ON FOURIER TRANSFORMS OF RADIAL FUNGTIONS

JAMES L. GRIFFITH *

(Received 24 January 1964)

1. Introduction

The Fourier transform $F(y)$ of a function $f(t)$ in $L^{1}\left(E_{k}\right)$ where E_{k} is the k-dimensional cartesian space will be defined by

$$
\begin{equation*}
F(y)=(2 \pi)^{-\frac{1}{\mathbf{k}} k} \int_{E_{k}} e^{i(t \cdot y)} f(t) d V_{t} . \tag{1.1}
\end{equation*}
$$

We consider the inversion formula $f_{0}(x)=\lim _{R \rightarrow \infty} g(x, R)$ where

$$
\begin{equation*}
g(x, R)=(2 \pi)^{-\frac{1}{2} k} \int_{B_{R}}\left(1--s^{2} / R^{2}\right)^{n} e^{-i(x \cdot y)} F(y) d V_{y} \tag{1.2}
\end{equation*}
$$

in which formula \boldsymbol{s} is the radial vector in \boldsymbol{y}-space and B_{R} is the ball of radius R with centre at the origin. In the cases considered $f_{0}(\boldsymbol{x})=f(\boldsymbol{x})$ almost everywhere, but this detail will not concern us at the moment.

Following the method of Bochner [1] we substitute (1.1) in (1.2) and then change the origin to \boldsymbol{x} by writing $\boldsymbol{t}=\boldsymbol{x}+\boldsymbol{z}$. Thus we obtain

$$
g(x, R)=(2 \pi)^{-k} \int_{E_{k}(z)} f(x+z) d V_{z} \int_{B_{R}(y)}\left(1-s^{2} / R^{2}\right)^{n} e^{(y \cdot z)} d V_{\nu}
$$

We now express the y-system in polar co-ordinates and integrate out all of the "angular" co-ordinates. This leaves us with

$$
g(x, R)=(2 \pi)^{-\frac{1}{2} k} \int_{E_{k}} f(\boldsymbol{x}+\boldsymbol{z}) d V_{z} \int_{0}^{R} r^{-\frac{1}{2}(k-2)} s_{\frac{1}{2} k}^{k}\left(1-s^{2} / R^{2}\right)^{n} J_{\frac{1}{2}(k-s)}(r s) d s
$$

where now \boldsymbol{r} is the radius vector of the \boldsymbol{z}-system. The final simplification is obtained by turning the z-system into polar co-ordinates and integrating out all the variables except r. The final result is

$$
g(x, R)=\frac{2^{-\frac{1}{2} k+n} \Gamma(n+1)}{\left[\Gamma\left(\frac{1}{2}\right)\right]^{k}} \int_{0}^{\infty} r^{\frac{1}{2} k-n-1} R^{\frac{k}{k-n}} J_{\frac{3}{2 k+n}}(R r) Q(r) d r
$$

where $Q(r)=\int f(x+r z) d A$, the $(k-1)$ dimensional integral (area) over the surface of the unit sphere.

The particular value of $n=\frac{1}{2}(k-1)=\alpha$ is called the critical value of

[^0]the index (see in particular E.M. Stein [5]). If $n>\alpha$, we may split the integral into two parts and write
$$
g(x, R)=\int_{0}^{p}+\int_{p}^{\infty} \cdots d r
$$
and it is obvious that $\lim _{R \rightarrow \infty} \int_{D} \cdots d r=0$. That is to say $\lim _{R \rightarrow \infty} g(x, R)$ depends only on the values of $f(t)$ near $t=\boldsymbol{x}$. The inversion formula will possess a localisation property. When $n<\alpha$ it is easy to construct a function $f(t)$ which is finite near x, but for which the integral will not converge.

The critical value α for the localisation property to hold was obtained on the assumption that $f(t)$ belonged to $L^{1}\left(E_{k}\right)$. As mentioned by Bochner if we add further conditions on differentiability and integrability on $f(t)$ it is possible to reduce the value of the critical value to zero.

In this paper we will determine what effect symmetry of $f(t)$ will have on the critical value. It will be shown that the critical value is closely related to the singularity (if such exists) of $f(t)$ at the origin.

