Y. Komori Nagoya Math. J. Vol. 84 (1981), 119-133

SUPER-ŁUKASIEWICZ PROPOSITIONAL LOGICS

YUICHI KOMORI

§0. Introduction

In [8] (1920), Łukasiewicz introduced a 3-valued propositional calculus with one designated truth-value and later in [9], Łukasiewicz and Tarski generalized it to an m-valued propositional calculus (where m is a natural number or \aleph_0) with one designated truth-value. For the original 3-valued propositional calculus, an axiomatization was given by Wajsberg [16] (1931). In a case of $m \neq \aleph_0$, Rosser and Turquette gave an axiomatization of the *m*-valued propositional calculus with an arbitrary number of designated truth-values in [13] (1945). In [9], Łukasiewicz conjectured that the \aleph_0 -valued propositional calculus is axiomatizable by a system with modus ponens and substitution as inference rules and the following five axioms: $p \supset q \supset p$, $(p \supset q) \supset (q \supset r) \supset p \supset r$, $p \lor q \supset q \lor p$, $(p \supset q) \lor$ $(q \supset p)$, $(\sim p \supset \sim q) \supset q \supset p$. Here we use $P \lor Q$ as the abbreviation of $(P \supset Q) \supset Q$. We associate to the right and use the convention that \supset binds less strongly than \lor . In [15] p. 51, it is stated as follows: "This conjecture has proved to be correct; see Wajsberg [17] (1935) p. 240. As far as we know, however, Wajsberg's proof has not appeared in print." Rose and Rosser gave the first proof of it in print in [12] (1958). Their proof was essentially due to McNaughton's theorem [10], so it was metamathematical in nature. An algebraic proof was given by Chang [1] [2] (1959).

On the other hand, Rose [11] (1953) showed that the cardinality of the set of all super-Łukasiewicz propositional logics is \aleph_0 . Surprisingly it was before Rose and Rosser's completeness theorem [12]. The proof in Rose [11] was also due to McNaughton's theorem. Some of our theorems in this paper have already been obtained by Rose [11]. But our proofs are completely algebraic.

In our former paper [5], we gave a complete description of super-

Received December 17, 1979.

Eukasiewicz implicational logics (SLIL). In this paper, we will give a complete description of super-Eukasiewicz propositional logics (SLL). We need the completeness of a theory on some ordered abelian groups in [6] to give the complete description of SLL. In the first three sections, we will develope a theory without need of the result in [6]. So some of the results in § 1–§ 3 are included in more generalized forms in the later sections.

In § 1, we will give a complete description of these SLLs which are obtained by adding only C formulas to the smallest SLL *Lu*. In § 2, we will discuss the inclusion relations between SLLs. And we will have the theorem stated in [15] p. 48 without proof. In § 3, we will give a characterization of SLLs without finite model property. § 4 is the main section of this paper. A complete description of SLLs will be given in it. In § 5, we will give some applications of the complete description of SLLs. In § 6, we will discuss the lattice structure of all SLLs and illustrate a finite sub-structure of it.

We suppose familiarity with [4] and [5]. Only in §4, we suppose familiarity with [6]. A CN formula (or simply, formula) is an expression constructed from propositional variables and logical connectives \supset and \sim in the usual way. By a super-Eukasiewicz propositional logic (SLL), we mean a set of formulas which is closed with respect to substitution and modus ponens, and contains the following five formulas:

> A1. $p \supset q \supset p$, A2. $(p \supset q) \supset (q \supset r) \supset p \supset r$, A3. $p \lor q \supset q \lor p$, A4. $(p \supset q) \lor (q \supset p)$, A5. $(\sim p \supset \sim q) \supset q \supset p$.

A C algebra is an algebra $\langle A; 1, \rightarrow \rangle$ which satisfies the following axioms, where A is a non empty set and 1 and \rightarrow are 0-ary and 2-ary functions on A respectively.

B1. $1 \rightarrow x = x$. B2. $x \rightarrow y \rightarrow x = 1$. B3. $(x \rightarrow y) \rightarrow (y \rightarrow z) \rightarrow x \rightarrow z = 1$. B4. $x \cup y = y \cup x$. B5. $(x \rightarrow y) \cup (y \rightarrow x) = 1$.

We abbreviate $(x \to y) \to y$ by $x \cup y$. We use the same convention as before. A CN algebra is an algebra $\langle A; 1, \to, \neg \rangle$ which satisfies the following axiom, where $\langle A; 1, \to \rangle$ is a C algebra and \neg is an 1-ary function on A.

C1.
$$\neg x \rightarrow \neg y \leq y \rightarrow x$$
.

Here we denote $x \to y = 1$ by $x \leq y$. We say simply that A is a CN algebra, when $\langle A; 1, \to, \neg \rangle$ is a CN algebra. If a formula contains no connective other than \supset , it is called a C formula. In [5], we denote the set of C formulas valid in a C algebra A by L(A). In this paper, we denote the set of formulas valid in a CN algebra A by L(A). In this paper, we of C formulas valid in a CN algebra A by L(A). In this paper, we denote the set of formulas valid in a CN algebra A is denoted by $L_I(A)$. Lu denotes the set of formulas derivable from A1-A5, that is, Lu is the smallest SLL. For any SLL L, L_I denotes the set of C formulas contained in L. Let H be any set of formulas and L be any SLL. Then we denote the smallest SLL which includes $L \cup H$ by L + H. Sometimes, $L + \{P_1, \dots, P_n\}$ is denoted by $L + P_1 + \dots + P_n$. A SLL L is called to be finitely axiomatizable if there exists a finite set H such that L = Lu + H.

