Locally finite varieties of groups arising from Cross varieties

Sheila Oates Macdonald

Abstract

Let $\underline{\underline{V}}$ be a Cross variety and let n be the least integer such that $\underline{\underline{V}}^{(n)}$ is locally finite; then $n \leq 2 d+3$ where d is an upper bound for the number of generators of certain critical groups in $\underline{\underline{V}}$.

1. Introduction

If $\underline{\underline{V}}$ is a Cross variety then, by the Oates-Powell Theorem, $\underline{\underline{V}}=\underline{\underline{V}}^{(n)}$ for some n and hence $\underline{\underline{V}}^{(n)}$ is locally finite, but, of course,
 is the variety generated by the dinedral group of order 2^{r+1} then $\underline{V}^{(2)}$
 general about the local finiteness of $\underline{\underline{V}}^{(n)}$? Certainly $\underline{\underline{V}}^{(1)}$ is not always locally finite [7], but I conjecture that $\underline{\underline{V}}^{(2)}$ is. Certain evidence to support this exists: R.M. Bryant [1] has shown that the two variable laws of $\operatorname{PSL}(2, q)$ imply local finiteness, thus extending the results of [2].

Both proofs of the Oates-Powell Theorem [8], [3] give values of n for which $\underline{\underline{V}}^{(n)}$ is locally finite, though these tend to be somewhat large. In this paper I extend the results of [8], $\S 3$, to prove:-

THEOREM A. Let \underline{V} be a Cross variety with a chain of subvarieties

$$
\underline{\underline{E}}=\underline{\underline{v}}_{0} \subset \underline{\underline{v}}_{1} \subset \ldots \subset \underline{\underline{v}}_{r}=\underline{\underline{v}},
$$

each maximal in the succeeding one, and let $\underline{\underline{V}}_{i}=\operatorname{var}\left(\mathrm{v}_{i-1}, D_{i}\right)$ where D_{i} is critical and can be generated by d (or fewer) elements; then $\underline{\underline{v}}^{(2 d+3)}$ is locally finite.
2. Notation

Notation and terminology follow that of Hanna Neumann [6].

3. Outline of proof

It is clearly sufficient to prove the following theorem:
THEOREM B. Let $\underline{\underline{V}}$ be a Cross variety and $\underline{\underline{U}}$ a maximal subvamiety of $\underline{\underline{V}}$ such that $\underline{\underline{V}}=\operatorname{var}(\underline{\underline{U}}, D)$ where D is a critical d-generator group. If $\underline{\underline{U}}^{(2 d+3)}$ is locally finite so is $\underline{\underline{V}}^{(2 d+3)}$.

Theorem A follows by induction on r from Theorem B, since it is trivially true for $\underline{\underline{E}}$.

The proof of Theorem B divides into two parts according as σD is abelian or non-abelian.
4. σD abelian

DEFINITION 4.1. Let $\left\{W_{1}=1, \ldots, W_{k}=1\right\}$ be a basis for the (2d+3)-variable laws of $\underline{\underline{U}}$ (by a result of B.H. Neumann [5] such a finite basis exists) and let $W(G)$ be the corresponding word subgroup, so that

$$
G / W(G) \in \underline{\underline{\mathrm{U}}}^{(2 d+3)}
$$

and $G / N \nmid \underline{\underline{\mathrm{U}}}^{(2 d+3)}$ if $N<W(G)$. Similarly let $\left\{w_{1}=1, \ldots, w_{\mathcal{L}}=1\right\}$ be a basis for the d-variable laws of $\underline{\underline{U}}$, and $\omega(G)$ the corresponding word subgroup. Note that, since $\underline{\underline{U}}^{(d)} \supseteq \underline{\underline{U}}^{(2 d+3)}, \quad w(G) \leq W(G)$.

LEMMA 4.2. If $G \in \underline{\underline{V}}, \quad w(G)=W(G)$.
Proof. Suppose there is $G \in \underline{\underline{V}}$ such that $w(G)<W(G)$, then,
(*)

$$
\left\{\begin{array}{l}
G / w(G) \in \underline{\underline{V}}^{\cap} \underline{\underline{U}}^{(d)} \text { and } \\
G / w(G) \notin \underline{\underline{\mathrm{V}} \cap \underline{\underline{U}}^{(2 d+3)}}
\end{array}\right.
$$