2

In this section we assume that $f(t)$ belongs to $L^{1}\left(E_{k}\right)$ and is radial, that is $f(t)=g(r)$. We then follow Bochner and Chandrasekharan ([2], p. 67 et seq.) to see that the Fourier transform is also radial and is given by

$$
\begin{equation*}
G(s)=s^{-\frac{1}{2}(k-2)} \int_{0}^{\infty} r^{\frac{1}{2} k} J_{\frac{1}{2}(k-2)}(s r) g(r) d r . \tag{2.1}
\end{equation*}
$$

The inversion formula we wish to investigate will then be written as $\lim _{R \rightarrow \infty} g(r, R)$, where

$$
\begin{align*}
g(r, R) & = \\
& =r^{-\frac{1}{2}(k-2)} \int_{0}^{R}\left(1-s^{2} / R^{2}\right)^{n} s^{\frac{1}{2} k} J_{\frac{1}{2}(k-2)}(s r) G(s) d s \tag{2.1a}\\
& =r^{-\frac{1}{2}(k-2)} \int_{0}^{\infty} u^{\frac{1}{2} k} g(u) d u \int_{0}^{R} s\left(1-s^{2} / R^{2}\right)^{n} J_{\frac{1}{2}(k-2)}(s r) J_{\frac{1}{2}(k-2)}(s u) d s \tag{2.1b}
\end{align*}
$$

where now $u^{k-1} g(u)$ belongs to $L^{1}(0, \infty)$. We recall that if $\int_{0}{ }^{\infty} p(r) d r$ exists then $\lim _{R \rightarrow \infty} \int_{0}^{R}\left(1-r^{2} / R^{2}\right)^{n} p(r) d r$ also exists and equals $\int_{0}^{+\infty} p(r) d r$ (see Titchmarsh [6], p. 27).

We then divide the integral \int_{0}^{∞} in (2.1b) into

$$
\int_{0}^{\infty}=\int_{0}^{a}+\int_{a}^{r-b}+\int_{r-b}^{r+b}+\int_{r+b}^{\infty} .
$$

If we take $n=0$ and use Watson ([7], p. 134, (8)) we obtain the contribution from the last integral to be

$$
r^{\frac{1}{2}(k-2)} \int_{r+b}^{\infty} \frac{R g(u) u^{\frac{1}{2} k}\left(r J_{\frac{1}{2}(k-2)}(u R) J_{\frac{1}{2} k}(r R)-u J_{\frac{1}{2}(k-2)}(r R) J_{\frac{1}{2} k}(u R)\right)}{r^{2}-u^{2}} d u
$$

The asymptotic expressions for the Bessel Functions and the Riemann Lebesgue Lemma show that this contribution vanishes as $R \rightarrow \infty$ (see for example Titchmarsh [6], p. 240 et seq.). A similar remark can be made concerning the contribution \int_{a}^{r-b}. Thus the contributions to $\lim _{R \rightarrow \infty} g(r, R)$ from \int_{a}^{r-b} and \int_{r+b}^{∞} will both vanish for all $n \geqq 0$.

Now Titchmarsh (l.c.) shows that the contribution from \int_{0}^{a} vanishes if $u^{\frac{1}{2 k}} g(u)$ belongs to $L^{1}(0, a)$. This is a heavier condition than we wish to impose. We will assume that

$$
\int_{0}^{t} u^{k-1}|g(u)| d u=P(t)=o\left(t^{c}\right), \text { for some } c \geqq 0
$$

as $t \rightarrow 0$.
Writing $v=\frac{1}{2}(k-2)$, as is usual, we use the Parseval formula for the Hankel transforms in conjunction with formulae of Erdelyi ([4], p. 26, (33) and p. 52, (31)) to obtain

$$
\begin{align*}
& \int_{0}^{R} s\left(1-s^{2} / R^{2}\right)^{n} J_{\nu}(s r) J_{\nu}(s u) d s=I(R) \text { (say) } \tag{2.2a}\\
& =\frac{A R^{2-2 \nu}}{r^{\nu} u^{\nu}} \int_{R|r-u|}^{R|r+u|} \frac{J_{n+\nu+1}(y)}{y^{n+\nu}}\left[y^{2}-R^{2}(r-u)^{2}\right]^{\nu-\frac{1}{2}}\left[R^{2}(r+u)^{2}-y^{2}\right]^{\nu-\frac{1}{2}} d y
\end{align*}
$$

