CONVOLUTION OPERATORS AND HOMOMORPHISMS OF LOCALLY COMPACT GROUPS

CÉDRIC DELMONICO

(Received 1 September 2005; accepted 25 April 2007)

Communicated by G. Willis

Abstract

Let $1<p<\infty$, let G and H be locally compact groups and let ω be a continuous homomorphism of G into H. We prove, if G is amenable, the existence of a linear contraction of the Banach algebra $C V_{p}(G)$ of the p-convolution operators on G into $C V_{p}(H)$ which extends the usual definition of the image of a bounded measure by ω. We also discuss the uniqueness of this linear contraction onto important subalgebras of $C V_{p}(G)$. Even if G and H are abelian, we obtain new results. Let G_{d} denote the group G provided with a discrete topology. As a corollary, we obtain, for every discrete measure, $\left\|\|\mu\|_{C V_{p}(G)} \leq\right\| \mu \|_{C V_{p}\left(G_{d}\right)}$, for G_{d} amenable. For arbitrary G, we also obtain $\left\|\|\mu\|_{C V_{p}\left(G_{d}\right)} \leq\right\| \mu \|_{C V_{p}(G)}$. These inequalities were already known for $p=2$. The proofs presented in this paper avoid the use of the Hilbertian techniques which are not applicable to $p \neq 2$. Finally, for G_{d} amenable, we construct a natural map of $C V_{p}(G)$ into $C V_{p}\left(G_{d}\right)$.

2000 Mathematics subject classification: primary 43A22; secondary 43A15, 43A25, 43A45, 47B38.
Keywords and phrases: convolution operators, pseudomeasures, p-multipliers, transform theorem, Herz algebra.

1. Introduction

In 1965, de Leeuw [5] studied the transfer of p-multipliers from the circle \mathbb{T} to \mathbb{R} and from \mathbb{R}_{d} to \mathbb{R}. These results were extended in part to locally compact abelian groups by Saeki [22], Lohoué [16-18] and Lust-Piquard [19]. The present paper investigates this problem for nonabelian locally compact groups.

Let $1<p<\infty, \omega: G \rightarrow H$ be a continuous homomorphism of locally compact groups and $C V_{p}(G)$ be the set of all continuous operators on $L^{p}(G)$ commuting with left translation; they are called the p-convolution operators on G. Provided with the operator norm, denoted $\|\|\cdot\|\|_{p}, C V_{p}(G)$ is a Banach algebra. If G is abelian, $C V_{p}(G)$ is isomorphic to the Banach algebra of all p-multipliers of \widehat{G}.

The first part of this paper is devoted to the transfer of convolution operators. We show in Theorem 3.1, if G is amenable, that there is a linear contraction of $C V_{p}(G)$

[^0]into $C V_{p}(H)$ which generalizes the transfer of bounded measures. This map is unique for convolution operators with compact support (see Theorem 4.6). We give a global and a new point of view of the problem; our approach completely avoids the use of the structure theory of locally compact abelian groups and methods of Hilbert spaces. Moreover, we obtain new results even in the abelian case; we give a generalization of Reiter's theorem of relativization of the Beurling spectrum [21] in Scholium 5.5.

Theorem 3.1 gives us, if G_{d} is amenable, a map of $C V_{p}\left(G_{d}\right)$ into $C V_{p}(G)$. In Theorem 6.6, in analogy to the Bohr compactification for G abelian, we are able to construct a natural new map of $C V_{p}(G)$ into $C V_{p}\left(G_{d}\right)$, even if G is nonabelian. On the way, we compare the operator norm of the discrete measures on G and on G_{d}. Theorem 6.1 shows that $\|\mu\|_{C V_{p}\left(G_{d}\right)} \leq\|\mu\|_{C V_{p}(G)}$, for every discrete measure μ and that equality holds if G_{d} is amenable. This result is already known for $p=2$ (see [3, 4]), but the proof cannot be adapted to $p \neq 2$.

The ultraweak closure of the bounded measures in $C V_{p}(G)$ is denoted $P M_{p}(G)$ and called the Banach algebra of the p-pseudomeasures of G. If $p=2, P M_{2}(G)$ is the von Neumann algebra $V N(G)$ of G. We recall that $P M_{2}(G)=V N(G)=$ $C V_{2}(G)$. In this case, the study of the convolution operators is related to the theory of von Neumann algebras and Hilbert spaces. For example, the map $a \mapsto \lambda_{G}^{2}\left(\delta_{a}\right)$, where δ_{a} is the Dirac measure, is the left regular representation of G on $L^{2}(G)$. These techniques are not applicable to $p \neq 2$.

2. Preliminaries

Let $1<p<\infty, p^{\prime}=p /(p-1)$, and let G, H be two locally compact groups.
For any function f on G, we define ${ }_{a} f(x)=f(a x), \quad f_{a}(x)=f(x a)$, $\check{f}(x)=f\left(x^{-1}\right)$ and $\tilde{f}(x)=\overline{f\left(x^{-1}\right)}$. For any measure μ on G, we define $\check{\mu}(f)=$ $\mu(\check{f}), \bar{\mu}(f)=\overline{\mu(\bar{f})}$ and $\tilde{\mu}(f)=\overline{\mu(\tilde{f})}$. We define an isometric involution of $L^{p}(G)$ via $\tau_{p} \varphi=\Delta_{G}^{1 / p^{\prime}} \check{\varphi}$, where Δ_{G} denotes the modular function of G.

Let $M^{1}(G)$ denote the Banach algebra of the bounded measures of G. The map λ_{G}^{p}, defined via $\lambda_{G}^{p}(\mu)(\varphi)=\varphi \star \Delta_{G}^{1 / p^{\prime}} \check{\mu}$, where $\mu \in M^{1}(G)$ and $\varphi \in C_{o o}(G)$, is an injection of $M^{1}(G)$ into $C V_{p}(G)$.

We recall that $A_{p}(G)$ is the set of the bounded functions on G,

$$
u=\sum_{n=1}^{\infty} \bar{f}_{n} \star \check{g}_{n} \quad \text { where } f_{n} \in L^{p}(G), g_{n} \in L^{p^{\prime}}(G) \text { and } \sum_{n=1}^{\infty}\|f\|_{p}\|g\|_{p^{\prime}}<\infty
$$

$P M_{p}(G)$ is the dual of $A_{p}(G)$ and $C V_{p}(G)=P M_{p}(G)$, if G is amenable or $p=2$. Let $\langle\cdot, \cdot\rangle_{L^{p}(G), L^{p^{\prime}}(G)}$ denote the duality of $L^{p}(G)$ and $L^{p^{\prime}}(G)$. We recall that the duality of $A_{p}(G)$ and $P M_{p}(G)$ is given by

$$
\langle u, T\rangle_{A_{p}(G), P M_{p}(G)}=\sum_{n=1}^{\infty}{\overline{\left\langle T\left(\tau_{p} f_{n}\right), \tau_{p^{\prime}} g_{n}\right\rangle}}_{L^{p}(G), L^{p^{\prime}}(G)},
$$

where $u=\sum_{n=1}^{\infty} \bar{f}_{n} \star \check{g}_{n}$.

Definition 2.1. For each $T \in P M_{p}(G)$, the support of T is the set, denoted $\operatorname{supp}(T)$, of all $x \in G$ such that, for every neighborhood V of x, there is $v \in A_{p}(G)$ such that $\operatorname{supp}(v) \subset V$ and $\langle v, T\rangle_{A_{p}(G), P M_{p}(G)} \neq 0$.

