J. Austral. Math. Soc. (Series A) 35 (1983), 200-210

ADDITION OF AN IDENTITY TO AN ORDERED BANACH SPACE

DEREK W. ROBINSON and SADAYUKI YAMAMURO

(Received 11 June 1982)

Communicated by W. Moran

Abstract

Given an ordered Banach space \mathfrak{B} equipped with an order-norm we construct a larger space \mathfrak{B} with an order-norm and order-identity such that \mathfrak{B} is isometrically order-isomorphic to a Banach subspace of \mathfrak{B} . We also discuss the extension of positive operators from \mathfrak{B} to \mathfrak{B} .

1980 Mathematics subject classification (Amer. Math. Soc.): 46 B 20.

0. Introduction

The addition of an identity is a standard technique in the theory of C*-algebras. In this note we examine a similar construction for ordered Banach spaces. Given a Banach space \mathfrak{B} ordered by a positive cone \mathfrak{B}_+ we construct a larger space $\tilde{\mathfrak{B}} = (\mathfrak{B}, \mathbf{R})$ ordered by a positive cone \mathfrak{B}_+ and equipped with an order-norm $\|\cdot\|_+$ which ensures that e = (0, 1) is an (order-) identity of \mathfrak{B} , that is, e is maximal in the unit ball of $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$. The embeddings $(\mathfrak{B}, 0) \subset \mathfrak{B}$ and $(\mathfrak{B}_+, 0) \subset \mathfrak{B}_+$ are however isometric order isomorphisms if, and only if, the norm $\|\cdot\|$ on \mathfrak{B} coincides with the order-norm. This is the case for C*-algebras.

1. The order-norm and order-identity

Let $(\mathfrak{B}, \|\cdot\|)$ be a real Banach space ordered by a *positive cone* \mathfrak{B}_+ , that is, \mathfrak{B}_+ is a norm-closed convex cone in \mathfrak{B} satisfying

$$\mathfrak{B}_{+}\cap -\mathfrak{B}_{+}=\{0\}$$

^{© 1983} Australian Mathematical Society 0263-6115/83 \$A2.00 + 0.00

and the relation $a \ge b$ is defined by $a - b \in \mathfrak{B}_+$. We define the order half-norm N_+ , as a positive function over \mathfrak{B} , by

$$N_+(a) = \inf\{\lambda \ge 0; a \le \lambda u \text{ for some } u \in \mathcal{B}_1\},\$$

and the order-norm $\|\cdot\|_+$ by

$$\|a\|_{+} = N_{+}(a) \vee N_{+}(-a)$$

= inf{ $\lambda \ge 0$; $-\lambda u \le a \le \lambda v$ for some $u, v \in \mathcal{B}_{1}$ },

where \mathfrak{B}_1 denotes the unit ball of \mathfrak{B} . Since a = ||a||u with $u = a/||a|| \in \mathfrak{B}_1$ one has $N_+(a) \leq ||a||$ and hence

$$||a||_{+} \leq ||a||$$

for all $a \in \mathfrak{B}$. But in general the two norms are inequivalent. Before further comparison of the norms we mention an alternative characterization of the order half-norm and hence the order-norm.

LEMMA 1.1. Let \mathfrak{B} be a Banach space with positive cone \mathfrak{B}_+ and order half-norm N_+ . It follows that

$$N_{+}(a) = \inf\{||a + b||; b \in \mathfrak{B}_{+}\}.$$

PROOF. If $a \le \lambda u$ for some $u \in \mathfrak{B}_1$ then $\lambda u = a + b$ for some $b \in \mathfrak{B}_+$ and $|\lambda| \ge ||a + b||$. Thus

$$N_+(a) \ge \inf\{\|a+b\|; b \in \mathfrak{B}_+\}.$$

But the converse inequality follows because one has $a \le ||a + b||u$, with $u = (a + b)/||a + b|| \in \mathfrak{B}_1$, for each $b \in \mathfrak{B}_+$.

