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SUPER-LUKASIEWICZ PROPOSITIONAL LOGICS

YUICHI KOMORI

§ 0. Introduction

In [8] (1920), Lukasiewicz introduced a 3-valued propositional calculus

with one designated truth-value and later in [9], Lukasiewicz and Tarski

generalized it to an m-valued propositional calculus (where m is a natural

number or ^ 0 ) with one designated truth-value. For the original 3-valued

propositional calculus, an axiomatization was given by Wajsberg [16]

(1931). In a case of m Φ ^0> Rosser and Turquette gave an axiomatiza-

tion of the m-valued propositional calculus with an arbitrary number of

designated truth-values in [13] (1945). In [9], Lukasiewicz conjectured that

the ^o-valued propositional calculus is axiomatizable by a system with

modus ponens and substitution as inference rules and the following five

axioms: p =) q Z> p, (p ID q) D (q ID r) 3 p ID r, p V q 3 q V p, (p ID q) V

(q Z> p), (~p Z) ~ q) ID q ID p. Here we use P V Q as the abbreviation of

(P 3 Q) Z) Q. We associate to the right and use the convention that 3

binds less strongly than V. In [15] p. 51, it is stated as follows: "This

conjecture has proved to be correct; see Wajsberg [17] (1935) p. 240. As

far as we know, however, Wajsberg's proof has not appeared in print."

Rose and Rosser gave the first proof of it in print in [12] (1958). Their

proof was essentially due to McNaughton's theorem [10], so it was meta-

mathematical in nature. An algebraic proof was given by Chang [1] [2]

(1959).

On the other hand, Rose [11] (1953) showed that the cardinality of

the set of all super-Lukasiewicz propositional logics is ^ 0 . Surprisingly

it was before Rose and Rosser's completeness theorem [12]. The proof in

Rose [11] was also due to McNaughton's theorem. Some of our theorems

in this paper have already been obtained by Rose [11], But our proofs

are completely algebraic.

In our former paper [5], we gave a complete description of super-
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Lukasiewicz implicational logics (SLIL). In this paper, we will give a
complete description of super-Lukasiewicz propositional logics (SLL). We
need the completeness of a theory on some ordered abelian groups in [6]
to give the complete description of SLL. In the first three sections, we
will develope a theory without need of the result in [6], So some of the
results in § l-§ 3 are included in more generalized forms in the later
sections.

In § 1, we will give a complete description of these SLLs which are
obtained by adding only C formulas to the smallest SLL Lu. In § 2, we
will discuss the inclusion relations between SLLs. And we will have the
theorem stated in [15] p. 48 without proof. In § 3, we will give a charac-
terization of SLLs without finite model property. § 4 is the main section
of this paper. A complete description of SLLs will be given in it. In § 5,
we will give some applications of the complete description of SLLs. In
§ 6, we will discuss the lattice structure of all SLLs and illustrate a finite
sub-structure of it.

We suppose familiarity with [4] and [5]. Only in §4, we suppose
familiarity with [6]. A CN formula (or simply, formula) is an expression
constructed from propositional variables and logical connectives 3 and ~
in the usual way. By a super-Lukasiewicz propositional logic (SLL), we
mean a set of formulas which is closed with respect to substitution and
modus ponens, and contains the following five formulas:

Al. p D q-Dp ,

A2. (p 3 q) 3 (q 3 r) 3 p 3 r ,

A3. p V q 3 q V p ,

A4. ( p 3 g ) V(<?3p) ,

A5. (~p3 ~g)3<?3p.

A C algebra is an algebra (A; 1, —•> which satisfies the following axioms,
where A is a non empty set and 1 and —• are 0-ary and 2-ary functions
on A respectively.

Bl. 1 -> x = x .

B2. x-+y->x=l.

B3. (x-»y)-+(y-»z)-*x-+z=l.

B4. * U y = y U x .

B5. (x —> y) U (v —> x) = 1 .
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SUPER-LUKASIEWICZ PROPOSITIONAL LOGICS 121

We abbreviate (x —> y) -> y by x [J y. We use the same convention as

before. A CN algebra is an algebra (A; 1, -H>, —1> which satisfies the fol-

lowing axiom, where <A; 1, -»> is a C algebra and —i is an 1-ary function

on A.

Cl. -ix-> -iy <y->x .