We denote the set $\{0, 1/m, 2/m, \dots, (m-1)/m, 1\}$ and the set of all rationals in the interval [0, 1] by S_m $(m \ge 1)$ and S_ω , respectively. We define the functions \rightarrow and \neg on S_m $(1 \le m \le \omega)$ by $x \rightarrow y = \min(1, 1 - x + y)$ and $\neg x = 1 - x$, respectively. Then we can regard S_m as a CN algebra. S_m is the well-known Łukasiewicz (m + 1)-valued (or \aleph_0 -valued if $m = \omega$) model. We denote also the CN algebra with only one element by S_0 .

§1. SLLs obtained by adding only C formulas

Let A be a CN algebra. A non-empty subset J of A is a *filter* of A if it satisfies the following two conditions:

- 1) $1 \in J$,
- 2) $x \in J$ and $x \to y \in J \Rightarrow y \in J$.

Let A be a CN algebra, x be an element of A other than 1. A is *irreducible with respect to* x if x is contained within any filter of A which contains at least an element other than 1. A is *irreducible*, if there exists an element such that A is *irreducible* with respect to the element or A has only one element. By Theorem 2.10 in [4], we have

THEOREM 1.1. Any irreducible CN algebra is linearly ordered.

We can, similarly to Theorems 3.8 and 3.9 in [5], show the following theorems.

THEOREM 1.2. If a CN algebra B is a subalgebra of a CN algebra A, or B = A/J for some filter J of A, then $L(B) \supseteq L(A)$.

THEOREM 1.3. For any SLL L, there exists a set $\{A_{\lambda}\}_{\lambda \in A}$ of irreducible CN algebras such that $L = \bigcap_{\lambda \in A} L(A_{\lambda})$.

Next theorem gives a complete description of SLLs obtained by adding only C formulas.

THEOREM 1.4. Let $\{A_i | i \in I\}$ be a set of C formulas. If $L = Lu + \{A_i | i \in I\}$, then $L = \bigcap_{k \leq n} L(S_k)$ for some $n \leq \omega$.

Proof. By Theorem 4.1 in [5], if $A_i \in Lu$, then A_i is interdeducible in Lu with $(p \supset)^m q \lor p$ for some m. Here we define $(P \supset)^n (Q)$ as $(P \supset)^0 (Q) = Q$ and $(P \bigcirc)^{n+1} (Q) = P \supset (P \bigcirc)^n (Q)$, and we denote $(P \bigcirc)^n (Q)$ by $(P \bigcirc)^n Q$ when no confusion occurs. Because $Lu + (p \bigcirc)^m q \lor p \ni (p \bigcirc)^i q \lor p$ for $l \ge m$, there exists n such that $L = Lu + (p \bigcirc)^n q \lor p$. As $(p \bigcirc)^n q \lor p$ is valid in S_k for any $k \le n$, $L \subseteq \bigcap_{k \le n} L(S_k)$. We can easily shown that if $(p \bigcirc)^n q \lor p \in L(A)$, then ord $(A) \le n$. Here we give same definition of order of a CN algebra as a C algebra, that is, ord $(A) = \sup \{ \text{ord}(x) | x \in A \}$ and ord (x) is the least integer n such that $x \cup (x \rightarrow)^n y = 1$ for any element y of A (ord $(x) = \omega$, if no such integer n exists). Therefore, we have that if $(p \bigcirc)^n q \lor p \in L(A)$ and A is irreducible, then A is isomorphic to S_k for some $k \le n$. Then, we have $L = \bigcap_{k \le n} L(S_k)$. Clearly, if $A_i \in Lu$ for any $i \in I$, then $L = Lu = \bigcap_{k < \omega} L(S_k) = \bigcap_{k \le \omega} L(S_k)$.

If $L_I \not\subseteq Lu$, that is, $L_I \neq Lu_I$, there exists a non-negative integer nsuch that $(p \supset)^n q \lor p \in L$. Let I be the set of non-negative integers $\{i \mid L \subseteq L(S_i) \text{ and } i \leq n\}$. Then, we can show that $L = \bigcap_{i \in I} L(S_i)$. Let Jbe the set of non-negative integers $\{i \mid L \not\subseteq L(S_i) \text{ and } i \leq n\}$. For each $i \in J$, there exists a formula P_i such that $P_i \in L$ and $P_i \in L(S_i)$. Let H be the set of formulas $\{P_i \mid i \in J\}$. Then, without being depend on the representative P_i chosen, we have that $L = Lu + (p \supset)^n q \lor p + H$. Therefore, we have the following theorems.

THEOREM 1.5. If $L_I \neq Lu_I$, then there exists a finite set I of nonnegative integers such that $L = \bigcap_{i \in I} L(S_i)$.

THEOREM 1.6. If $L_I \neq Lu_I$, then is finitely axiomatizable.

COROLLARY 1.7. The cardinality of the set $\{L | L \text{ is a SLL such that } L_I \neq Lu_I\}$ is countable.

