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To Donald Coxeter on his sixtieth birthday 

A closed curve Kn+1 of order n + 1 in real projective n-space Rn has a maxi­
mum number of n + 1 points in common with any (n — l)-space. These curves 
are subjected to certain differentiability assumptions which make it possible 
to describe their singular points and to provide them with multiplicities in 
analogy with algebraic geometry. If Nn

v denotes the number of (n — p)-times 
singular points, then 

(1) l(n-P)N-r\<lX\ (mod2); 

cf. (4). In (6), an interpretation of the difference 
n-l 

n + 1 - £ (n - p)N\ 

was given. Necessary and sufficient conditions for equality to hold in (1) can 
readily be stated (2; 4). 

The next step in the study of the Kn+1 would be the inclusion of certain 
singular pairs of points. A ^-space in Rn was called special (4) if it met the 
Kn+1 (p + 2)-timesand if none of its (p — l)-subspaces met the curve (p + In­
times. Denote the number of special subspaces through exactly j different 
points of Kn+l which contain the osculating £>i-space of one of them, the 
osculating £2-space of another, etc., by 

Nn 
i y Pl,P2,--.,Pj' 

We proved in (6) that the numbers Nn
pq are bounded for a given n (p + q < 

n — 2) ; and in (5) that 

(2) £ (n - p)N\ + £ (n-p- l)Nn
p0 < \n + In. 

o o 

In the present paper we wish to improve (1) and (2) and to show that 

(3) £ (n - p)N\ + \ £ (n-p- l)Nn
p0 + (n - l)iV*oo < n + 1. 
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DIFFERENTIABLE ARCS AND CURVES 1043 

We conjecture that the factor J can be dropped from the middle term; cf. 5.7. 
Our discussion will yield the corollary that the numbers Nn

p0o are bounded 
forgiven n (0 < p < n — 4). 

1. Arcs and curves. 

1.1. A curve C is a continuous image of the projective straight line in 
Rn (n > 1). The images of distinct points of the parameter line are interpreted 
as different points of C even if they coincide in Rn. Then the points of C become 
the continuous 1-1 images of a parameter s ranging through the parameter 
line. The point of C with the parameter s will also be denoted by s. 

An arc A is the continuous 1-1 image of a segment in Rn. 
A neighbourhood of the parameter 5 in the parameter space is mapped onto 

a neighbourhood of the point son C (on A). If a sequence of parameter values 
converges to the parameter s, the corresponding sequence of points on C 
(on A ) is said to be convergent to the point s. 

1.2. The order of C (of A) is the least upper bound of the number of points 
that it has in common with an (n — 1)-space. I t obviously is not less than n. 
The order of a point 5 is the order of a sufficiently small neighbourhood of 5 on 
C(pnA). 

1.3. We call s a point of support (of intersection) with respect to an (n — 1)-
space E if some neighbourhood of 5 has no point 9e s in common with E and if 
the two arcs into which 5 decomposes the neighbourhood lie on the same side 
(on opposite sides) of E. We then call E a supporting (intersecting) (n — 1)-
space at s. Thus E supports if s $ E. 

1.4. The point s is called differentiate if it has osculating spaces Ln
p(s) of all 

dimensions. Define Ln_i(s) = 0. Suppose we have defined Ln
p(s) and postulated 

its existence. Then we require the (p + 1)-spaces through Ln
p(s) and a point 

converging on C (on A) to 5 to converge. Their limit is then the osculating 
(p + l)-space Ln

p+1(s).Thus Ln
0(s) = s,Ln

n(s) = Rn. 
A subspace is said to contain Ln

p(s) exactly if it contains Ln
p(s) but not 

Ln
p+i(s). 
A curve or arc is called differentiable if each of its points is. 

1.5. Let 5 be a differentiable point on an arbitrary arc which meets L\-i(s) 
only a finite number of times. Then there exists a one-row matrix, 

(a0 , <2i, . . . , an-i)i 

the characteristic of s with the following properties: 
(i) each of the numbers at is equal to 1 or 2; 
(ii) if an (n — 1)-space contains exactly Ln

p(s), then it supports (intersects) 
at s if a0 + a\ + . . . + ap is even (odd). 

If a0 = d\ = . . . = aw_i = 1, s is called regular. 
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The projection of 5 from a point on Ln
P+i(s)\Ln

p(s) has the characteristic 

(ah a2, . . . , On-i) if p = — 1 , 

(a0, ai, . . . , an-2) if p = n — 1, 

(a0, ah . . . , a^-i, a',, ap+2, . . . , an_i) if— 1 < p < n — 1; 

herea'p = ap + ap+i (mod 2). 
If a subspace contains Ln

p(s) exactly, we count 5 with the multiplicity 
#o + CLI + . . . + av. In particular, discounted (p + 1)-times if s is regular. 

2. Assumptions and lemmas. The subject of this paper is the differentiable 
curves Kn+l in Rn which are met at most (n + 1)-times by any (n — 1)-space; 
cf. (3, §3 and 4, p. 72). 

2.1. The digits of the characteristic (a0, #i, . . . , an„i) of any point s 6 Kn+1 

are equal to one with at most one exception. The order of s is equal to n if and 
only if 5 is regular. If av = 2, we call s (n — p)-times singular. A cusp is 
w-times singular. 

A singular point divides a small neighbourhood into two arcs of order n. 
At a p-lo\A point, p distinct points of a curve coincide; cf. 1.1. A Kn+1 has no 

more-than-twofold points. The two points which coincide in a double point are 
regular. If n > 1, the total number Nn

0o + Nno of double points and cusps of a 
Kn+1, i.e. the number of special 0-spaces, is 0 or 1. 

2.2. We denote by C1 (Bn) a differentiable curve (arc) of order n in Rn. All 
of its points are regular and simple. I t is met by any £-space at most (p + 1)-
times. The sum of the multiplicities of the points that a Cn has in common with 
an (n — 1)-space is ^n (mod 2). The projection of a Cn (Bn) from one of its 
points is a C1'1 (B71'1). 

2.3. A £-space spanned by osculating spaces of Kn+1 meets the curve either 
(p + 1)- or (p + 2)-times. In the first case we call it regular; in the other case, 
abundant. Any ^-space which meets Kn+1 (p + 2)-times is abundant. If it has 
no proper abundant subspaces, it is called special. 