REMARK. The order half-norm is implicit in the work of Grosberg and Krein [6] and occurs explicitly in the work of Kadison [7]. It is basic to the introduction of the order-norm on an 'order-unit' space [1], [3]. More recently Arendt, Chernoff and Kato [2] defined the order half-norm by the criterion of Lemma 1 and called it the canonical half-norm. Note that N_+ is determined by \mathfrak{B}_+ and conversely

$$\mathfrak{B}_{+} = \{a; N_{+}(-a) = 0\}.$$

Equivalence of the norm and order-norm is basically a property of the positive cone \mathfrak{B}_+ . Krein [8] was the first to introduce the appropriate notion of a normal cone.

The cone \mathfrak{B}_+ is defined to be α -normal if there is an $\alpha \ge 1$ such that $a \le b \le c$ always implies

$$\|b\| \leq \alpha(\|a\| \vee \|c\|).$$

There are various alternative definitions of normality (see, for example, [9] Chapter 2). In particular it can be characterized in terms of positive functions.

An element of the dual \mathfrak{B}^* of \mathfrak{B} is defined to be positive, $f \ge 0$, if

$$f(a) \ge 0$$

for all $a \in \mathfrak{B}_+$. The set of positive functionals $f \in \mathfrak{B}^*$ forms a norm-closed convex cone \mathfrak{B}_+^* which is called the *dual cone*. The cone is said to be *a*-generated if each $f \in \mathfrak{B}^*$ has a decomposition $f = f_+ - f_-$ with $f_\pm \in \mathfrak{B}_+^*$ and

$$\alpha \| f \| \ge \| f_+ \| + \| f_- \|.$$

Note that if \mathfrak{B}^*_+ is 1-generated then it follows from the triangle inequality that each $f \in \mathfrak{B}^*$ has a Jordan decomposition, that is, $f = f_+ - f_-$ with $f_\pm \in \mathfrak{B}^*_+$ and

$$||f|| = ||f_+|| + ||f_-||.$$

The following proposition gives criteria for equivalence, and equality, of the norm $\|\cdot\|$ and order-norm $\|\cdot\|_+$ on \mathfrak{B} . In particular it restates Grosberg and Krein's result on the equivalence of α -normality of \mathfrak{B}_+ and α -generation of \mathfrak{B}_+^* .

PROPOSITION 1.2. Let $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|)$ be an ordered Banach space with corresponding order-norm $\|\cdot\|$. The following conditions are equivalent:

1. $\|\cdot\|$ and $\|\cdot\|_+$ are equivalent norms,

2. \mathfrak{B}_+ is α -normal, for $\alpha \ge 1$,

3. \mathfrak{B}^*_+ is α -generated, for $\alpha \ge 1$.

Moreover the following conditions are equivalent:

 $1'. \|\cdot\| = \|\cdot\|_{+},$

2'. \mathfrak{B}_+ is 1-normal,

3'. each $f \in \mathfrak{B}^*$ has a Jordan decomposition.

PROOF. The equivalence of Conditions 2 and 3, and hence of Conditions 2' and 3', was established by Grosberg and Krein [6] (see also [3] Chapter 2). We will prove $1 \Leftrightarrow 2$ and simultaneously $1' \Leftrightarrow 2'$.

 $1 \Rightarrow 2$. Assume $||b|| \le \alpha ||b||_+$ for all $b \in \mathfrak{B}$. But $a \le b \le c$ implies directly that $||b||_+ \le ||a|| \lor ||c||$ and hence

$$\|b\| \leq \alpha(\|a\| \vee \|c\|).$$

Setting $\alpha = 1$ one deduces that $1' \Rightarrow 2'$.

 $2 \Rightarrow 1$. Since \mathfrak{B}_+ is α -normal the relations $-\lambda u \leq a \leq \lambda v$ with $u, v \in \mathfrak{B}_1$ imply that $||a|| \leq \alpha \lambda$ and hence

$$\|a\| \leq \alpha \|a\|_+$$

But $||a||_{+} \leq ||a||$ and hence the norms are equivalent.

Again setting $\alpha = 1$ one concludes that $2' \Rightarrow 1'$.

EXAMPLE 1.3. If $\mathfrak{B}_+ = \{0\}$ then $\|\cdot\|_+ = \|\cdot\|$ and $\mathfrak{B}_+^* = \mathfrak{B}^*$.