3. A transfer theorem for convolution operators

Our first main result is the following theorem.
THEOREM 3.1. Let $1<p<\infty$, let G, H be two locally compact groups with G amenable and let ω be a continuous homomorphism of G into H. Then there is a linear contraction

$$
\omega: C V_{p}(G) \rightarrow C V_{p}(H)
$$

which satisfies

$$
\omega\left(\lambda_{G}^{p}(\mu)\right)=\lambda_{H}^{p}(\omega(\mu)) \quad \text { for each bounded measure } \mu \text { of } G .
$$

To prove this theorem, we need the following preliminaries.
Let $\omega: G \rightarrow H$ be a continuous homomorphism. For each $T \in C V_{p}(G), f$, $g \in C_{o o}(G), \varphi \in L^{p}(H)$ and $\psi \in L^{p^{\prime}}(H)$, we consider the function of H

$$
h \mapsto\left\langle T\left(\tau_{p}\left(f\left(\left(\tau_{p} \varphi\right)_{h} \circ \omega\right)\right)\right), \tau_{p^{\prime}}\left(g\left(\left(\tau_{p^{\prime}} \psi\right)_{h} \circ \omega\right)\right)\right\rangle_{L^{p}(G), L^{p^{\prime}}(G)}
$$

This function is integrable and continuous on H with its L^{1}-norm bounded by $\left\|\|T\|_{p}\right\| f\left\|_{p}\right\| g\left\|_{p^{\prime}}\right\| \varphi\left\|_{p}\right\| \psi \|_{p^{\prime}}$. Then for each $T \in C V_{p}(G)$ and $f, g \in C_{o o}(G)$, there is a unique p-convolution operator on H, denoted $\omega_{f, g}(T)$, such that, for all $(\varphi, \psi) \in$ $L^{p}(H) \times L^{p^{\prime}}(H)$,

$$
\begin{aligned}
& \left\langle\omega_{f, g}(T) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}}(H)} \\
& \quad=\int_{H}\left\langle T\left(\tau_{p}\left(f\left(\left(\tau_{p} \varphi\right)_{h} \circ \omega\right)\right)\right), \tau_{p^{\prime}}\left(g\left(\left(\tau_{p^{\prime}} \psi\right)_{h} \circ \omega\right)\right)\right\rangle_{L^{p}(G), L^{p^{\prime}}(G)} d h
\end{aligned}
$$

Proposition 3.2. Let G and H be two locally compact groups (not necessary amenable) and $\omega: G \rightarrow H$ be a continuous homomorphism. Let $f, g \in C_{o o}(G)$. Then $\omega_{f, g}$ is a linear map of $C V_{p}(G)$ into $C V_{p}(H)$ and $\left\|\omega_{f, g}\right\| \leq\|f\|_{p}\|g\|_{p^{\prime}}$. Moreover, for each $\mu \in M^{1}(G)$ and $f, g \in C_{o o}(G)$,

$$
\left\langle\omega_{f, g}\left(\lambda_{G}^{p}(\mu)\right) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}}(H)}=\overline{\tilde{\mu}\left(\bar{f} \star \check{g}\left(\overline{\tau_{p} \varphi} \star\left(\tau_{p^{\prime}} \psi \check{)}\right) \circ \omega\right)\right.}
$$

We can immediately compare this result with

$$
\left\langle\lambda_{H}^{p}(\omega(\mu)) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}}(H)}=\overline{\tilde{\mu}\left(\left(\overline{\tau_{p} \varphi} \star\left(\tau_{p^{\prime}} \psi\right)\right) \circ \omega\right)},
$$

and see that, if $\bar{f} \star \check{g}$ is close to $1, \lambda_{H}^{p}(\omega(\mu))$ is close to $\omega_{f, g}\left(\lambda_{G}^{p}(\mu)\right)$.

REMARK 3.3. The special cases where ω is the inclusion of a closed subgroup or the projection on a quotient were already treated in [1, 2, 6-9]. Combining these two cases, it is possible to treat open continuous homomorphisms. The study of a general continuous homomorphism requires new ideas.

Proof of Theorem 3.1.
Let $f, g \in C_{o o}(G)$. For all $T \in C V_{p}(G)$ and $(\varphi, \psi) \in L^{p}(H) \times L^{p^{\prime}}(H)$, we define

$$
\Omega_{f, g}(T, \varphi, \psi)=\left\langle\omega_{f, g}(T) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}}(H)}
$$

In fact, $\Omega_{f, g}$ is a continuous form on $C V_{p}(G) \times L^{p}(H) \times L^{p^{\prime}}(H)$ which is bilinear on the first two factors and conjugate linear on the last. Let \mathcal{B} denote the set of these forms provided with the weak topology of duality with $C V_{p}(G) \times L^{p}(H) \times L^{p^{\prime}}(H)$.

For every compact $K \subset G$ and $\varepsilon>0$, we define

$$
\begin{gathered}
\mathcal{U}_{K, \varepsilon}=\{U \subset G: U \text { compact, } m(U)>0, m(x U \triangle U)<\varepsilon m(U) \forall x \in K\} \\
\mathcal{A}_{K, \varepsilon}=\left\{\Omega_{f, g}: f=m(U)^{-1 / p} 1_{U}, g=m(U)^{-1 / p^{\prime}} 1_{U}, U \in \mathcal{U}_{K, \varepsilon}\right\} .
\end{gathered}
$$

By the Banach-Alaoglu theorem,

$$
\begin{aligned}
\mathcal{S}=\{ & F \in \mathcal{B}:|F(T, \varphi, \psi)| \leq\|T\|_{p}\|\varphi\|_{p}\|\psi\|_{p^{\prime}}, \\
& \left.\quad \text { for all }(T, \varphi, \psi) \in C V_{p}(G) \times L^{p}(H) \times L^{p^{\prime}}(H)\right\}
\end{aligned}
$$

is a compact subset of \mathcal{B}. Since G is amenable, it satisfies the property (\underline{F}) of Følner [20, Theorem 7.3], so the $\mathcal{U}_{K, \varepsilon}$ are all nonempty. Then, the family $\left\{\overline{\mathcal{A}_{K, \varepsilon}}\right\}$ (where $\overline{\mathcal{A}_{K, \varepsilon}}$ denotes the weak closure of $\mathcal{A}_{K, \varepsilon}$) have the property of finite intersection. However, each $\mathcal{A}_{K, \varepsilon} \subset \mathcal{S}$ and \mathcal{S} is a compact set, so

$$
\bigcap_{\substack{K \subset G \text { compact }, \varepsilon>0}} \overline{\mathcal{A}_{K, \varepsilon}} \neq \emptyset .
$$

Let

$$
\Omega \in \bigcap_{\substack{K \subset G \text { compact }, \varepsilon>0}} \overline{\mathcal{A}_{K, \varepsilon}} .
$$

There is a unique continuous linear operator $\omega(T)$ on $L^{p}(G)$ such that, for all $(\varphi, \psi) \in L^{p}(H) \times L^{p^{\prime}}(H)$,

$$
\langle\omega(T) \varphi, \psi\rangle_{L^{p}(H), L^{p^{\prime}}(H)}=\Omega(T, \varphi, \psi)
$$

By construction, $\omega(T) \in C V_{p}(H)$ and ω is a contraction.
Let $\mu \in M^{1}(G)$. We prove that

$$
\omega\left(\lambda_{G}^{p}(\mu)\right)=\lambda_{H}^{p}(\omega(\mu))
$$

Let $(\varphi, \psi) \in L^{p}(H) \times L^{p^{\prime}}(H)$ and $\varepsilon>0$. We consider

$$
0<\delta<\varepsilon\left[1+\omega(|\mu|)\left(\Delta_{H}^{1 / p}|\varphi \star \tilde{\psi}|\right)+2\left\|\left(\Delta_{H}^{1 / p} \varphi \star \tilde{\psi}\right) \circ \omega\right\|_{\infty}\right]^{-1}
$$