2.4. The projection of a Kn+l from a regular (abundant) ^-space is a Kn~p 

(a C1-73-1), 0 < p < n — 1. In particular, its projection from Ln
p(s) is a Kn~v 

if and only if 5 is at most (n — p — 1)-times singular and Ln
v(s) does not 

meet Kn+l outside s. Thus the projection of Kn+1 from a double point or cusp is 
a Cn~l\ from any other point of the curve, it is a Kn. 

2.5. If each of a sequence of subspaces meets a Kn+1 or Cn at least ^-times 
(in points which converge to s), then any limit subspace will meet the curve at 
least ^-times (at s). In particular, the osculating spaces of a Kn+l or Cn are 
continuous; cf. (3). 

3. The mapping /Vs.o. 
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3 .1 . T h e mapping t\-i associated with each point s the point t\-i(s) a t 
which L\-i(s) meets Kn+1 again; cf. (4). 

In (6), we studied mappings which associated with each point 5 Ç Kn+l 

the set tn
m(s) of those points which are projected from Ln

m(s) into singular 
points (m = 0, 1, . . . , n — 2). I t consists of a t most n — m points and may be 
void. We distinguish different points of this set by prefixed indices: itn

m (s). 
If the projection of / ^ s from 5 is g-times singular, we call t a g-fold image 

point. If t is (q + m — 1)-times singular, it is a g-fold improper image point 
of any s 9e t. Any other image point is called proper. 

T h e original points 5 can also be provided with multiplicities and s becomes 
a p-iold original point of the g-fold proper image point / ^ s if and only if 
Ln

m+i^p(s) and Ln
n_m_a(t) span a special subspace (0 < ra < w — 1, 0 < £ < 

ra+1, 0 < g < w — m). 
3.2. T h e simply singular points of a Kz are its inflection points while a twice 

singular point is a cusp. There are three types of curves Kz\ 
(i) three inflection points ; 
(ii) one inflection point and one cusp ; 
(iii) one inflection point and a double point; 

cf. (4, 5.4 and 3.6). T h u s if we count a cusp twice, there always exists a triple 
t2-i of points of Ks which coincide with either a singular or a double point. 

In the first two cases, the tangential mapping t2\ is monotonically negative 
("ret rograde") with the degrees — 2 and — 1 , respectively. In the third case, 
the degree is zero. T h e double point then decomposes K* into two arcs B+ and 
B~ such t ha t t2± is positive in B+ and negative in B~\ cf. (4, §3). 

An improper image point of t2
0 is a cusp. As far as this mapping is proper, 

i t is the inverse of t2\\ cf. (6, 1.2). T h u s in the first two cases it is defined on the 
entire Kz and its proper image points are monotonically negative. In the third 
case, it is defined exactly in Br. If s moves through B~, then one of the two 
points t2o(s) moves positively through B+ while the other one runs negatively 
through B~, the inflection point being a fixed point. This yields: If the tangential 
mapping is negative at s, then one of the mappings tt

2o is always negative. The other 
one is negative in case (i), improper in case (ii), and positive in case (iii). Thus if 
s is any point of Ks, s (I t2_i, then K3 has a double point if and only if one of the 
three mappings /2i, ^2

0 is positive at s; cf. (6, 5.1 and 5.2). 

In case (i), the three inflection points and the triple s, t2o(s) a l ternate . T h e 
pairs s y t2i(s) and /2o(s) separate one another. 

In case (ii), the inflection point i/2_i and the cusp separate 5 from its proper 
image i/2o(s). T h e la t ter lies between t2i(s) and i/2__i. 

In case (iii), if 5 lies in B~, the point it2o(s), say, lies in B+ while 2^0(s) and 
t2i(s) lie in Br. T h e inflection point separates s from 2^2o(s) and t2i(s), and 

2£
2o(s) separates 5 from t2i(s).lî s lies in B+, t2i(s) is in B~. 

3.3 . If the projection of Kn+1 from L \ _ 3 ( s ) is a curve X3 , the mapping rw_3,o 
associates with 5 those points which are projected into a double point or cusp of 
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Kz. Thus the set £\_3f0(s) is either void or a pair /*w_3j0(s) of distinct or equal 
points (i = 1, 2). If Kn+l has a double point or cusp t, then /V_3f0(s) = / for 
all s i t . We then also define rw_3|0(s) = / if 5 G t and call the mapping rn_3fo 
improper. From now on we assume that Kn+1 has no special 0-space. 

3.31. Suppose the points s, it, 2t are mutually distinct. Then {it, 2t} = /\_3lo(s) 
if and only if it and 2t do not lie on LV_3(s) and if there exists an (n — 2)-space 
E(s) through L\_3(s) , it, and 2t. We call s a p-fold original point of the mapping 
if Ln

n_2-P(s), it, and 2̂  span a special (n — 1 — p)-space. The point 5 is at most 
simply singular, and i/and 2£ are at most (n — p — 2)-times singular (1 < p < 
n - 2). 

£(5) is projected from L\_3(s) into a double point and from i/onto Ln-1
w_3(s) ; 

this space contains 2t. 

3.32. Let s 9* t. Then {*, *} = /Vs.oCO if and only if t Z L V s O ) and if 
Ln

n-z(s) and Lni(t) span an (w — 2)-space E(s). The point t is then called a 
double image point. We assign the multiplicity £ to 5 if Ln

n_2_p(s) and Lwi(0 
span a special (w — 1 — £)-flat. The points s and t are then at most simply 
and (n — p — 2)-times singular, respectively (1 < p < n — 2). E(s) is projected 
from L \_ 3 (s) into a cusp. 

3.33. The pair s = it 5* 2t is projected from L\_3(s) into a double point if 
and only if 2t lies exactly on L\_2(s). Extending our definition, we call 5 a 
p-iold original point of the pair {s, 2t\ if 2t lies exactly on Ln

n^i-P(s) (1 < p < 
w - 2). 
T h e ^ e d ^ iw / 5 is then regular; 2t is at most (n — p — 1)-times singular. 

In this case, we define E(s) = L\_2(s). Thus E(s) is projected from Ln
n-$(s) 

onto a double point if p = 1. From 5, -E(s) is projected onto Ln~1
n_z(s)\ this 

projection contains 2£. The projection of s from 2t is (£ + 1)-times singular for 
p < ft — 2; £(5) is projected onto Lw-1

n_3(s). 

3.4. Given 5, we can now discuss the existence of the points rw_3i0(s). 

3.41. Let L\-2(s) be regular; cf. 2.3. Thus Kn+1 is projected from L\s(s) 
into a curve K3. By 3.2, i£3 has a double point if and only if one of its mappings 
t2i and t2

0 is positive at 5. By (6, 4.6), the mappings t2
m and the corresponding 

mappings t\-2+m of Kn+1 have the same direction at s. Thus there exists a pair of 
distinct points itn

n-z^(s), 2f*n-3,o CO if and only if one of the mappings 

(1) t\-i, ltn
n-2, 2tn

n-2 

is positive at s. 

