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1. Introduction

Nonlinear elliptic equations in the whole space have been widely investigated from several
points of view; we cite for instance the recent paper [11] and the references given therein.
Meaningful results are sometimes obtained by adapting and solving questions previously
examined only for equations in bounded domains. Since a branch of the current literature
on elliptic boundary-value problems in bounded domains deals with the existence of
solutions to equations having discontinuous nonlinearities (see [8,13,18] for a general
reference), it seems of interest to ask what happens whenever elliptic equations of such
a kind are considered in the entire space.

The aim of the present paper is to provide a contribution in the above-mentioned
direction. Accordingly, here, we study the semilinear elliptic equation

Cu = f(x,u), xeW1, (E)

where Cu := -Au + u, n ^ 3, and / : Rn x K -> R is assumed to be only directionally
continuous [4, p. 460], namely continuous with respect to a given cone of Rn+1. We look
for solutions of (E) that lie in iy2-p(Rn), p € ]n,+oo[.
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Obviously, directionally continuous functions need not be continuous in the usual sense,
on the contrary, they may have an uncountable (but of Lebesgue measure zero) set of
discontinuities. Nevertheless, in this setting equation (E) becomes easily solvable. Indeed,
adapting the approach previously developed in [4,5] for a class of ordinary differential
inclusions, we first consider a suitable upper semicontinuous convex-valued regularization
F(x,u) of f(x,u) and, via fixed-points arguments, we get a solution u £ W2'p(Wl) to
the elliptic differential inclusion Cu £ F(x,u), x £ Rn. Next, by using the directional
continuity of / , we prove that u also satisfies (E) (see Theorem 3.2).

To the best of our knowledge, very little is known about elliptic equations on the whole
space and with discontinuous nonlinear terms. Actually, we can only mention the papers
[2] and [8]. The nonlinearity treated in [2] does not depend on x £ K™ and possesses just
one discontinuity point. A quasilinear elliptic equation having a nonlinear term which
satisfies appropriate monotonicity conditions is studied in [8] through the upper and
lower solution method combined with a general fixed-point principle in partially ordered
sets. Simple examples show that Theorem 3.2 below and the results of [2,8] are mutually
independent.

We then present two applications. The first of them (Theorem 3.6) deals with the
problem

ueW2>p(Rn), Cu£G(x,u) inW1. (Pi)

Here, the right-hand side G takes closed values and is lower semicontinuous. Solutions
to (Pi) are easily obtained via Bressan's Directionally Continuous Selection Theorem [4,
Theorem 1] and our Theorem 3.2. The second application (Theorem 3.7) is an existence
result for the implicit problem

ueW2>p(Rn), i>(Cu)=<p(x,u) inRn, (P2)

where <p and tp are given continuous functions. Through Theorem 2.4 of [19] we reduce
(P2) to (Pi), the multi-function G now being a suitable multi-selection from (x,u) >->•
tp~1(ip(x, u)), and next apply Theorem 3.6. The case of bounded domains has previously
been investigated in [15,17] employing a different technique.

For the sake of completeness we finally consider, in Theorem 3.10, the situation when
K™ and C are, respectively, replaced by a bounded convex domain Q C W1 and a more
general strictly elliptic operator M, providing solutions of (E) that belong to W2'p(f2) D

^()
As regards the problem u £ W2'P{Q) D WQ'P{Q), MU = f(x,u) in Q, with highly

discontinuous / , existence results have recently been established in [3,16] (see also [17,18]
and the references cited therein) under other assumptions.