There is a compact subset $K_{\delta} \subset G$ such that $|\mu|\left(G \backslash K_{\delta}\right)<\delta$. By definition of Ω, there is a compact subset $U \in \mathcal{U}_{K_{\delta}, \delta}$ such that

$$
\left|\Omega_{f, g}\left(\lambda_{G}^{p}(\mu), \varphi, \psi\right)-\Omega\left(\lambda_{G}^{p}(\mu), \varphi, \psi\right)\right|<\frac{\varepsilon}{2}
$$

where $f=m(U)^{-1 / p} 1_{U}$ and $g=m(U)^{-1 / p^{\prime}} 1_{U}$. In fact, for all $x \in K_{\delta}^{-1}$,

$$
0 \leq 1-\frac{m\left(x^{-1} U \cap U\right)}{m(U)}<\frac{\delta}{2}
$$

Let $(\varphi, \psi) \in L^{p}(H) \times L^{p^{\prime}}(H)$. On the one hand,

$$
\begin{aligned}
& \left|\int_{K_{\delta}}\left(1-\frac{m\left(x^{-1} U \cap U\right)}{m(U)}\right) \Delta_{H}^{1 / p}(\omega(x)) \varphi \star \tilde{\psi}(\omega(x)) d \mu(x)\right| \\
& \quad \leq \frac{\delta}{2} \omega(|\mu|)\left(\Delta_{H}^{1 / p}|\varphi \star \tilde{\psi}|\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left|\int_{G \backslash K_{\delta}}\left(1-\frac{m\left(x^{-1} U \cap U\right)}{m(U)}\right) \Delta_{H}^{1 / p}(\omega(x)) \varphi \star \tilde{\psi}(\omega(x)) d \mu(x)\right| \\
& \quad \leq\left\|\Delta_{H}^{1 / p} \circ \omega \varphi \star \tilde{\psi} \circ \omega\right\|_{\infty}|\mu|\left(G \backslash K_{\delta}\right) \leq\left\|\left(\Delta_{H}^{1 / p} \varphi \star \tilde{\psi}\right) \circ \omega\right\|_{\infty} \delta .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
&\left|\left\langle\omega\left(\lambda_{G}^{p}(\mu)\right) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}}(H)}-\left\langle\lambda_{H}^{p}(\omega(\mu)) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}}(H)}\right| \\
& \leq\left|\left\langle\omega\left(\lambda_{G}^{p}(\mu)\right) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}(H)}}-\left\langle\omega_{f, g}\left(\lambda_{G}^{p}(\mu)\right) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}(H)}}\right| \\
&+\left|\left\langle\omega_{f, g}\left(\lambda_{G}^{p}(\mu)\right) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}}(H)}-\left\langle\lambda_{H}^{p}(\omega(\mu)) \varphi, \psi\right\rangle_{L^{p}(H), L^{p^{\prime}(H)}}\right| \\
& \leq \frac{\varepsilon}{2}+\left|\int_{G}\left(1-\frac{m\left(x^{-1} U \cap U\right)}{m(U)}\right) \Delta_{H}^{1 / p}(\omega(x)) \varphi \star \tilde{\psi}(\omega(x)) d \mu(x)\right| \\
& \quad \frac{\varepsilon}{2}+\frac{\delta}{2} \omega(|\mu|)\left(\Delta_{H}^{1 / p}|\varphi \star \tilde{\psi}|\right)+\left\|\left(\Delta_{H}^{1 / p} \varphi \star \tilde{\psi}\right) \circ \omega\right\|_{\infty} \delta<\varepsilon .
\end{aligned}
$$

REmARK 3.4. Instead of Følner's property, we could use the property $\left(P_{p}\right)$ of Reiter [20, Proposition 6.12]. It is sufficient to consider the set

$$
\begin{aligned}
\mathcal{R}_{K, \varepsilon}= & \left\{\Omega_{f, g}: f, g>0,\|f\|_{p}=\|g\|_{p^{\prime}}=1,\right. \\
& \left.\left\|_{a} f-f\right\|_{p}<\varepsilon \text { and }\left\|_{a} g-g\right\|_{p^{\prime}}<\varepsilon \text { for all } a \in K\right\} .
\end{aligned}
$$

With the same arguments, we obtain that

$$
\bigcap_{\substack{K \subset G \text { compact, } \\ \varepsilon>0}} \overline{\mathcal{R}_{K, \varepsilon}} \neq \emptyset .
$$

REMARK 3.5.
(1) The definition of the convolution operator $\omega_{f, g}(T)$ does not require the amenability of G.
(2) Using duality techniques of Herz [11, 12], one can give a shorter proof of Theorem 3.1. We have presented the above proof as it uses more basic ideas. We use duality arguments in the next section.

4. Image of a pseudomeasure and the $\boldsymbol{A}_{\boldsymbol{p}}$ algebras

We show now that $\omega(T)$ is uniquely defined for T in the norm closure of the set of all compactly supported convolution operators. This Banach algebra is denoted $c v_{p}(G)$. We recall that $c v_{2}(G)=C_{u}^{b}(\widehat{G})$, since G is abelian.

For $u \in A_{p}(G)$ and $T \in P M_{p}(G)$, it is useful to define $\omega_{u}(T)$ by

$$
\omega_{u}(T)=\sum_{n=1}^{\infty} \omega_{f_{n}, g_{n}}(T) \quad \text { where } u=\sum_{n=1}^{\infty} \bar{f}_{n} \star \check{g}_{n}
$$

The map ω_{u} is well defined because

$$
\begin{aligned}
& \sum_{n=1}^{\infty}{\overline{\left\langle\omega_{f_{n}, g_{n}}(T)\left(\tau_{p} \varphi\right), \tau_{p^{\prime}} \psi\right\rangle}}_{L^{p}(H), L^{p^{\prime}(H)}} \\
& \quad=\left\langle(\bar{\varphi} \star \check{\psi}) \circ \omega \sum_{n=1}^{\infty} \bar{f}_{n} \star \check{g}_{n}, T\right\rangle_{A_{p}(G), P M_{p}(G)} .
\end{aligned}
$$

The following proposition is similar to Proposition 3.2.
Proposition 4.1. Let $1<p<\infty$ and $u \in A_{p}(G)$. Then, ω_{u} is a linear map of $P M_{p}(G)$ into $P M_{p}(H)$ such that $\left\|\omega_{u}(T)\right\|_{p} \leq\|T\|\left\|_{p}\right\| u \|_{A_{p}}$.
REMARK 4.2. Let us assume that G is amenable. Theorem 3.1 implies that, for every $T \in P M_{p}(G), \varepsilon>0, v \in A_{p}(H)$, there is $u \in A_{p}(G)$ such that

$$
\left|\langle v, \omega(T)\rangle_{A_{p}(G), P M_{p}(G)}-\left\langle v, \omega_{u}(T)\right\rangle_{A_{p}(G), P M_{p}(G)}\right|<\varepsilon
$$

Let $M A_{p}$ denote the set of the multipliers of A_{p} (that is, $v \in M A_{p}$, if $v u \in A_{p}$, for all $u \in A_{p}$). It is well known that $M A_{p}(G)$ multiplies $P M_{p}(G)$ in the sense of

$$
\langle v, u T\rangle_{A_{p}(G), P M_{p}(G)}=\langle u v, T\rangle_{A_{p}(G), P M_{p}(G)},
$$

for all $u \in M A_{p}(G), v \in A_{p}(G)$ and $T \in P M_{p}(G)$. We recall that $\omega(u) \in M A_{p}(H)$, for all $u \in M A_{p}(G)$, see [13].