Here we denote x->y = 1 by x < y. We say simply that A is a CN

algebra, when {A; 1, ->, —1> is a CiV algebra. If a formula contains no

connective other than Z), it is called a C formula. In [5], we denote the

set of C formulas valid in a C algebra A by L(A). In this paper, we

denote the set of formulas valid in a CN algebra A by L(A). The set

of C formulas valid in a CN algebra A is denoted by LΣ(A). Lu denotes

the set of formulas derivable from A1-A5, that is, Lu is the smallest SLL.

For any SLL L, L7 denotes the set of C formulas contained in L. Let H

be any set of formulas and L be any SLL. Then we denote the smallest

SLL which includes LU H by L + H. Sometimes, L + {Pu . . , Pn] is

denoted by L + Pt + + Pn. A SLL L is called to be finitely axio-

matizable if there exists a finite set H such that L = Lu + H.

We denote the set {0,1/m, 2/m, , (m — l)/m, 1} and the set of all

rationale in the interval [0,1] by Sm (m > 1) and Sω, respectively. We

define the functions -» and —i on Sm (1 < m < ω) by x -> y = min (1,1 — x

+ y) and —iχ = 1 — x, respectively. Then we can regard Sm as a CN

algebra. Sm is the well-known Lukasiewicz (m + l)-valued (or ^0-valued

if m = ω) model. We denote also the CN algebra with only one element

by So.

§ 1. SLLs obtained by adding only C formulas

Let A be a CN algebra. A non-empty subset J of A is a filter of A

if it satisfies the following two conditions:

1) leJ,

2) xeJ and x->yeJ^>yeJ.

Let A be a CN algebra, x be an element of A other than 1. A is

irreducible with respect to x if x is contained within any filter of A which

contains at least an element other than 1. A is irreducible, if there exists

an element such that A is irreducible with respect to the element or A

has only one element. By Theorem 2.10 in [4], we have

THEOREM 1.1. Any irreducible CN algebra is linearly ordered.
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We can, similarly to Theorems 3.8 and 3.9 in [5], show the following

theorems.

THEOREM 1.2. If a CN algebra B is a subalgebra of a CN algebra A,

or B — A\J for some filter J of A, then L(B) 3 L(A).

THEOREM 1.3. For any SLL L, there exists a set {Aλ}λeΛ of irreducible

CN algebras such that L = Γ)λeΛ L(Aλ).

Next theorem gives a complete description of SLLs obtained by adding

only C formulas.

THEOREM 1.4. Let {At \ i e 1} be a set of C formulas. If L — Lu +

{At I i e /}, then L = C]k^n L(Sk) for some n < ω.

Proof. By Theorem 4.1 in [5], if At § Lu, then At is interdeducible in

Lu with (p^>)mq V p for some m. Here we define (PZ))n(Q) as (PZ))°(Q)

= Q and ( P D ) W + 1 ( Q ) = P D (PZ))n(Q), and we denote (Pθ>)n(Q) by (Pz))nQ

when no confusion occurs. Because Lu + (p!D)mq V p 9 (p^>Yq V p for

I > m, there exists n such that L = Lu + (pZ))nq V p. As (pθ>)nq V p is

valid in Sk for any k < n, L c: f]k^n L(Sk). We can easily shown that if

(pZ))nq V p e L(A), then ord (A) < n. Here we give same definition of order

of a CN algebra as a C algebra, that is, ord (A) = sup {ord (x) \ x e A} and

ord(#) is the least integer n such that x U (x—>)ny = 1 for any element

y of A (ord (x) = ω, if no such integer n exists). Therefore, we have that

if (pZD)nq V peL(A) and A is irreducible, then A is isomorphic to Sk for

some k < n. Then, we have L = ΓWT* L(Sk). Clearly, if At e Lu for any

i e I, then L = Lu = Π.<ω L(Sk) = Π*<> L(Sk). Q.E.D.

If L7 £ Lu, that is, Lz ^ Lul9 there exists a non-negative integer n

such that (pZ))nq V p e L. Let J be the set of non-negative integers

{i\L £ L(Sί) and i < AI}. Then, we can show that L = Γ)ίeIL(Si). Let J

be the set of non-negative integers {i\L c£ L(Si) and ί<n}. For each

£ e J, there exists a formula Pt such that P^eL and Pi 6 I<(ί>ί). Let H be

the set of formulas {P^ieJ}. Then, without being depend on the repre-

sentative Pt chosen, we have that L = Lu + (pZD)nq V p + H. Therefore,

we have the following theorems.

