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Abstract

We consider finite groups with the property that any proper factor can be generated by a smaller number
of elements than the group itself. We study some problems related with the probability of generating
these groups with a given number of elements.

2000 Mathematics subject classification: primary 20B05, 20P05.

1. Introduction

We denote by .Z the set of finite groups L with the following properties: L has a unique
minimal normal subgroup, say M, and if M is abelian then M has a complement in
L. Let Lo = L/M and for any positive integer ¢ define L, = {(/;, ..., ) e L' | ], =
---=1, mod M}.

Denote by d(G) the minimal number of generators of a finite group G; in [2] it
is proved that for any nontrivial finite group G there exists L € .Z and a positive
integer ¢ such that L, is an epimorphic image of G and d(G) = d(L,) > d(L,_,).
In particular, if G is a minimal d-generated group (meaning by this expression that
d(G) =dbutd(G/N) < d whenever N is a nontrivial normal subgroup of G) then
G = L, for a suitable choice of L € ¥ and t € N. This motivates our interest in the
generation properties of groups L,; results in this direction can be applied to obtain
more general results on the generation of finite groups.
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For any finite group G, let ¢5(s) denote the number of s-bases, that is, ordered s-
tuples (g1, - - . , g&s) of elements of G that generate G. The number P;(s) = ¢g(s)/|G|*
gives the probability that s randomly chosen elements of G generate G. Recently Pak
(10] introduced the following interesting conjecture: given a real number « with
0 < a < 1 there exists an absolute constant B such that for any finite group G, if
s > Bd(G)loglog |G| then Ps(s) > a.

One of the aims of this paper is to analyse the behaviour of groups L, with respect
to this conjecture. We give an evidence for the conjecture proving that if s is large
enough with respect to d(L,) loglog |L,| and the probability of generating L, with s
element is high, then the probability of generating L, with s elements is also high.
To state this result in a more precise way we recall a definition. If G is a finite
group and N is a normal subgroup of G, let Pg y(s) = Ps(s)/Pg,n(s). This number
is the probability that an s-tuple generates G, given that it generates G modulo N.
IfL € Zand M = socL thensocL, = M'" and L,/socL, = L;. Therefore,
Py, (s) = P (s) Pr, socr,(s). Our main result is the following:

THEOREM 1. Given a real number a with 0 < a < 1 there exist two absolute
constants By and B, such that forany L € & andanyt € N
(a) if socL isabelianand s > B, + d(L,), then Pp, 1, (5) > «;
(b) if soc L is non abelian and s > ,log(t + 1), then Py, 1, (s) > c.

This is a consequence of two more precise results. Let %, be the set of finite
groups L € & satisfying the property that soc L is abelian and let & = -Z \ L.

THEOREM 2. Forany L € %, andanyt,u € N
Ppocr,(d(L) +u) > 1-27%

THEOREM 3. There exist two positive real numbers n, and 1, such that for any
L e Zonwandanyt,u €N, if P, (u) > O then

me
2mu”

The second problem that we want to discuss in this paper is the following: suppose
X,Y € & withsoc X = soc Y and let t € N; can we say something about d(Y;) if
we know d(X,)? A partial answer follows from [7, Proposition 1]: if X, Y € %,
socX =socY and X < Y then, forany ¢ € N, d(Y¥;) < max(d(Yp),d(X,) + 1). In
this paper we prove a more general result.

PLsocr,(u) 21—

THEOREM 4. There exists a positive integer r with the following property: for any
pair of groups X, Y € Ly with soc X = soc Y and any non negative integer t,
d(Y)) < max(d(Yo),d(X,) + r).
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Note that one cannot expect to bound d(Y;) only as a function of d(X,) but inde-
pendently from d(Y;). As we will show in Section 4, for any ¢, u € N, there exists
a pair X, Y of groups in Z,n With soc X =soc Y, d(X,) = 2, d(Y,) > d(}p) = u.
It is also possible to construct examples with d(Y;) > max(d(Y,), d(X,)) while we
know no example with d(Y,) > max(d(Yp), d(X,) + 1). Therefore we can conjecture
that one can take r = 1 in Theorem 4. We prove that this is true asymptotically.

THEOREM 5. There exists a positive real number & with the following property: for
any pair of groups X, Y € Lonay With soc X = soc Y and any nonnegative integer t,
if|soc X| > ¢, then d(Y,) < max(d(Yp), d(X,) + 1).

There are no similar results for pairs X, Y of groups in .%,,. In Section 4, for any
positive integers n, u, we construct X, Y € %, with soc X = socY, d(Xy) = 2,
dXw) =u+1,d(Y5) =1,d(Y.u) =nu+ 1l

2. Preliminary results

In this section we describe how the number P, (s) can be computed.