2. Basic definitions and preliminary results

Let X and Y be two non-empty sets. The symbols <£ : X —> 2Y mean that ^ is a
multi-function from X into Y, namely a function which assigns to each point x £ X a
non-empty subset <P(x) of Y. The graph of <P is the set {(x, y) £ X xY :y £ <P(x)}, while
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:= \JX£x$(x) represents the range of <£. For W C Y, define <P~(W) := {x e X :
<£(x) fl W ^ 0}. If (X, F) is a measurable space, Y is a topological space, and, for any
open subset W of Y, one has <P~(W) e F", we say that # is F-measurable. When X and
y are two topological spaces and <P~(W) is closed (respectively, open) for every closed
(open) set W C Y, the multi-function $ is called upper (lower) semicontinuous. In such
a case its graph is clearly closed in X x Y provided that #(x) is closed for all x £ X and
Y is regular [14, Theorem 7.1.15]. Conversely, if $ has a relatively compact range and a
closed graph, then it is also upper semicontinuous [14, Theorem 7.1.16].

The following result is an immediate consequence of Ky Fan's Fixed-Point Theorem
(see, for example, [3, Theorem 2.1]).

Theorem 2.1. Let X be a metrizable locally convex topological vector space and let
V be a non-empty, weakly compact, convex subset of X. Suppose <? is a multi-function
from V into itself with non-empty convex values and weakly sequentially closed graph.
Then there exists xo 6 V such that x0 6 $(xo).

Let h be a positive integer and let Mh be the /i-dimensional Euclidean space equipped
with the norm

h
\\w\\ := Y l I*"*!' w = { w 1 , w 2 , . . . , wh) 6 R \

t=i

If W is a subset of Rh, we write int(W) for the interior of W, dW for the boundary of W,
W for the closure of W, cb~{W) for the closed convex hull of W. Moreover, 'measurable'
always means Lebesgue measurable and m(W) denotes the measure of W. The symbol
C(W) indicates the Lebesgue cr-algebra of W, while, for any open set A C R, B(A)
is the Borel cr-algebra of A. When W is non-empty, w0 6 Kh, and S > 0, we define
d(wo, W) := iniwew \\w — wo\\ as well as B(x, S) := {w 6 R'1 : \\w — wo\\ < 8}.

The lemma below is easily obtained by using Theorem 7.16 of [23]. If w',w" G Rh,
w' = (w[,w'<2,...,w'h), w" = (w",w'2,...,w'h), we write w' < w" (respectively, w' ^ w")
whenever w^ < w" {w^ ^ w") for each i = l,2,...,h.

Lemma 2.2. Let A be a measurable subset ofRh. Then there exists a measurable set
A* C A having the following properties:

(Pl) m{A*) = m(A);

(p2) for every x € A*, there is a sequence {xk} Q A converging to x and such that
<xk, ke N.

From Vitali's Covering Theorem [20, Theorem 3.1, p. 109] and Lusin's Theorem [23,
Theorem 4.20] we infer the following lemma.

Lemma 2.3. Let /J, : Rh —» R be measurable. Then there exists a sequence {Ak} of
compact subsets ofM.11, no two of which have common points, so that

fcew

and n\Ak is continuous for all k € N.
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A non-empty, convex, closed set F C Rh is said to be a cone provided that JTl (-F) =
{0} and Xw 6 F for every A > 0, w € F. An elementary argument yields the following
lemma.

Lemma 2.4. Let n be a positive integer and let M > 0. Define

FM :={{x,z) e R n + 1 :a; = ( x i > x 2 , . . . ) x n ) , x4 ̂  0, t = 1 ,2 , . . . , n , |z | < M | | z | | } .

Then the set FM is a cone of Rn+1.

If / : Rh -> E, w0 € Rft, and r denotes a cone of Rh, we say that / is T-continuous at
w0 (see [4, p. 460]) when to every e > 0 there corresponds 5 > 0 such that if w £ B(u;o, <$)
and w — wo € F, then |/(iu) — /(u>o)| < £• The function / is called T-continuous when
it is -T-continuous at each point of M.h.

Obviously, /'-continuous functions need not be continuous in the usual sense, as the
next straightforward example shows.

Example 2.5. Define, for every (x,z) 6 E2, f{x,z) = 1 if z > x, f(x,z) = 2 other-
wise. The function / is discontinuous at all points of the kind (x,x), x € IR, whereas it
is rM-continuous with M e ]0,1[.