Ordered Banach spaces

EXAMPLE 1.4. If \mathfrak{B} is the hermitian part of a C*-algebra \mathfrak{A} ordered by the positive elements \mathfrak{A}_+ of the algebra then $\|\cdot\| = \|\cdot\|_+$ because each $f \in \mathfrak{A}^*$ has a Jordan decomposition [5], that is, the C*-norm and order-norm coincide. This equality of norms can also be established by direct calculation.

EXAMPLE 1.5. Let \mathfrak{B} be an order complete Banach lattice (see, for example, [10]). Then $\|\cdot\| = \|\cdot\|_+$ if, and only if, \mathfrak{B} is an *AM*-space, that is, $\|a \lor b\| = \|a\| \lor \|b\|$ for all $a, b \in \mathfrak{B}_+$. This is established by first remarking that the dual of an *AM*-space is an *AL*-space [10] and each element of an *AL*-space has a Jordan decomposition, that is, Condition 3 of Proposition 1.2 is valid. Conversely each $a \in \mathfrak{B}$ has a canonical decomposition [10] $a = a_+ - a_-$ with $a_\pm \in \mathfrak{B}_+$ and $a_+ \land a_- = 0$. But $N_+(a) = \|a_+\|$ [2] and hence if $\|\cdot\| = \|\cdot\|_+$ then

 $||a|| = ||a||_{+} = ||a_{+}|| \vee ||a_{-}||.$

Since $a_+ \wedge a_- = 0$ this is also equivalent to

 $||a \vee b|| = ||a|| \vee ||b||$

for all $a, b \in \mathfrak{B}_+$ with $a \wedge b = 0$. To remove this last restriction take $a, b \in \mathfrak{B}_+$ and define $a_1, b_1 \in \mathfrak{B}_+$ by

 $a_1 = a \lor b - b, \qquad b_1 = a \lor b - a.$

One then readily checks that $a_1 \wedge b_1 = 0$.

Next define \mathscr{Q} and \mathscr{Q}^{\perp} by

$$\mathscr{Q} = \{a; a \wedge b_1 = 0\}, \qquad \mathscr{Q}^{\perp} = \{b; b \wedge a = 0, a \in \mathscr{Q}\}.$$

It follows from the assumed order completeness that $\mathfrak{B} = \mathfrak{A} \oplus \mathfrak{A}^{\perp}$ ([10] Chapter 2, Theorem 2.10) and the projection $P: \mathfrak{B} \mapsto \mathfrak{A}$ is positive and continuous with $||P|| \leq 1$ ([10] Chapter 2, Propositions 2.7 and 5.2). Therefore

$$P(a \lor b) - Pa = Pb_1 = 0$$

because $b_1 \in \mathbb{Q}^{\perp}$ and

$$(1-P)(a \lor b) - (1-P)b = (1-P)a_1 = 0$$

because $a_1 \in \mathcal{Q}$. Therefore if

$$a' = P(a \lor b), \qquad b' = (1-P)(a \lor b)$$

one has $a' \wedge b' = 0$ and $a' + b' = a' \vee b' = a \vee b$. Moreover $0 \le a' = Pa \le a$, $0 \le b' = (1 - P)b \le b$. Consequently

$$|a \lor b|| = ||a' \lor b'|| = ||a'|| \lor ||b'|| \le ||a|| \lor ||b||$$

where the second step uses $a' \wedge b' = 0$. But $a \vee b \ge a$, $a \vee b \ge b$. Hence

$$\|a \vee b\| \ge \|a\| \vee \|b\|$$

and this establishes that \mathfrak{B} is an *AM*-space.

Next we consider identity elements.