First assume that L € %,;,. In this case the socle M of L has a complement H in L.
Of course H is isomorphic to an irreducible subgroup of Aut M. Define the numbers
qu. ., 5. and 6, as follows: g, = |Endy M|, q/* = M|, q;* = |H'(H, M)|, 6, =0
or 1 according as M is trivial or not. Moreover, let h; , = 6, + [(t + s.)/r.], where
[x] denotes the smallest integer greater or equal x. From [S, Lemma 2] it follows:

PROPOSITION 6. If L € %, then forany s, t € N

P, (s) = P, (s) H (1 _ ql’;L(gL—.Y)+.\‘L+i)‘

O<i<t—1
In particular, d(L,) = max{d(Lo), hi,).

If L € Zyonay and M = soc L, we may identify L with a subgroup of AutM.
Let y; = [Cawm(L/M)| and for any s € N define ¥, (s) = ¢.(5)/y.¢dr/m(s). The
number ¥, (s) plays an important role in the computation of Pp, .1, (s). The following
result generalises a formula ([6, Proposition 9]) about the probability of generating a
direct product of isomorphic non abelian finite simple groups.

PROPOSITION 7. If L € Z,onany then for any s, t € N with s > d(Ly),

PL(5) = Pry($)Praccr ()" [] (1— n//:(s)>'

I<i<t—1
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PROOF. Let M = soc L and C;, = Cauu(L/M). As it is proved in [2] the group

L, is generated by s elements gy = (xy1, ..., %), ..., 8 = (Xs1,...,%y) if and
only if:

(@) forl <i<s, (xy,...,xs)1s an s-basis of L;

b ifl<i<j=<txy,....,x5) &= (..., x;).

So, to choose gy, ..., g, generating L, we first choose an s-basis (x,;, ..., x,,) of L,
and this can be done in exactly ¢, (s) different ways. Let Q,, ., ={(n,...,y) €
Llyi=xy modM,1 <i<s,and(y,...,y,) =L}. Ifi>1, (x;,...,%x5) €
Qo \(MU---UT, ). By aresult of Gaschiitz [4] |2, ..,| = ¢L(s)/brm(s).
Moreover, the sets I';, 1 < i < ¢, are pairwise disjoint and, being (xy;, ..., x,) = L, it
must be |I';| = |CL| = y.. Therefore, if i > 1, (x4, ..., x,;) can be chosen in exactly

[@L(s)/ LM (s)] — (i — 1)y, different ways. So we have

L(s) &L(s) . )
P (s) = -
L) =Ly 151;,[_, (¢L,M<s> i

_ )1 — i
= Pr(s)Pp socr(—5) l_[ (1 1/fl_(S))

I<i<e—1

= PLO(S)PL‘socL(S)' H <1 - lljl(s)) -
L

I<i<t—1

COROLLARY 8. Assume L € Lyona, 5 > max(2,d(Ly)); d(L,) < s if and only if
t < Y(s).

PROOF. Suppose s > 2 and P (s) > O; by the main theorem in [8] d(L) =
max(2, d(Lg)), so it follows that P, soc1(s) = Pr(s)/P.,(s) > 0. Therefore, from
Proposition 7, P, (s) > Oifand only if 1 > i/ (s) for 1 < i <t — 1 and this is
equivalent to the condition ¥, (s) > ¢. O

A bound for ¥, (s) can be deduced from the following result ([9, Corollary 1.2}).

PROPOSITION 9. There exists an absolute constant y, 0 < y < 1, such that for any
L € Zyonab and any integer s > 2 we have ¢ (s) = y ¢, (s)|soc L|*.

PROPOSITION 10. Suppose that L € Lo and that M = socL = §" with S a
non abelian simple group. If v is the constant which appears in the statement of
Proposition 9, then for any s > max(2, d(Ly)) we have

yiMP!

KA N < M.Y—l‘
lOut S| < Yu(s) = M|

PROOF. By Proposition 9, y{M|* < ¢,(s)/dL,m(s) < [M]*. Moreover, from the
proof of [3, Lemma 1], [M| < |C,| < n|S|"!| Aut S|. O

https://doi.org/10.1017/51446788700002822 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002822

(5] Minimal d-generated groups 181
3. Proof of Theorem 1

In this section, we deal with the proofs of Theorem 2 and Theorem 3; Theorem 1
follows immediately from these two results.
First, in order to prove Theorem 2, we need the following lemma.

LEMMA 11. Forany L € %, andt,u € N,
P (hp,+u) > P(hy, +u)y(l—q.™").