In spite of this we have the following lemma.

Lemma 2.6. Let f : Rn x E -> E be FM-continuous for some M > 0. Then the set

Df := {(x, z) € En x E : / is discontinuous at (x, z)}

has measure zero.

Proof. Arguing by contradiction, suppose m(Df) > 0 and write, for every z € E,
A(z) := {x€Rn : (x,z) e Df}. One clearly has

A(z) = |J Ak(z), (2.1)
fc€N

where
Ak(z) := {x € A(z) : limsup \f(w') - f(w")\ > (l/k)}.

w',w"—t(x,z)

Let us prove that m(A(z)) = 0. Pick k € N. Since / is rM-continuous, to each x =
(xi,a;2,... ,xn) there corresponds 8X > 0 such that if £ € nr=i]:E*>:I:'i + ̂ [> then

limsup \f(w')-f(w")\<l/k.
w',w"-+(£,z)

Define C(x,6) :=Yl"=1[xi,xi +5], x = (x1,x2,...,xn) € E n , 5 > 0, and set Q :=

{C(x, 6) : x E En , S € ]0, <5X[}. The family ^ covers E" in the sense of Vitali [20, p. 109].
Hence, by Vitali's Covering Theorem, there exist C C i " and a sequence {Cj} of sets
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in Q, no two of which have common points, satisfying m{C) = 0, Kn = (Uj^nCj) U C.
Taking into account that

Ak(z)C

we get m(Ak(z)) = 0 for all k e N. Consequently, owing to (2.1), m{A{z)) = 0. This
implies

m(Df) = [ m{A{z))dz = 0,
J

against the condition m(Df) > 0. •

3. Existence theorems

Henceforth we suppose n ^ 3 and denote by p any real number greater than n. Concerning
the function spaces we shall use, the notations are standard; so we refer for instance
to [6,12].

Let £ be the linear, second-order, elliptic differential operator defined by

Cu := —Au + u.

Prom [21, Proposition 4.3] it follows that £ is a one-to-one operator of W2'p(Kn) onto
LP(M"), and there exists a constant c, depending only on n and p, fulfilling

() (3.1)

for every u € W2>P(Rn). Set

7 = s u J M ^ m : u e ̂ (R»), « * O}. (3.2)

Lemma 3.1. Let u € W2>p(mn). Then

I I U IU ^I I U I U ( R ) ^ _ l

Moreover, for every x',x" € Rn, one has

(3-3)

\u{x') - u(x")\ ^ -^- l l^ul l^^j l lx ' - x"\\. (3.4)

Proof. We first note that if v e W1>p(Rn) then

ll^llv'.pcg"). (3-5)
_

as the proof of [6, Theorem IX.12] shows. Therefore, inequality (3.3) is a simple conse-
quence of (3.2). Next, pick x',x" 6 Mn. By Corollary IX.13 in [6] we have

\u(x')-u(x")\ ^ (^HuxJt-pnjW -x"\\,
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while gathering (3.5) and (3.2) yields

x J L ( R ) |l
i=l p ~ n

which completes the proof. D

To shorten notation, let us write

p — n

We are now in a position to formulate the main result of this paper.

Theorem 3.2. Suppose / : R" x R 4 K has the following properties.

(ai) There exist r > 0 and /x G Lp(Rn) satisfying sup|0|</3r \f(x, z)\ < n(x) for all

x € K™ as well as ||MIILP(K") < T-

(a2) The function f is FM-continuous, where M ̂  /?r.

Then the equation Cu = f(x,u), x 6 K™ has at least one solution u € W2'p{Wl) with
|£u(x)| ^ fi(x) almost everywhere in M.n.

