lattices. Later solutions
were given by J. Varlet [11], O. Frink [4] and G. Gratzer [5]; see also
G. Bruns [2].

The purpose of this paper is to show that suitably restated, several of
the known characterisations of Stone lattices hold for a wider class of
distributive lattices. New characterisations are also given which relate old
ones in an illuminating way. We also study the direct decomposition of
certain complete Stone lattices, and prove an embedding theorem for Stone
lattices. The final section gives some hitherto unmentioned examples of
Stone lattices.

1. Preliminaries

We shall assume a familiarity with the basic ideas of lattice theory
- see G. Birkhoff [1]. The centre 2£{Se) = <Z(«S?); v, A, 0, 1> of the lattice
& = <L; v, A, 0, 1> is defined on page 27 of [1]. Since we are exclusively
dealing with distributive lattices in this paper, Z(£C) consists of exactly
those elements of L which possess a complement. The principal ideal
generated by an element aeL in J§? = <L; v, A> is written (a), and the
ideal generated by a subset S Q L in =§? is written (S)^ or just (S). For
two subsets A and B of L we define

A v B = {t e L : t = a v b, a e A, b e B),
and

A A B = it e L : t = a A b, a e A, b e B).

If A and B are ideals of the distributive lattice JS?, then Av B is, the
join of A and B in the lattice J(5P) = </(.£?); v, n> of all ideals of &.
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In a distributive lattice with zero, the existence of minimal prime ideals
can readily be proved — see Lemma 2 of [6] — and we let ^4f(Ji?) denote the
set of all minimal prime ideals of =§?. Also let 0>{££>) denote the set of all
prime ideals of £?.

For a subset A Q L in a lattice j£? = <L; v, A, 0> we define the anni-
hilator A* = {t e L; {t} A A = {0}}. If A = {a} where aeL, we write
{a}* = (a)* and call a dense if (a)* = {0}. In a distributive lattice
,£? = <X; v, A, 0> the set D of dense elements forms a dual ideal of £C.
A lattice .§? = <X; v, A, 0> is said to be a dense lattice if (a)* = {0} for any
a ^ 0, i.e. Z> = L\{0}.

A congruence often studied in distributive lattices with zero is the
congruence R defined by

<a, b> e R iff (a)* = (b)*.

2. More general characterisations of Stone lattices

In this section we shall extend some known characterisations of Stone
lattices to a wider class of distributive lattices than pseudo-complemented
distributive lattices. Our extension is to the class of lattices known as
distributive ""-lattices introduced recently in [8]. Denoting the set of all
such lattices by A*, we have

DEFINITION. JS? E A* if and only if £f\R is a Boolean lattice.

THEOREM 2.1. ([8] 3.4) For a distributive lattice =Sf = <Z.; v, A, 0> the
following are equivalent

I. &eA*
II. For any x e L, (x)** = (x')* for some x' e L.

III. For any x e L, there is x' e L such that x A X' = 0, x v x' e D.
IV. For every ideal I of £f such that I n D = [H, we have I Q M for

some minimal prime ideal M of 3?.

REMARKS, (i) II is the condition we shall use below,
(ii) III was kindly supplied by J. Varlet.

Before going on with our extensions, we mention the following topo-
logical characterisation of Stone lattices. The proof of the result is omitted
to avoid going into details of the hull-kernel topology. Here

PROPOSITION 2.2. Let £C = <L; v, A, 0, 1> be a distributive lattice. Then
the following are equivalent:
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I. ££ is a Stone lattice
II. For any x e L, (x)* v (x)** = L

III. For awt/ x e L, 3?~ is open, in the hull-kernel topology.

Our next result is a direct generalisation of the main result of G. Gratzer
and E. T. Schmidt [6] to the class A*. Our proof is modelled on theirs, but
since this result is used in § 3 we shall give a full proof.

REMARK. Condition II above will be taken as our definition of a Stone
lattice, when ££ is an arbitrary distributive lattice with zero and unit.