An element *e* of the ordered Banach space $(\mathfrak{B}, \mathfrak{B}_+, || \cdot ||)$ is defined to be an (*order*-) *identity*, or *unit element*, if it is maximal, with respect to the order induced by \mathfrak{B}_+ , in the unit ball \mathfrak{B}_1 . There are alternative characterizations:

PROPOSITION 1.6. Let e be an element of the unit ball of the ordered Banach space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|)$. The following conditions are equivalent:

1. e is an identity of \mathfrak{B} ,

2. $\{a; ||a - e|| < 1\} \subset \mathfrak{B}_+$,

3. $N_{+} = N_{e}$ where N_{+} is the order half-norm and

$$N_e(a) = \inf\{\lambda \ge 0; a \le \lambda e\}.$$

Hence if \mathfrak{B} has an identity e the order-norm is characterized by

$$\|a\|_{+} = \inf\{\lambda \ge 0; -\lambda u \le a \le \lambda v; u, v \in \mathfrak{B}_{1} \cap \mathfrak{B}_{+}\}$$
$$= \inf\{\lambda \ge 0; -\lambda e \le a \le \lambda e\}$$

and, moreover, e is an identity of $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$.

PROOF. 1 \Rightarrow 3. Since $e \in \mathfrak{B}_1$ one has $N_e \ge N_+$. But conversely if $v \in \mathfrak{B}_1$ then $v \le e$, by maximality, and hence

$$N_+(a) = \inf\{\lambda \ge 0; a \le \lambda v, v \in \mathfrak{B}_1\} \ge \inf\{\lambda \ge 0; a \le \lambda e\} = N_e(a).$$

Thus $N_+ = N_e$.

 $3 \Rightarrow 2$. The order half-norm satisfies $N_+(a) \le ||a||$. Hence if $N_+ = N_e$ then $a \le ||a||e$ for all $a \in \mathcal{B}$. Consequently the unit ball around e is contained in \mathcal{B}_+ .

 $2 \Rightarrow 1$. If $b = e - a/||a||(1 + \varepsilon)$ then $||e - b|| \le 1/(1 + \varepsilon)$ and hence $b \ge 0$ for $\varepsilon > 0$, that is, $a \le ||a||(1 + \varepsilon)e$. But since \mathfrak{B}_+ is norm-closed one then has

and hence e is maximal in \mathfrak{B}_1 .

Now it follows from Condition 3 that

(*)
$$||a||_{+} = \inf\{\lambda \ge 0; -\lambda e \le a \le \lambda e\}$$

and the other characterization results from the fact that $e \in \mathfrak{B}_1 \cap \mathfrak{B}_+$. Finally (*) implies that $e \ge a/||a||_+$ and hence, by maximality, e is an identity of $(\mathfrak{B}, \mathfrak{B}_+, || \cdot ||_+)$.

REMARK. A little care must be taken with the last statement of Proposition 1.6. If \mathfrak{B}_+ is not normal with respect to $\|\cdot\|$ the space \mathfrak{B} is not $\|\cdot\|_+$ -complete, and the cone \mathfrak{B}_+ is not $\|\cdot\|_+$ -closed. But \mathfrak{B} can be $\|\cdot\|_+$ -completed, and \mathfrak{B}_+ can be $\|\cdot\|_+$ -closed. The identity e of $(\mathfrak{B}, \mathfrak{B}, \|\cdot\|)$ then remains an identity for the $\|\cdot\|_+$ -completed space $(\overline{\mathfrak{B}}, \overline{\mathfrak{B}}_+, \|\cdot\|_+)$. The order-norm is the smallest norm with this property.

Note that if \mathfrak{B} has an identity then it is unique because maximality of both e_1 and e_2 in \mathfrak{B}_1 implies $\pm (e_1 - e_2) \in \mathfrak{B}_+$ and hence $e_1 = e_2$. But not all ordered Banach spaces have an identity e. In fact Condition 2 of Proposition 1.6 demonstrates that e is an interior point of \mathfrak{B}_+ and in many cases \mathfrak{B}_+ has an empty interior.

EXAMPLE 1.7. If \mathfrak{B} is the hermitian part of a C*-algebra \mathfrak{A} ordered by the positive elements \mathfrak{A}_+ of the algebra then \mathfrak{B} has an (order-) identity if, and only if, \mathfrak{A} has an (algebraic-) identity and in this case the two coincide.