Proof. Define, for (a;, z) 6 W1 x ] - /3r, j3r\,

F(x, z) = f | co({/(^ C) : U - x|| < 6, |C - z| < 6}).
(5>0

Obviously, F( i , z) is non-empty, because f(x, z) e F(x, z), convex, and closed. Moreover,
owing to hypothesis (ai), the inclusion

F(x,z)C[-f,(x),»(x)}, (x,z)eWlx]-(3r,0r[, (3.6)

holds. Hence, by Lemma 2.3, we obtain a set A C Ru together with a sequence {Ak} of
compact subsets of Rn, no two of which have common points, so that

m(A) = 0, Rn = ( | J Ak) U A, (3.7)

and the multi-function
Fk ••= F\AkX]-pripr[

has a bounded range for each k € N.
Now, pick (x,z) 6 4̂̂  x ] — (3r, @r[, j g l , and choose two sequences {(x^,^)} C

Ak x ] — /?r, (3r[, {yh} C M fulfilling the conditions:

Vh € Fk(xh, zh), /i£N; lim (xh, zh) = (x, z); lim yh = y.
h—too n—too

https://doi.org/10.1017/S0013091500021180 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021180


Elliptic problems in Mn with discontinuous nonlinearities 551

Let us prove that y € Fk{x, z). If, on the contrary, y g Fk(x, z), then

y £ co({/K, 0 : U - *ll < 6, K - A < <*}) (3-8)

for some 6 > 0. Since

{/(£, 0 : U -xh\\< 6/2, IC - ZH\ < 6/2} C {/(£, C) : IK - *|| < 6, \( - z\ < 5}

whenever h is sufficiently large and, moreover,

Vh e co ({ / (e , 0 : Ik -*h\\< S/2, \C-Zh\< S/2})

for all h € N, we get

which contradicts (3.8). Therefore, the multi-function F^ has a closed graph and a
bounded range. Consequently, it is upper semicontinuous. By [9, Corollary III.3] we
then infer that JF^ is C{Ak) ® BQ — /3r,/3r[)-measurable.

The preceding arguments, combined with Example 1.3 of [10], produce two C(Ak) ®
B(] - (3r, ,5r[)-measurable functions <pk,i>k '• Ak x ] — Pr,(2r[-+ K having the properties:

Fk(x, z) = [<pk(x, z), V>fc(x, z)], in Ak x ] - 0r, 0r[; (3.9)

ifk is lower semicontinuous, while tpk is upper semicontinuous.
Define

V = {v € Lp(Rn) : \v(x)\ ^ fj,(x) for almost every x € W1}.

Evidently, V is a non-empty, convex, weakly compact subset of Lp(Rn). Furthermore, on
account of Lemma 3.1 and assumption (ai), for any v € V one has

Hence, it makes sense to write

$(u) = {w € Lp(Kn) : t«(i) e ir(x,£~1(w)(a;)) almost everywhere in K"}, v e V.

We claim that $(v) is non-empty. Indeed, the multi-function x <-¥ F(x,C~1(v)(x)),
x € Kn, is measurable because, owing to [22, Theorem 1], the same holds for x <-¥
Fk(x,C~1(v)(x)), x e Ak, k € N. So, by Theorem III.6 of [9], there is a measurable
function w : Rn -t R such that w(x) e F(x,C~l(v)(x)) for almost every x e Kn.
Inclusion (3.6) leads to w € <&(v), that is ${v) ^ 0.

Clearly, <P(v) is also convex. Moreover, the multi-function # has a weakly sequentially
closed graph. To see this, pick v,w € V and choose two sequences {VH}, {wh} in V
fulfilling u>h S $(vh) for all h € N as well as lim^-Kxa ^h — v> Vvaih-*oo ^h = w weakly in
L"(Kn). Identity (3.9) implies

