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A CONVERGENCE PROBLEM FOR KERGIN INTERPOLATION

by JEAN PAUL CALVI

(Received 12th October 1992)

Let E, F, G be three compact sets in C". We say that (£, F, G) holds if for any choice of an interpolating array
in F and of an analytic function / on G, the Kergin interpolation polynomial of / exists and converges to f
on £. Given two of the three sets, we study how to construct the third in order that (£, F, G) holds.

1991 Mathematics subject classification: 32A10.

1. Formulating the problem

Let us first recall some basic facts for Kergin interpolation. Let ft be a C-convex
domain in C , i.e. for each complex line IcC", I nil is empty or simply connected.
Denote by H(ft) the space of holomorphic functions on ft and PJ(C) the space of
polynomials whose degree does not exceed d.

Let A = {ao,au...,ad} be a subset of d+l (nonnecessarily distinct) points in ft, then
there exists a unique continuous linear map:

with the following properties.

(Kl) For i=0, \,...,d and /etf(ft) , KA(f)(ai) = /(a,).
(K2) If geH(Sl) is of the form g = fou with u an affine map from C" to Cm and

/etf(u(ft)) then

where u(A) = {u(ao),u{a1),...,u(ad)}. Thus if m = l

where Lu{A)(f) is the usual Lagrange Hermite interpolation polynomial of the one
variable function / with respect to the points u(a0),...,u(ad).

(K.3) When all the points a0, al,..,ad coincide, KA(f) is the Taylor expansion of / at
the point a(=ao,a1,...,ad) and of degree d.
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The polynomial KA(f) is called the Kergin interpolation polynomial of the function /
with respect to the points aQ,...,ad; we will also use the following alternative notation:

KA(f) = K[a0,ai,...,ad,n.

Constructive formulas and others algebraic properties are available in [1, 2, 9]. As well
as in the classical one dimensional case, natural convergence problems arise for Kergin
interpolation. Such problems are now quite well studied for entire functions, see [4, 5,
1], while very few is known for the general case: a topic to which is devoted the present
note.

Definition 1. Given three compact sets E, F, G in C , E and F being included in G,
we say that the property (E,F,G) holds if for any triangular array of points
{(ad),deN,O^i^d} in F and any function / holomorphic in a neighbourhood of G, the
Kergin polynomials /C[aJ,...,a|J,/], deN are well defined and converge uniformly to /
on E as d tend to oo.

We can now formulate the problem we wish to study.

Problem. Given two of the three compact sets E, F, G, construct the third and if
possible optimality (in a sense to be made precise) in order that (E, F, G) holds.

The univariate version of this problem was first formulated and completely solved (in
the general sense above) by Smirnov and Lebedev, see [8]. For the multidimensional
case, some examples have already been studied by Bloom and Bos, see [6].

Since the C-convex domains are the natural domains of existence of the Kergin
operator, see [2, Prop. 3], we will not be surprised if a hypothesis of C-convexity is
needed for some of the compact sets E, F, G to expect that (E, F, G) holds.

Remark 1. (i) / / (£ , F, G) holds and E'cE, F'<zF, G c G' then (£', F, G') also holds.
(ii) / / <D is an affine bijective map on C then (E,F,G) holds if and only if

holds.

Proof, (i) is obvious and (ii) follows from the property (K2).

2. Main results

Let N be any (complex) norm on C , we let B(a, r) denote the open N-ball with centre
a and radius r. For any set X, let A^p,X) denote the N-distance from p to the
boundary, dX, of X. All metric objects in this section refer to the norm N and so in the
sequel we usually omit the subscript N. E, F, G always denote non empty compact sets
in C". If z = (Zj) and w=(Wi) then <z,vv>=£"=1zfwv

Definition 2. We define F(E,G) to be the set of points peC such that there exists a
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ball with centre p which is included in G but contains E. Thus equivalently, p e F(E, G) if
and only if

max N(z -p)- A(p, G) ̂  0.
ZE£

Proposition 1. F(E, G) is a compact convex set.

Proof. F = F(E,G) is bounded since it is included in G and the fact that it is closed
follows from the continuity of the function p->N(z—p) —A(p, G) for each zeE. Let us
prove the convexity.

Let pl,p2eF. We must show that the segment [pi,p2] lies m F- By definition there
exist two closed balls Bl = B(p1,r1) and B2 = B(p2,r2) which contain E and are included
in G. We claim that for any point pe[pi,p2] there exists a closed ball with centre p
containing E and included in Bx u B2. This follows from the convexity of the function

which is equal to

max N(p - z)—A(p, d(B j u B2))
xeE

max
zeE,i= 1,2

The proposition is proved. •

Proposition 2. Let EaG. Suppose that G is regular C-convex (see below) then
(E,F(E,G),G) holds.

We say that a compact set G is C-convex (respectively regular C-convex) if G admits
a basis of neighbourhoods composed of C-convex domains (of C-convex domains of the
form fl = {p<0} with peC2(ft), gradp#O on dA). Any compact convex set is of this
type.