§2. Inclusion relations between SLLs

Though $L_I(S_n) \subseteq L_I(S_m)$ for $n \ge m$ in SLILs, we can easily know that $L(S_3) \not\subseteq L(S_2)$. In [9], it is stated that Lindenbaum proved that $L(S_n) \subseteq L(S_m)$ if and only if *m* is a divisor of *n*. We will generalize Lindenbaum's theorem. We define the CN algebras S_n^{ω} $(n = 1, 2, 3, \dots)$ as follows.

$$egin{aligned} S_n^{_{w}} &= \{(x,y) \,|\, x \in \{1/n,\,2/n,\,\cdots,\,(n-1)/n\},\, y \in Z\} \ &\cup \ \{(0,y) \,|\, y \in N\} \ \cup \ \{(1,\,-y) \,|\, y \in N\} \ , \end{aligned}$$

where Z and N are the set of all integers and the set of all non-negative integers, respectively.

$$(x, y) \to (z, u) = \begin{cases} (1, 0) & \text{if } z > x , \\ (1, \min(0, u - y)) & \text{if } z = x , \\ (1 - x + z, u - y) & \text{otherwise} . \end{cases}$$
$$\neg (x, y) = (1 - x, -y) .$$

When n = 1, the first term in S_1^{ω} is regarded as an empty set. S_1^{ω} is essentially equivalent to the *MV*-algebra *C* defined in Chang [1]. We can check easily that $\langle S_n^{\omega}; (1, 0), \rightarrow, \neg \rangle$ is a *CN* algebra.

THEOREM 2.1. Let I and J be finite sets of positive integers.

$$igcap_{i\in I} L(S_i) \cap igcap_{j\in J} L(S_j^{\circ}) \subseteq L(S_m)$$

if and only if there exists $n \in I \cup J$ such that m is a divisor of n.

Proof. If there exists $n \in I \cup J$ such that m is a divisor of n, S_m is isomorphic to a subalgebra of S_n (or S_n°). Therefore, we have $\bigcap_{i \in I} L(S_i)$ $\cap \bigcap_{j \in J} L(S_j^{\circ}) \subseteq L(S_m)$. Conversely, suppose that $\bigcap_{i \in I} L(S_i) \cap \bigcap_{j \in J} L(S_j^{\circ})$ $\subseteq L(S_m)$. Let r be max $I \cup J$ and P be the formula

$$[[(p\supset)^{m-2} \sim p \supset p]\supset]^{r+1}[(p\supset)^{m-1} \sim p\supset]^{r+1}p.$$

If f assigns the element (m-1)/m of S_m for p, then f(P) is also (m-1)/m. Hence, we have $P \in L(S_m)$. Therefore, we have $P \in \bigcap_{i \in I} L(S_i) \cap \bigcap_{j \in J} L(S_j^{\omega})$. Hence, there exists $i \in I$ such that $P \in L(S_i)$ or there exists $j \in J$ such that $P \in L(S_j^{\omega})$. Suppose that $P \in L(S_j^{\omega})$. Let g be an assignment of S_j^{ω} such that $g(P) \neq (1, 0)$. We can show that for any $x, y \in S_j^{\omega}$ and any l > j, if

 $(x \rightarrow)^i y \neq (1, 0)$ then x is of the form (1, *). Here by c = (b, *) we mean that the first component of c is b. Hence, $(a \rightarrow)^{m-2} \neg a \rightarrow a = (1, *)$ and $(a \rightarrow)^{m-1} \neg a = (1, *)$, where a denotes g(p). Let a = (1 - k/j, *). Then we have $(m - 1)k/j \leq (j - k)/j$ and $mk/j \geq 1$. Hence, we have that j = mk. When $P \in L(S_i)$, the proof is similar. Q.E.D.

COROLLARY 2.2 (Lindenbaum). $L(S_n) \subseteq L(S_m)$ if and only if m is a divisor of $n \ (1 \le m < \omega, \ 1 \le n < \omega)$.

THEOREM 2.3. Let I and J be finite sets of positive integers.

$$\bigcap_{i \in I} L(S_i) \cap \bigcap_{j \in J} L(S_j^{\omega}) \subseteq L(S_m^{\omega})$$

if and only if there exists $n \in J$ such that m is a divisor of n.

Proof. If there exists $n \in J$ such that m is a divisor of n, $\bigcap_{i \in I} L(S_i)$ $\cap \bigcap_{j \in J} L(S_j^{\omega}) \subseteq L(S_m^{\omega})$ because S_m^{ω} is isomorphic to a subalgebra of S_n^{ω} . Conversely, suppose that $\bigcap_{i \in I} L(S_i) \cap \bigcap_{j \in J} L(S_j^{\omega}) \subseteq L(S_m^{\omega})$. Let r be max $I \cup J$ and P be the formula

$$[[(p\supset)^{m-2} \sim p \supset p]\supset]^{r+1}[(p\supset)^{m-1} \sim p\supset]^{r+1}[(q\supset)^r s \lor q] .$$

Let f be an assignment of S_m^{ω} such that f(p) = ((m-1)/m, 0), f(q) = (1, -1)and f(s) = (0, 0). Then f(P) = (1, -1). Hence, we have $P \in L(S_m^{\omega})$. Therefore, we have $P \in \bigcap_{i \in I} L(S_i) \cap \bigcap_{j \in J} L(S_j^{\omega})$. Because $P \in \bigcap_{i \in I} L(S_i)$, there exists $j \in J$ such that $P \in L(S_j^{\omega})$. Similarly to the proof of Theorem 2.1, we have this theorem. Q.E.D.