Proposition 4.3. Let $T \in P M_{p}(G)$ and $u \in M A_{p}(H)$. If G is amenable, then

$$
\omega((u \circ \omega) T)=u \omega(T)
$$

Proof. Let $\varepsilon>0$ and $w \in A_{p}(H)$.
There is $v \in A_{p}(G)$ such that

$$
\left|\langle w, \omega((u \circ \omega) T)\rangle_{A_{p}(H), P M_{p}(H)}-\left\langle w, \omega_{v}((u \circ \omega) T)\right\rangle_{A_{p}(H), P M_{p}(H)}\right|<\frac{\varepsilon}{2}
$$

and

$$
\left|\langle u w, \omega(T)\rangle_{A_{p}(H), P M_{p}(H)}-\left\langle u w, \omega_{v}(T)\right\rangle_{A_{p}(H), P M_{p}(H)}\right|<\frac{\varepsilon}{2} .
$$

However, $\left\langle w, \omega_{v}((u \circ \omega) T)\right\rangle_{A_{p}(H), P M_{p}(H)}=\left\langle u w, \omega_{v}(T)\right\rangle_{A_{p}(H), P M_{p}(H)}$.
Lemma 4.4. Let $T \in P M_{p}(G)$ and $u \in A_{p}(G)$. If $h \in \operatorname{supp}\left(\omega_{u}(T)\right)$, then for every neighborhood V of h, there is $v \in A_{p}(G)$ with $\operatorname{supp}(v) \subset \omega^{-1}(V)$ such that

$$
\langle v, T\rangle_{A_{p}(G), P M_{p}(G)} \neq 0
$$

Theorem 4.5. Let $T \in P M_{p}(G)$. If G is amenable, then

$$
\operatorname{supp}(\omega(T)) \subset \overline{\omega(\operatorname{supp}(T))}
$$

Proof. Let $u \in A_{p}(G)$. First, we prove that $\operatorname{supp}\left(\omega_{u}(T)\right) \subset \overline{\omega(\operatorname{supp}(T))}$.
Let $h \in \operatorname{supp}\left(\omega_{u}(T)\right)$ and suppose $h \notin \overline{\omega(\operatorname{supp}(T))}$. Then there exists a closed neighborhood V of h in H such that

$$
V \cap \omega(\operatorname{supp}(T))=\emptyset
$$

Let $v \in A_{p}(H)$ with $\operatorname{supp}(v) \subset V$. For each $x \in G$ with $((v \circ \omega) u)(x) \neq 0$, we have $x \in \omega^{-1}(V)$, so $\operatorname{supp}((v \circ \omega) u) \subset \omega^{-1}(V)$. However, $\omega^{-1}(V) \cap \operatorname{supp}(T)=\emptyset$. Then, $((v \circ \omega) u) T=0$, and by the amenability of G,

$$
\langle(v \circ \omega) u, T\rangle_{A_{p}(G), P M_{p}(G)}=0
$$

which contradicts Lemma 4.4.
Finally, we prove that

$$
\operatorname{supp}(\omega(T)) \subset \bigcap_{u \in A_{p}(G)} \operatorname{supp}\left(\omega_{u}(T)\right)
$$

Let $h_{0} \in \operatorname{supp}(\omega(T))$. Suppose

$$
h_{0} \notin \overline{\bigcap_{u \in A_{p}(G)} \operatorname{supp}\left(\omega_{u}(T)\right)}
$$

Then there exists a closed neighborhood V_{0} of h_{0} in H such that, for all $u \in A_{p}(G)$, $V_{0} \cap \operatorname{supp}\left(\omega_{u}(T)\right)=\emptyset$. Let $v \in A_{p}(H)$ with $\operatorname{supp}(v) \subset V_{0}$. For each $u \in A_{p}(G)$, $\operatorname{supp}(v) \cap \operatorname{supp}\left(\omega_{u}(T)\right)=\emptyset$, then $v \omega_{u}(T)=0$ and by the amenability of G,

$$
\left\langle v, \omega_{u}(T)\right\rangle_{A_{p}(H), P M_{p}(H)}=0 .
$$

It follows that

$$
\langle v, \omega(T)\rangle_{A_{p}(H), P M_{p}(H)}=0,
$$

which contradicts Lemma 4.4.
We now want to prove that the transfer mapping is uniquely defined on a larger class of convolution operators, notably on $c v_{p}(G)$. We recall that, if G is amenable, then $c v_{p}(G)=A_{p}(G) P M_{p}(G)$, as a direct consequence of the Cohen-Hewitt theorem [14, Ch. VIII, Paragraph 32].
Theorem 4.6. Let $T \in P M_{p}(G)$ and $u \in A_{p}(G)$. If G is amenable, then

$$
\omega(u T)=\omega_{u}(T)
$$

In fact, there is a unique linear contraction $\omega: c v_{p}(G) \rightarrow c v_{p}(H)$ which generalizes the transfer of bounded measures.

Proof. Let $T \in P M_{p}(G), u \in A_{p}(G), v \in A_{p}(H)$ and $\varepsilon>0$. There is $w \in A_{p}(G)$ such that

$$
\left|\langle v, \omega(u T)\rangle_{A_{p}(H), P M_{p}(H)}-\left\langle v, \omega_{w}(u T)\right\rangle_{A_{p}(H), P M_{p}(H)}\right|<\frac{\varepsilon}{2}
$$

and

$$
\left|\langle v \circ \omega u, T\rangle_{A_{p}(G), P M_{p}(G)}-\langle v \circ \omega u w, T\rangle_{A_{p}(G), P M_{p}(G)}\right|<\frac{\varepsilon}{2} .
$$

However,

$$
\begin{aligned}
\left\langle v, \omega_{w}(u T)\right\rangle_{A_{p}(H), P M_{p}(H)} & =\langle v \circ \omega w, u T\rangle_{A_{p}(G), P M_{p}(G)} \\
& =\langle v \circ \omega u w, T\rangle_{A_{p}(G), P M_{p}(G)} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\langle v, \omega(u T)\rangle_{A_{p}(H), P M_{p}(H)} & =\langle v \circ \omega u, T\rangle_{A_{p}(G), P M_{p}(G)} \\
& =\left\langle v, \omega_{u}(T)\right\rangle_{A_{p}(H), P M_{p}(H)} .
\end{aligned}
$$

Finally, we prove that $\omega(T) \in c v_{p}(G)$. There is a sequence $\left(T_{n}\right)_{n=1}^{\infty}$ of convolution operators with compact support such that $\left\|\left\|T_{n}-T\right\|\right\|_{p} \rightarrow 0$, and $\left(K_{n}\right)_{n=1}^{\infty}$ is a sequence of compact subsets of G with $\operatorname{supp}\left(T_{n}\right) \subset K_{n}$. For each $n \in \mathbb{N}, \operatorname{supp}\left(\omega\left(T_{n}\right)\right) \subset \omega\left(K_{n}\right)$. However, $\omega: C V_{p}(G) \rightarrow C V_{p}(H)$ is ultraweak continuous, then $\|\|\cdot\|\|_{p}$-continuous. So

$$
\lim _{n \rightarrow \infty} \omega\left(T_{n}\right)=\omega\left(\lim _{n \rightarrow \infty} T_{n}\right)=\omega(T)
$$

Example 4.7. Let H be a closed amenable subgroup of G and let $\omega=i: H \rightarrow G$ be the canonical inclusion. For all $T \in P M_{p}(H)$ and $v \in A_{p}(G)$,

$$
\langle v, i(T)\rangle_{A_{p}(G), P M_{p}(G)}=\left\langle\operatorname{Res}_{H} v, T\right\rangle_{A_{p}(H), P M_{p}(H)}
$$

Derighetti obtained this result without supposing the amenability of the subgroup H (see [8, Theorem 2, p. 76]). However, he used techniques which cannot be applied to arbitrary continuous homomorphisms.