where $A=2^{n-3 v+1} \Gamma(n+1) / \pi^{\frac{1}{2}} \Gamma\left(v+\frac{1}{2}\right)$. Then after a change of variables

$$
\begin{align*}
& I(R)= \\
& \frac{A R^{\nu-n+1}}{2 r^{\nu} u^{\nu}} \int_{(r-u)^{2}}^{(r+u)^{2}} \frac{J_{n+v+1}\left(R v^{\frac{1}{2}}\right)}{v^{\frac{1}{2}(n+p+1)}}\left[v-(r-u)^{2}\right]^{\nu-\frac{1}{2}}\left[(r+u)^{2}-v\right]^{\nu-\frac{1}{2}} d v . \tag{2.2~b}
\end{align*}
$$

Integrating equation (2.2b) by parts q times, and using the formula

$$
\int v^{-\frac{1}{2} \nu} J_{\nu}\left(v^{\frac{1}{2}}\right) d v=2 v^{-\frac{1}{2}(\nu-1)} J_{\nu-1}\left(v^{\frac{1}{2}}\right)
$$

(Watson [7], p. 132, (1), with some change of variable), we write $I(R)$ in the form
(2.3) $I(R)=$

$$
\frac{R^{v-n+1-q}}{u^{p}} \int_{(r-u)^{8}}^{(r+u)^{2}} \frac{J_{n+v+1-q}\left(R v^{\frac{1}{2}}\right)}{v^{\frac{1}{2}(n+\nu+1-q)}} \sum_{p=0}^{q} B_{p}\left[v-(r-u)^{2}\right]^{v-\frac{1}{2}-p}\left[(r+u)^{2}-v\right]^{\nu-\frac{1}{2}-q+p} d v
$$

where B_{p} are constants not containing R or u. Thus

$$
\begin{align*}
|I(R)| & \leqq \frac{R^{\nu-n+1-q}}{u^{\nu}} \int_{(r-u)^{2}}^{(r+u)^{\mathbf{z}}} \frac{\left|J_{n+\nu+1-q}\left(R v^{\frac{1}{2}}\right)\right|}{v^{\frac{1}{2}(n+\nu+1-q)}}(4 r u)^{2 v-1-q}\left(\sum_{p=0}^{q}\left|B_{p}\right|\right) d v \\
& =O\left(R^{\left.\nu-n-q+\frac{1}{2} u^{\nu-q}\right)}\right. \tag{2.4}\\
& =O\left((R u)^{\nu-n-q+\frac{1}{2}} u^{n-\frac{1}{2}}\right) .
\end{align*}
$$

If $\nu-\frac{1}{2}$ is an integer we may take $q=\nu+\frac{1}{2}$. It is then easy to show that when $\nu-\frac{1}{2}$ is an integer the estimate (2.4) will hold for all q with $0 \leqq q \leqq \nu+\frac{1}{2}$.

If v is an integer we may only take $q=\nu$, in (2.3). However we may take the integration by parts one step further for each term in the summation in (2.3) except those terms given by $p=0$ and $p=q=\nu$. The first of these terms will be

$$
\begin{aligned}
& T(R)= \\
& \frac{B R^{1-n}}{u^{\nu}} \int_{(r-u)^{2}}^{(r+u)^{2}} \frac{J_{n+1}\left(R v^{\frac{1}{2}}\right)}{v^{\frac{1}{2}(n+1)}}\left[v-(r-u)^{2}\right]^{-\frac{1}{2}}\left[(r+u)^{2}-v\right]^{p^{-\frac{1}{2}} d v} \\
& =\frac{C R^{\frac{1}{2}-n}}{u^{\nu}} \int_{(r-u)^{2}}^{(r+u)^{2}}\left[v-(r-u)^{2}\right]^{-\frac{1}{2}}\left[(r+u)^{2}-v\right]^{\nu-\frac{1}{2}}\left[\frac{\cos \left(R v^{\frac{1}{2}}-w\right)}{v^{\frac{1}{2}(n+2)}}+O\left(R^{-1}\right)\right] d v
\end{aligned}
$$