Lemma 1. Let Q be a bounded C-convex domain with smooth boundary (i.e.
£2={p<0}, peC2(ft)). Let f be a function holomorphic on il and continuous on ft.
Finally, let A = {ao,a1,...,ad} be a subset of points in it, then for any zeQ the following
Hermite type remainder formula holds:

f(z)-KA(f)(z) =

1 A n
an j=o
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where

a=(a0)a1,...,alJ), <?'(£),£-*>*= 11
i = 0

Proof. This formula is proved in [1], we refer the reader to that paper for the details
but point out that the function

does not vanish. This is an important property of C-convex domains which will be used
in the sequel. •

Proof of Proposition 2. Let {(a^), deN,0^i£d} be a triangular array of points in
F = F(E,G) and / a function holomorphic in a neighbourhood of G. Because of the
hypothesis of C-convexity the Kergin polynomial

K[a?,...,<iJ] (1)

is well defined for each d and thus we have only to prove that the polynomials in (1)
converge uniformly to / on E as d tends to oo.

Let us take D a C-convex domain of the form D = {p<0}, peC2(D), containing G and
such that / is holomorphic on a neighbourhood of D. The function (£,i)-*\(p'(£),£ — O\
is continuous and does not vanish on the compact set dDxG and hence its infimum c
on this compact set is not negative. Thus, since E and F are included in G we have,
with the previous notation:

J (2)
n—l )

On the other hand

(2m)

is a bounded measure on 8D.
Hence applying the remainder formula of Lemma 1 (this is possible) we see that the

Kergin interpolation polynomials (1) will converge uniformly to / on E if we prove that
there exists a positive real number 5< 1 such that for any zeE, £edD and peF
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\S. (3)

Since in this case, by the above estimates, we would have

x»xl\

(4)
r e £

where C is a constant independent of d and then the left term in (4) tends to 0 as d
tends to oo.

Let peF. Then by Definition 2, there exists a closed ball B(p,r) such that
E<=B(p,r)<=G and so for any £edD we have

> cr <p'(0, B(p, r)> c <p'({), G> c <p'(fl, B>. (5)

We remark that the last inclusion is strict. The point <p'(£)>£) is a boundary point of
the last set and since N is a complex norm, the second is disc with centre <p'(£)>P> in
the complex plane. We therefore have (make a drawing!)

|<p'KU-p>|>|<p'(O,*-p>|. (6)

We note that the conclusion is false if the second set is not a disc.
Now, by (6), the left hand side of (3) is a continuous function strictly bounded by 1

on the compact set ExFx3D. The existence of d< 1 follows and the proposition is
proved. •

Definition 3. Let F^G. The set E = E(F,G) is defined by E = f]peFBp, where Bp is
the closed ball which has the maximal radius among all those with centre p and
included in G. This is obviously a compact convex set.

Definition 4. • The set G = C(E,F) is defined by G = \JpeFB" where B" is the closed
ball with minimal radius among those with centre p and containing E. This is a
compact set starshaped with respect to any point in E.

Corollary 1. Let F<=G. Suppose that G is regular C-convex then (E(F,G),F,G) holds.

Proof. Let F=F(E(F,G),G) then by Proposition 2, (E(F,G),F,G) holds and since
FcF, (E, F, G) also holds (see the Remark 1). •

Corollary 2. Suppose that G is regular C-convex and G(E, F)cG then (£, F, G) holds.

Proof. Let E = E(F, G) then by Corollary 1, (E, F, G) holds. Since E => E, (E, F, G) also
holds. •
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In some cases a refinement of this last corollary is possible.

Proposition 3. Let FaE. Then (E,F, G(E,F)) holds.

Note that no hypothesis of C-convexity is formulated in the proposition.

Proof. The remainder formula of Lemma 1 is of no interest here and we have to find
another one.

First we prove that there exists a domain D with smooth boundary, containing E and
such that / is holomorphic on D and continuous on D. Let us choose Q a domain
containing G such that / is holomorphic in a neighbourhood of Q and for any p e f a n
open ball B(p,rp) with EcB(p,rp)c:Q. It follows that

Gcr (J % r p ) c f l .

We may cover the compact set G by a finite number of open balls, say

G<= U B(Pi,rpt): = O.
i = i

Hence / is holomorphic in a neighbourhood of 0 which admits a basis of neighbour-
hoods of bounded smooth domains. This can be seen by smoothly approximating the
continuous function p(z) = infi=1 q{N(z-pi) — rpi). The existence of D is thus proved.

Let v be any point in E. By hypothesis there exists a closed TV-ball B(v,r) containing
E and included in G. We can find TV a norm smooth (C2) away from the origin and
close enough to TV, i.e. (l—e)N^N^N with e small, such that the open TV-ball
Bfl(v,r): = B contains E and is included in D.