COROLLARY 2.4. $L(S_n^{\circ}) \subseteq L(S_m^{\circ})$ if and only if m is a divisor of $n \ (1 \leq m < \omega, \ 1 \leq n < \omega)$.

§3. SLLs without fmp

By the result of [5], we know that any SLIL has the finite model property (fmp). We will show that there exist SLLs without fmp.

DEFINITION 3.1. A SLL L has fmp if there exists a set of finite CN algebras $\{A_i | i \in I\}$ such that $L = \bigcap_{i \in I} L(A_i)$.

A finite irreducible CN algebra is isomorphic to S_n for some n. Therefore, by Theorem 1.3, we have

THEOREM 3.2. A SLL L has fmp if and only if there exists a set I of non-negative integers such that $L = \bigcap_{k \in I} L(S_k)$.

THEOREM 3.3. If $L \neq Lu$, then $L_I \neq Lu_I$ if and only if L has fmp.

Proof. By Theorem 1.5, L has fmp if $L_I \neq Lu_I$. Conversely, L has fmp. Then there exists a set I of non-negative integers such that $L = \bigcap_{k \in I} L(S_k)$. Because $L \neq Lu$, I is a finite set. So $(p \supset)^n q \lor p \in L$ where $n = \max I$. Hence $L_I \neq Lu_I$. Q.E.D.

For any positive integers m, n, S_n^{ω} has a subalgebra isomorphic to S_m if we regard S_m and S_n^{ω} as C algebras. Then we have

LEMMA 3.4. $L_I(S_k^{\omega}) = Lu_I$ for any positive integer k.

THEOREM 3.5. If both I and J are finite sets of positive integers, $J \neq \phi$ and $L = \bigcap_{i \in I} L(S_i) \cap \bigcap_{j \in J} L(S_j^o)$, then L has not fmp.

Proof. $L \neq Lu$ because $I \cup J$ is a finite set. By $J \neq \phi$ and Lemma 3.4, $L_I = Lu_I$. Therefore, L has not fmp by Theorem 3.3. Q.E.D.

COROLLARY 3.6. $L(S_n^{\omega})$ has not fmp for any positive integer n.

§4. A complete description of SLLs

This section is the main part of this paper.

DEFINITION 4.1. Let A be a linearly ordered CN algebra, and a be the maximum element of A. An element x of A is called almost maximum if $(x \rightarrow)^n \neg a \neq a$ for any positive integer n. An element of x is called infinitesimal if $\neg x$ is almost maximum. If A has an element other than the maximum element, the set M_A of all almost maximum elements of A is a filter of A. The CN algebra A/M_A is denoted by \tilde{A} . rank (A) is defined by rank (A) = ord (\tilde{A}).

Clearly, only one almost maximum element of \tilde{A} is the maximum element, that is, \tilde{A} is locally finite (This is Chang's terminology [1].).

THEOREM 4.2. Let A be a linearly ordered CN algebra. If rank (A) $= \omega$, then L(A) = Lu.

Proof. By Theorem 1.2, $L(A) \subseteq L(\tilde{A})$. Because \tilde{A} is locally finite, \tilde{A} is isomorphic to a subalgebra of the CN algebra of all real numbers between 0 and 1 (cf. [2] p. 78). By ord $(\tilde{A}) = \omega$, A has an infinite number of members. Therefore, $L(\tilde{A}) = Lu$ (cf. [12] p. 5). Hence, we have L(A) = Lu. Q.E.D.

For a given model G of SS (cf. [6]), let the segment G[c] determined

by a positive element c of G be the set of all elements $x \in G$ such that $0 \le x \le c$. We define the functions \rightarrow and \neg on G[c] as follows:

$$x \rightarrow y = \min(c, c - x + y),$$

 $\neg x = c - x.$

Then we can easily prove the following lemma.

LEMMA 4.3. The algebra $\langle G[c]; c, \rightarrow, \neg \rangle$ defined above is a linearly ordered CN algebra. If m satisfies -1 < 2(m-c) < 1, then rank (G[c]) = m.

We now wish to establish the converse to Lemma 4.3. Let A be a linearly ordered CN algebra and 0 be the minimum element of A. We let A^* be the set $\{(s, x) | s \in \{+, -\}, x \text{ is an infinitesimal element of } A\}$. We identify (+, 0) with (-, 0) and denote (\pm, x) by $\pm x$, respectively. On the set A^* we define the functions + and - and the relation 0 < as follows:

$$(+, x) + (+, y) = (+, \neg x \to y),$$

$$(-, x) + (-, y) = (-, \neg x \to y),$$

$$(+, x) + (-, y) = (-, y) + (+, x) =\begin{cases} (+, \neg (x \to y)) & \text{if } y \le x, \\ (-, \neg (y \to x)) & \text{if } x < y, \end{cases}$$

$$-(+, x) = (-, x),$$

$$-(-, x) = (+, x),$$

$$0 < (s, x) \Leftrightarrow s = + \text{ and } x \neq 0.$$

Then the algebra $\langle A^*; +, -, 0 < \rangle$ is a totally ordered abelian group. Generally, the group $ZG = Z \times G$ is a model of **SS** is G is a totally ordered abelian group, where $Z \times G$ is ordered as 0 < (x, y) if and only if either 0 < x or x = 0 and 0 < y. Hence ZA^* is a model of **SS**.