$$
\text { (} B, C \text { and } w \text { being constants not containing } u \text { or } R \text {) }
$$

$$
\begin{array}{r}
=\frac{2 C R^{\frac{1}{2}-n}}{u^{\nu}} \int_{|r-u|}^{r+u}\left[v^{2}-(r-u)^{2}\right]^{-\frac{1}{2}}\left[(r+u)^{2}-v^{2}\right]^{v-\frac{1}{2}}\left[\frac{\cos (R v-w)}{v^{n+1}}+O\left(R^{-1}\right)\right] d v \\
=\frac{2 C R^{\frac{1}{2}-n}}{u^{\nu}}(4 r u)^{\nu-\frac{1}{2}}(r-u)^{-n-1}(2 r)^{\frac{1}{2}} \int_{r-u}^{p} \cos (R v-w)\left(y^{2}-|r-u|\right)^{-\frac{1}{2}} d v \\
+O\left(R^{-\frac{1}{2}-n}\right)
\end{array}
$$

with $|r-u|<p<|r+u|$, by a mean value theorem.
If we now put $v=|r-u|+z / R$ in the integral this last expression takes the form

$$
R^{-\frac{1}{2}} \int_{0}^{R p-R|r-u|} \cos (z+R|r-u|-w) z^{-\frac{1}{2}} d z
$$

in which the integral is bounded uniformly for all R and u. If we then substitute back we see that the contribution from the term in $p=0$ to $I(R)$ will be $O\left(R^{-n} u^{-\frac{1}{2}}\right)$. A similar treatment will show that the contribution from the term with $p=\nu$ will be of the same order.

We have then shown that the estimate (2.4) holds for $0 \leqq q \leqq \nu+\frac{1}{2}$ whether v is an integer or not.

We now return to equation (2.1b) to examine the contribution form \int_{0}^{a}. It will be useful to split the range into $\int_{0}^{1 / R}+\int_{1 / R}^{a}=K_{1}+K_{2}$ (say). K_{1} will be dominated by a term of the form
where C is independent of R (but is dependent on q). Recalling that $\alpha=$ $\frac{1}{2}(k-1)=\nu+\frac{1}{2}$, we have

$$
S(R)=C R^{\alpha-n-q}\left\{\left[P(u) u^{-q}\right]_{0}^{1 / R}+q \int_{0}^{1 / R} P(u) u^{-q-1} d u\right\} .
$$

If $c>0$, then we select $0<q<c$ and each term is seen to be $o\left(R^{\alpha-n-c}\right)$ as $R \rightarrow \infty$. If $c=0$, we select $q=0$ and the second term will vanish so that $S(R)=o\left(R^{\alpha-n}\right)$.

A similar method shows that K_{2} will be dominated by

$$
\begin{aligned}
V(R) & =C R^{\alpha-n-q}\left[P(u) u^{-q}\right]_{1 / R}^{a}+q \int_{1 / R}^{a} P(u) u^{-q-1} d u \\
& =o\left(R^{\alpha-n-q}\right)+o\left(R^{\alpha-n-q}\right)
\end{aligned}
$$

the first term being from the upper limits and the second from the lower.
So provided that we choose $n>\alpha-c$ if $c<\alpha$ and $n \geqq 0$ if $c>\alpha$ we can be assured that the contribution from \int_{0}^{a} will vanish. That is to say that the inversion integral (1.2) or (2.1a) will be localised if $n>\alpha-c$.

We will now show that in general we cannot improve on this result.