PROPOSITION 2.3. Let £C e A*. If the lattice theoretical join PvQof any
two distinct minimal prime ideals P and Q of 3? is L, then 3? is a Stone lattice.

PROOF. Suppose J? is not a Stone lattice. Then there is an x e L with
(x)* v (a;)** = (*)* v (a;')* $ L.

In this case there is a prime dual ideal F not meeting (x)* v (x')*. Let
0 denote the least congruence with F as a (unit) congruence class and 0
the induced homomorphism onto J? = SPJ0. It is known that (x, y} e 0
iff x A y = (xv y) t\a for some a e F. We shall see that the inverse image
Q of a minimal prime ideal Q of 3? under 6, is a minimal prime ideal of £C.
Assume there is a minimal prime ideal Q1 of £C such that Q1 Q Q. Clearly
Qi = Qi 6 = Q- Thus for any q eQ there is q1 e Qx with (q, q^} e 0. We may
take q1 rg[ q. This implies qx = q A a where a e F and F n Qx = • • Since
a $ Q1 and qx e Qx we deduce that q eQx and hence Q = Qx.

From this result it follows that the join of any two distinct minimal
prime ideals of & is the whole lattice. Now it also follows from the fact
that F is a prime dual ideal, that the unit 1 of ^f is join-irreducible. Thus
<£ contains a single minimal prime ideal which must be the ideal (0).

We have now seen that (a;)* v (a;')* ^ L for some x e L implies there
is a prime dual ideal F inducing a congruence 0 such that =£?/<9 has a meet-
irreducible zero. It can now be shown that this is a contradiction, for if

(i) (x, 0> e 0 then this would imply x A a = 0 for some a e F but
F n (x)* = [J. Similarly if

(ii) <x', 0> e 0 then (*')* n F = (x)** n F =£ • •
However x A X' = 0 and so we have

x ^ 0, x" ̂  0 but a; A a;' = 0

which is a contradiction.
Our result is now proved.

Our next result is an extension of some results of J. Varlet [11] and
O. Frink [4]. More precisely II is a generalisation of the condition
(a A b)* = a* v b* of Varlet and Frink, III is new, and IV and V are due
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to J. Varlet, stated for pseudo-complemented distributive lattices. Note
thatL** = {(a)** : a e L}

PROPOSITION 2.4. Let £? = (L; v, A, 0, 1> e A*. Then the following are
equivalent.

I. J§? is a Stone lattice i.e. (x)* v (x)** = L for all x e L.
II. (XAV)*= (x)*v (*/)*.

III. £?** = <L**; v, n> is a sublattice of J(Se) = (!(£?); v, n>.
IV. For any a e L, (a)* = (z)* where z e Z(j5f).
V. / / a A b = 0, then there is z e Z(£C) with z 5: a and z' 5g b.

PROOF. I => II. If & is a Stone lattice, (a;)* = (x*) and II is known
to hold in the form (x A y)* = x* v y*.

II => III. It has been shown elsewhere [9] that (x A y)** = (x)** n («/)**,
and we have

(xv ?/)** = ( (x ) *n (*/)*)* = ( ( * ' ) * * n (y')**)* = (^ A y')*** = (a.' A y ' ) *

and
(a;)** v (i/)** = (*')* v (j/')* = (x' A I / ' )*

and III follows.
III => IV. Take y = x' in III and we see that (x)* and (x')* must be

complementary direct summands. This implies (x)* = (z)* for some
Z £ Z(JS?).

IV => V. If a A 6 = 0 and (a)* = (z)* then 6 must satisfy b ^ z' and
we have (a)** = (z) or a ^ 2.

V => I. Assuming V, we let a = x, b = x' and find a; ^ z, a;' :g z'
where zeZ(&). This gives (x)* 2 (z)* = (z'), (a;')* 2 (*')• = (*) o r

z£ (x')* and z' e (x)*. Thus, since z v z' = 1, (x)* v (x')* = (x)* v (x)** = L.
The proposition is now proved.
We close this section with the remark that other characterisations

of Stone lattices, due to J. Varlet [11], extend to the class A*. In fact
all known characterisations of Stone lattices which apply to pseudo-
complemented lattices can be extended in a straight forward manner.
This is interesting insofar as it suggests the property JS?/i? being a Boolean
algebra is the important thing in such characterisations, rather than the
existence of pseudo-complements.