THEOREM 1.5. If LΣ ^ LuIy then there exists a finite set I of non-

negative integers such that L = Πie/ HSt).

THEOREM 1.6. If Lj ^ Lκ7, then is finitely axiomatizable.
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COROLLARY 1.7. The cardinality of the set {L\L is a SLL such that Lτ

^F Lux} is countable.

§2. Inclusion relations between SLLs

Though L7(SW) c= Lj(Sm) for n > m in SLILs, we can easily know that

L(S3) 0 L(S2). In [9], it is stated that Lindenbaum proved that L(Sn) <Ξ

L(Sm) if and only if m is a divisor of n. We will generalize Lindenbaum's

theorem. We define the CN algebras Sζ (n = 1, 2, 3, ) as follows.

S: = {(x,y)\xe{lln, 2/n, , (n - l)//ι}jeZ}

U {(0,y)\yeN} U {(1, - y ) | y e i V } ,

where Z and iV are the set of all integers and the set of all non-negative

integers, respectively.

ί(l, 0) if z > x ,

(*, y) -> fe u) = | (1, min (0, M - y)) if 2? = Λ ,

{(1 — x + z, u — y) otherwise .

When n = 1, the first term in S" is regarded as an empty set. Sΐ is

essentially equivalent to the MV-algebra C defined in Chang [1]. We can

check easily that <<Ŝ ; (1, 0), ->, —1> is a CN algebra.

THEOREM 2.1. Let I and J be finite sets of positive integers.

if and only if there exists n e I U J such that m is a divisor of n.

Proof. If there exists ne I (J J such that m is a divisor of n, Sm is

isomorphic to a subalgebra of Sn (or S;). Therefore, we have Γ)ieI L(Si)

Π ΠJSJ US") ^ L(SJ. Conversely, suppose that ΠieiUS,) Π Πj

c L(Sm). Let r be max I [j J and P be the formula

If / assigns the element (m — l)/m of Sm for p, then /(P) is also (m —

Hence, we have P $ L(Sm). Therefore, we have P $ Πte/ £(5*) Π Π^

Hence, there exists i e / such that P $ L(Sί) or there exists j e J such that

P$L(Sj). Suppose that P$L(Sj). Let g be an assignment of S° such

that g(P) φ (1, 0). We can show that for any x, ye S" and any I > j , if
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(x-^Yy Φ (1, 0) then x is of the form (1, *). Here by c = (b, *) we mean

that the first component of c is 6. Hence, (α->)m~2 —i a —> α = (1, *) and

(a->)m~ι —i a = (1, *), where α denotes g(p). Let a = (1 — A//, *). Then we

have (ra — ΐ)k/j < (j — k)/j and mk/j > 1. Hence, we have that j = mk.

When P$L(Si), the proof is similar. Q.E.D.

COROLLARY 2.2 (Lindenbaum). L(Sn) c: L(Sm) if and only if m is a

divisor of n (1 < m < ω, 1 < n < ω).

THEOREM 2.3. Lei 7 arid! J be finite sets of positive integers.

Π ust) n n its;) £ L(s»)

// and on/y i/ there exists neJ such that m is a divisor of n.

Proof If there exists neJ such that m is a divisor of n, Πie/ L(St)

Π Πje,/ £(S;) cz L(SZ) because SZ is isomorphic to a subalgebra of S£.

Conversely, suppose that Γ)ieiL(Si) Π dJeJL(Sj) c L(S^). Let r be m a x !

U J and P be the formula

[[(p^)m- 2 ~P ^> p]Z>Y+1[(pZ>)"-1 ~p^Y+1[(qDys V qr] .

Let / be an assignment of S% such that f(p) = ((m — ΐ)/m, 0), f(q) = (1, — 1)

and f(s) = (0, 0). Then f(P) = (1, -1) . Hence, we have P $ L(S^). There-

fore, we have PsΠUej ίΌS,) Π Πiej E<S;). Because Pe Π<€/ £(&), there
exists i 6 J such that P § L(Sj). Similarly to the proof of Theorem 2.1,
we have this theorem. Q.E.D.

COROLLARY 2.4. L(S£) <Ξ £(S&) ί/ and only if m is a divisor of n (1 <

m < ft), 1 < n < ω).

§ 3. SLLs without fmp

By the result of [5], we know that any SLIL has the finite model

property (fmp). We will show that there exist SLLs without fmp.