<Pk{x,C-\vh){x)) < wh(x) l
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almost everywhere in Ak, while the weak convergence of {u>h} to w produces

liminf / [<pk{x,£~l(vh)(x)) — w(x)]dx < liminf / \wh{x) — w(x)]dx = 0
h->oo Jg h-*oo JE

for any non-empty measurable set E C Ak- Bearing in mind Fatou's Lemma, we get

\iminf (fk(x,£~*(vh)(x)) — w(x) ^ 0, almost everywhere in Ak- (3.10)
h—>oo

Since, by (3.1), Crx is a continuous linear operator from W(Rn) into W2'p(Rn), the
sequence {C~l(vh)} converges weakly to C~1(v) in W2'p(Rn). Taking a subsequence if
necessary, we may suppose that lim/j_>oo£~1(u^)(a;) = C~1(v)(x) at almost all points
x £ M.n\ vide [6, Remark 7, p. 153]. Therefore, due to (3.10) and the lower semicontinuity
of the function z i-» <pk(x, z), x 6 Ak,

ipk{x,C~x(v)(x)) — w(x) ^ 0, almost everywhere in Ak-

The same arguments, with ipk in place of ipk, yield

Consequently, in view of (3.9), w{x) e Fk{x,C~1{v){x)) for almost all x G Ak and each
fcgN. This implies w(x) 6 F(x,C~1(v)(x)) almost everywhere in Rn, namely w 6 <I>(v).

We have thus proved that all the hypotheses of Theorem 2.1 hold. So, there exists a
function v 6 V complying with v e <P(i>). The function u = £-1(i>) lies in W2'p(Rn) and
satisfies |£w(:r)| < fi(x) besides

Cu(x) e F(x,u(x)), for almost all x £ Rn. (3.11)

Fix fceN and denote by Bk the set of points x € Ak with the following properties,

(i) Cu(x) eF(x,u(x)).

(ii) There is a sequence {x^} Q Ak such that x^+i < x/i, Cu(xh) 6 F{xh,u{xh)) for all
h eN, lim/i-xx, xh — x, lim^-j.^ Cu{xh) = Cu(x).

If B'k = {x € Ak : (i) holds}, then, by (3.11),

m{B'k)=m{Ak). (3.12)

Making use of Lusin's Theorem, to each e > 0 there corresponds a measurable set
B'ke C B'k such that

m(BU > m(B'k) - e, (3.13)

and Cu\B'k c is continuous. Lemma 2.2 gives a measurable subset B*k t of B'k E fulfilling
the conditions: m(B*k £) = m(B'k £); B*ke C Bk. Hence, owing to (3.12) and (3.13),
m(Bk) > m(Ak) — e. As e was arbitrary, we actually have

m{Ak) = m{Bk), keN.
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On account of the above identity and (3.7), the proof is completed by showing that
Cu(x) = f(x,u(x)) for every x € Bk, k € N. Assume, on the contrary, that there exist
k € N, x e Bk complying with \Cu(x) — f(x,u(x))\ > 0, and write

e~\Cu{x)-f{x,u{x))\. (3.14)

Hypothesis (a2) yields 5 > 0 such that |/(£,C) ~ f(x,u(x))\ < e/2 whenever (£,C) 6
Rn x R, ||£ - x|| < 5, (£,<) - [x,z) € rM. Pick the sequence {xh} given by (ii), and
choose h € N for which ||x^ — x\\ < 8,

\Cu{xh) - Cu{x)\ < \e. (3.15)

From Lemma 3.1 and assumptions (ai) and (a2), we infer \u(xh) — u(x)\ < M\\XH — x\\.
Therefore,

Cu{xh) e F{xh,u{xh)) C {y e R : \y - f{x, u(x))\ < e/2}.

Owing to (3.15) this implies \Cu(x) — f(x,u(x))\ < e, which contradicts (3.14). D

Remark 3.3. It is worth noting that, since p G ]n, +oo[, the solution u we find
satisfies the condition

lim u(x) = 0.
||x||->oo

Moreover, by virtue of [21, Proposition 4.3], one has

essinfujjii^ftt^z) > 0, for each R > 0

every time that the function / turns out non-negative and not identically zero in Rn x R.