LEMMA 4.4. Let A be a linearly ordered CN algebra, $\operatorname{ord}(A) = \omega$ and $\operatorname{rank}(A) = n$. Then there exists an infinitesimal element b of A such that $b \neq 0$ and $A \cong ZA^*[(n, +b)]$.

Proof. By rank (A) = n, $\tilde{A} \cong S_n$. Let φ be an isomorphism from \tilde{A} to S_n and α be an element of \tilde{A} (and hence an equivalence class of A) such that $\varphi(\alpha) = (n-1)/n$. Since ord $(A) = \omega$, we can take a sufficiently large element x of α such that $(x \to)^n 0 < a$ (a is the maximum element of A). We can show that for any $y \neq a$ there is an unique infinitesimal

element z of A such that $y = (x \rightarrow)^m z$ or $y = (x \rightarrow)^{m-1} \neg (\neg x \rightarrow z)$ if $\varphi([y]) = m/n$. Let b detote $\neg (x \rightarrow)^n 0$. Let f be a function from A to $ZA^*[(n, +b)]$ such that $f((x \rightarrow)^m z) = (m, +z)$, $f((x \rightarrow)^{m-1} \neg (\neg x \rightarrow z)) = (m, -z)$ and f(a) = (n, +b). Then f is an isomorphism from A onto $ZA^*[(n, +b)]$. Q.E.D.

The first order language \mathscr{L}' is the same as in [6], which consists of 0, 1, -, +, 0 <, n| (for each integer n > 0) and =. Let \mathscr{L}'' be the language obtained from \mathscr{L}' , by adding a binary function symbol *min*. The language of the theory SS' is \mathscr{L}'' and the set of axioms of SS' is obtained from SS by adding the following axiom:

(j)
$$z = \min(x, y) \leftrightarrow (x < y \rightarrow z = x) \land (y \le x \rightarrow z = y)$$
.

It is clear that each model of SS can be regarded also as a model of SS'. In SS', for any formula A(x), the following is derivable:

$$A (\min (s, t)) \leftrightarrow (s \leq t \rightarrow A(s)) \land (t < s \rightarrow A(t))$$
.

Therefore, for any formula F of \mathscr{L}'' we can construct the formula F^* of \mathscr{L}' such that $F \leftrightarrow F^*$ is derivable in SS' and each variable of which some occurrence is bound in F^* is also bound in F. Especially, F^* is open if F is open. Hence, by Corollary 2.3 in [6], we have

LEMMA 4.5. For any open formula F of \mathcal{L}'' and any model A of $SS' \cup (i)$, F is valid in ZQ if and only if F is valid in A.

We now define the term P^* of \mathscr{L}'' corresponding to a formula P of SLL in the following manner:

$$p^* = h(p)$$
,
 $(P \supset Q)^* = \min(c - P^* + Q^*, c)$,
 $(\sim P)^* = c - P^*$.

Here h is an injective mapping from the set of propositional variables of SLL to the set of variables of \mathscr{L}'' such that $h(p) \neq c$ for any p. We assume that x_1, x_2, \dots, x_n are the only variables occurring in P^* . Next, we define the formula P^0 as $P^0 = (0 \leq x_1 \leq c \land \dots \land 0 \leq x_n \leq c \rightarrow P^* = c)$.

LEMMA 4.6. For any formula P of SLL and any linearly ordered CN algebra A such that ord $(A) = \omega$ and rank (A) = n, P is valid in A if $-1 < 2(n-c) < 1 \rightarrow P^0$ is valid in ZQ.

Proof. Suppose that P is not valid in A. There exists an assignment

f of A such that f(P) < a where a is the maximum element of A. By Lemma 4.4, there exists an isomorphism φ from A to $ZA^*[(n, +b)]$. Let g be an assignment of ZA^* such that $g(x) = \varphi(f(h^{-1}(x)))$ and g(c) = (n, +b). Then $-1 < 2(n-c) < 1 \rightarrow P^0$ is not true under g. Since ZA^* is a model of $SS' \cup (i)$, $-1 < 2(n-c) < 1 \rightarrow P^0$ is not valid in ZQ by Lemma 4.5.

Q.E.D.

LEMMA 4.7. For any linearly ordered CN algebra A such that ord (A) = ω and rank (A) = n, $L(A) \subseteq L(ZZ[(n, 1)])$.

Proof. By Lemma 4.4, $A \cong ZA^*[(n, +b)]$. A subalgebra of $ZA^*[(n, +b)]$ generated by (1, 0) is isomorphic to ZZ[(n, 1)]. Q.E.D.

LEMMA 4.8. For any integer k,

$$L(ZZ[(n, 0)]) \subseteq L(ZZ[(n, k)]) \subseteq L(ZZ[(n, 1)])$$
.

Proof. By Lemma 4.7, $L(ZZ[(n, k)]) \subseteq L(ZZ[(n, 1)])$. Suppose that P is not valid in ZZ[(n, k)]. Let f be an assignment of ZZ[(n, k)] such that $f(P) = (u, v) \neq (n, k)$. Let g be an assignment of ZZ[(n, nk)] such that g(p) = (m, nl) if f(p) = (m, l) for any propositional variable p. Then g(P) $= (u, nv) \neq (n, nk)$. ZZ[(n, nk)] is isomorphic to ZZ[(n, 0)] (isomorphism φ is given by $\varphi((m, l)) = (m, l - mk)$). Hence, P is not valid in ZZ[(n, 0)]. Q.E.D.