DEFINITION 3.1. A SLL L has fmp if there exists a set of finite CN

algebras {At\iel} such that L = Γ\ieIL(Ai).

A finite irreducible CN algebra is isomorphic to Sn for some n.

Therefore, by Theorem 1.3, we have

THEOREM 3.2. A SLL L has fmp if and only if there exists a set I of

non-negative integers such that L = Γ)keiL(Sk).
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THEOREM 3.3. If L ̂  Lu, then L1 ^ LuΣ if and only if L has fmp.

Proof By Theorem 1.5, L has fmp if LΣ ̂  Luτ. Conversely, L has

fmp. Then there exists a set I of non-negative integers such that L —

ΠΛ6/i(Sjfe). Because L ̂  Lu, I is a finite set. So (pZD)nq V p e l where

71 = max I. Hence L7 ^ Luj. Q.E.D.

For any positive integers m, n, S% has a subalgebra isomorphic to Sm

if we regard Sm and S% as C algebras. Then we have

LEMMA 3.4. Lj(S%) = Luj for any positive integer k.

THEOREM 3.5. // both I and J are finite sets of positive integers, J ^

φ and L = Γ\ieI L(St) Π DJGJ L(Sj), then L has not fmp.

Proof. L ̂  Lu because / (J J is a finite set. By J ^ ^ and Lemma

3.4, Lj = Luj. Therefore, L has not fmp by Theorem 3.3. Q.E.D.

COROLLARY 3.6. L{S%) has not fmp for any positive integer n.

§ 4. A complete description of SLLs

This section is the main part of this paper.

DEFINITION 4.1. Let A be a linearly ordered CN algebra, and a be

the maximum element of A. An element x of A is called almost maximum

if (x->)n —i a ^F Q> for any positive integer n. An element of x is called

infinitesimal if —\x is almost maximum. If A has an element other than

the maximum element, the set MA of all almost maximum elements of A

is a filter of A The CN algebra A\MA is denoted by A. rank (A) is

defined by rank (A) = ord (A).

Clearly, only one almost maximum element of A is the maximum

element, that is, A is locally finite (This is Chang's terminology [1].).

THEOREM 4.2. Let A be a linearly ordered CN algebra. If rank (A)

= ω, then L(A) — Lu.

Proof. By Theorem 1.2, L(A) c: L(A). Because A is locally finite, A

is isomorphic to a subalgebra of the CN algebra of all real numbers be-

tween 0 and 1 (cf. [2] p. 78). By ord (A) = ω, A has an infinite number

of members. Therefore, L(A) — Lu (cf. [12] p. 5). Hence, we have L(A)

= Lu. Q.E.D.

For a given model G of SS (cf. [6]), let the segment G[c] determined
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by a positive element c of G be the set of all elements xeG such t h a t
0 < x < c. We define the functions -> and —i on G[c] as follows:

x -> y = min (c, c — x + y) ,

—ι x == c — x .

Then we can easily prove the following lemma.

LEMMA 4.3. The algebra <G[c]; c, ->, —i) defined above is a linearly
ordered CN algebra. If m satisfies — 1 < %jn — c) < 1, then rank (G[c\)
— m.

We now wish to establish the converse to Lemma 4.3. Let A be a
linearly ordered CN algebra and 0 be the minimum element of A. We
let A* be the set {(s, x) |se{+, —}, x is an infinitesimal element of A}.
We identify (+,0) with (—,0) and denote (±, x) by ±x, respectively. On
the set A* we define the functions + and — and the relation 0< as
follows:

(+,x) + (+,y) = (+,-,*-•?),

. 4 .

if

0 < (s, x) & s = + and x ^ 0 .

Then the algebra <A*; +, —, 0<> is a totally ordered abelian group.
Generally, the group ZG = Z X G is a model of SS is G is a totally
ordered abelian group, where Z X G is ordered as 0 < (x, y) if and only
if either 0 < x or x = 0 and 0 < y. Hence ZA* is a model of SS.

LEMMA 4.4. Let A be a linearly ordered CN algebra, ord (A) = ω and
rank (A) = n. Then there exists an infinitesimal element b of A such that
b^O and A ^ ZA*[(n, +&)].