Example 4.8. Let G be an amenable locally compact group and $\omega: G \rightarrow\{e\}$ be the trivial homomorphism. Then there is a linear contraction

$$
\omega: C V_{p}(G) \rightarrow \mathbb{C}
$$

with the following properties:
(1) $\omega\left(\lambda_{G}^{p}(\mu)\right)=\mu(G)$ for each bounded measure μ of G;
(2) $\omega(u T)=\langle u, T\rangle_{A_{p}(G), P M_{p}(G)}$ for each $u \in A_{p}(G)$.

In fact, this defines a kind of integral on $C V_{p}(G)$!
Example 4.9. Let G be an arbitrary Lie group. Then, for each X in its Lie algebra, there is a continuous homomorphism of \mathbb{R} into G defined by $t \mapsto \exp (t X)$. Hence, we are able to transfer every $T \in C V_{p}(\mathbb{R})$ into $C V_{p}(G)$.

5. The abelian case

The aim of this section is to compute the Fourier transform of $\omega(T)$.
Let G and H be two locally compact abelian groups and $\omega: G \rightarrow H$ be a continuous homomorphism. Here $A(G)$ denotes the Fourier algebra of G (we recall that $\left.A(G)=A_{2}(G)\right)$ and \widehat{G} be the character group of G. We denote by $\varepsilon_{G}: G \rightarrow \widehat{\widehat{G}}$ the canonical isomorphism defined by $\varepsilon_{G}(x)(\chi)=\chi(x)$, for all $x \in G$ and $\chi \in \widehat{G}$. We define an isometric isomorphism $\Phi_{\widehat{G}}: L^{1}(\widehat{G}) \rightarrow A_{2}(G)$ by

$$
\Phi_{\widehat{G}}(f)(x)=\int_{\widehat{G}} f(\chi) \varepsilon_{G}(x)(\chi) d \chi
$$

for all $x \in G$ and the Fourier transform ${ }^{\wedge}: L^{1}(\widehat{G}) \rightarrow A_{2}(\widehat{\widehat{G}})$ by

$$
\hat{f}(\xi)=\int_{\widehat{G}} f(\chi) \overline{\xi(\chi)} d \chi
$$

for all $\xi \in \widehat{\widehat{G}}$. Let $\mathcal{F}: L^{2}(\widehat{G}) \rightarrow L^{2}(\widehat{\widehat{G}})$ denote the extension of ${ }^{\wedge}$ on $L^{2}(\widehat{G})$.
Let $\hat{\omega}: \widehat{H} \rightarrow \widehat{G}$ denote the dual homomorphism defined by $\hat{\omega}\left(\chi^{\prime}\right)=\chi^{\prime} \circ \omega$, for all $\chi^{\prime} \in \widehat{H}$. For each $T \in C V_{2}(G), \widehat{T}$ denotes the Fourier transform of T, that is the unique function of $L^{\infty}(\widehat{G})$ such that, for all $\varphi, \psi \in L^{2}(\widehat{G})$,

$$
\langle T \varphi, \psi\rangle_{L^{2}(G), L^{2}(G)}=\langle\widehat{T} \mathcal{F}(\varphi), \mathcal{F}(\psi)\rangle_{L^{2}(\widehat{G}), L^{2}(\widehat{G})}
$$

Let $1<p<\infty$. We define a contractive monomorphism $\alpha_{p}: C V_{p}(G) \rightarrow C V_{2}(G)$ such that, for all $\varphi \in L^{2}(G) \cap L^{p}(G), \alpha_{p}(T)(\varphi)=T(\varphi)$. For $T \in C V_{p}(G)$, the Fourier transform of T is defined by

$$
\begin{equation*}
\widehat{T}=\widehat{\alpha_{p}(T)} \tag{5.1}
\end{equation*}
$$

From these definitions we have the following lemma.
Lemma 5.1. Let $1<p<\infty, u \in A(G)$ and $T \in C V_{p}(G)$. Then

$$
\omega_{u}\left(\alpha_{p}(T)\right)=\omega_{u}(T)
$$

and

$$
\widehat{\omega_{u}(T)}=\left(\widehat{T} \star \widehat{\Phi^{-1}(u)}\right) \circ \hat{\omega} .
$$

Theorem 5.2. Let $T \in P M_{p}(G)$ with \widehat{T} continuous on \widehat{G}. Then,

$$
\widehat{\omega(T)}=\widehat{T} \circ \hat{\omega} .
$$

Proof. First, we consider $S=\alpha_{p}(T) \in C V_{2}(G)$. Let $\varepsilon>0$ and $f \in L^{1}(\widehat{H})$. By hypothesis, \widehat{S} is a continuous function on \widehat{G}. So, for all $\chi \in \widehat{G}$, there is a compact neighborhood C of $e \in \widehat{G}$ such that

$$
\left|\widehat{S}\left(\chi \chi^{\prime}\right)-\widehat{S}(\chi)\right|<\frac{\varepsilon}{4\left(1+\|f\|_{1}\right)}
$$

for all $\chi^{\prime} \in C$.
There is $\delta>0$ and a compact $K \subset G$ such that, for all $U \in \mathcal{U}_{K^{-1}, \delta}$,

$$
\int_{\widehat{G} \backslash C} \Phi^{-1}(v)(\chi) d \chi<\frac{\varepsilon}{8\left(1+\|\widehat{S}\|_{\infty}\right)\left(1+\|f\|_{1}\right)}
$$

and

$$
\left|\langle u, \omega(S)\rangle_{A_{p}(H), P M_{p}(H)}-\left\langle u, \omega_{v}(S)\right\rangle_{A_{p}(H), P M_{p}(H)}\right|<\delta,
$$

where $v=m(U)^{-1} 1_{U} \star \check{1}_{U} \in A(G)$. Then,

$$
\left\|\widehat{S} \star \widehat{\Phi^{-1}(v)}-\widehat{S}\right\|_{\infty}<\frac{\varepsilon}{2\left(1+\|f\|_{1}\right)}
$$

On the one hand,

$$
\begin{aligned}
& \left\lvert\,\langle f, \widehat{\omega(S)}\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}-\left\langle f,{\left.\widehat{\omega_{v}(S)}\right\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})} \mid}_{\quad=\left|\langle\Phi(f), \omega(S)\rangle_{A(H), P M_{2}(G)}-\left\langle\Phi(f), \omega_{v}(S)\right\rangle_{A(H), P M_{2}(G)}\right|<\frac{\varepsilon}{2}} .\right.\right.
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left\lvert\,\left\langle f,{\left.\widehat{\omega_{v}(S)}\right\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}-\langle f, \widehat{S} \circ \hat{\omega}\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})} \mid}_{\quad=\mid\left\langle f,\left(\widehat{S} \star \widehat{\left.\Phi^{-1}(v)\right)} \circ \hat{\omega}\right\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}-\langle f, \widehat{S} \circ \hat{\omega}\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}\right|}^{\quad=\left|\left\langle f,\left(\widehat{S} \star \widehat{\Phi^{-1}(v)}-\widehat{S}\right) \circ \hat{\omega}\right\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}\right|<\|f\|_{1} \frac{\varepsilon}{2\left(1+\|f\|_{1}\right)}<\frac{\varepsilon}{2}} .\right.\right.
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \left|\langle f, \widehat{\omega(S)}\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}-\langle f, \widehat{S} \circ \hat{\omega}\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}\right| \\
& \leq\left|\langle f, \widehat{\omega(S)}\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}-\left\langle f, \widehat{\omega_{v}(S)}\right\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}\right| \\
& +\left|\left\langle f, \widehat{\omega_{v}(S)}\right\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}-\langle f, \widehat{S} \circ \hat{\omega}\rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}\right|<\varepsilon
\end{aligned}
$$

and

$$
\widehat{\omega(S)}=\widehat{S} \circ \hat{\omega}
$$

We conclude by applying (5.1).
REmark 5.3. Theorem 5.2 was previously proved by Lohoué [17, Theorem I.1] and [15]. Nonabelian methods allow us to give a new proof.
REMARK 5.4. Let G be a locally compact abelian group and consider the homomorphism of Example 4.8,

$$
\omega: G \rightarrow\{e\} .
$$

Then, for each $T \in C V_{p}(G)$ with \widehat{T} continuous,

$$
\omega(\widehat{T})=\widehat{T}(1)
$$

Let $\varphi \in L^{\infty}(G)$. We recall that the spectrum of φ is the set

$$
\operatorname{sp}(\varphi)=\left\{\chi \in \widehat{G}: \widehat{f}(\chi)=0 \text { for all } f \in L^{1}(G) \text { with } f \star \varphi=0\right\}
$$

and that

$$
\varepsilon_{G}(\operatorname{supp}(T))=(\operatorname{sp}(\widehat{T}))^{-1}
$$