LEMMA 4.9. For any integer k,

$$L(ZZ[(n, 0)]) = L(ZZ[(n, k)]) = L(ZZ[(n, 1)]).$$

Proof. By Lemma 4.8, it suffices to show that $L(ZZ[(n, 0)]) \subseteq L(ZZ[(n, 1)])$. Let P be a formula which is not valid in ZZ[(n, 0)] and f be an assignment of ZZ[(n, 0)] such that $f(P) \leq (n, -1)$. Let $g_m: ZZ[(n, 0)] \rightarrow ZZ[(n, 0)]$ be a homomorphism such that $(i, j) \mapsto (i, mj)$. Let f' be an assignment of ZZ[(n, 1)] such that $f'(p) = g_m f(p)$ for any propositional variable p. For any formula F with the degree d (that is, the number of occurrences of logical connectives in the formula F is d), we shall show by induction on d that

$$g_m f(F) - (0, d) \le f'(F) \le g_m f(F) + (0, d)$$
.

Suppose F is $G \supset H$ and the degrees of G and H are e and e', respectively. By the inductive hypothesis,

SUPER-ŁUKASIEWICZ PROPOSITIONAL LOGICS

$$g_m f(G) - (0, e) \le f'(G) \le g_m f(G) + (0, e) ,$$

$$g_m f(H) - (0, e') \le f'(H) \le g_m f(H) + (0, e') .$$

Since

$$\begin{aligned} f'(G \supset H) &= \min \left((n, 1) - f'(G) + f'(H), (n, 1) \right), \\ g_m f(G \supset H) &= \min \left((n, 0) - g_m f(G) + g_m f(H), (n, 0) \right) \end{aligned}$$

and d = e + e' + 1, we have

$$g_m f(G \supset H) - (0, d) \leq f'(G \supset H) \leq g_m f(G \supset H) + (0, d)$$
.

The case that F is $\sim G$ is similar. Therefore, we have that $f'(P) \leq (n, d - m)$. If $m \geq d$, P is not true in ZZ[(n, 1)] under the assignment f'. Q.E.D.

We are now in a position to prove the following key theorem.

THEOREM 4.10. For any linearly ordered CN algebra A such that ord $(A) = \omega$ and rank (A) = n, L(A) = L(ZZ[(n, 0)]).

Proof. By Lemma 4.7 and Lemma 4.9, we have $L(A) \subseteq L(ZZ[(n, 0)])$. We shall show that $L(A) \supseteq L(ZZ[(n, 0)])$. Let P be a formula valid in ZZ[(n, 0)]. By Lemma 4.9, P is valid in ZZ[(n, k)] for any integer k. Hence $-1 < 2(n-c) < 1 \rightarrow P^0$ is valid in ZZ. By Lemma 4.5, $-1 < 2(n-c) < 1 \rightarrow P^0$ is valid in ZQ. By Lemma 4.6, P is valid in A. Q.E.D.

ZZ[(n, 0)] is isomorphic to S_n^{ω} defined in § 2. Now, we can prove the main theorem.

THEOREM 4.11. For any SLL, there exist sets of non-negative integers I, J such that $L = \bigcap_{i \in I} L(S_i) \cap \bigcap_{j \in J} L(S_j^{\omega})$. If $L \neq Lu$, then both sets I and J are finite.

Proof. By Theorem 1.3, there exists a set $\{A_{\lambda}\}_{\lambda \in A}$ of irreducible CNalgebras such that $L = \bigcap_{\lambda \in A} L(A_{\lambda})$. By Theorem 3.13 in [5], $L(A_{\lambda}) = L(S_n)$ if ord $(A_{\lambda}) = n$. By Theorem 4.10, $L(A_{\lambda}) = L(S_n^{**})$ if ord $(A_{\lambda}) = \omega$ and rank $(A_{\lambda}) = n$. By Theorem 4.2, $L(A_{\lambda}) = Lu = \bigcap_{k < \omega} L(S_k)$ if rank $(A_{\lambda}) = \omega$. Therefore, $L = \bigcap_{i \in I} L(S_i) \cap \bigcap_{j \in J} L(S_j^{**})$ for some I and J. If $I \cup J$ is infinite, then $L \subseteq \bigcap_{i \in I \cup J} L(S_i)$ because $L(S_n^{**}) \subseteq L(S_n)$. By Theorem 20 in [15] p. 49, $\bigcap_{i \in I \cup J} L(S_i) = Lu$. Hence, we have L = Lu. Q.E.D.

§5. Applications of the main theorem

By Theorem 4.11, Theorem 3.5 gives a complete characterization of SLLs without fmp. For example, we can show as follows that Lu + P has not fmp, where P is the formula $(p \supset \sim p) \supset (\sim p \supset p) \supset p \lor \sim p$. Because $P \in L(S_3) \cap L(S_1^{\circ})$ and $P \in L(S_n)$ for n = 2 or $n \ge 4$ and $P \in L(S_n^{\circ})$ for $n \ge 2$, we have $Lu + P = L(S_3) \cap L(S_1^{\circ})$ by Theorem 4.11. Hence, Lu + P has not fmp by Theorem 3.5.