3

Suppose that

$$
g(x)=\left\{\begin{array}{lr}
x^{c-k}, & 0 \leqq x \leqq X \\
0 & x>X
\end{array}\right\} c>0
$$

so that

$$
\int_{0}^{t} x^{k-1} g(x) d x=t^{t} / c
$$

We may then write $g(x)=f(x)-h(x)$ with

$$
f(x)=x^{c-k}=x^{c-2 \nu-2}, \text { all } x
$$

and

$$
h(x)= \begin{cases}x^{c-k}= & x^{c-2 \nu-2}, x>X \\ 0, & x<X .\end{cases}
$$

Thus equation (2.1b) becomes

$$
\begin{aligned}
g(r, R)= & f(r, R)-h(r, R) \\
= & r^{-\nu} \int_{0}^{\infty} u^{c-\nu-1} d u \int_{0}^{R} s\left(1-s^{2} / R^{2}\right)^{n} J_{\nu}(s r) J_{\nu}(s u) d s \\
& -r^{-\nu} \int_{X}^{\infty} u^{c-\nu-1} d u \int_{0}^{R} s\left(-1-s^{2} / R^{2}\right)^{n} J_{\nu}(s r) J_{\nu}(s u) d s .
\end{aligned}
$$

Now $\lim _{R \rightarrow \infty} h(r, R)$ exists for all $n \geqq 0$ by the proof of theorem 135 of Titchmarsh [6]. We will only need to examine $\lim _{R \rightarrow \infty} f(r, R)$.

From Watson ([7], p. 391, (1)),

$$
\begin{equation*}
f(r, R)=\frac{r^{-\nu} \Gamma\left(\frac{1}{2} c\right)}{2^{\nu-c+1} \Gamma\left(\nu-\frac{1}{2} c+1\right)} \int_{0}^{R} s^{\nu-c+1}\left(1-s^{2} / R^{2}\right)^{n} J_{\nu}(s r) d s \tag{3.1}
\end{equation*}
$$

For our purpose we will put $r=1$ and $n=m-\beta$ where m is an integer and $0 \leqq \beta<1$. We will assume that $n<\nu+\frac{1}{2}-c$, and will examine

$$
I(R)=\int_{0}^{R} s^{\nu-c+1}\left(R^{2}-s^{2}\right)^{n} J_{\nu}(s) d s
$$

as $R \rightarrow \infty$.
We will require the two formulae

$$
\begin{equation*}
\int_{0}^{z} t^{\frac{1}{2}} J_{\nu}\left(a t^{\frac{1}{2}}\right) d t=2 a^{-1} z^{\frac{1}{2}(\nu+1)} J_{\nu+1}\left(a z^{\frac{1}{2}}\right) \tag{3.2a}
\end{equation*}
$$

(Watson [7], p. 133, (1)) and

$$
\begin{equation*}
\int_{0}^{z}(z-t)^{b} t^{\frac{1}{2}} J_{\nu}\left(a t^{\frac{1}{2}}\right) d t=2^{b+1} \Gamma(b+1) a^{-b-1} z^{\frac{1}{2}(v+b+1)} J_{\nu+b+1}\left(a z^{\frac{1}{2}}\right) \tag{3.2b}
\end{equation*}
$$

which is found by expanding the Bessel function in a series form and integrating.

Now

$$
\begin{equation*}
2 I(R)=\int_{0}^{R^{2}} x^{-\frac{1}{2} c}\left(R^{2}-x\right)^{n} x^{\frac{1}{2}} \nu J_{\nu}\left(x^{\frac{1}{2}}\right) d x \tag{3.3}
\end{equation*}
$$

We will show that as $R \rightarrow \infty$ the dominating part of $I(R)$ can be expressed in the form $A R^{\nu+n-c} J_{\nu+n+1}(R)$. More exactly we shall show that as $R \rightarrow \infty$

$$
\begin{equation*}
R^{c-n-\nu+\frac{1}{2}} I(R)=A R^{\frac{1}{2}} J_{\nu+n+1}(R)+o(1) \tag{3.4}
\end{equation*}
$$

We now expand (3.3) using integration by parts m times. Then $I(R)$ will be expressed as a linear combination of terms of the type

$$
\begin{equation*}
S_{a, b}=\int_{0}^{R^{2}} x^{-\frac{1}{2} c-a}\left(R^{2}-x\right)^{n-b} x^{\frac{1}{2}(v+a+b)} J_{v+a+b}\left(x^{\frac{1}{2}}\right) d x \tag{3.5}
\end{equation*}
$$

The expansion will contain only one term involving $b=m$. We leave this term unaltered but carry out one integration by parts step on all the other terms. We then split the formula for $S_{a, b}$ into $\int_{0}^{1}+\int_{1}^{R^{2}}=S_{1}+S_{2}$. From which we see that as $R \rightarrow \infty$

$$
S_{1}=O\left(R^{2 n-2 b}\right) \quad \text { and } \quad S_{2}=O\left(R^{v-a-b+2 n-c-1 \frac{1}{2}}\right)
$$

The only terms in (3.5) which will possibly contribute a term of sufficiently great order will be that in which $a=0$ and $b=m$.