Remark 3.4. Hypothesis (ai) requires that / depends on x € Kn. Nevertheless, sev-
eral natural classes of possibly discontinuous nonlinearities fulfil (ai) and (a2). Here is
an example.

Example 3.5. Pick fx e L^R"), 77 6 C°(Rn), a,b e C°(R), and define, for every
(x, z) € Rn x R,

/2(x,,):={a(2)' *(*'*>6^'
^6(z), otherwise,

where Av := {(x,z) e I " x 1 : 2 ̂  v(x)}- Assume that:

(a'x) there exists r > 0 satisfying ||/i||LP(3")Sup|2|</3r(|a(2:)| + |6(.z)|) < r;

^) limh-K» fi(xh) = fi{x) as soon as x ̂  i/,, h G N, and lim/^oo Xh = x;

(af3) there is M ^ (3r such that to each w € dAv there corresponds 6 > 0 for which
w + B(0,S)nrM CAV.

Then the function f(x,z) := fi(x)f2(x,z), (x,z) € Rn x R, complies with (ai) and
of Theorem 3.2.
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Let us next present two simple applications of the above result. The first of them
represents an existence theorem for a class of elliptic differential inclusions on the whole
space and with lower semicontinuous right-hand sides.

Theorem 3.6. Suppose G is a closed-valued lower semicontinuous multi-function
from Rn x R into R and there are r > 0, /x : 1 " —> R lower semicontinuous satisfy-
ing |HI/>(R") <r as well as

sup d(0, G(x, z)) < fi(x), for all x G Rn. (3.16)

Then there exists a function u € W2'p(Rn) such that Cu{x) G G(x,u(x)) almost every-
where in Rn.

Proof. Define, for (x, z ) e l " x M,

- \G{x,z)nB(0,fi{x)), if (x,z)emnx[-/3r,f3r},
Lr(x, z) := <

IS(0,/i(x)), otherwise.

Obviously, because of (3.16), the set G(x, z) is non-empty and compact. Since, by Proposi-
tion 5 in [1, p. 44], the multi-function (x, z) i-» G{x, z)nB(0, n(x)), (x, z) G R™ x [-/3r, 0r],
is lower semicontinuous, a standard argument (see, for example, [10, §2]) ensures that
G : Rn x R -4 2K enjoys the same property.

Now, fix any M ^ /3r. Applying Theorem 1 of [4] to G yields a /nM-continuous function
J : R " X R - > 1 which fulfils the following conditions:

g(x,z) e G{x,z), in Rn x [-f3r,0r]; sup \g(x,z)\ ^ fi(x), for all x 6 Kn.
\z\<0r

Prom Theorem 3.2 we then obtain a solution u G W2'p(Wl) of the equation Cu = g(x,u),
x G R™, such that |£u(x)| ^ /x(x) almost everywhere in R". Owing to Lemma 3.1,
the preceding inequality forces ||u||z,«>(Rn) < Pr- This immediately leads to the desired
conclusion. D

The second application we wish to point out is concerned with implicit elliptic equa-
tions of the type ip(Cu) — cp(x, u) on the whole space.

Theorem 3.7. Let <p : Rn x R -4 R be continuous, let Y be a closed real interval, and
let ip : Y -»• R be continuous. Assume that <p{Rn x R) C tp(Y), for each a G int(^(y))
the set tp~1(a) has empty interior, and, moreover, there exist r > 0, fj, : Rn —> R lower
semicontinuous satisfying ||/i||z/P(R-) < r besides

i)-l{ip{x,z)) C B{0,fj.(x)), for all {x,z) G Rn x [-0r,0r].

Then the equation %p(Cu) = ip(x,u), x G R™, has at least one solution u belonging to
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Proof. Theorem 2.4 in [19] provides a set Y* C Y such that a t-+ i>~l{o) n Y*,
a € ^ (y) , takes non-empty closed values and is lower semicontinuous.

Write, for (x, z) € Rn x R,

JV-^foz^ny* , if (x,z) € Rn x [/?r,/3r],
1R, otherwise.