PROOF. By Proposition 6 and noticing that r; (8, — h; , — u) + 5, < —t — rpu, if
hy,+ u > d(Ly) we have

PL,,SOCL,(hL.l + u) > l_[ (1 _ qZL(gL—hL.:—u)+AYL+i) > I—[ (l o q;rLu—l+i)

O<i<t—1 O<i<r—1
~rpu—t+i ~rou -j
>1- E q; >1- ’n § q.
O<i<r—1 l<j=t
~rpu ~J —reu
>1—-gq, E g =1—q " a
1<j <00

PROOF OF THEOREM 2. It follows immediately from Lemma 11, since, by Propo-
sition 6, h; , < d(L,). O

By [1, Theorem A}, if L € %, then s, < r. and this implies A, , < ¢t + 1.
Therefore from Lemma 11 we also deduce:

COROLLARY 12. Forany L € %y ands € N, Py (s) > P (s)(1 — 27677,

Now, we are left with the non abelian case. Again, to prove Theorem 3, we start
with two lemmas:

LEMMA 13. Suppose that L € Zonas and let M = soc L. There exist two positive
constants oy and o, such that for any u € N with u > max(2, d(Ly)),

Poyu(u)>1—o0,/e™".

PROOF. There exist a positive integer n and a non abelian simple group S such that
M = socL = §". Denote by S, the subset of S = M consisting of elements x =
(L xy,...,x,) and let ¢; : N, (S;) — Aut S be the map induced by the conjugation
action of N, (S,) on §. Select g, .... g, in L such that {(g,..., g,, M) = L. From
[9, Lemma 2.12] it follows:

oL (u)

3 2
> || — [MP7? — | M|,
rym(u)
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where Q, = {(m,, ..., m,) € M | (Ngm,...
u,define A;; = {(x,y) € M?* | (Nigx 0,1 (S1))91 > S}.

We can repeat the arguments used in [9, Lemma 2.10] and prove that |A; ;| >
c;|M|?, where c; is the positive constant which appears in [9, Proposition 2.7]. We
note that (m,, ..., m,) is an element of Q, if there exists at least a pair (m;,, my;,,) €
Asziy12i42, Where 0 < i < [u/2] — 1.

It follows that

1l =M =[] (MP=1Axm2i2)
0<i<[u/2]-1

> M~ [ (IMP = clIMP) = M1 (1= (1= ¢)*).

O<i<lu/2}-1

ey (SN > S} Forany 1 <i<j <

So we have
|M|3/2 |M|l9/20

M+ M|

Poy(u) >1—(1—c)? -
By [9, Proposition 2.7] we derive that ¢* = inf| ¢, is a positive number. Setn = 1 —c*.
Then we have

(1 — )2 < plwr2l < pui=1,

Moreover, |M| > 60 > ¢* and u > 2 imply that

lMlS/Z—u < e—u/2’ lMll9/20—u/2 < e19/5—2u < 64/5_“/2.

Seto; = 7' + 1 + ¢*3 and 0, = min(1/2, —log n/2) and conclude
PL.M(“) > 1-— n—lnu/Z _ e—u/Z — e4/5e—u/2

> 1-— n—le—uaz —e 4o _ e4/5e—u¢72 > 1-— Ule——u@. O
LEMMA 14. Suppose that L € Zona» and that M = soc L = S" with S a non
abelian simple group. For any t,u € Nwithu > 2 ‘
2

i
1- - —,
[ ( m(u)) Z 1T e

I<i<i—1]

where y is the constant which appears in the statement of Proposition 9.
PROOE. By Proposition 10 and noticing that n| Out S| < |S"| = |M| we have
. . _ 2
l—l (l— l )21_lei5r—ll_>_l_(t 1)
VY (u) Vi (u) Y (u)

t<i<r-1
—1)2 132 2
> _(t 1)n|0utS|2 .—(t 1) S - t ‘
yIM]«-! yIM]“2 y2u4-2

d
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PROOF OF THEOREM 3. It follows immediately from Lemma 13, Lemma 14 and
Proposition 7. Precisely, noticing that o,u < u — 1 we have

ot
PLy) >1——,
20’2“
: 2y1g? 2172
1<i<i—1 1AZ’L(u) Qu-1 Doru
and hence
2y~ 12 t 2172
Ppser, () > 1— lzo_““”_ S1- V‘l#_)_ o

4. Proof of Theorem 4 and Theorem 5

In this section we consider two groups X and Y € % Such that soc X =
soc Y. It seems interesting to compare d(X,) and d(Y,). As already observed in the
introduction, X < Y implies d(Y,) < max(d(}p), d(X,) + 1) ([7]).

One cannot expect to have d(Y,) < max(d(Y;), d(X,)) for any pair of groups
X, Y € Lonaw With soc X = soc Y. For example, let X = PGL(2,7), Y = PSL(2,7);
it can be computed that ¥y (2) = 69 and ¥y (2) = 57, hence, by Corollary 8, d(Ysg) =
3 while d(Xsg) = 2. However, we conjecture that d(Y,) < max(d(Yy),d(X,) + 1).
From the proof of Theorem 4, one can deduce that to prove this conjecture if suffices
to show that y > 1/4/60, where y is the constant which appears in the statement of
Proposition 9.