3. Relations between &(£?) and

Our aim in this section is to give a new characterisation which unites
the apparently unrelated results of Proposition 2.3 and 2.4. The first result
is straightforward and has its proof omitted.
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LEMMA 3.1. Let 3? = <T; v, A, 0, 1> be a distributive lattice, and let
P e &(&). Then P n Z(j5f) e ^(iT(if)) .

We next prove a type of converse to this result when =£? is a Stone
lattice.

PROPOSITION 3.2. Let 3? = (L; v, A, 0, 1> be a Stone lattice and
Q e &>(&(&)). Then (Q)x = {t e L; t ^ q for some qeQ} is a minimal
prime ideal of =§?.

PROOF. It is definition that (Q)^ is an ideal of £C. Let a A b e {Q)#.
Then a A 6 5S q for some qeQQ Z(Jtf). Now (? is prime in Z(J§?).

Also a** A 6** jS ^ and, since a** and 6** belong to Z(J*?) when i f is a
Stone lattice, we deduce that a** e Q or 6** e @.

From a; ^ x**, we see that (^)^, is a prime ideal of =£?.
It remains to show (Q)^ is a minimal prime ideal of f̂. This would

follow if we showed that for x e (Q)# there was y s {z)*\{Q)#-
But x e {Q)ce implies x Ŝ q for qeQ, and so i A f ' = 0. Clearly

q' $ (Q) since q' $ Q and so q' e (x)*\(Q) and our proposition is proved.

THEOREM 3.3. Let i f = <L: v, A, 0, 1> e Zl*. TAew ^f is a Stone lattice
iff M = (M n Z{&))x for all M eJf(SC).

PROOF. Suppose i f is a Stone lattice. Then by 3.1, if Me
M n Z{&) €&(&{&)). Thus

Now for the reverse inclusion we take x e M and find that x** e M
and since x** e Z(y), we see that

xe(M nZ(^))^.

The result M = (M n Z(£?))# thus holds when i f is a Stone lattice.
Assume now that M = (M n Z{^))^ for all M euT(JSf). Then for

Af, iV in ^T(if)
Mn Z(if) ^NnZ(Sf)

for equality here would imply M = N on generating the ideals in if. But
in a Boolean lattice all prime ideals are maximal, and so

(M n Z(i?)) v (N n

In other words av b = 1 for some a e M n Z{£C) and some b eN n
This implies M v N = L and so, by Proposition 2.3. i f is a Stone

lattice. This concludes our proof.
We close this section with a result relating the factor lattice 3?\R with
). It is implicit in Frink [4] that <£\R s Z(£?) when i f is a Stone
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lattice, and under an additional hypothesis we may prove a converse to
this result.

THEOREM 3.4. Let 3? = <X; v, A, 0, 1} be a distributive lattice. Then
£e\R % Z{&) implies & is a Stone lattice iff £fjR is finite.

PROOF. Assume JJC/R is finite. It has been proved elsewhere [9] that
SC/R s •&** (see Proposition 2.4). Now the map y : Z(Sf) -> JS?** is easily
seen to be injective and, since \Z(£C)\ < oo it must be surjective. Hence
=£?** is a sublattice of ,/(J§?) and so by 2.4, jSf is a Stone lattice.

Now the remaining part of our theorem follows from the following
counter example supplied by the referee. Let £8 be the Boolean lattice of all
subsets of an infinite set. Then ^ x 2 2 s 88. Let g = 2x2V+l where N
is the chain of natural numbers. Then J? is in A* but is not a Stone lattice.
Finally it can be shown that

Thus £Px3& satisfies the conditions of the Theorem but is not a Stone
lattice.

