Locally finite varieties of groups arising from Cross varieties

Sheila Oates Macdonald

Let \(V \) be a Cross variety and let \(n \) be the least integer such that \(V^{(n)} \) is locally finite; then \(n \leq 2d + 3 \) where \(d \) is an upper bound for the number of generators of certain critical groups in \(V \).

1. Introduction

If \(V \) is a Cross variety then, by the Oates-Powell Theorem, \(V = V^{(n)} \) for some \(n \) and hence \(V^{(n)} \) is locally finite, but, of course, \(V^{(n)} \) can be locally finite even though \(V \neq V^{(n)} \); for instance if \(V \) is the variety generated by the dihedral group of order \(2^{p+1} \) then \(V^{(2)} \) is locally finite, although \(V \neq V^{n-1} \) \([4]\). Can anything be said in general about the local finiteness of \(V^{(n)} \)? Certainly \(V^{(1)} \) is not always locally finite \([7]\), but I conjecture that \(V^{(2)} \) is. Certain evidence to support this exists: R.M. Bryant \([1]\) has shown that the two variable laws of \(\text{PSL}(2, q) \) imply local finiteness, thus extending the results of \([2]\).

Both proofs of the Oates-Powell Theorem \([8], [3]\) give values of \(n \) for which \(V^{(n)} \) is locally finite, though these tend to be somewhat large. In this paper I extend the results of \([8], \S 3\), to prove:-

THEOREM A. Let \(V \) be a Cross variety with a chain of subvarieties...
\[E = V_n \subset V_{n-1} \subset \ldots \subset V_1 = V, \]
each maximal in the succeeding one, and let \(V_i = \text{var}(V_{i-1}, D_i) \) where \(D_i \) is critical and can be generated by \(d \) (or fewer) elements; then \(V_i^{(2d+3)} \) is locally finite.

2. Notation

Notation and terminology follow that of Hanna Neumann [6].

3. Outline of proof

It is clearly sufficient to prove the following theorem:

THEOREM B. Let \(V \) be a Cross variety and \(U \) a maximal subvariety of \(V \) such that \(V = \text{var}(U, D) \) where \(D \) is a critical \(d \)-generator group. If \(U^{(2d+3)} \) is locally finite so is \(V^{(2d+3)} \).

Theorem A follows by induction on \(r \) from Theorem B, since it is trivially true for \(E \).

The proof of Theorem B divides into two parts according as \(OD \) is abelian or non-abelian.

4. \(OD \) abelian

DEFINITION 4.1. Let \(\{\tilde{w}_1 = 1, \ldots, \tilde{w}_k = 1\} \) be a basis for the \((2d+3) \)-variable laws of \(U \) (by a result of B.H. Neumann [5] such a finite basis exists) and let \(W(G) \) be the corresponding word subgroup, so that

\[G/W(G) \in U^{(2d+3)} \]

and \(G/N \not\in U^{(2d+3)} \) if \(N < W(G) \). Similarly let \(\{w_1 = 1, \ldots, w_L = 1\} \) be a basis for the \(d \)-variable laws of \(U \), and \(w(G) \) the corresponding word subgroup. Note that, since \(U^{(d)} \supset U^{(2d+3)} \), \(w(G) \leq W(G) \).

LEMMA 4.2. If \(G \in U \), \(w(G) = W(G) \).

Proof. Suppose there is \(G \in U \) such that \(w(G) < W(G) \), then,
(\star)
\[
\begin{aligned}
G/\omega(G) \in \mathbb{V} \cap \mathbb{U}^{(d)} \\
G/\omega(G) \notin \mathbb{V} \cap \mathbb{U}^{(2d+3)}.
\end{aligned}
\]

However
\[
\mathbb{V} \supset \mathbb{V} \cap \mathbb{U}^{(d)} \supset \mathbb{U},
\]
\[
\mathbb{V} \supset \mathbb{V} \cap \mathbb{U}^{(2d+3)} \supset \mathbb{U}
\]
and \(\mathbb{U} \) is maximal in \(\mathbb{V} \).

Moreover \(D \notin \mathbb{U}^{(d)} \) (since it is a \(d \)-generator group not in \(\mathbb{U} \)). It follows that
\[
\mathbb{V} \cap \mathbb{U}^{(d)} = \mathbb{U} = \mathbb{V} \cap \mathbb{U}^{(2d+3)},
\]
contradicting (\star). Hence \(\omega(G) \notin \mathbb{W}(G) \).

Lemma 4.3. If \(G \in \mathbb{V} \) then \(\mathbb{W}(G) \) is elementary abelian of exponent \(p \), where \(\omega D \) is a \(p \)-group.

Proof. \(D/\omega D \in \mathbb{U} \) (since \(D \) is critical and \(\mathbb{U} \) is maximal in \(\mathbb{V} \)) so \(\mathbb{W}(G) \leq \omega D \). But \(D \notin \mathbb{U}^{(2d+3)} \) so \(\mathbb{W}(D) \neq 1 \). It follows that \(\mathbb{W}(D) = \omega D \) is elementary abelian, and \(D \) satisfies the laws:
\[
[w_i, w_j] = 1, \quad w_i^p = 1 \ (i, j = 1, \ldots, k)
\]
where the sets of variables in \(w_i \) and \(w_j \) are disjoint.

Since \(\mathbb{U} \) also satisfies these laws, \(\mathbb{V} \) must satisfy them and hence \(\mathbb{W}(G) \) is elementary abelian for every \(G \in \mathbb{V} \).

Corollary 4.4. \(\mathbb{V} \) satisfies the \((2d)\)-variable laws
\[
[w_i, w_j] = 1, \quad w_i^p = 1 \ (i, j = 1, \ldots, l).
\]

Proof of Theorem B for abelian \(\omega D \). Let \(G \) be a finitely generated group in \(\mathbb{V} \). \(G/\mathbb{W}(G) \in \mathbb{U}^{(2d+3)} \) and so is finite. It follows that \(\mathbb{W}(G) \) is finitely generated and so is generated by a finite number of words of the form \(w_i^{g_1}, \ldots, g_{2d+3} \).

Let \(H = gp\{g_1, \ldots, g_{2d+3}\} \); then \(H \in \mathbb{V} \) and so \(\mathbb{W}(H) = \omega(H) \). Thus
Hence $W(G) = \omega(G)$ and $\omega(G)$ is also finitely generated. But the laws $[\omega_i, \omega_j] = 1$ and $\omega_i^p = 1$ hold in $\mathcal{V}(2d+3)$ (being $(2d)$-variable laws of \mathcal{V}). It follows that $\omega(G)$ is a finitely generated elementary abelian p-group and so is finite. Hence G is finite as required.

5. $\sigma(D)$ non-abelian

Consideration of Section 3 [8] shows that, for the purposes of proving local finiteness a (the number of variables in a basis for \mathcal{V}) can be replaced by $2d + 3$ (the number of variables needed to ensure local finiteness) and b (the size of a generating set for D which includes one for $\sigma(D)$) can be replaced by at worst $d + 1$, since it is sufficient to work with a generating set for D which contains one element from $\sigma(D)$. Thus, by the results of §3.4 of [8] we have that $\mathcal{V}_n(\mathcal{U})$ is locally finite, for

$$\max(2d+3, 2(d+1)+1) = 2d + 3.$$

References

University of Queensland,
St Lucia,
Queensland.