3.42. By (6, 5.4), the mappings tn
m(s) have only a bounded number of 

multiple original points. The point 5 is a p-iold original point of t 9e s at this 
mapping if and only if / lies exactly on Ln

n_p(s) ; cf. (4, 3.7). It is then a (p — 1)-
fold original point of the pair (s, t) at the mapping £\_3,o (1 < p < n — 1). 

https://doi.org/10.4153/CJM-1967-095-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-095-7


DIFFERENTIABLE ARCS AND CURVES 1047 

By 3.1, t is a double image point of the (p — l)-fold original point 5 at the 
mapping t\-2. Hence by (6,4.3), exactly one of the mappings (1) will be positive 
near s. 

3.43. Let 5 be a ^>-fold original point of the simple image point / at the 
mapping t\-2 (1 < p < n). By 3.1 and 3.32, t is then a double image point of 
the (p — l)-fold original point 5 at the mapping fV_3,0. In a small neighbour­
hood of s, the mapping / \_2 exists and tn

n-\ is therefore negative. If p is even, 
one of the two mappings itn

n-2, viz. the one that maps s onto /, changes its 
direction at s. The other one will be negative at s. Thus there are two one-sided 
neighbourhoods of 5 such that £V_3,0 is defined everywhere in one of them and 
nowhere in the other. 

If p is odd, then the mappings tn
n-2 are monotonie at 5 and rn_3,0 is defined 

near s if and only if one of them is positive at s; cf. (6, 4.2). 

3.44. The points at which the mappings t\-2 change their direction, i.e. the 
original points with even multiplicities of simple image points, decompose Kn+1 

into a bounded number of arcs A ; cf. (6, 5.4). Thus they are monotonie at any 
interior point of A where they exist. By 3.42 and (6, 5.2), the number of points 
of the set rn_3(s) is constant on A. It is equal to three or one depending on 
whether all the mappings (1) are negative on A or not. This implies: The 
mapping tn

n-z is either everywhere single-valued or everywhere triple-valued on an 
arc A. In the first case, the points of A, including its end points, are at most simply 
singular (cf. 6, 4.4), and the mapping /\_3lo is defined on A. By 3.42, every fixed 
point of fV-3,0 Ues in the interior of such an arc A. 

In the second case, A may contain original points s of odd multiplicity > 1 of 
simple image points t at the mapping t\-2. Then J\_3,o(s) = {t, t}. But £\_3lo 
is not defined elsewhere in A. 

3.5. We continue the discussion of the first case of 3.44 and begin the proof 
that E(s) and tn

n-z,o are continuous on A; cf. 3.3 and 3.8. 
Suppose the sequence of points s\ £ A converges to s0. For all but a finite 

number of indices, the points 

Sx, l̂ x = i^n-3,o \S\), and 2t = 2^V-3,o(s\) 

are mutually distinct. Thus E(s\) is the (n — 2)-space through L\_3(sx), l̂ x, 
and 2s\. We may assume that the points tt\ are convergent, say to ^, and that 
E(s\) converges, say to £ . By 2.5, E is abundant and contains L\_3(so), it, 
and 2t; cf. 2.3. Since s0 lies in the closure of A, it is at most simply singular and 
the points s0y it, and 2t are not all equal to each other. If LV_3(s0) does not meet 
Kn+1 elsewhere, then E is projected from Lw

n_3(s0) into a special 0-space. Thus 

E = E(s0) and y, 2t} = *V-8>o(s0). 

If LV_3(so) meets Kn+1 at a second point t0, then one of the points tt is equal to 
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to. We shall show in 3.8 that the other point is equal to SQ and shall thus complete 
our continuity proof. 

3.6. In this section we prepare the discussion of the double image points 
and the fixed points of tn

n_z,o> 
Suppose L\_3(s) and s' span the regular (n — 2)-space P; cf. 2.3. Then Kn+1 

is projected from L\_3(s) and s' into a Kz and Kn, respectively. P is projected 
into the regular subspaces L2

0(s
f) and Ln~1

n_3(s)J respectively. Let tn~l
m (t2

m) 
denote the mappings of Kn (Kz). Then 

(2) t\(s') = tn~\^{s). 

3.61. If tn~l
n-i is positive at s, then (2) is void; cf. (6, 5.2). Hence t2i is 

positive at sf and K3 has a double point £\_3)0(s). Its two points separate s' 
from the inflection point t\-z(s) of Kz and from the point / \_i(s) = t2i(s)\ 
cf. 3.2. 

3.62. Suppose tn~l
n-i is negative at 5 and the points 

(3) A-8.o(s) ( * = 1 , 2 ) 

exist and are distinct. Then the two points (2) exist. By 3.2, t2i is negative at 
s' and the pairs (2) and (3) alternate. The points (3) separate 5 from s' if and 
only if t2i is positive at s. By (4, 3.42), this is equivalent to tn

n-\ being positive 
at 5. 

3.7. The double image points. Let 

t\-3,o(SQ) — {to, to}. 

Let B be a sufficiently small one-sided neighbourhood of s0. Suppose tn
n-z,o is 

defined in B. Then the two points t\^to(s) converge to to from opposite sides as s 
tends to So. 

Proof. By 3.32, t0 is a double image point of sG at the mapping tn
n-%. Projection 

from Ln
ns(so) shows that So has a third image point i£V-3(so) ^ t0 at this 

mapping. By 3.4, tn
n-% is single valued on B. It then follows from (6, 4.3) that 

the mapping tn~\t^2 of the projection of Kn+l from t0 is positive on B, and the 
point tn

n-z(s) converges to i£\_3(s0) as 5 tends to So on B. Applying 3.61 to 
^ and s' = to, we obtain that the points rw_3f0(s) separate t0 from rn_3(s). By 
3.5 they converge to t0 as s approaches s0. This yields our statement. 

3.8. The fixed points of tn
n-z,o- Let t0 Ç Ln

n-.2(so), t0 ^ so. Thus 

t\-z,o(s0) = \s0, t0}; cf. 3.33. 

By 3.44, the mapping rn_3,0 is defined in a small neighbourhood B of SQ. On account 
of 3.5, we may assume that, for example, 2t

n
n-z,o(s) converges to t0 as s tends to s0. 