4. Decompositions of distributive lattices

Before proving our final results on Stone lattices we collect some
results concerning direct sum decompositions of complete distributive
lattices £C = <L; v, A, 0, 1> satisfying the infinite distributive law (called
I.D.-lattices)

(I.D.) x A\J xa = \/ x Axa for any x, {xa : a e A} Q L.
aeA xeA

The approach in this section is, with appropriate modifications, taken
from J. von Neumann [7].

DEFINITION 4.1. A system [aa : xe A] where aa e L for a e A, is said
to be a direct sum decomposition of the I.D.-lattice .5? = <T; v, A), if for
any x e L and a e A there is a unique xa e (aa) such that

x = V^a
aeA

Under these circumstances we call {xa}aeA the decomposition of x e L.

LEMMA 4.2. Let [ax : a e A] be a direct sum decomposition of the I.D.-
lattice Ji? = <L; v, A> and let x and y have decompositions {xx}, {ya} respec-
tively. Then

(i) x ^ y if and only if xa ^ ya for all xe A.
(ii) xa = x A aa for all xe A.
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PROOF, (i) Since x = \/XBA xa and y = \/aeA ya we have

x v y = V foxv Va)
aeA

and thus {xx v ya} is the (unique) decomposition of x v y. Now x ^ y is
equivalent to xv y = y which gives xav ya = ya, and the result is proved,

(ii) For a given /3 e A

x = x v (z A afi) = \/ xav (x A a^) = \/ xav xfi v (x A afi)
aeA <*¥</>

Now we can define

^ v (x A afi) a = £

and since a; = Vae4 ^1 w e deduce that xf = x'p^x Aafi. But xfi rS, x A afi

and so x^ = a; A a^.
The proof of the Lemma is complete.

PROPOSITION 4.3. The system [aa : a. e A] is a direct sum decomposition
of the I.D.-lattice £C = <L; v, A, 0, 1> if and only if

(i) aa A afi = 0 for a. ̂  /3, a . j S e i
(ii) \JaeAaa= 1.

conditions are satisfied we see that {aa : a e A] Q

PROOF. Assume [ax : a e A ] is a direct sum decomposition of .S?. Then
letting x = V«^/? aa f°r a given ) ? e ^ we see that

is a decomposition of x and thus xp = 0 = af A Va # 0 aa •
This gives ap A aa = 0 for a ^ /S, and (i) is proved.
Also, since l e i , 1 = V«6^ »« for xa e (aa).
NOW 1 = Vae.4 xa = VaeA aa = ^ an^- ifi) ^S proved.

For the converse, assume (i) and (ii) are satisfied. Then

x = 1 A x = \/ aa A x = \/ {aa A x) = \J xa
aeA aeA aeA

Let x = V«e^ ^« where x'x e (aa) ior<x.eA.
We find

afi A x = aff A \/ x'a = \/ afi A x'a — x'p
aeA aeA

since af A aa = 0, a ^ /S. This shows xfi = x'fi = x A afi and the decomposition
is unique.
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5. Decompositions of Stone lattices

G. Gratzer and E. T. Schmidt have noted the following result.

PROPOSITION 5.1. A finite distributive lattice ££ is a Stone lattice if and
only if S£ is a direct -product (= sum) of dense lattices.

We investigate this approach in a wider class of lattices and, obtaining
a similar decomposition theorem, use a result of G. Gratzer [5] to prove
a new embedding theorem which characterises Stone Lattices. Some
preliminary results are needed.

LEMMA 5.2. / / . £ ? = <L; v, A, 0, 1> is a pseudo-complemented lattice
then the principal ideal (a) for a e L is pseudo-complemented. The pseudo-
complement of x e (a) in (a) is a AX*.

PROOF. Let x e (a) and t e (a) be such that t A X = 0. Then t 5S x* and
since K a w e have K H A X*.

Conversely if t ̂  a A X* then t e (a) and

tAX^LaAX*AX = 0.