The following theorem, that was proved in Rose [10], is easily obtained from Theorem 4.11.

THEOREM 5.1. The cardinality of the set of all SLLs is countable.

Rose [11] also showed that any SLL is finitely axiomatizable. We will show it as follows.

LEMMA 5.2. $Lu + A_n = \bigcap_{k \leq n} L(S_k^{\omega})$, where

 $A_n = [(p \supset)^{2n} \thicksim p] \supset [(p \supset)^{n-1} \thicksim p \supset p] \supset (p \supset)^{n-1} \thicksim p \lor p$.

Proof. By Theorem 4.11 and $L(S_k^{\omega}) \subseteq L(S_k)$ for any k, it suffices to show that (1) $A_n \in L(S_k^{\omega})$ for $k \leq n$ and that (2) $A_n \in L(S_k)$ for k > n.

Proof of (1). Let f be an assignment of S_k^{ω} . If $f(p) \leq ((k-1)/k, 0)$ or f(p) = (1, 0), then $f((p \supset)^{n-1} \sim p \lor p) = (1, 0)$. Therefore, $f(A_n) = (1, 0)$. If f(p) = ((k-1)/k, *), then $f((p \supset)^{n-1} \sim p \supset p) \leq f((p \supset)^{n-1} \sim p)$. Therefore, $f(A_n) = (1, 0)$. If f(p) = (1, *), then $f((p \supset)^{2n} \sim p) \leq f(p)$. Hence, $f(A_n) = (1, 0)$.

Proof of (2). Let f be an assignment of S_k such that $f(p) = 1 - \lfloor k/n + 1 \rfloor \cdot 1/k$, where $\lfloor x \rfloor$ is the integral part of x. Then $f((p \supset)^{2n} \sim p) = 1$, $f((p \supset)^{n-1} \sim p \supset p) = 1$ and $f((p \supset)^{n-1} \sim p \lor p) \neq 1$. Therefore, $f(A_n) \neq 1$. Q.E.D.

THEOREM 5.3. Any SLL is finitely axiomatizable.

Proof. Let L be a SLL. If L = Lu, then L is finitely axiomatizable. Suppose that $L \neq Lu$. Then there exists a positive integer n such that $\bigcap_{j \leq n} L(S_j^{\circ}) \subseteq L$. Hence $A_n \in L$. Because $A_n \notin L(S_k)$ and $A_n \notin L(S_k^{\circ})$ for any k > n, there exist two sets of positive integers I' and J' such that L = $\bigcap_{i \in I'} L(S_i) \cap \bigcap_{j \in J'} L(S_j^{\circ})$ and $I', J' \subseteq \{i \mid i \leq n\}$. Let I and J be the sets of positive integers $\{i \mid L \not\subseteq L(S_i) \text{ and } i \leq n\}$ and $\{j \mid L \not\subseteq L(S_j^{\circ}) \text{ and } j \leq n\}$, respectively. For each $i \in I$ $(j \in J)$, there exists a formula $P_i(Q_j)$ such that

 $P_i \in L$ $(Q_j \in L)$ and $P_i \notin L(S_i)$ $(Q_j \notin L(S_j^{\circ}))$. Let G and H be the set of formulas $\{P_i | i \in I\}$ and $\{Q_j | j \in J\}$, respectively. Then, we have that $L = Lu + G + H + A_n$. Q.E.D.

We denote the set of all formulas by W. By Theorem 4.11, W - L is recursive enumerable for any SLL L. By Theorem 5.3, L is recursive enumerable for any SLL L. Hence we have

THEOREM 5.4. Any SLL is decidable.

Krzystek and Zachorowski [7] proved that $L(S_n)$ $(2 \le n \le \omega)$ has not Interpolation Property. Quite similarly, we can prove the following theorem.

THEOREM 5.5. Any SLL except W and $L(S_1)$ has not Interportation Property.

Proof. Let L be a SLL except W and $L(S_1)$. Let P and Q be the formulas $((r \supset r \supset p) \supset r \supset p) \supset p$ and $(s \supset s \supset p) \supset s \supset p$, respectively. The formula $P \supset Q$ is valid in S_{ω} . Hence we have $P \supset Q \in Lu$. Let A be a CN algebra such that A is S_n $(n \ge 2)$ or S_n^{ω} $(n \ge 1)$. Let f be an assignment of A such that f(r), $f(s) \in \{0, 1\}$ and f(p) = 0. It is easy to observe that f(P), $f(Q) \in \{0, 1\}$ but for every formula R, built up from the variable p only, $f(R) \in \{0, 1\}$. Hence, for every such R, $P \supset R \in L(A)$ or $R \supset Q \in L(A)$. By Theorem 2.1 and Theorem 4.11, $L \subseteq L(S_n)$ for some n ≥ 2 or $L \subseteq L(S_1^{\omega})$. Therefore, $P \supset Q \in L$ but for every R, built up from the variable p only, $P \supset R \in L$ or $R \supset Q \in L$.