Scholium 5.5. Let $T \in C V_{p}(G)$ with \widehat{T} continuous. Then,

$$
\operatorname{sp}(\widehat{T} \circ \widehat{\omega}) \subset \overline{\hat{\omega}}(\operatorname{sp}(\widehat{T}))
$$

Proof. By Theorem 4.5, we have $\operatorname{supp}(\omega(T)) \subset \overline{\omega(\operatorname{supp}(T))}$ and then

$$
\varepsilon_{G}(\operatorname{supp}(\omega(T))) \subset \overline{\widehat{\omega}\left(\varepsilon_{G}(\operatorname{supp}(T))\right)}
$$

By Theorem 5.2,

$$
\operatorname{sp}(\widehat{T} \circ \widehat{\omega}) \subset\left(\widehat{\widehat{\omega}}\left((\operatorname{sp}(\widehat{T}))^{-1}\right)\right)^{-1} \subset \widehat{\widehat{\omega}}((\operatorname{sp}(\widehat{T}))) .
$$

REmARK 5.6. In [21, Theorem 7.2.2, p. 200], Reiter proves a result called 'relativisation of the spectrum'. It is, in fact, a particular case of the Scholium 5.5 where \widehat{H} is a closed subgroup of \widehat{G} and $\hat{\omega}$ is the inclusion.

6. Relations between $C V_{p}(G)$ and $C V_{p}\left(G_{d}\right)$

We know that deep relations exist between the harmonic analysis of G and G_{d}. In [10, 12], Eymard and Herz investigated the relationship between $B(G)$ and $B\left(G_{d}\right) \cap C(G)$. In this section, we study the relationship between $C V_{p}(G)$ and $C V_{p}\left(G_{d}\right)$. More precisely, we construct a new map of $C V_{p}(G)$ into $C V_{p}\left(G_{d}\right)$, for G_{d} amenable.

First, we give results about the operator norm of discrete measures. For each sequence $\left(c_{n}\right)_{n=1}^{\infty} \in \ell^{1}$ and $\left(a_{n}\right)_{n=1}^{\infty}$ on G, we consider the measure $\mu=\sum_{n=1}^{\infty} c_{n} \delta_{a_{n}}$, where δ_{a} is the Dirac measure on a. Here μ is a bounded measure on both G and on G_{d} with $\omega(\mu)=\mu$. All of these measures are called discrete measures of G.

THEOREM 6.1. Let $1<p<\infty$, Ge a locally compact group and let μ be a discrete measure of G. Then,

$$
\left\|\lambda_{G_{d}}^{p}(\mu)\right\|_{p} \leq\left\|\lambda_{G}^{p}(\mu)\right\|_{p}
$$

Moreover, if G_{d} is amenable,

$$
\left\|\lambda_{G_{d}}^{p}(\mu)\right\|_{p}=\| \| \lambda_{G}^{p}(\mu) \|_{p} .
$$

The proof of the first inequality is based on the following construction and the second is a corollary of Theorem 3.1.

DEFINITION 6.2. Let W be a relatively compact neighborhood of e in G. For each $k \in C_{o o}\left(G_{d}\right)$, we define

$$
T_{W}^{p}(k)=m(W)^{-1 / p} \sum_{x \in G} k(x)_{x^{-1}}\left(1_{W}\right)
$$

It is straightforward to prove the following properties:
(1) $T_{W}^{p}: C_{o o}\left(G_{d}\right) \rightarrow L^{p}(G)$;
(2) $\left\|T_{W}^{p}(k)\right\|_{p} \leq\|k\|_{1}$;
(3) $T_{W}^{p}\left({ }_{a} k\right)={ }_{a}\left(T_{W}^{p}(k)\right)$ for all $a \in G$.

The second property can be improved on, as follows.
Lemma 6.3. Let $k \in C_{o o}\left(G_{d}\right)$ with $\operatorname{supp}(k)=\left\{x_{1}, \ldots, x_{n}\right\}$ and let W be a relatively compact neighborhood of e in G such that $x_{i} W \cap x_{j} W=\emptyset$, for each $1 \leq i, j \leq n$ with $i \neq j$. Then

$$
\left\|T_{W}^{p}(k)\right\|_{p}=\|k\|_{p}
$$

Proof. For each $y \in G$, there is $j_{y} \in\{1, \ldots, n\}$ such that $x_{j_{y}}^{-1} y \in W$. Then

$$
\begin{aligned}
& \left|\sum_{j=1}^{n} k\left(x_{j}\right) 1_{W}\left(x_{j}^{-1} y\right)\right|^{p}=\sum_{j=1}^{n}\left|k\left(x_{j}\right)\right|^{p} 1_{W}\left(x_{j}^{-1} y\right) \quad \text { and } \\
& \left\|T_{W}^{p}(k)\right\|_{p}^{p}=m(W)^{-1} \sum_{j=1}^{n}\left|k\left(x_{j}\right)\right|^{p} \int_{G} 1_{W}(y) d y=\|k\|_{p} .
\end{aligned}
$$

Lemma 6.4. Let $k, l \in C_{o o}\left(G_{d}\right)$ and let μ be a bounded measure on G with finite support (that is, $\mu=\sum_{i=1}^{n} c_{i} \delta_{a_{i}}$, where $c_{i} \in \mathbb{C}$ and $a_{i} \in G$). Then there exists a neighborhood W of e in G such that

$$
\left\langle\bar{k} \star \check{l}, \lambda_{G_{d}}^{p}(\mu)\right\rangle_{A_{p}\left(G_{d}\right), P M_{p}\left(G_{d}\right)}=\left\langle\left(T_{W}^{p}(\bar{k})\right) \star\left(T_{W}^{p^{\prime}}(l) \check{)}, \lambda_{G}^{p}(\mu)\right\rangle_{A_{p}(G), P M_{p}(G)} .\right.
$$

Proof. Suppose that $\mu=\delta_{a}$, for any $a \in G$. Let $\operatorname{supp}(k)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\operatorname{supp}(l)=\left\{y_{1}, \ldots, y_{m}\right\}$.