On the projection Kn of Kn+l from t0, the point s0 is at least twice singular. 
Hence the three mappings 

tn~\-2 and tn~\-z 
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of Kn exist on B and have a fixed point at s0. They are either negative on B or 
improper. 

Let 5 G B, s 9e So. By 3.62, the pairs t\-zto(s) and tn~l
n^(s) separate one 

another, i.e. i/n
n_3|0(s) lies between the two points tn~1

n-z(s). If 5 converges 
monotonically to s0, the points /w_1

w_3(s) converge to s0 from the opposite direc­
tion. Hence the same applies to it\^to(s). Thus i/\_3,o is continuous and negative 
at its fixed point s0. This completes, in particular, the proof of the continuity of 
m 
* n—3,0» 

The points 2^-3,0CO and t\-i(s) lie near to. By 3.62, s and t0 are separated 
by the points r„_3,o(s) if and only if t\-\ is positive at s. This is the case if and 
only if it is positive between s0 and s, i.e. if the pairs {s0, to} and {s, tn

n-i(s)} 
separate one another. Since s and i/\_3)o(s) lie on opposite sides of s0, we obtain 
first that the points s0 and to are separated by the pair tn

n-z,o(s) if and only if 
they are separated by s and t\-i(s), and then that the points 

(4) 2*V-8,o(*) and / \ _ i 0 ) 

lie on opposite sides of to. Hence the two points (4) converge to t0 from opposite 
directions as s tends to s0. We can now deduce from (4, 3.7) that 2t\-z,o changes its 
direction at s0 if and only if So is an original point of odd multiplicity; cf. 3.33. 

3.9. Since the numbers Nn
PQ (p + q < n — 1) are finite, the mapping rw_3(o 

has only a finite number of fixed points and double image points; cf. the intro­
duction and 3.3. We wish to show that the numbers 

N%oo (0 < p < n - 3), 

are finite. Thus this mapping has altogether only a finite number of multiple 
original points; cf. 5.1. 

Suppose our assertion was false. Then there exists a convergent sequence 
of multiple original points $\ —> s0. We may assume that the points S\, rw_3,o(sx) 
are mutually distinct. Since /V-3,0ls continuous, the pairs /V-3,o(s\) converge to 

{l^O, 2^0} = 2Wn-3,o(So). 

At least one of the itos, say i/0, is distinct from s0. Project Kn+1 from ito into 
a Kn. Since the numbers Nn~\o are finite for p < n — 3, we can have 

(5) i*V8,o(*x) 6 L ' - W s x ) 

only a finite number of times. Thus we may assume that (5) does not occur. 
Hence 

(6) 1/0 $ *V8io(*x) and r - ^ . o O x ) = *V8fo(*x) 

for all X's. In particular, the points s\, tn~l
n^to{s\) are mutually distinct. Since 

r~1
re_4,o is continuous, we obtain from (6) 

^_ 1n-4,o(So) = f*n-3,o(So). 
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By 2.4, So is a multiple original point of /\_3,o. 
If 2̂o = So, then i/0 6 L\_3(s0) and s0 would be a multiple singular point of 

Kn. Since the mapping r-1
n_4)o is proper by (6), this is impossible; cf. 3.3. 

Suppose then that 2to ^ s0. If îk 9e
 2to, then L\_4(s0) , 1/0, and 2/0 He in an 

(n — 3)-space and {i/0, 2̂ 0} becomes a double point of the projection K4 of 
Kn+l from L\_4,o(so). The projection of Kn from Ln~1

n__±(s0) is identical with 
that of K4 from i/0. Thus it is a C3; cf. 2.4. But, r_1

w_4,o being proper, this is not 
possible for 2k 9e sQ. 

The case i/0 = 2̂0 is similar. 

4. The direction of /V-3,0. The discussion of the directions of the mappings 
/V-3,0 will be based on the decomposition of Kn+1 into the arcs A introduced in 
3.44. 

4.1. We start out with the case n = 3 and assume that K4 has neither a double 
point nor a cusp. Thus the three points 

(1) s, t\0(s) = {i/3oo(s), 2/3oo(s)| 

lie on a special straight line. Obviously, the relation between them is symmetric, 
and no point of K4 lies on more than one such line. 

If the points (1) are mutually distinct, the mappings tt
zoo are locally one-to-

one and hence monotonie. Their fixed points are those points whose tangents 
meet K4 again. Thus they are identical with the points where the mapping /3

2 

changes its direction. The end points of the arcs A, i.e. the points where one of 
the mappings t3i changes its direction, are those points which lie on the tangents 
of other points. 

If ts
2 is negative on the entire KA, then it has fixed points. They are the singu­

lar points of K* and the fixed points of the mappings £3i. The latter are defined 
and monotonie everywhere. In fact, being negative at their fixed points, they 
are monotonically negative, and the two points tt3i(s) are distinct outside a 
double singular point. By (6, 5.2), the mapping £3

0 is triple-valued on K4; it is 
the inverse of /3

2. By 3.4, rn_3)0 is nowhere defined. For such a K4, we have 

£ CS-m)Nn
m = 4. 

0 

If /3
2 is monotonically positive, then /30o is defined on the whole curve. Since 

no tangent meets K4 three times, the mappings fi^ are monotonie. Having no 
fixed points, they are monotonically positive. 

Suppose the mappings £3
2 are not monotonie. Then there are points s0 whose 

tangents meet the curve again, say at t0. If s passes monotonically through s0t 

then one of the points t3o0(s) moves through s0 in the opposite sense while the 
other one changes its direction at t0; more accurately, it is separated from t*2(s) 
by t0. If s moves from /0 into an arc A, then the two points tz

0o(s) move from s0 

in opposite directions; cf. 3.7 and 3.8. Since the number of the points So, to is 
finite and since the mappings tt

zoo are monotonie elsewhere, we obtain: If /3
2 
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is negative and one of the mappings /3i is positive, then the two mappings /3
0o 

have opposite directions. 

4 .2. Suppose the mapping tn
n-z,o is defined a t s0 and proper, and the three 

points So, rn_3,o(so) are mutual ly distinct. Then there exists a closed arc B 
which contains So in its interior and a neighbourhood C of So with the following 
proper ty : lî s £ C, s 5e s0j then the mappings t*oo of the projection of Kn+1 

from J L V - 4 ( S ) are defined in B and proper. In B, they are monotonie and wi thout 
fixed points. 

Proof. By our assumptions, LV_2(so) is regular. Hence LV_4(s0) is so too and 
the projection of Kn+l from L \_ 4 ( s 0 ) is a curve K*. T h e abundan t (n — 2)-
spaces through L \_ 4 ( s 0 ) are projected into abundan t s traight lines; cf. 2.3. 