§6. Lattice structures of SLLs

Hosoi [3] showed that the set \mathscr{L} of all intermediate propositional logics is a pseudo-Boolean algebra (PBA). We can similarly prove that the set \mathscr{SL} of all SLLs is a PBA. Let $\{L_{\lambda}\}_{\lambda \in A}$ be a set of SLLs. Then $\bigcap_{\lambda \in A} L_{\lambda}$ is naturally a SLL but $\bigcup_{\lambda \in A} L$ is not always a SLL. But there exists the minimum SLL including $\bigcup_{\lambda \in A} L_{\lambda}$. So, by $\bigcup_{\lambda \in A} L_{\lambda}$, we mean the minimum SLL including $\bigcup_{\lambda \in A} L_{\lambda}$. By the definition, we have

THEOREM 6.1. \mathscr{SL} forms a complete lattice with \subseteq as the order relation. Further, we have THEOREM 6.2. $\bigcup_{\lambda \in A} L_{\lambda} \cap L = \bigcup_{\lambda \in A} (L_{\lambda} \cap L)$. Proof. It suffices to prove that $\bigcup_{\lambda \in A} L_{\lambda} \cap L \subseteq \bigcup_{\lambda \in A} (L_{\lambda} \cap L)$. Suppose

that $P \in \bigcup_{\lambda \in A} L_{\lambda} \cap L$. Then there exist formulas $Q_1, Q_2, \dots, Q_n \in \bigcup_{\lambda \in A} L_{\lambda}$ such that $Q_1 \supset Q_2 \supset \dots \supset Q_n \supset P \in Lu$. Hence, $Q_1 \lor P \supset Q_2 \lor P \supset \dots$ $\supset Q_n \lor P \supset P \in Lu$ because $(Q_1 \supset Q_2 \supset \dots \supset Q_n \supset P) \supset Q_1 \lor P \supset Q_2 \lor P$ $P \supset \dots \supset Q_n \lor P \supset P \in Lu$. On the other hand, as each Q_i belongs to some L_{λ} , each $Q_i \lor P$ belongs to some $L_{\lambda} \cap L$. So P belongs to $\bigcup_{\lambda \in A} (L_{\lambda} \cap L)$. Q.E.D.

Remark. $\bigcap_{\lambda \in A} L_{\lambda} \cup L = \bigcap_{\lambda \in A} (L_{\lambda} \cup L)$ does not always hold. For example, $\bigcap_{i \in N} L(S_i) \cup L(S_1^{\omega}) = L(S_1^{\omega}) \neq L(S_1) = \bigcap_{i \in N} (L(S_i) \cup L(S_1^{\omega})).$

Theorem 6.2 is a necessary and sufficient condition for a complete lattice to be a PBA.

THEOREM 6.3. \mathscr{SL} is a PBA with W and Lu as the maximum element and the minimum element, respectively.

We denote by $\mathscr{SL}(L)$ the set of all SLLs including *L*. By Theorem 4.11, $\mathscr{SL}(L)$ is a finite set if $L \neq Lu$. Hence we have

THEOREM 6.4. If $L \neq Lu$, then $\mathscr{SL}(L)$ is a finite PBA.

We illustrate the lattice structure of $\mathscr{SL}(L(S_6^{\circ}))$ in the following Figure using Theorems 2.1, 2.3 and 4.11. Here we use the abbreviation such as $(2, 3, 1^{\circ}) = L(S_2) \cap L(S_3) \cap L(S_1^{\circ})$.

References

- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467-490.
- [2] —, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc., 93 (1959), 74-80.
- [3] T. Hosoi, On intermediate logics II, J. Fac. Sci., Univ. Tokyo, Sec. I, 16 (1969), 1-12.
- [4] Y. Komori, The separation theorem of the ℵ₀-valued Łukasiewicz propositional logic, Rep. Fac. Sci., Shizuoka Univ., 12 (1978), 1-5.
- [5] —, Super-Łukasiewicz implicational logics, Nagoya Math. J., 72 (1978), 127– 133.
- [6] —, Completeness of two theories on ordered abelian groups and embedding relations, Nagoya Math. J., 77 (1980), 33-39.
- [7] P. S. Krzystek and S. Zachorowski, Łukasiewicz logics have not the interpolation property, Rep. Math. Logic, 9 (1977), 39-40.
- [8] J. Łukasiewicz, O logice trójwartościowej, Ruch filozoficzny, 5 (1920), 169-171.
- [9] J. Łukasiewicz and A. Tarski, Untersuchungen über den Aussagenkalkül, Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, 23 (1930), 30-50.
- [10] R. McNaughton, A theorem about infinite-valued sentential logic, J.S.L., 16 (1951), 1-13.
- [11] A. Rose, The degree of completeness of the ℵ₀-valued Łukasiewicz propositional calculus, J. London Math. Soc., 28 (1953), 176-184.
- [12] A. Rose and J. B. Rosser, Fragments of many-valued statement calculi, Trans. Amer. Math. Soc., 87 (1958), 1-53.
- [13] J. B. Rosser and A. R. Turquette, Axiom schemes for m-valued propositional calculi, J.S.L., 10 (1945), 61-82.
- [14] -----, Many-valued Logics, North-Holland, Amsterdam, 1958.
- [15] A. Tarski, Logic, semantic, metamathematics, Oxford Univ. Press, 1956.
- [16] M. Wajsberg, Aksjomatyzacja trójwartościowego rachunku zdań, Comptes rendue des séauces de la Société des Sciences et des Lettres de Varsovie, Classe III, 24 (1931), 259-262.
- [17] —, Beitrage zum Metaaussagenkalkül I, Monatshefte für Mathematik und Physik, 42 (1935), 221–242.

Department of Mathematics Faculty of Science Shizuoka University Ohya Shizuoka 422, Japan