We define $E=\left\{(i, j) \in \mathbb{N}_{n} \times \mathbb{N}_{m}: a x_{i}=y_{j}\right\}$ and consider W a neighborhood of e such that $\left(x_{i}^{-1} a^{-1} y_{j}\right) W \cap W=\emptyset$. Then,

$$
\begin{aligned}
& \left\langle\left(T_{W}^{p}(\bar{k})\right) \star\left(T_{W}^{p^{\prime}}(l)\right)^{2}, \lambda_{G}^{p}(\mu)\right\rangle_{A_{p}(G), P M_{p}(G)} \\
& \quad=m(W)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \bar{k}\left(x_{i}\right) l\left(y_{j}\right) \int_{G} 1_{W}\left(x_{i}^{-1} a^{-1} y_{j} y\right) 1_{W}(y) d y \\
& \quad=\sum_{(i, j) \in E} \bar{k}\left(a^{-1} y_{j}\right) l\left(y_{j}\right)=\sum_{j=1}^{m} \bar{k}\left(a^{-1} y_{j}\right) l\left(y_{j}\right) \\
& \quad=\left\langle\bar{k} \star \check{l}, \lambda_{G_{d}}^{p}(\mu)\right\rangle_{A_{p}\left(G_{d}\right), P M_{p}\left(G_{d}\right)} .
\end{aligned}
$$

The result now follows by linearity.
Proof of Theorem 6.1. We prove that $\left|\mid \lambda_{G_{d}}^{p}(\mu)\left\|_{p} \leq\right\|\left\|\lambda_{G}^{p}(\mu)\right\|_{p}\right.$.
Let $r \in C_{o o}\left(G_{d}\right)$ with $\|r\|_{1} \leq 1$. We define $f=r^{1 / p}$ and $g=r^{1 / p^{\prime}}$. Let v be a bounded measure with finite support. There is a neighborhood W of e in G such that

$$
\begin{aligned}
& \left\langle\overline{\tau_{p} f} \star\left(\tau_{p} g\right) \check{y}^{\prime}, \lambda_{G_{d}}^{p}(\nu)\right\rangle_{A_{p}\left(G_{d}\right), P M_{p}\left(G_{d}\right)} \\
& \quad=\left\langle T_{W}^{p}\left(\overline{\tau_{p} f}\right) \star T_{W}^{p^{\prime}}\left(\left(\tau_{p} g\right)\right), \lambda_{G}^{p}(v)\right\rangle_{A_{p}(G), P M_{p}(G)} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mid\left\langle\lambda_{G_{d}}^{p}(\nu) f, g\right\rangle_{\ell p}(G), \ell \ell^{p^{\prime}}(G) \\
& \quad=\left|\left\langle\lambda_{G}^{p}(\nu)\left(\tau_{p}\left(T_{W}^{p}\left(\tau_{p} f\right)\right)\right), \tau_{p^{\prime}}\left(T_{W}^{p^{\prime}}\left(\tau_{p^{\prime}} g\right)\right)\right\rangle_{L^{p}(G), L^{p^{\prime}}(G)}\right| \\
& \quad \leq\left\|\lambda_{G}^{p}(\nu)\right\|_{p}\left\|T_{W}^{p}\left(\tau_{p} f\right)\right\|_{p}\left\|T_{W}^{p^{\prime}}\left(\tau_{p^{\prime}} g\right)\right\|_{p^{\prime}} \leq\left\|\lambda_{G}^{p}(v)\right\|\left\|_{p}\right\| f\left\|_{p}\right\| g \|_{p^{\prime}} .
\end{aligned}
$$

Finally, from $\|f\|_{p} \leq 1$ and $\|g\|_{p^{\prime}} \leq 1$, we obtain $\left\|\left\|\lambda_{G_{d}}^{p}(\nu)\right\|_{p} \leq\right\|\left\|\lambda_{G}^{p}(\nu)\right\|_{p}$.
There is a $\left(v_{n}\right)_{n=1}^{\infty}$ sequence of bounded measures of G with finite support such that $\lim \left\|v_{n}-\mu\right\|=0$.

$$
\begin{aligned}
\left\|\lambda_{G_{d}}^{p}(\mu)\right\|_{p} & \leq\| \| \lambda_{G_{d}}^{p}(\mu)-\lambda_{G_{d}}^{p}\left(v_{n}\right)\left\|_{p}+\right\|\left\|\lambda_{G_{d}}^{p}\left(v_{n}\right)\right\|_{p} \\
& \leq\left\|\lambda_{G_{d}}^{p}\left(\mu-v_{n}\right)\right\|_{p}+\left\|\lambda_{G}^{p}\left(v_{n}\right)\right\|_{p} \\
& \leq\left\|\mu-v_{n}\right\|+\left\|\mid \lambda_{G}^{p}\left(v_{n}\right)-\lambda_{G}^{p}(\mu)\right\|_{p}+\left\|\lambda_{G}^{p}(\mu)\right\|_{p} \\
& \leq 2\left\|\mu-v_{n}\right\|+\left\|\lambda_{G}^{p}(\mu)\right\|_{p} .
\end{aligned}
$$

Assume that G_{d} is amenable. The inequality $\left\|\left\|\lambda_{G_{d}}^{p}(\mu)\right\|_{p} \geq\right\|\left\|\lambda_{G}^{p}(\mu)\right\|_{p}$ is then a direct consequence of Theorem 3.1.

REMARK 6.5. The map $a \mapsto \lambda_{G}^{2}\left(\delta_{a}\right)$ is the left regular representation of G on $L^{2}(G)$. Theorem 6.1 is a version when $p \neq 2$ of the result of [3, Lemma 2, p. 606] and [4, Theorem 2, p. 3152]. The Hilbert space methods used to prove the version when $p=2$ are not applicable when $p \neq 2$. Our proof requires another approach.

THEOREM 6.6. Let $1<p<\infty$ and G be a locally compact group. Assume that G_{d} is amenable. Then there is a linear contraction

$$
\sigma: C V_{p}(G) \rightarrow C V_{p}\left(G_{d}\right)
$$

such that, for all discrete measures μ on G,

$$
\sigma\left(\lambda_{G}^{p}(\mu)\right)=\lambda_{G_{d}}^{p}(\mu)
$$

The proof of this theorem is based on Definition 6.2 and the following construction.
DEFINITION 6.7. Let $1<p<\infty$, let $T \in C V_{p}(G)$, let W be a relatively compact neighborhood of e in G and let $k, l \in C_{o o}\left(G_{d}\right)$. We define $\sigma_{W, k, l}(T)$ by

$$
\begin{aligned}
& \left\langle\sigma_{W, k, l}(T) \varphi, \psi\right\rangle_{L^{p}\left(G_{d}\right), L^{p^{\prime}}\left(G_{d}\right)} \\
& \quad=\sum_{x \in G}\left\langle T\left(\tau_{p}\left(T_{W}^{p}\left(k\left({ }_{x} \varphi\right)\right)\right)\right), \tau_{p^{\prime}}\left(T_{W}^{p^{\prime}}\left(l\left(x_{x} \psi \check{)}\right)\right)\right\rangle_{L^{p}(G), L^{p^{\prime}}(G)}\right.
\end{aligned}
$$

for all $\varphi \in L^{p}\left(G_{d}\right)$ and $\psi \in L^{p^{\prime}}\left(G_{d}\right)$.
Let \mathcal{W} denote the set of pairs (W, r) where W is a relatively compact neighborhood of e in $G, r \in C_{o o}\left(G_{d}\right)$ such that $x_{i} W \cap x_{j} W=\emptyset$, for all $i \neq j, 1 \leq i, j \leq n$, where $\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{supp}(r)$.
Lemma 6.8. Let $(W, r) \in \mathcal{W}, k=r^{1 / p}$ and $l=r^{1 / p^{\prime}}$. Then $\sigma_{W, k, l}$ is a linear map of $C V_{p}(G)$ into $C V_{p}\left(G_{d}\right)$ with $\left\|\left\|\sigma_{W, k, l}(T)\right\|_{p} \leq\right\| T\left\|\left\|_{p}\right\| k\right\|_{p}\|l\|_{p^{\prime}}$.