Proof. By rank (A) = n, A = Sn. Let φ be an isomorphism from A
to Sn and a be an element of A (and hence an equivalence class of A)
such that φ(a) = (n — ΐ)/n. Since ord (A) = ω, we can take a sufficiently
large element x of a such that (x—>)w 0 < a (α is the maximum element
of A). We can show that for any y ^ a there is an unique infinitesimal
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element z of A such that y = (x->)mz or y = (x—>)m~1 —i (—ix—> 2:) if

= m/n. Let 6 detote —i(x—>)n0. Let / b e a function from A to ZA*[(n,

+ &)] such that f((x->)mz) = (m, +2:), /((jc->)m"1 -i (ΠJC -> 2:)) = (m, —2;) and

f(a) = (71, +6). Then / is an isomorphism from A onto ZA*[(n, +b)].

Q.E.D.

The first order language «£?' is the same as in [6], which consists of

0,1, —, + , 0 < , n\ (for each integer n > 0) and = . Let Jδ?" be the lan-

guage obtained from JSP', by adding a binary function symbol min. The

language of the theory SS' is J£?" and the set of axioms of SS' is obtained

from SS by adding the following axiom:

0") z = min (x,y)<->(x<y-+z= x) Λ(y <x->z = y) .

It is clear that each model of SS can be regarded also as a model of SS'.

In &S", for any formula A(x), the following is derivable:

A (min (s, t))++(s <t-> A{s)) A (t < s -> A(*)) .

Therefore, for any formula F of Jδ?" we can construct the formula F* of

ϋ?' such that F <-> F * is derivable in ΛS7 and each variable of which some

occurrence is bound in F * is also bound in F. Especially, F * is open if

F is open. Hence, by Corollary 2.3 in [6], we have

LEMMA 4.5. For any open formula F of ££" and any model A of SS'

U (i), F is valid in ZQ if and only if F is valid in A.

We now define the term P* of S£" corresponding to a formula P of
SLL in the following manner:

P* = h(p) ,

(P 3 Q)* = min (c-P* + Q*, c) ,

(~P)* = c- P* .

Here /ι is an injective mapping from the set of propositional variables of

SLL to the set of variables of S£" such that h(p) ^ c for any p. We

assume that xu x2, •••,«„ are the only variables occurring in P*. Next,

we define the formula P° as P° = (0 < xί < c A Λ 0 < xn <c->P* = c).

LEMMA 4.6. For any formula P of SLL and any linearly ordered CN

algebra A such that ord (A) = ω and rank (A) = n, P is valid in A if — 1

< 2(n - c)< 1 -* P° is uαZid m ZQ.

Proo/. Suppose that P is not valid in A. There exists an assignment
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/ of A such that /(P) < a where a is the maximum element of A. By

Lemma 4.4, there exists an isomorphism φ from A to ZA*[(n, +&)]. Let

g be an assignment of ZA* such that g(x) = φ(f(h^(x))) and g(c) = (n, +6).

Then — 1 < 2(n — c) < 1 -> P° is not true under g. Since ZA* is a model

of SS' U (i), - 1 < 2(n, - c ) < 1 -> P° is not valid in ZQ by Lemma 4.5.

Q.E.D.

LEMMA 4.7. For αn/y linearly ordered CN algebra A such that ord (A)

= ω and rank (A) = n, L(A) c L(ZZ[(τι, 1)]).

Proof. By Lemma 4.4, A ^ ZA*[(ra, + &)]. A subalgebra of ZA*[(n,

+ &)] generated by (1,0) is isomorphic to ZZ[(n, 1)]. Q.E.D.

LEMMA 4.8. For any integer k,

L(ZZ[(n9 0)]) c L(ZZ[(n9 *)]) c L(ZZ[(ιι, 1)]) .

Proo/. By Lemma 4.7, L(ZZ[(rc, A)]) £ L(ZZ[(τι, 1)]). Suppose that P is

not valid in ZZ[(n9 k)]. Let / be an assignment of ZZ[(n9 k)] such that

/(P) = (u, v) Φ (n, k). Let g be an assignment of ZZ[(n, nk)] such that

g(p) = (/n, nl) if /(p) = (w, I) for any propositional variable p. Then g(P)

== (w, nu) =̂ (̂ > ife) ZZ[(n, nk)] is isomorphic to ZZ[(n9 0)] (isomorphism

^ is given by <p((m, I)) = (m, I — mk)). Hence, P is not valid in ZZ[(n, 0)].

Q.E.D.

LEMMA 4.9. For any integer k,

L(ZZ[(n, 0)]) = L(ZZ[(n, k)]) = L(ZZ[(n91)]) .