So

$$
\begin{aligned}
2 I(R)= & \frac{2^{m} \Gamma(n+1)}{\Gamma(1-\beta)} \int_{0}^{R^{2}} x^{-\frac{1}{2} c}\left(R^{2}-x\right)^{-\beta} x^{\frac{1}{2}(\nu+m)} J_{\nu+m}\left(x^{\frac{1}{2}}\right) d x \\
& \quad+\text { terms of lower order. }
\end{aligned}
$$

Further

$$
\begin{aligned}
\left(\Gamma(1-\beta) / 2^{m}\right. & \Gamma(n+1)) 2 I(R) \\
= & {\left[x^{-\frac{1}{2} c} \int_{0}^{x}\left(R^{2}-u\right)^{-\beta} u^{\frac{1}{2}(\nu+m)} J_{\nu+m}\left(u^{\frac{1}{2}}\right) d u\right]_{0}^{R^{2}} } \\
& +\frac{1}{2} c \int_{0}^{R^{2}} x^{-\frac{1}{2}-1} d x \int_{0}^{x}\left(R^{2}-u\right)^{-\beta} u^{\frac{1}{2}(\nu+m)} J_{\nu+m}\left(u^{\frac{1}{2}}\right) d u \\
& + \text { terms of lower order. }
\end{aligned}
$$

The first term is $2^{1-\beta} \Gamma(1-\beta) R^{v+n-c+1} J_{v+n+1}(R)$. To make an estimate of the second term we divide the range of integration. (In the next few lines A will denote a constant but not necessarily the same constant).

$$
\begin{aligned}
I_{1}(R) & =\int_{1}^{R^{2}} x^{-\frac{1}{2} c-1} d x \int_{1}^{x}\left(R^{2}-u\right)^{-\beta} u^{\frac{1}{2}(\nu+m)} J_{\nu+m}\left(u^{\frac{1}{2}}\right) d u \\
& =\int_{1}^{R^{2}} x^{-\frac{1}{2} c-1}\left(R^{2}-x\right)^{-\beta} d x \int_{p}^{x} u^{\frac{1}{2}(\nu+m)} J_{\nu+m}\left(u^{\frac{1}{2}}\right) d u, 1 \leqq p \leqq x \\
& =2 \int_{1}^{R^{2}} 2 x^{-\frac{1}{2} c-1}\left(R^{2}-x\right)^{-\beta}\left[u^{\frac{1}{2}(\nu+m+1)} J_{\nu+m+1}\left(u^{\frac{1}{2}}\right)\right]_{p}^{x} d x .
\end{aligned}
$$

Then since $p \geqq 1$ and $\frac{1}{2}(\nu+m+1)>\frac{1}{2}$,

$$
\begin{aligned}
\left|I_{1}(R)\right| & \leqq A \int_{1}^{R^{2}} x^{-\frac{1}{2}\left(c-\nu-m+1 \frac{1}{2}\right)}\left(R^{2}-x\right)^{-\beta} d x \\
& =O\left(R^{\nu+m-c+\frac{1}{2}-2 \beta}\right) \\
I_{2}(R) & =\int_{1}^{R^{2}} x^{-\frac{1}{c} c-1} d x \int_{0}^{1}\left(R^{2}-u\right)^{-\beta} u^{\frac{1}{2}(\nu+m)} J_{\nu+m}\left(u^{\frac{1}{2}}\right) d u \\
I_{2}(R) & <A \int_{1}^{R^{2}} x^{-\frac{1}{2} c-1}\left(R^{2}-1\right)^{-\beta} d x=O\left(R^{-2 \beta}\right) . \\
I_{3}(R) & =\int_{0}^{1} x^{-\frac{1}{2} c-1} d x \int_{0}^{x}\left(R^{2}-u\right)^{-\beta} u^{\frac{1}{2}(\nu+m)} J_{v+m}\left(u^{\frac{1}{2}}\right) d u \\
& =O\left(R^{-2 \beta}\right) .
\end{aligned}
$$