The multi-function G : Rn x R —> 2R so denned turns out clearly lower semicontinuous.
Due to the assumptions, the inclusion

G(x, z) C B(0, n(x)), (x, z) e Rn x [-/?r, /3r] (3.17)

holds. Therefore, by Theorem 3.6, there exists a function u € W2:P(Wl) complying with
Cu(x) e G(x,u(x)) almost everywhere in Rn. Since Lemma 3.1 and (3.17) yield

we actually have Cu(x) € ip~1(<p(x,u(x)) for almost all x 6 Rn, which completes the
proof. •

Remark 3.8. In the case of bounded domains, results somewhat similar to Theo-
rems 3.6 and 3.7 have previously been established, inside a different abstract framework,
by the second author [15].

For the sake of completeness we finally consider the situation when R" and C are,
respectively, replaced with a bounded convex domain J? C Rn having a boundary of
class C1'1 and the more general strictly elliptic operator

n n

Mu = — y a,ij{x)uXiXj + y bi(x)uXi + c{x)u,

where a.ij e C°(Q) and a,ij = ajt, i,j = 1,2, . . . , n ; 6* e L°°(Q), i = 1,2, . . . , n ; c €

L°°{O) and c(x) > 0 almost everywhere in J?.

Theorem 9.15 of [12] ensures tha t M : W2>P(Q)nWQ'P(Q) -> Lp(f2) is bijective, while

Lemma 9.17 in [12] gives a constant c fulfilling

for every u £ W2'P{Q) n Wo
llP(J?). Set

: u e W2tP{n) n

and write d(H) for the diameter of H. Reasoning as in the proof of Lemma 3.1, with the
inequality (vide [7, Theorem 1])

m a x { l j
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in place of (3.5), we achieve the lemma below, where

-1/p\

Lemma 3.9. Ifu € W2<p{ft) f~l Wl'p{ft), then

Moreover, for every x', x" e ft, one has

\u{x') - u{x")\ ^ P0\\Mu\\LP[n)\\x' - x"\\.

Now, arguments somewhat similar to those employed in establishing Theorem 3.2
produce the following result.

Theorem 3.10. Suppose f : ft x E -» K has the following properties.

(bi) There are r > 0 and fi 6 LP{Q) satisfying sup|z|</3r |/(a;, z)| ^ /x(x) for all x € Q
as well as ||^IUp(n) < r.

The function f is FM-continuous, with M ^ for.

Then there exists a function u 6 W2'P(Q) D W0
1>p(i?) such that Mu(x) = f(x,u(x)) and

\Mu(x)\ < fi(x) almost everywhere in Q.

Remark 3.11. Because of Lemma 2.6, hypothesis (b2) clearly forces m{Dj) = 0,
where

Df := {(x, z) G ft x R : / is discontinuous at (x, z)}.

Remark 3.12. Concerning the problem u € W2'p(ft) n WQ'P(Q), MU = f(x,u) in
ft, with highly discontinuous / , existence results have recently been obtained in [3,16]
(see also [17,18] and references cited therein) by adopting, instead of (b2), the following
assumptions:

c(x) = 0 for almost all x € ft;

(C2) there is i?o Q ft such that m(fto) = 0 and the set

D*j := | J {z € K : f(x, •) is discontinuous at 2}

has measure zero;

(C3) for almost every x € ft and very z € Dp the condition

^ " L , , [nL c /(*> 0 < 0 < lim sup /(x, C)

implies /(x, ̂ ) = 0.
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We note that, in this setting, neither can the simpler hypothesis rn(Df) = 0 take the
place of (C2) nor may (C3) be omitted, as Examples 4.3 of [17] and 3.3 of [16], respectively,
show. Nevertheless, Theorem 3.6 provides a class of functions / , which, in spite of their
possibly large set of discontinuities, allow us to dispense with (ci)-(c3) when solving the
above-mentioned problem.
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