Lemma 6.9. Let μ be a bounded measure of G with finite support. Then there is $(W, r) \in \mathcal{W}$ such that, for all $\varphi, \psi \in C_{o o}\left(G_{d}\right)$,

$$
\left\langle\sigma_{W, k, l}\left(\lambda_{G}^{p}(\mu)\right) \varphi, \psi\right\rangle_{L^{p}\left(G_{d}\right), L^{p^{\prime}}\left(G_{d}\right)}=\overline{\mu^{\star}((\bar{k} \star \check{l})(\tilde{\varphi} \star \psi))}
$$

where $k=r^{1 / p}$ and $l=r^{1 / p^{\prime}}$.
Proof of Theorem 6.6. For each $(W, r) \in \mathcal{W}, k=r^{1 / p}$ and $l=r^{1 / p^{\prime}}$, we define

$$
\Sigma_{W, k, l}(T, \varphi, \psi)=\left\langle\sigma_{W, k, l}(T) \varphi, \psi\right\rangle_{L^{p}\left(G_{d}\right), L^{p^{\prime}}\left(G_{d}\right)}
$$

where $T \in C V_{p}(G)$ and $\varphi, \psi \in C_{o o}\left(G_{d}\right)$. Here $\Sigma_{W, k, l}$ is a continuous form on $C V_{p}(G) \times L^{p}\left(G_{d}\right) \times L^{p^{\prime}}\left(G_{d}\right)$, which is bilinear in the two first factors and conjugate linear on the third. Let \mathcal{B} denote the set of these forms with the weak topology of duality with $C V_{p}(G) \times L^{p}\left(G_{d}\right) \times L^{p^{\prime}}\left(G_{d}\right)$. By the Banach-Alaoglu theorem, $\mathcal{S}=\left\{F \in \mathcal{B}:|F(T, \varphi, \psi)| \leq\|T\|_{p}\|\varphi\|_{p}\|\psi\|_{p^{\prime}}\right\}$ is a compact subset of \mathcal{B}. For each K finite subset of $G, \varepsilon>0$ and U neighborhood of e in G, we define

$$
\begin{array}{r}
\mathcal{A}_{K, \varepsilon, U}=\left\{\Sigma_{W, k, l}:(W, r) \in \mathcal{W}, k=r^{1 / p}, l=r^{1 / p^{\prime}}, r \geq 0,\|r\|_{1}=1\right. \\
\left.\left\|_{x^{-1}} k-k\right\|_{p}<\varepsilon \quad \forall x \in K, W \subset U\right\}
\end{array}
$$

The $\mathcal{A}_{K, \varepsilon, U}$ are all nonempty, because G_{d} is amenable. It easy to show that for all $n \in \mathbb{N}, K_{1}, \ldots, K_{n} \subset G$ finite, $\varepsilon_{1}, \ldots, \varepsilon_{n}>0$ and U_{1}, \ldots, U_{n} neighborhood of e on $G, \bigcap_{i=1}^{n} \mathcal{A}_{K_{i}, \varepsilon_{i}, U_{i}} \neq \emptyset$. However, \mathcal{S} is compact, so there is

$$
\Sigma \in \bigcap_{\substack{K \in G \text { finite } \\ U \text { neighbor of } e}} \overline{\mathcal{A}_{K, \varepsilon, U}}
$$

For each $T \in C V_{p}(G), \varphi \in L^{p}\left(G_{d}\right)$ and $\psi \in L^{p^{\prime}}\left(G_{d}\right)$, we define

$$
\Sigma(T, \varphi, \psi)=\langle\sigma(T) \varphi, \psi\rangle_{L^{p}\left(G_{d}\right), L^{p^{\prime}}\left(G_{d}\right)}
$$

This extends Lust-Piquard's result [19, Theorem 4.1]. The techniques used for the proof are completely different and are not applicable to nonabelian groups. This problem was also treated by Lohoué in [17, 18] for special kinds of convolution operators, with strong use of structure theory of locally compact abelian groups.

REMARK 6.10. For G amenable, the map defined in Theorem 6.6 could be considered as a substitute for the map of the p-multipliers of \widehat{G} into the p-multipliers of the Bohr compactification of \widehat{G}.

Acknowledgements

This work was part of the author's PhD Thesis defended in July 2003 at the University of Lausanne. I am very grateful to Professor A. Derighetti for his continuous support and for his good advice which helped me to produce my PhD Thesis and the present paper.

References

[1] J.-P. Anker, 'Aspects de la p-induction en analyse harmonique’, PhD Thesis, Université de Lausanne, 1982.
[2] _-, 'Applications de la p-induction en analyse harmonique', Comment. Math. Helv. 58(4) (1983), 622-645.
[3] E. Bédos, 'On the C^{*}-algebra generated by the left regular representation of a locally compact group', Proc. Amer. Math. Soc. 120(2) (1994), 603-608.
[4] M. B. Bekka, E. Kaniuth, A. T. Lau and G. Schlichting, 'On C^{*}-algebras associated with locally compact groups', Proc. Amer. Math. Soc. 124(10) (1996), 3151-3158.
[5] K. de Leeuw, 'On L_{p} multipliers', Ann. of Math. (2) 81 (1965), 364-379.
[6] J. Delaporte, 'Convoluteurs continus et topologie stricte', in: Harmonic Analysis (Luxembourg, 1987) (Springer, Berlin, 1988), pp. 135-141.
[7] J. Delaporte and A. Derighetti, ' p-pseudomeasures and closed subgroups', Monatsh. Math. 119(1-2) (1995), 37-47.
[8] A. Derighetti, 'Relations entre les convoluteurs d'un groupe localement compact et ceux d'un sous-groupe fermé', Bull. Sci. Math. (2) 106(1) (1982), 69-84.
[9] ——, ‘À propos des convoluteurs d'un groupe quotient', Bull. Sci. Math. (2) 107(1) (1983), 3-23.
[10] P. Eymard, 'L'algèbre de Fourier d'un groupe localement compact', Bull. Soc. Math. France 92 (1964), 181-236.
[11] C. Herz, 'The theory of p-spaces with an application to convolution operators', Trans. Amer. Math. Soc. 154 (1971), 69-82.
[12] -_, 'Harmonic synthesis for subgroups', Ann. Inst. Fourier (Grenoble) 23(3) (1973), 91-123.
[13] _- 'Une généralisation de la notion de transformée de Fourier-Stieltjes', Ann. Inst. Fourier (Grenoble) 24(3) (1974), 145-157.
[14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups (Springer, New York, 1970).
[15] N. Lohoué, 'Sur certains ensembles de synthèse dans les algèbres $A_{p}(G)$ ', C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A589-A591.
[16] ——, 'Sur le critère de S . Bochner dans les algèbres $B_{p}\left(R^{n}\right)$ et l'approximation bornée des convoluteurs', C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A247-A250.
[17] ——Algèbres $A_{p}(G)$ et convoluteurs de $L^{p}(G)$ '. Doctorat d'état, Université Paris-Sud, Centre d'Orsay, 1971.
[18] , 'Approximation et transfert d'opérateurs de convolution', Ann. Inst. Fourier (Grenoble) 26(4) (1976), 133-150.
[19] F. Lust-Piquard, 'Means on $C V_{p}(G)$-subspaces of $C V_{p}(G)$ with RNP and Schur property', Ann. Inst. Fourier (Grenoble) 39(4) (1989), 969-1006.
[20] J.-P. Pier, Amenable Locally Compact Groups (John Wiley \& Sons, New York, 1984).
[21] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, 2nd edn (The Clarendon Press/Oxford University Press, New York, 2000).
[22] S. Saeki, 'Translation invariant operators on groups', Tôhoku Math. J. (2) 22 (1970), 409-419.

CÉDRIC DELMONICO, EPFL SB IACS, Station 8, CH-1015 LAUSANNE, Switzerland e-mail: cedric.delmonico@a3.epfl.ch

[^0]: (C) 2008 Australian Mathematical Society 1446-7887/08 \$A2.00 +0.00