We thus have, for t e (a) and x e (a)

tAX = 0ot^aAX*

and so the lemma is proved.

REMARK. An element k e B of a Boolean lattice 28 = (B; v, A, 0, 1)
is called an atom if t < k for t e B implies t = 0. The Boolean lattice 38
is called atomic if the join of all atoms in B is 1.

LEMMA 5.3. Let 3? = (L; v, A, 0, 1> be a Stone lattice. Then for a e
(a) is dense as a lattice if and only if a is an atom of 3£{^£).

PROOF. Suppose (a) is dense. Then take z e Z(JHf)

0 ^ z ^ a.
We have

a AZ* = a A z' e (a)

and since (a) is dense a A z' = 0 which implies a <Lz" = z. But z <, a and
so a = z. Thus a is an atom of 2£{£P).

For the converse suppose a is an atom of 2£(JO?) and take x e (a). We
have x** :g a** = a and so, since a is an atom, x** = a or x** = 0. This
proves that a AX* is equal to either a A a* = 0 or a A 1 = a, for x = 0.
We have shown (a) is dense and the Lemma is proved.

THEOREM 5.4. Let J? = <Z; v, A, 0, 1> be a complete Stone lattice
satisfying I.D. Then £P has a direct sum decomposition into a family of dense
lattices if and only if 3£{<£) is atomic.
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PROOF. Let =Sf have a direct sum decomposition as indicated, say
[aa : a. e A] where each (aa) is dense. Then by the comment in the statement
of Proposition 4.3, aa e Z(^C) for a e A. Hence each ax is an atom of 3£{££)
by Lemma 5.3, and since by Proposition 4.3 (ii) the join of all the aa is 1,
we deduce that 3£{S£) is an atomic Boolean lattice.

Conversely suppose Jf(=Sf) is atomic. Then for any atom a e J f i f ) ,
(a) is dense. The set Zat of all atoms of 2?{&) is easily seen to satisfy the
conditions (i), (ii) of Proposition 4.3 and so [a : a e Zat] is a direct sum
decomposition of =§? into dense lattices.

G. Gratzer [5] proved the following result, after a conjecture of O.
Frink [4]. See also G. Bruns [2]. Note that *-sublattice means that pseudo-
complements are preserved by the injection map.

THEOREM 5.5. (Gratzer) To every Stone lattice j£? = (L; v, A, 0, 1>
there corresponds a set H such that J§? is isomorphic to a *-sublattice of the
lattice J{3$) = (I(3S);v, n> of all ideals of 38 = (2H; u / n / U,H >. Con-
versely every -x-sublattice of the lattice of all ideals of a complete atomic Boolean
lattice is a Stone lattice.

We combine this result with Theorem 5.4 and obtain

THEOREM 5.6. Let ^ = <L; v, A, 0, 1>, be a Stone lattice. Then 3? is
isomorphic to a *-sublattice of a direct sum of dense lattices. Conversely every
*-sublattice of a direct sum of dense lattices is a Stone lattice.

PROOF. Assume J5f is a Stone lattice. Then by Theorem 5.5 above =§?
is isomorphic to a *-sublattice of J{88) where 38 is a Boolean lattice of all
subsets of some set H. Now it is easily seen that 2?(J(&8)) s 38 and thus
the centre of J{38) is atomic. Also it is known that the lattice of all ideals of
any Boolean lattice (indeed any distributive lattice) satisfies the infinite
distributive law I.D. Thus the conditions of Theorem 5.4 are satisfied and
its conclusion proves the first assertion of our present theorem.

For the converse we note firstly that the direct sum of a family of dense
lattices is a Stone lattice. Also the fact that a *-sublattice of a Stone lattice
is again a Stone lattice is evident. From these two remarks the second
assertion follows and the theorem is proved.

6. Examples of Stone lattices

We close with listing some simple results which provide examples of
Stone lattices. Suppose (X, $~y is a topological space. Then <^~; u / n / • >
is known to be a pseudo-complemented lattice.