Proo/. By Lemma 4.8, it suffices to show that L(ZZ[(n9 0)]) c L(ZZ[(n,

1)]). Let P be a formula which is not valid in ZZ[(n9 0)] and / be an

assignment of ZZ[(n,0)] such that f(P) < (n9 -1) . Let gm: ZZ[(n9O)]->

ZZ[(n9 0)] be a homomorphism such that (i9 j) »-> (ί, mj). Let /' be an as-

signment of ZZ[(n, 1)] such that f(p) = gmf(p) for any propositional variable

p. For any formula F with the degree d (that is, the number of occur-

rences of logical connectives in the formula F is d), we shall show by

induction on d that

gJ(F) - (0, d) < f'(F) <ς gJ(F) + (0, d).

Suppose JF is G "D H and the degrees of G and i ϊ are e and e', respectively.

By the inductive hypothesis,
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Since

gJ(G) - (0, e) < f'(G) < gj(fi) + (0, e),

gmf(H) - (0, e') < f\H) < gmf(H) + (0, e')

f'iβ 3 H) = min ((n, 1) - f'(G) + / ' (#), (rc, 1)) ,

gmf(G ΏH) = min ((n, 0) - £m/(G) + gJ{H), (n, 0))

and c? = e + e7 + 1, we have

gmf(G Z)H)- (0, d) < f'(G Z)H)< gJ(G ^H) + (0, d).

The case that F is — G is similar. Therefore, we have that f\P) <

(rc, d — m). If m > d, P is not true in ZZ[(n, 1)] under the assignment

/'. Q.E.D.

We are now in a position to prove the following key theorem.

THEOREM 4.10. For any linearly ordered CN algebra A such that

ord (A) = ω and rank (A) = n, L(A) = L(ZZ[(n, 0)]).

Proof. By Lemma 4.7 and Lemma 4.9, we have L(A) c L(ZZ[(n, 0)]).

We shall show that L(A) 2 L(ZZ[(n, 0)]). Let P be a formula valid in

ZZ[(n, 0)]. By Lemma 4.9, P is valid in ZZ[(n9 k)] for any integer k.

Hence - 1 < 2(n - c ) < 1 -+ P° is valid in ZZ. By Lemma 4.5, - 1 <

2(n - c ) < 1 -* P° is valid in ZQ. By Lemma 4.6, P is valid in A. Q.E.D.

ZZ[(n, 0)] is isomorphic to S^ defined in § 2. Now, we can prove the

main theorem.

THEOREM 4.11. For any SLL, there exist sets of non-negative integers

/, J such that L = Γ\ieI L(St) Π Γ)jeJ £(S;). If L ̂  Z,«, J/ien 6oί/ι seίs I

and J are finite.

Proof. By Theorem 1.3, there exists a set {A2}λeΛ of irreducible CN

algebras such that L = Π ^ £(Λ) By Theorem 3.13 in [5], L(Aλ) = L(Sn)

if ord (Aλ) = n. By Theorem 4.10, L(Aλ) = L(S^) if ord (A,) = ω and

rank (Aλ) = Λ. By Theorem 4.2, L(A,) = Lu = Πk<a> L(Sk) if rank (A,) = ω.

Therefore, L = p[ieI L(Si) Π Πiej ^(S;) for some I and J. If / U J is

infinite, then L cz Πίe/u/ ^ ( ^ ) because L(S£) c L(Sπ). By Theorem 20 in

[15] p. 49, Πieiuj L(Si) = Lu. Hence, we have L = Lα. Q.E.D.
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§ 5. Applications of the main theorem

By Theorem 4.11, Theorem 3.5 gives a complete characterization of
SLLs without fmp. For example, we can show as follows that Lu + P has
not fmp, where P is the formula (p 3 ~ p) 3 (~p 3 p) 3 p V ~p. Because
PeL(Sz) Π L(Sr) and P§L(Sn) for n = 2 or n > 4 and P§L(S%) for τι >
2, we have £n + P = L(S3) Π L(Sf) by Theorem 4.11. Hence, Lu + P has
not fmp by Theorem 3.5.

The following theorem, that was proved in Rose [10], is easily obtained
from Theorem 4.11.

THEOREM 5.1. The cardinality of the set of all SLLs is countable.

Rose [11] also showed that any SLL is finitely axiomatizable. We
will show it as follows.