By our assumptions, the points 

are mutual ly distinct. T h u s Lsi(s0) is regular and any abundan t s t raight line 
meets KA outside s0 a t least twice. Since KA has only a finite number of a b u n d a n t 
tangents , we obtain: All of the abundan t (n — 2)-spaces through L \ _ 4 ( s 0 ) 
meet Kn+1 outside s0 a t least twice; only a finite number of them meet Kn+1 a t 
only two points 9e s0. We choose the closed neighbourhood B such t h a t it 
contains none of these points. 

Let C be a sufficiently small neighbourhood of s0. By 3.44 and 3.8, the 
mapping /V-3,o is defined and continuous in C a n d proper. T h u s we may assume 
tha t the points 

s', tn
n-zto(s) 

are mutual ly distinct for all s £ C. On account of 3.9, we may assume t h a t each 
5 is a simple original point of /V-3,0. If we project Kn+1 from the regular subspace 
LV-4O), then 

/Vs.oOO = t\o(s) 

will be a proper pair of distinct image points of s. T h u s the mapping /3
0o is 

defined near 5 and proper and the three points sf, £3oo(V) are mutual ly dist inct 
if s' is near 5. 

Suppose our assertion were false for B and for every choice of C. Then there 
would exist a sequence of points s\ —» s0, Sx 7^ s0, such t ha t the projection of 
Kn+1 from each L \ _ 4 ( s \ ) would possess abundan t tangents which would meet 
this projection in B. Hence each L \ _ 4 ( s \ ) would lie in some abundan t (n — 2)-
space which would meet Kn+1 in not more than two points outside s\ such t h a t 
a t least one of them would lie in B. A limit space of these (n — 2)-spaces 
would be an abundan t (n — 2)-space through L \_ 4 ( s 0 ) and not more than two 
points dist inct from SQ, a t least one of which would lie in B. Such subspaces 
have been excluded by our construction of B. 

4 .3 . Suppose tn
n-z,o is defined at s0 and proper, and the three points 

^o, tn
n-zto(so) 
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are mutually distinct and non-collinear. Let /w_1
w_4)0 denote the mapping of the 

projection Kn of Kn+1from SQ. Thus 

£w_V-4,o(so) = tnn-z,o(so)i 

/w_1
w_4,o is proper, and the mappings 

(2) r,_3,o and r-1
n_4)o 

are defined and continuous near s0. We label them such that 

it = it\-z,O(SQ) = itn~1n-4,o(so) (i = 1, 2). 

Then the point tr
_1

w_4,o(s) lies between tt and it\-z,o(s) for every s sufficiently 
close to so (s 7e So). In particular, 

itn
 n-z,o and 2f*

_1
w_4)o 

have the same direction at s0. 

Proof. Choose the neighbourhoods B and C of s0 according to 4.2. We may 
assume that it and 2t do not lie in B, that C C B, and that the mappings (2) 
exist in C. Construct small neighbourhoods Ct about tt such that B, C\, Ci are 
mutually disjoint and make Cso small that 

{A-3,oO), itn-\^o(s)) C Ct for all 5 6 C; i = 1, 2. 

If we project Kn+1 from i/, then 4 £ Ln_1
w_3(.vo). Thus the mapping ^_1

w_4lo 
of this projection is proper and 

^ _ 1n-4,o(^o) = {So, 4\-

The mapping ?*-V-4,o is defined at any point Si sufficiently close to s0. One of the 
points ?n~1

n_4fo(^i), say J, lies in B and is separated from Si by s0 while the other 
one, 2t, lies in C2; cf. 3.8. We finally make C so small that this is the case for 
every Si £ C, s± ?* s0j and that L\_4(si) and s0, as well as L\_4(si) and i£, 
span regular (n — 3)-spaces for all these S\. 

Let si G C now be fixed (si ^ s0). Let /30o denote the mapping of the pro­
jection of Kn+1 from L\_4(si) . Thus 

^3oo(si) = rw_3(0(^i). 

Choose the notation such that 

AoOi) = tFn-zM (i = 1,2). 

By our construction 

(3) /3oo(J) = {it, 2?} and /3oo0o) = ^«-é .ofr i ) . 

Let 5 move on B from $i to %t. Then the two points ts
0o(s) depend continuously 

and monotonically on s, and the three points s, tdoo(s) remain mutually distinct; 

https://doi.org/10.4153/CJM-1967-095-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-095-7


DIFFERENTIABLE ARCS AND CURVES 1053 

cf. 4.2. Hence their order on the oriented curve remains unchanged and (3) 
implies that 

1̂00 (it) = it, 2^00 (it) = 2^ 

Since So lies between Si and it, the point itz
0o(so) lies between it*oo(si) and ^3oo(J) 

In particular, it lies in Cf. Hence, (3) yields 

AoOo) = ^-^-4,0(^1) (i = 1,2); 

and the point i^n-1
n-4,o(^i) lies between the points 

i*3ooOi) = î^Vs.ofai) and it3oo(it) = 1*. 

Since 2r_V-4,o(si) lies between 

2*3ooOi) = 2^-3,0 Oi) and 2̂ 00 (J) = 2^~V-4,oOi), 

we note that 2^-3,0 (si) and 2?*-1n-4,o(si) He on the same side of 2t. 

4.4. Combining the last remark with 3.8, we readily obtain conditions for 
*V-3,o to change its directions. But the following discussion will yield more 
detailed information. 

Suppose rn_3,o is defined at s0 and proper, and the three points 

(4) so, fw_3,o0o) 

are mutually distinct. Using 4.1 and 4.3, we readily verify by induction that the 
mappings /*n_3,o are monotonie at So if s0 is a simple original point. Thus they 
can change their directions only at multiple original points or at those points 
So where two of the points (4) coincide; cf. 3.7 and 3.8. By 3.9, the number of 
these points is finite. We prove: 

Let s lie sufficiently close to s0. Then the two pairs of points 

/Vs.oO) and rn_3lo0o) 

alternate if and only if the mapping tn
n_! is positive at s0. This implies-. If the 

mappings ^\_3 ( 0 are monotonie at s0f then they have the same or opposite directions 
depending on whether t\-i is positive or negative at s0. If one of the two changes its 
direction at s0, then so does the other. 