PROPOSITION 6.1. For a topological space {X, &">, <JF; u / n / • > is a

Stone lattice if and only if <X, &"} is extremally disconnected (i.e. the closure
of every open set is open).
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PROOF. Suppose (X, &"y is extremally disconnected — denoting the
closure operator by '~' and complement by " ' — this means

T-eST for all Te3T.

Now T* = T~' is always open, and so in this case T* is open-closed and

T* u T** = T-' u T-'-' = T-1 u T~ = X.

Thus <«T; u / n / Q> is a Stone lattice.
Conversely, if <^"; u / n / D > i s a Stone lattice, then T~' u T~'-' = X.

Also T~' n T~'~' = • and so T~' is open closed. So must be T~ in which
case (X, $"} is extremally disconnected and our result is proved.

Next we mention Post Algebras which have been discussed lattice-
theoretically by G. Epstein [3] and T. Traczyk [10]. In the notation of
Traczyk [10] we have

PROPOSITION 6.2. Let P = <e0, elt • • •, en_1; B} be a Post Algebra.
Then P is a Stone lattice.

PROOF. The proof follows readily from known results, G. Epstein [3],
that P is pseudo-complemented and from the peculiar property of a Post
Algebra — the prime ideals occur in finite disjoint chains — we deduce that
the join of any two distinct minimal prime ideals of P is P. Thus P is a
Stone lattice. This result also follows directly when the pseudo-complements
are identified.

The elementary theory of /-groups is given in G. Birkhoff [1]. From
results there we may deduce

PROPOSITION 6.3. Let G — (G; + , v, A, 0> be a complete l-group. Then
, the lattice of all l-ideals of G, is a Stone lattice.

PROOF. It is known that ^{G) is a complete distributive lattice. For
any /-ideal / of G we define

/* = {t e G : |*| A |t| = 0 for all iel}.

I* can be checked to satisfy the properties of a pseudo-complement.
Now the operations in </(G) are join = + and meet = n, and Theorem

19 p. 23 of [1] states that / n J* = (0), / + / * = G is equivalent to

J = J**.
We have thus proved that S(G) is a Stone lattice.

Acknowledgement

I would like to thank the referee for supplying the counter-example
given in Theorem 3.4.

https://doi.org/10.1017/S1446788700007217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007217


[11] On Stone lattices 307

References

[1] G. Birkhoff, 'Lattice Theory', Amer. Math. Soc. Colloq. (1948).
[2] G. Bruns, 'Ideal-Representations of Stone Lattices', Duke. Math. Journal 32 (1965)

300—317.
[3] G. Epstein, 'The Lattice Theory of Post Algebras', Trans. Amer. Math. Soc. 95 (1960)

300—317.
[4] O. Frink, 'Pseudo-Complements in Semi-lattices', Duke. Math. Journal 29 (1962)

505—514.
[5] G. Gratzer, 'A Generalisation on Stone's Representation Theorem for Boolean Algebras',

Duke. Math. Journal 30 (1963) 469—474.
[6] G. Gratzer and E. T. Schmidt, 'On a Problem of M. H. Stone', Ada Math. Acad. Set

Hung. 8 (1957) 455—460.
[7] J. von Neumann, Continuous Geometry (ed. I. Halperin, Princeton 1960).
[8] T. P. Speed, 'Some Remarks on a Class of Distributive Lattices', Journ. Aust. Math. Soc.

9 (1969) 289—296.
[9] T. P. Speed, "A Note on Commutative Semigroups', Journ. Aust. Math. Soc. 8 (1968)

731—736.
[10] T. Traczyk, 'Axioms and some properties of Post Algebras', Colloq. Math. 10 (1963)

193—209.
[11] J. Varlet, 'Contributions a l'etude des treillis pseudo-complementes et des treillis de

Stone' Mem. Soc. Roy. des Sci. de Liege 5th series 8 (1963) pp. 1—71.

Monash University
Clayton, Victoria

https://doi.org/10.1017/S1446788700007217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007217