Now, for £eC", {¥-v, we define s(£) = TV'(T(cU)) where T(Z,w) = v + r(w-v)/(Ft(Z-v)).
Then s is a C2 function in a neighbourhood of dD and for any zeB, <s((^),^—z>#0.
Indeed the complex hyperplane <s'(<̂ ), < -̂z> = 0 is the image of the complex tangent
hyperplane to B at the point T(£,,£) by the affine map w-*T(^,w). Hence, by the general
Koppelman Cauchy's formula, see [3, p. 28] or [10, Theorem 16.5.4], we have for any
ZBB:

(7)

where dsm = dsl A ••• A dsk_l A dsk+l A ••• A dsn. This last formula leads to a conve-
nient remainder formula.

Let A = {a0,au...,ad} be points in F. The Kergin interpolation polynomial is well
defined since / is holomorphic on the convex set B and for any z e B w e have
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f(z)-KA(f)(z) =

(«-!)! r A <s(Q,z-ai>
(2in)n hj=o<s(Z),Z-

This formula can be proved by interpolating the holomorphic kernel in (7), as is done in
[2] or [5], taking into account that E and F are included in B and that f->KA(f) is a
continuous linear map on H(B).

Finally to prove that (E,F,G(E,F)) holds, we can proceed as in the proof of
Proposition 2, by using the remainder formula (8) and remarking that the function
(<!;,t)-»<s(̂ ),<!; —1> is continuous and does not vanish on the compact set 3DxB(v,r).
The proposition is proved. •

Remark 2. In the one dimensional case there is only a complex norm (except for
multiplication by a positive scalar), no hypothesis on the compact sets are needed and
the set F(E,G) (respectively E(F,G),G(E,F)) is optimum that is, cannot be enlarged
(respectively enlarged, diminished) without losing the property {E,F,G), see [8, 1.3.5]. In
multidimensional case, optimality can be proved only for very particular compact sets;
see the examples below.

3. Examples

We just give two examples for which some optimality is achieved.

Proposition 4. Let N be a complex norm. Let r, s, t be three positive numbers such that
2s + r = t and define E = BN(0,r), F = BN{0,s) and G = B^0,t) then (E,F,G) holds optimally,
i.e., ifE'z>E,E'=tE {respectively F'z>F,F'*F; G'<=G,G*G') then (E',F,G) (respectively
(E,F',G); (E,F,G')) no longer holds.

Proof. That (E,F,G) holds follows from an application of Proposition 2. Let us
prove for example that given r and t, if N(p)>(t — r)/2 then (£ ,Fu {p},G) does not hold.
Let / be the complex line passing through p and 0. Then inE, inF, inG are three
discs with centre 0 and radius respectively r, s, t in the one dimensional complex space /
normed by the restriction of N. Let us denote these discs respectively by D(r), D(s), D(i).
Next, let us choose a one variable function / holomorphic in a disc D(r') with
£<r' <N(p) + r but not in any larger domain.

In view of Cartan's theorem, see [7], the function / can be extended to a function
still denoted by /, holomorphic in a neighbourhood of G. The Taylor expansion of / at
the point p cannot converge to / uniformly on E otherwise the one dimensional Taylor
expansion at the point p of f restricted to / would converge on a disc containing D(r)
hence also somewhere outside D(r') which would be a contradiction. Since Taylor
polynomials are Kergin interpolation polynomials, see (K3), the claim is proved. •
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Propositions. Let / = [ - 1 , + 1 ] C R C C and ate[0,1], i=O,...,n. Define £ =
R"cC", F= x i = 1 „[-«,,«,] and

then (i) (£, F, G) holds and (ii) G is the smallest convex set with this property.

Proof. To prove that (E,F,G) holds we may apply Corollary 2 by using the norm
N(z) = max,=1 n|z,|/(l+a,). Next, an inspection of the functions l/f + oj + z,) and their
Taylor expansion at points (0,...,0, ±a,-,0,...,0) whose coordinates are only 0 except at
the ith place, shows that G must contains the product of the sets

1-P,u,pel
u-p

and since G is the convex hull of Dt x D2... x Dn we are done. •

We note that, by making use of the Remark 1 (ii), we obtain similar results when
[ — 1,1] and [—fl()a,] are replaced by any concentric intervals.

Remark 3. When N is the Euclidean norm the result in Proposition 4 has been first
given by Bloom and Bos in [6]. They also proved (i) in Proposition 5 in a different way.

Remark 4. Let £ be symmetric with respect to 0. Let R be the N-diameter of £.
Then by arguing as in the proof of Proposition 4, we can prove that (£, £, B(0, R)) holds
and R is the smallest radius with this property.

Remark 5. Suppose that £ and F (for example) lie in a complex subspace FT of C of
dimension m and let N be any norm on II then if we construct G(E,f)cIl,
(E,F,G(E,F)) holds in C". In particular the one dimensional solution of the problem
leads to optimal solution in C" for compact sets lying on a complex line.
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