By 4.1, our assertion is true for n = 3. Suppose it has been proved up to 
n — 1. Choose a small neighbourhood B of s0 with the following properties: 
The mappings tn

n-%,o are defined in B, and the points 

5, rn_3,o00 (s e B) 
are mutually distinct; with the possible exception of s0, B contains no multiple 
original points. Thus these mappings are monotonie on the two subarcs into 
which B is decomposed by s0. 

Let si G B, si 9^ So', and let tn~l* denote mappings of the projection of Kn+1 

from si. Choose 5 between s0 and Si sufficiently close to Si. By our induction 
assumption, the pairs of points 

tn-\-4io(s) and r - ^ . o O n ) = /Va.ofci) 
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alternate if and only if tn~l
n-2 is positive at s±. By (4; 3.42), this mapping and 

tn
n-\ have the same direction at S\. Since B contains no multiple original points 

of the latter, it is monotonie in B\ cf. (4; 3.7). Thus r - V - 2 is positive at Si if 
and only if tn

n-\ is positive at 50. Since S\ is a simple original point of rn_3,o, 
4.3 implies that the two points 

/*-V-4,oO) and A-3,oO) 

lie on the same side of /*n_3,0(si) (i = 1, 2). Altogether, the pairs 

(s) and /V-3,oOi) 

alternate if and only if tn
n-\ is positive at s0. The mappings /V-3,0 being mono-

tonic between s0 and Si, we can now drop the restriction that s be close to Si. 
Letting 5 tend to s0, we obtain our statement. 

4.5. Suppose the points 

( 5 ) So, it = l^ra-3,o(So), it = 2^w-3,o(So) 

are mutually distinct but collinear. The following remark is a substitute for 
4.3: Let B be a closed neighbourhood of s0 which does not contain it and 2t. 
Suppose the neighbourhood C of s0 is sufficiently small (si Ç C, Si ^ s0). Then 
the mappings r-1

n_4,o of the projection of Kn+1 from Si are defined on B and 
proper. They are monotonie outside s0 and the three points 

(6) s, r-1
w_4,o(s) 

are mutually distinct. 

Proof. By 3.4 and 3.8, the mapping rn_3,0 is defined and continuous in a 
neighbourhood C of s0. By 3.9, we may choose C so small that it contains no 
multiple original points ^ s 0 . Thus r~ V-4,o will be defined at si and proper. 

Suppose there is a sequence of points 5i —» s0, Si T6- SO and to each S\ a point 
s £ B such that two of the points (6) are identical. Thus to each si of this 
sequence there exists an abundant (n — 2)-space through Si and through not 
more than two other points of Kn+1, not more than one of them lying outside B. 
Letting Si tend to s0, we obtain an abundant (n — 2)-space through 50 with 
the same property. It is projected from s0 into an abundant (n — 3)-space F 
which meets the projection Kn of Kn+l from s0 at most once outside B. Since the 
points it, it are projected into a double point of Kn and lie outside B, F cannot 
contain the double point. The (n — 2)-flat through F and that point would 
meet Kn not less than [(n — 1) + 2]-times. 

We can now choose C C B so small that for every point Si G C, Si 9^ s0, 
and for every s £ B, the points (6) are mutually distinct if they exist. But 3.4 
implies now that f ~ V-4,o is defined not only at Si but in the whole of B. 

It remains to be shown that the mappings ir-1
w_4(o are monotonie outside SQ. 

Let s Ç Bt s 5* s0. If one of our mappings would change its direction at s, then s 
would be a multiple original point. Thus L\_ 5(s) , Si, and the two points 
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r -1
w_4,o(s) would lie in an abundan t (n — 3)-space. I t is projected from LV- 5 (s ) 

onto an abundan t s traight line through Si and the points /*-1
w_4,oOO. This line 

and the s traight line through the projections of the points (5) are distinct. 
They span a subspace of dimension < 3 . I t would meet the projection Kb of 
Kn+l a t least six times (at least five times) if its dimension were three (were 
two) . 

4.6. Suppose the mappings rw_3)o are defined at s0 and proper and the three 
points 

(7) so, it = */V.3,oC?o) (i = 1,2) 

are mutually distinct. Then these mappings change their directions at SQ if and 
only if the multiplicity of s0 is even. 

Let So be a p-iold original point. T h u s LV_p_2(so) and the tt span a special 
subspace. Projecting from L\_p_3(s0) and making use of 4.3, we reduce our 
assertion to the case p = n — 2. T h u s we may assume tha t the points (7) are 
collinear, and we have to show t h a t the mappings rw_3>0 change their directions 
if and only if n is even. 

We choose a closed neighbourhood B and a neighbourhood C C B of s0 

such t ha t t\_zto is defined in C and monotonie outside s0 and t ha t we can apply 
4.2 and 4.5. I t is sufficient to prove: Let C be sufficiently small. Then if s' and 
s" lie in Cand are separated by s0j the points 

it' = itn
n-z,o(sf) and it" = itn

n-3to(s") 

lie on the same side of tt if and only if n is even (i = 1,2). 
Let /3oo and r_1

w_4)o denote the mappings of the projections of Kn+1 from 
L \ _ 4 ( s ' ) and s", respectively. We number them such t ha t 

(8) Ao(so) = ,r-V-4 )o(so) = it (i = 1, 2) . 

Obviously, 

*3oo(sr) = / V s . o ^ ) and tn-\-,,o(s") = * V 8 i 0 ( s " ) . 

By 4.2, Ln
n-±(sf) and s" span a regular (n — 3)-space. Hence 

tn-\^,o(s') = t\o{s"). 

If s moves on C from s0 to s' or to s", then the points /3oo(s) and /w_1
?l_4,o(^) 

move continuously, and 5 and its image points remain mutual ly distinct. Hence, 
their order on the oriented curve remains unchanged. Therefore 

(9) A o ( s ) = / , itn-\-±,o(s") = it", 

and 

(10) ^ ^ . o ^ ) = it*oo(s") (i = 1, 2) . 

Choose small neighbourhoods of the points tt and make C so small t h a t the 
points (9) lie in these neighbourhoods (i = 1, 2). If s' and s" converge to sQ, 
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then the abundant (n — 2)-space through L\_4(V), s", and the two points 
(10) will have an abundant limit space through L\_3(s0) , i.e. it will converge 
to the {n — 2)-space through L\_3(s0) , 1̂  and 2t. Hence the pair /3ooCs") 
converges to the pair {it, 2t}. Since the triples s", t*oo(s") and s0, /

3oo(^o) have the 
same order on the oriented curve, the points (10) must converge to {t. Hence 
we may choose Cso small that ^3oo(s") lies in the neighbourhood of tt (i = 1,2). 