However

$$
\begin{aligned}
& \underline{\underline{v}} \supseteq \underline{\underline{v}} \cap \underline{\underline{\underline{u}}}^{(d)} \supseteq \underline{\underline{U}} \\
& \underline{\underline{v}} \supseteq \underline{\underline{v}} \cap \underline{\underline{u}}^{(2 d+3)} \supseteq \underline{\underline{U}}
\end{aligned}
$$

and $\underline{\underline{U}}$ is maximal in $\underline{\underline{V}}$.
Moreover $D \notin \underline{\underline{U}}^{(d)}$ (since it is a d-generator group not in $\underline{\underline{U}}$). It follows that
contradicting (*). Hence $w(G) \nmid W(G)$.
LEMMA 4.3. If $G \in \underline{\underline{V}}$ then $W(G)$ is elementary abelian of exponent p, where σD is a p-group.

Proof. $D / \sigma D \in \underline{\underline{U}}$ (since D is critical and $\underline{\underline{U}}$ is maximal in $\underline{\underline{V}}$) so $W(G) \leq \sigma D$. But $D \notin \underline{\underline{\mathrm{U}}}^{(2 d+3)}$ so $W(D) \neq 1$. It follows that $W(D)=\sigma D$ is elementary abelian, and D satisfies the laws:

$$
\left[W_{i}, W_{j}\right]=1, \quad W_{i}^{p}=1 \quad(i, j=1, \ldots, k)
$$

where the sets of variables in W_{i} and W_{j} are disjoint.
Since \underline{U} also satisfies these laws, $\underline{\underline{V}}$ must satisfy them and hence $W(G)$ is elementary abelian for every $G \in \underline{\underline{V}}$.

COROLLARY 4.4. $\underline{\underline{V}}$ satisfies the ((2d)-variable) loass
$\left[w_{i}, w_{j}\right]=1, \quad w_{i}^{p}=1 \quad(i, j=1, \ldots, 2)$.
Proof of Theorem B for abelian σD. Let G be a finitely generated group in $\underline{\underline{V}} \cdot G / W(G) \in \underline{\underline{U}}^{(2 d+3)}$ and so is finite. It follows that $W(G)$ is finitely generated and so is generated by a finite number of words of the form $W_{i}\left(g_{1}, \ldots, g_{2 d+3}\right)$.

Let $H=g p\left(g_{1}, \ldots, g_{2 d+3}\right)$; then $H \in \underline{\underline{V}}$ and so $W(H)=w(H)$. Thus

$$
W_{i}\left(g_{1}, \ldots, g_{2 d+3}\right) \in w(H) \leq w(G)
$$

Hence $W(G)=w(G)$ and $w(G)$ is also finitely generated. But the laws $\left[w_{i}, w_{j}\right]=1$ and $w_{i}^{p}=1$ hold in $\underline{\underline{V}}^{(2 d+3)}$ (being (2d)-variable laws of V). It follows that $\omega(G)$ is a finitely generated elementary abelian p-group and so is finite. Hence G is finite as required.

5. $\sigma(D)$ non-abelian

Consideration of Section 3 [8] shows that, for the purposes of proving local finiteness a (the number of variables in a basis for $\underline{\underline{U}}$) can be replaced by $2 d+3$ (the number of variables needed to ensure local finiteness) and b (the size of a generating set for D which includes one for σD) can be replaced by at worst $d+1$, since it is sufficient to work with a generating set for D which contains one element from σD. Thus, by the results of $\S 3.4$ of [8] we have that $\underline{V}^{(n)}$ is locally finite, for

$$
\max (2 d+3,2(d+1)+1)=2 d+3
$$

References

[1] Roger M. Bryant, "On the laws of certain linear groups", J. London Math. Soc. (to appear).
[2] R.M. Bryant and M.B. Powell, "Two-variable laws for $\operatorname{PSL}(2,5) "$, J. Austral. Math. Soc. 10 (1969), 499-502.
[3] L.G. Kovács and M.F. Newman, "Cross varieties of groups", Proc. Roy. Soc. Ser. A 292 (1966), 530-536.
[4] Sheila Oates Macdonald and Anne Penfold Street, "On laws in linear groups", (to appear).
[5] B.H. Neumann, "Identical relations in groups. I", Math. Ann. 114 (1937), 506-525.
[6] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[7] P.S. Novikov and S.I. Adjan, "Infinite periodic groups. I, II, III" (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 212-244, 251-524, 709-731.
[8] Sheila Oates and M.B. Powell, "Identical relations in finite groups", J. Algebra 1 (1964), 11-39.

University of Queensland, St Lucia,
Queensland.