We explicitly observe that, in general, it is not true neither that if X > Y then
d(X,) = d(Y,) (see the previous example) nor the converse. If we take Y = PSU(3, 3)
and X = Aut(Y), we obtain ¥y (2) = 2784 and ¥x (2) = 2772,sothat2 = d(Yy773) <
d(X2m) = 3.

LEMMA 15. Let X, Y € Zhonm» and assume soc X = soc Y = §" with S a finite
non abelian simple group, and let r,t € N. If d(Y,) > max(d(}Yy),d(X,) + r)
then n|Out §|/|SI™" > y, where y is the constant which appears in the statement of
Proposition 9.

PROOF. Since max(2, d(X,)) < d(X,), by Corollary 8 we have t < yx(d(X))).
On the other hand, again by Corollary 8, d(Y,) > max(d(Yy), d(X,) + r) implies
t > Yy(d(X,) + r). Using Proposition 10 we deduce

ylSIn(d(X,)-l—r—l)
————— < Uy(d(X) + 1) < 1 < Yx(d(X))) < |S|MI7D
n|Out S}
which implies y|S|™" < n{Out §|. ]
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PROOF OF THEOREM 4. Let r be the smallest integer satisfying r > —log, y+1/2.
Suppose by contradiction that there exist X, Y € Zonb and ¢ € N such that soc X =
soc Y and d(Y;) > max(d(Yy),d(X,y+r). By Lemma 15, if soc X = S$" with S anon
abelian simple group, then y < n|Out §|/|S|™". On the other hand, |Out S| < /]S]|
(see [9, Proposition 2.6]) and | S| > 60, so

n|Out S| < | Out S| < ViN| <
1S IS |S1”

y < 601/2_',

in contradiction with the choice of r. d

LEMMA 16. Let M = S" be a direct product of isomorphic non abelian simple
groups, then limy_, o n| Out S|/|S|" = 0.

PROOF. By [9, Proposition 2.6]

n{Out S| - n./1S| < VINE < 1
IS* = ASIr T (ST T VM| o

PROOF OF THEOREM 5. By Lemma 16 there exists § such that if M = §" is a direct
product of isomorphic non abelian simple groups and |M| > ¢, then n| Out S{/|M| <
¥. Suppose by contradiction that there exist X, Y € L and 1 € N satisfying
socX =socY = $", |S"| > ¢ and d(Y,) > max(d(Yy), d(X,) + 1). By Lemma 15,
y < n|Out S|/|S|", against the choice of ¢. O]

We have proved that if X, Y € Zonaw With socX = soc Y, then d(Y,) can be
bounded in terms of d(X,) and d(Y,). The next result shows that it is impossible to
bound d(Y;) from the knowledge of d(X,) but independently from d(Y;).

PROPOSITION 17. For any t,u € N, there exists a pair X, Y of groups in Zonab
withsoc X =soc Y, d(X,) =2, d(Y,) > d(¥y) = u.

PROOE. Let A be an elementary abelian 2-group of rank u and let S be a finite non
abelian simple group with |S| > (2¢/y)?%; A can be viewed as a regular permutation
group of degree 2“. Consider the wreath products X = §:Sym(2*) and ¥ = S: A.
Of course X, Y € ZLoons and soc X = soc Y = §%. By Proposition 10

U2 > IS vISE _ y/ISI -
EZ uouts] T IS T 2+ T

hence, by Corollary 8, d(X,) < 2. On the other hand, d(Y,) = d(Y¥;) = u. O

'
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Finally we note that the previous results don’t remain true for pairs of groups in ..
Indeed, givenn € Nthereexist X, Y € %, withsoc X = soc Y, max(d(Xy), d(}p)) <
2butd(Y,,) — d(X,,) = u(n — 1) for any positive integer u. Let p be an odd prime
and let V be a vector space of dimension n over the field GF(p). Moreover, let
H, = GL(n, p) and let H, be the subgroup of GL(n, p) generated by a Singer
cycle of order p" — 1. Take the semidirect products X = VH, and ¥ = VH,.
Note that X, Y € %, with socX = socY = V and that d(Xo) = d(H,) = 2,
d(Yy) = d(H,) = 1. Since Endy, V = GF(p) and Endy, V = GF(p"), we have
ry = nand ry = 1. Moreover, H'(H,, V) = H'(H,, V) = 0so sy = sy = 0.
For any positive integer u, from Proposition 6, we deduce d(X,,) = hxn =1 + u,
d(Yow) = hym =1+ nu.
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