For n = 3, our assertion follows from 4.1. Suppose it is proved up to n — 1. 
Thus the points / " " V - M O O and ir~

1
w_4)o(^/)) i-e- the points AoCs") and / ' , 

lie on the same side of tt if and only if n — 1 is even. The mappings /30o being 
monotonie in C, the points */3oo(s') = / and */3oo(s") are separated by 
^3oo(so) = it) cf. (8). Combining these two observations, we obtain our 
assertion. 

5. Some global properties of the mapping rn_3,o. 

5.1. The numb er s Nn
v^ are bounded for given n (0 < p < n — 4). 

Trivially, iV4
0oo < 1. Suppose our statement has been proved up tow — 1. 

By 3.9, the numbers Nn
poo were finite. Project Kn+1 from a point which is neither 

a fixed point nor a multiple original point of /\_3,o. If s is such a multiple 
original point, then 

(1) ^ 4 , 0 ( 5 ) = *V8.0 (S) . 

Our projection has decreased the multiplicity of s by one. 
These points 5 decompose Kn+1 into a finite number of arcs B. We divide the 

set of these arcs into two classes. B shall belong to the first class if and only if all 
the mappings 

(2) itn
n-zto and it

n~1
n-4,o 

are defined and monotonie on B and have no fixed points in B. Thus any arc B 
of the second class either contains multiple original points of ir~V-4,o or fixed 
points of one of the mappings (2). By our induction assumption and the 
introduction, the number of these points and hence that of the arcs B of the 
second class is bounded. 

Let B be an arc of the first class. We wish to show that the mappings 

(3) i^n-3,0 and 1/
w-1

n_4fo 

have the same direction on B. Since exactly one of them changes its direction 
at an end point of B, an arc adjacent to B cannot belong to the first class; 
cf. 4.6. Thus the number of the arcs of the first class is not greater than that 
of the second and it is bounded too. 

If 5 moves on B, the three mutually distinct points 5 and JV-3io(s) (s and 
r-1

w_4>o(s)) move continuously on the curve. Hence their order on the oriented 
curve remains unchanged. Furthermore, (1) holds true if s is equal to one of the 
end points s' and s" of B. Hence the mappings (3) can be labelled such that 

i*V-B,o(s) = z/w~V-4,o(s) for s = s' and s = s"\i = 1, 2. 
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If 5 moves from s' through B to s"} the points 

i^Vs.o 0 ) and itn~ 1
n_4fo 0) 

move continuously and monotonically from a common initial point to a common 
end point. Since neither mapping has a fixed point, they must be monotonie in 
the same direction. This completes our proof. 

5.2. The mapping tn
n-z was extended in (6; 5.3) to a mapping t\-z which was 

triple-valued and continuous on the whole curve. The additional image points 
were the positive image points of the mappings tn

n-\ and Jn
n_2, each of them 

counted twice. 
On account of 3.4, we can complete tn

n-z in another fashion to a mapping 
tn

n-z which is triple-valued and continuous everywhere. Define F\_3(s) = t\-z(s) 
if tn

n-z(s) consists of three points. If t\-z is single-valued at s, define 

This mapping could be discontinuous only when the number of image points of 
t\-z changes. That is the case at s0 if and only if the multiplicity of s0 is odd and 
that of its image point t0 is two. But if s converges monotonically to s0, then 
either two points itn

n-z(s) or two points itn
n-z,o(s) converge to t0 from opposite 

directions; cf. 3.8 and (6; 4.2 and 4.3). Thus these points s0 are exactly those 
points where pairs tn

n-z,o(s) change into pairs tn
n-z(s) and vice versa. Thus 

tn
n-z remains continuous at s0. If s passes through s0l two of the points Jn

n_3(s) 
move through /0 monotonically in opposite directions. 

The improper image points of ?n
n_3 are the cusps (counted twice), the 

(n — 1)-times singular points, and the double points. By the introduction, 
each point of Kn+1 is the proper image point of a bounded number of points. 

The proper fixed points of ln
n-z are the multiple original points of £\_i, 

each of them counted once, and the singular points; cf. 3.8. Simple singular 
points and cusps have to be counted once; the twice or (n — 1)-times singular 
points are counted twice; any other singular point is counted three times; 
cf. (6; 3.1). By (6; 4.4), a g-fold fixed point of tn

n-z is the fixed point of q 
different mappings ^\_3 , q > 1. Each mapping ttn

n-z is negative at a fixed point. 

5.3. Suppose t is not a fixed point of the mapping ?\_3. Then the number of the 
negative original points of t at this mapping minus that of its positive ones is equal 
to 

(4) iVVi + 2i\rn-2 + 3 £ N\ + £ Nn
mo + 2Nn

00 - 3 (n > 3). 
0 1 

Proof. Let h denote the sum of the multiplicities of any improper images of 
?\_3;thus 

h = N\ + 2N\ + 2N\0. 

The proper part of ?V-3 being (3 — h)-valued, we can uniformize it to a 
single-valued continuous mapping of the (3 — h)-times covered Kn+1 into itself. 
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Its fixed points decompose the covering curve into a finite number of arcs B 
which have no fixed points in their interiors. The new mapping still being 
negative at its fixed points, the number of negative original points of the point t 
exceeds that of its positive ones by one in each arc B which does not contain /. 
For each of the 3 — h arcs B which contain t, these two numbers are equal. 
Thus our difference is equal to the number of arcs B minus (3 — h). But the 
number of these arcs is equal to the number of the fixed points of l\-y each 
of them counted with its multiplicity, i.e. it is equal to 

iVVi + 27VV2 + 3 £ Nn
m + 2N\ + N\ + £ #"»<>; 

2 1 

cf. 5.2. Subtracting 3 — h, we obtain (4). 

5.4. Suppose the point t has no multiple original points at the mappings 

(5) t\-! and / \_2. 

Then the number of its negative original points at the mapping /V-3,0 minus that 
of its positive ones is equal to 

(6) E Nn
m0 + 2N\o 

1 

minus twice the number of its positive original points at the mappings (5). 

Proof. Suppose first that / is in addition regular and that the original points of 
t at the mapping fn_3 are simple. By (6; 5.1), the number of negative original 
points of / at that mapping minus that of its positive ones is equal to 

iW-x + 27W2 + 3 E ^ - 3 
0 

plus twice the number of positive original points of / at the mappings (5). 
Comparing this relation with 5.3, we obtain our assertion for these points, i.e. 
for all the points t Ç Kn+1 with a finite number of exceptions. 