Thus examining I_{1}, I_{2} and I_{3}, the second term in (3.6) is seen to be of lower order than $R^{p+n-c+\frac{1}{2}}$ provided that $\beta>0$. If $\beta=0$ then

$$
\begin{aligned}
I_{1}(R) & =\int_{1}^{R^{2}} x^{-\frac{1}{2} c-1} 2\left[u^{\frac{1}{2}(\nu+m+1)} J_{\nu+m+1}\left(u^{\frac{1}{2}}\right)\right]_{1}^{x} d x \\
& =O\left(R^{\nu+m-c-\frac{1}{2}}\right)
\end{aligned}
$$

after one step of integration by parts.
We have thus shown that if $n<\alpha-c$,

$$
I(R)=A R^{v+n-c+1} J_{v+n+1}(R)+\text { terms of lower order. }
$$

This result confirms the assertion that we cannot in general take $n<\alpha-c$ for all $c>0$. Putting this result in another way we can say that for each
$n<\alpha-c$ we can find a $g(t)$ so that $\int_{0}^{t} x^{k-1}|g(x)| d x=o\left(t^{c}\right)$ for which the inversion theorem will not be localised.

Further noting that if $\int_{0}^{t} x^{k-1}|g(x)| d x=o\left(t^{c}\right)$ for $c>0$, then $\int_{0}^{t} x^{k-1}|g(x)|$ $d x=o(1)$, we can extend our result to say that if $n<\alpha$ we can find a $g(t)$ so that $\int_{0}^{t} x^{k-1}|g(x)| d x=o(1)$ and for which the inversion theorem will not be localised.

4

Up to this point no comment has been made concerning the contribution in $\lim _{R \rightarrow \infty} g(r, R)$ from the part of the integral \int_{r-b}^{r+b} in equation (2.1b).

If $g(u)$ is of bounded variation in $[r-b, r+b]$, then the limit in (2.1b)

$$
\begin{equation*}
\lim _{R \rightarrow \infty} r^{-\frac{1}{2}(k-2)} \int_{r \rightarrow b}^{r+b} \cdots d u \int_{0}^{R} \cdots d s=\frac{1}{2}(f(r+)+f(r-)) \tag{4.1}
\end{equation*}
$$

for $n=0$, (Titchmarsh [6], Th. 135). Equation (4.1) confirms the assumption made in the previous section that the contribution from \int_{r-b}^{r+b} did not effect the convergence or otherwise of the integral treated there.

Keeping equation (4.1) in mind we will consider

$$
\begin{equation*}
F(r, R)=r^{-\frac{1}{2}(k-2)} \int_{r-b}^{r+b} u^{\frac{1}{2} k} f(u) d u \int_{0}^{R} s\left(1-s^{2} / R^{2}\right)^{n} J_{\frac{1}{2}(k-2)}(s r) J_{\frac{1}{2}(k-2)}(s u) d s \tag{4.2}
\end{equation*}
$$

where $f(u)=g(u)-C$, and we will assume that as $t \rightarrow 0$,

$$
\int_{r-t}^{r+t}|f(u)| d u=o(t)
$$

(a condition corresponding to that in Chandrasekharan and Minakshisundaram [3], p. 117). It will be profitable to use formula (2.2a). However the estimate in (2.4) will fail when $\left|R v^{\frac{1}{2}}\right|<1$. We examine first the integrals in which $\left|R v^{\frac{1}{2}}\right|>1$.