LEMMA 5.2. Lu + An = pu<^ L(S%\ where

An = [(p3)2w ~ p] 3 [(p^y-1 ~P^P]^ (P^y-1 ~pVp.

Proof By Theorem 4.11 and L(S%) c L(Sk) for any k, it suffices to
show that (1) An e L(S;) for k < n and that (2) An § L(Sk) for k > n.

Proof of (1). Let / be an assignment of S%. Ί£ f(p) < ((k - ΐ)/k, 0)
or f(p) = (1, 0), then /((p^)- 1 ~ p V p) = (1, 0). Therefore, f(An) = (1, 0).
If f(p) = ((k - ΐ)/k, *), then /((P3)- 1 ^ p 3 p) < /((pD)-1 ~ p). There-
fore, /(An) = (1, 0). If /(p) = (1, *), then / ( ( p ^ f ~ p) < /(p). Hence,
/(A.) = (1, 0).

Proof of (2). Let / be an assignment of Sk such that /(p) = 1 — [kjn
+ l] l/£, where [x] is the integral part of x. Then /((p3)2n - p) = 1,

1 - p 3 p) = 1 and /((p3)w"1 - p V p ) ^ l . Therefore, /(An) ^ 1.
Q.E.D.

THEOREM 5.3. Aziy SLL is finitely axiomatizable.

Proof. Let L be a SLL. If L = Lu, then L is finitely axiomatizable.
Suppose that L ^ Lw. Then there exists a positive integer n such that
Π K n L(S]) c= L. Hence ATO e L. Because ATO e L(Sk) and An e L(S )̂ for any
k > n, there exist two sets of positive integers Γ and J 7 such that L —
Πiei>L(Si) Π Γ\jerL(S;) and I', J 7 ^ {i\i < ή\. Let I and J be the sets
of positive integers {i|L £ L(Si) and i < ή\ and {j\L g L(Sj) and j < n),
respectively. For each iel (je J), there exists a formula Pi(Qj) such that
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PtβL (QjβL) and PiSLiSJ (Q^L(S )). Let G and H be the set of

formulas {Pt \ i e 1} and {Qj \ j e J}, respectively. Then, we have that L =

Lu+ G+ H + An. Q.E.D.

We denote the set of all formulas by TV. By Theorem 4.11, W — L

is recursive enumerable for any SLL L. By Theorem 5.3, L is recursive

enumerable for any SLL L. Hence we have

THEOREM 5.4. Any SLL is decidable.

Krzystek and Zachorowski [7] proved that L(Sn) (2 < n < ω) has not

Interpolation Property. Quite similarly, we can prove the following

theorem.

THEOREM 5.5. Any SLL except W and L{S^) has not Interporatίon

Property.

Proof. Let L be a SLL except W and L(S1). Let P and Q be the

formulas ((r 3 r Z> p) Z> r 3 p) z> p and (s 3 s Z> p) Z> s Z) p, respectively.

The formula P 3 Q is valid in Sω. Hence we have P 3 Q e Lu. Let A

be a CN algebra such that A is Sn (n > 2) or S% (n > 1). Let / be an

assignment of A such that /(r), f(s) § {0,1} and f(p) = 0. It is easy to

observe that /(P), f(Q) § {0,1} but for every formula R, built up from the

variable p only, f(R) e {0,1}. Hence, for every such R, P 3 R $ L(A) or

JR 3 Q$L(A). By Theorem 2.1 and Theorem 4.11, L <^L(Sn) for some n

> 2 o r i c L(Sf). Therefore, P 3 Q e L but for every R, built up from

the variable p only, P^>R$LOYRZ)Q§L. Q.E.D.

§6. Lattice structures of SLLs

Hosoi [3] showed that the set f̂ of all intermediate propositional

logics is a pseudo-Boolean algebra (PBA). We can similarly prove that

the set SfSe of all SLLs is a PBA. Let {Lλ}λeΛ be a set of SLLs. Then

Γ\λeΛLλ is naturally a SLL but {JλeΛL is not always a SLL. But there

exists the minimum SLL including U,IΘΛ Lλ. So, by \JxeA Lλ9 we mean the

minimum SLL including {JλeΛLλ. By the definition, we have

THEOREM 6.1. <?<£ forms a complete lattice with <Ξ as the order relation.

Further, we have

THEOREM 6.2. {JXGΛ Lλ Π L = \JλeA (Lx Π L).