If we assume only that the original points of / at the mappings (5) are simple, 
then both the difference before (6) and the expression following it are the same 
for / as they are for points near /. Thus our remark remains valid under these 
weaker assumptions. 

5.5. Let n > 3. Suppose / has no multiple original points at the mappings (5) 
or at rn_3,0. Project Kn+l from / into a Kn. 

A regular point 5 ^ t of Kn is at most simply singular on Kn+l. The osculating 
space Ln~1

m(s) is special if and only if the subspace through t and Ln
m(s) is 

abundant while that through t and Ln
m_i(s) is not. Hence Ln~l

m(s) is special 
if and only if either Ln

m(s) or the subspace through Ln
m(s) and / is special. This 

yields 

fiVn-1
w_3,o = A^-3,0 + no. of orig. pts. of t at the mapping tn

n-z,o if n > 3, 
(7) <{ Nn~\, = N*m0 (0 < m < n - 3). 

[27V2oo = 2iV3oo + no. of orig. pts. of / at /3
00. 
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Hence, by 5.4, 

(8) £ (w - m - l)Nn
m, + 2(n - l)iVn

00 
i 

= [ Ç (» - m - 2)iV"M.o + 2(» - 2)2V"o„] + [ Ç iV-o + 2iV"„0] 

n-3 

= £ (n - m - 2)i\r1
Wl0 + 2(w - 2)7V^1

0o 

— 2 X number of pos. orig. pts. of t at the mapping fV-3(0 

+ 2 X number of pos. orig. pts. of t at the mappings (5). 

By induction, we obtain from (8) that 

Ê in - m - i)N\0 
i 

is even. 
By (4; 3.9), we have 

(9) £ (» - m)iVra
m = £ (« - m + ÎW*-1™ + 1 

0 0 

— 2 X number of pos. orig. pts. of / at the mapping tn
n-\. 

Define 

Un = £ in - m)Nn
m + lj^(n-m- l)Nn

m, + (n - 1)N\0 (n = 2 ,3 , . . . ) . 
o ^ l 

Then (8) and (9) yield 

(10) Zn = Ln-l + 1 

— number of pos. orig. pts. of t at the mapping t\-\ 

+ number of pos. orig. pts. of t at the mapping tn
n-2 

— number of pos. orig. pts. of t at the mapping fV-3,0. 

If we drop the assumption that t has no multiple original points at the map­
ping rn_3)o, then (7) has to be replaced by the relations: 

iVn_1
m0 = Nn

m0 + number of (n — m — 2)-fold original points of t at the 
mappings £\_3,o, 0 < m < n — 3; 

2iVw~1oo = 27V%o + number of (n — 2)-fold original points of t at this mapping. 

We then have to replace the equality signs in (8) and (10) by " < . " 

5.6. Suppose the point t is regular, that it is a simple proper image point at all 
the mappings tn

mj and that all of its original points at these mappings are simple 
(m — 0, 1, . . . , n — 1). Thus Ln

n_2(t) is regular. 
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Let 3 < p < n. Project Kn+1 from Ln
n_*-i(0 into a Kv+l. A multiple original 

point of t at the mapping tp
m would also be a multiple original point of t at the 

mapping tn
m. Hence the original points $ of / at each tv

m are simple. If 

it m\S) = it m\S) = t, 

then itp
m and itn

m have the same direction at s; cf. (6; 4.2). 
We apply 5.5 to each Kv+l and add over p = 3, 4 , . . . , n, obtaining 

Ln < L2 + in - 2) 
— number of pos. orig. pts. of t at the mappings tn

2j . . . , tn
n-\ 

+ number of pos. orig. pts. of / at the mappings tni, . . . , f*n_2 

— number of pos. orig. pts. of t at all the £V-3,o (p = 3, 4, . . . , n) 

= (J^2 + number of pos. orig. pts. of t at the mapping t2i) 
+ (n — 2) — number of pos. orig. pts. of t at the mapping fV-i 
— number of pos. orig. pts. of t at all the ^-3,0 (p = 3, 4 , . . . , n). 

By 3.2, the parenthesis is equal to 3 — number of positive image points of t 
at the same mapping and hence also at the mapping /V_i. This finally yields 
that 

(11) ] E r c < ^ + l — number of positive original and image points of t at the 
mapping tn

n-i 
— number of pos. orig. pts. of tat all the /p

p_3to (P = 3, 4 , . . . , n). 

In particular, 

E» < n + 1. 

Equality holds in (11) if and only if the original points of t at all the mappings 
/%_3,o are simple. 

5.7. Suppose the point / satisfies the assumptions of 5.5. Let 

Sn = £ (» ~ w)#"w + £ (n ~ m - l)7Vre
m0 (» > 2). 

0 1 

By (8) and (9) 

(12) 5W = Sn-\ + 1 + 2 X number of pos. orig. pts. of £ at the mapping tn
n-2 

— 2 X number of pos. orig. pts. of t at tn
n-Z>0 

- 2(n - l)N\0 + 2(w - 2)Nn-\0. 

If / satisfies the assumptions of 5.6, we deduce, for example, from (11) that 
ra-2 

(13) Sn < 2n + 1 - 2 (» - 1 - ^)iVw"1
m 

0 

— 2 X number of positive image points of / a t rn_3>0 

— 2 X number of pos. orig. pts. of t at all the /pp_3,o (£ = 3, 4, . . . , n). 

Again, equality will hold if and only if the original points of t at all the mappings 
£pp_3,o are simple. 
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We conjecture that 

(14) Sn<n+1. 

Trivially, S2 + 2iV2
0o = 3. It is not hard to prove that 

53 = J 4 — 27V3oo if X4 is homotopic to zero, 
\ 0 otherwise. 

(14) is trivial if Kn+1 has a cusp or double point. 
Let n > 3. With some effort, the Kn+1 have been determined with 

Nn
10 + N\0Q > 0. 

If iVnio > 0, then 

Sn = iVVi + 2 i W 2 + N\.2,o + (n - 2)N\0 = n+h 

Similarly if iV%oo > 0, then 

i 3 if n is even, 
(0 or 4 if wis odd. 

These results imply the formula for Kb 

54 + 2iV4
000 + 4iV4

00 = 5. 

An approach to (14) via (12) faces the difficulty that Sn > 5w_i + 1 can 
occur. In order to utilize (13), it seems that certain more general and rather 
difficult mappings tn

m0 would have to be studied. Using these mappings the 
author could at least prove the finiteness of the numbers 

Nn
VQT, p + q + r<n-4c. 
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