If we put $q=v+\frac{1}{2}$ in (2.4) we see that

$$
\int_{r+1 / R}^{r+b} u^{v+1} f(u) d u \int_{(r-u)^{2}}^{(r+u)^{2}} \cdots d v
$$

is dominated by a term of the type

$$
A R^{-n} \int_{r+1 / R}^{r+b} u^{\nu+\frac{1}{2}}|f(u)| d u
$$

which $\rightarrow 0$ for any $n>0$. A similar conclusion may be drawn concerning the integrals
$\int_{r-b}^{r-1 / R} \cdots d u \int_{(r-u)^{2}}^{(r+u)^{2}} \cdots d v, \int_{r}^{r+1 / R} \cdots d u \int_{1 / R^{2}}^{(r+u)^{2}} \cdots d v$ and $\int_{r-1 / R}^{r} \cdots d u \int_{1 / R^{2}}^{(r+u)^{2}} \cdots d v$.
We are finally left with one part

$$
\int_{r-1 / R}^{r+1 / R} \cdots d u \int_{(r-u)^{2}}^{1 / R} \cdots d v=K(R), \text { say }
$$

Now
$K(R)=$
$B R^{p-n+1} \int_{r-1 / R}^{r+1 / R} u f(u) d u \int_{(r-u)^{2}}^{1 / R^{2}} \frac{J_{n+\nu+1}\left(R v^{\frac{1}{2}}\right)}{v^{\frac{1}{2}(n+p+1)}}\left(v-(r-u)^{2}\right)^{\nu-\frac{1}{2}}\left((r+u)^{2}-v\right)^{p-\frac{1}{2}} d v$
(with B constant, by equation (2.2a)).
Thus using the estimate for the Bessel function when $\left|R v^{\frac{1}{2}}\right|<1$, we see that

$$
\begin{aligned}
& K(R) \leqq C R^{2 \nu+2} \int_{r-1 / R}^{r+1 / R} u|f(u)| d u \int_{(r-u)^{2}}^{1 / R^{2}}\left(v-(r-u)^{2}\right)^{\nu-\frac{1}{2}}\left((r+u)^{2}-v\right)^{\nu-\frac{1}{2} d v} \\
& (C \text { constant }) \\
& \leqq C R^{2 \nu+2} \int_{r-1 / R}^{r+1 / R} u|f(u)| R^{-2 \nu-1}(4 r u)^{\nu-\frac{1}{2}} d u \\
& \leqq D R \int_{r-1 / R}^{r+1 / R}|f(u)| d u=o(1) \text { as } R \rightarrow \infty
\end{aligned}
$$

We are then assured that if

$$
G_{1}(r, R)=r^{-\frac{1}{2}(k-2)} \int_{r-b}^{r+b} u^{\frac{1}{2} k} g(u) d u \int_{0}^{R} s\left(1-s^{2} / R^{2}\right)^{n} J_{\frac{1}{2}(k-2)}(s r) J_{\frac{1}{2}(k-2)}(s u) d s
$$

and there exists a C so that

$$
\int_{r-t}^{r+t}|f(u)| d u=o(t), f(u)=g(u)-C,
$$

as $t \rightarrow 0+$, then

$$
\lim _{R \rightarrow \infty} G_{1}(r, R)=C
$$

for all $n>0$.
We have thus shown that if $f(t)$ in (1.1) is radially symmetric, and is written $f(t)=g(u)$, and

$$
\int_{0}^{t} u^{k-1} g(u) d u=o\left(t^{c}\right) \text { as } t \rightarrow 0+
$$

then $\lim _{R \rightarrow \infty} g(x, R)$ in (1.2) is localised if $n>\frac{1}{2}(k-1)-c, n>0$. Also if there exists a C so that

$$
\int_{r-t}^{r+t}|g(u)-C| d u=o(t) \text { as } t \rightarrow 0+
$$

then $\lim _{R \rightarrow \infty} g(x, R)=C$.

References

[1] Bochner, S., Lectures on Fourier Integrals (Princeton, 1959).
[2] Bochner, S. and Chandrasekharan, K., Fourier Transforms (Princeton, 1949).
[3] Chandrasekharan, K. and Minakshisundaram, S., Typical Means (Tata Institute, Bombay).
[4] Erdelyi and others, Tables of Integral Transforms (McGraw Hill, New York, 1954).
[5] Stein, E. M. Localisation and summability of Multiple Fourier Series, Acta Math. 100 (1958), 93-147.
[6] Titchmarsh, E. C., Fourier Integrals (Oxford, 1948).
[7] Watson, G. N., Theory of Bessel Functions (Cambridge, 1952).
University of New South Wales
and University of Kansas

[^0]: * This research was supported in part by the National Science Foundation, while the author was at the University of Kansas.