Proof. It suffices to prove that [JλeΛ Lλ Π L c: (J i€i l (Z^ Π Z,). Suppose
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that P e (JxeA Lλ Π L. Then there exist formulas Ql9 Q2, , Qn e {JXGΛ Lλ

such that Qx 3 Q2 3 . 3 Qn 3 P e Lu. Hence, Qx V P 3 Q2 V P 3

D f t V P 3 P e £« because (φ 3 Q2 3 . . . 3 Qw 3 P) 3 φ V P 3 Q2 V

P 3 3 Qn V P 3 P e Lu. On the other hand, as each Q* belongs to

some Lλ, each QtV P belongs to some Lλ f] L. So P belongs to \JλsA (Lλ

Π L). Q.E.D.

Remark. Γ)λeΛ Lλ\J L = ΠΛΘΛ ( ^ U L) does not always hold. For

example, n*e* L(Sι) U L(Sf) = L(Sf) ^ L(Si) = Πieir (AS*) U L(Sf)).

Theorem 6.2 is a necessary and sufficient condition for a complete

lattice to be a PBA.

THEOREM 6.3. Sf& is a PBA with W and Lu as the maximum element

and the minimum element, respectively.

We denote by ό^^(L) the set of all SLLs including L. By Theorem

4.11, £f&{L) is a finite set if L ^ Lu. Hence we have

THEOREM 6.4. If L ^ Lu, then ^se(t) is a finite PBA.

We illustrate the lattice structure of SfSe(L{St)) in the following

Figure using Theorems 2.1, 2.3 and 4.11. Here we use the abbreviation

such as (2, 3,1") = L(S2) Π L(S3) Π L(Sΐ).

https://doi.org/10.1017/S0027763000019577 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019577


SUPER-LUKASIEWICZ PROPOSITIONAL LOGICS 133

REFERENCES

[ 1 ] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc,
88 (1958), 467-490.

[ 2 ] , A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer.
Math. Soc, 93 (1959), 74-80.

[ 3 ] T. Hosoi, On intermediate logics II, J. Fac. Sci., Univ. Tokyo, Sec. I, 16 (1969),
1-12.

[ 4 ] Y. Komori, The separation theorem of the Ko-valued Lukasiewicz propositional
logic, Rep. Fac. Sci., Shizuoka Univ., 12 (1978), 1-5.

[ 5 ] , Super-Lukasiewicz implicational logics, Nagoya Math. J., 72 (1978), 127-
133.

[ 6 ] , Completeness of two theories on ordered abelian groups and embedding
relations, Nagoya Math. J., 77 (1980), 33-39.

[ 7 ] P. S. Krzystek and S. Zachorowski, Lukasiewicz logics have not the interpolation
property, Rep. Math. Logic, 9 (1977), 39-40.

[ 8 ] J. Lukasiewicz, O logice trόjwartosciowej, Ruch filozoficzny, 5 (1920), 169-171.
[ 9 ] J. Lukasiewicz and A. Tarski, Untersuchungen ϋber den Aussagenkalkύl, Comptes

rendus des seances de la Societe des Sciences et des Lettres de Varsovie, Classe
III, 23 (1930), 30-50.

[10] R. McNaughton, A theorem about infinite-valued sentential logic, J.S.L., 16
(1951), 1-13.

[11] A. Rose, The degree of completeness of the Ko-valued Lukasiewicz propositional
calculus, J. London Math. Soc, 28 (1953), 176-184.

[12] A. Rose and J. B. Rosser, Fragments of many-valued statement calculi, Trans.
Amer. Math. Soc, 87 (1958), 1-53.

[13] J. B. Rosser and A. R. Turquette, Axiom schemes for m-valued propositional
calculi, J.S.L., 10 (1945), 61-82.

[14] , Many-valued Logics, North-Holland, Amsterdam, 1958.
[15] A. Tarski, Logic, semantic, metamathematics, Oxford Univ. Press, 1956.
[16] M. Wajsberg, Aksjomatyzacja trόjwartosciowego rachunku zdaή, Comptes ren-

due des seauces de la Societe des Sciences et des Lettres de Varsovie, Classe III,
24 (1931), 259-262.

[17] 9 Beitrage zum Metaaussagenkalkϋl I, Monatshefte fur Mathematik und
Physik, 42 (1935), 221-242.

Department of Mathematics
Faculty of Science
Shizuoka University
Ohya Shizuoka
4,22, Japan

https://doi.org/10.1017/S0027763000019577 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019577