EXAMPLE 1.8. If $(\mathfrak{B}, \|\cdot\|)$ is a Banach lattice then \mathfrak{B}_+ has interior points if, and only if, \mathfrak{B} is lattice isomorphic to C(X) for some compact Hausdorff space X. (See, for example [4].) Moreover if u is an interior point of \mathfrak{B}_+ then each $a \in \mathfrak{B}$ can be majorized by a multiple of u and hence one can introduce the norm

$$\|a\|_{u} = \inf\{\lambda \ge 0; -\lambda u \le a \le \lambda u\}.$$

It follows that $\|\cdot\|_{u}$ is equivalent to $\|\cdot\|$ and $(\mathfrak{B}, \|\cdot\|_{u})$ is an *AM*-space with identity *u* (again see [4]).

2. Addition of an identity

Next we consider the embedding of an ordered Banach space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|)$ in a larger space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$ with an identity *e* and corresponding order-norm $\|\cdot\|_+$. This embedding is an order-isomorphism but is not necessarily isometric. But again we remark that \mathfrak{B} can be completed with respect to the order-norm $\|\cdot\|_+$, and \mathfrak{B}_+ can be closed. The embedding theorem then gives an isometric order-isomorphism of the completed space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$ in the space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$ with identity. For simplicity we will not distinguish between \mathfrak{B} and $\mathfrak{B}, \mathfrak{B}_+$ and \mathfrak{B}_+ , in the sequel.

THEOREM 2.1. Let $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$ be an ordered Banach space equipped with the order norm $\|\cdot\|_+$. Consider the space $\tilde{\mathfrak{B}} = (\mathfrak{B}, \mathbf{R})$ of pairs (a, t) with $a \in \mathfrak{B}$, $t \in \mathbf{R}$, with the operations

$$\lambda(a,t) = (\lambda a, \lambda t), \qquad (a,t) + (b,s) = (a+b,s+t),$$

with the norm

$$\|(a,t)\|_{+} = (N_{+}(a) + t) \vee (N_{+}(-a) - t),$$

and with the cone

$$\mathfrak{B}_+ = \{(a,t); t \ge N_+(-a)\}.$$

It follows that $(\tilde{\mathfrak{B}}, \tilde{\mathfrak{B}}_+, \|\cdot\|_+)$ is an ordered Banach space, $\mathfrak{B} = (\mathfrak{B}, 0)$ is a Banach subspace of $\tilde{\mathfrak{B}}, \mathfrak{B}_+ = (\mathfrak{B}_+, 0)$ is a positive subcone of $\tilde{\mathfrak{B}}_+, e = (0, 1)$ is an identity of $(\tilde{\mathfrak{B}}, \tilde{\mathfrak{B}}_+, \|\cdot\|_+)$ and $\|\cdot\|_+$ is the order-norm on $\tilde{\mathfrak{B}}$ defined by $\tilde{\mathfrak{B}}_+$.

PROOF. First consider the space $\tilde{\mathfrak{B}} = (\mathfrak{B}, \mathbf{R})$ with the norm

$$||(a, t)|| = ||a||_{+} + |t|$$
.

Since \mathfrak{B} is $\|\cdot\|_+$ -complete \mathfrak{B} is automatically $\|\cdot\|$ -complete and one can identify $\mathfrak{B} = (\mathfrak{B}, 0)$ as a Banach subspace. Now since N_+ is a half-norm \mathfrak{B}_+ is a proper norm-closed convex cone. For example if $\pm (a, t) \in \mathfrak{B}_+$ then $\pm t \ge N_+(\pm a)$ and $t = 0 = N_+(a) = N_+(-a)$, because N_+ is positive. Hence a = 0 = t. Note that if $a \in \mathfrak{B}_+$ then $N_+(-a) = 0$ and hence \mathfrak{B}_+ can be identified as the norm-closed subcone $(\mathfrak{B}_+, 0)$ of \mathfrak{B}_+ .

Next we prove 3-normality of $\tilde{\mathfrak{B}}_+$. If $(a, r) \leq (b, s) \leq (c, t)$ then

$$s-r \ge N_+(a-b), \quad t-s \ge N_+(b-c).$$

In particular $t \ge s \ge r$. There are two cases to consider.

Case 1. $s \ge 0$. If $s \ge 0$ then $|t| \ge |s|$. Hence

$$\|(b, s)\| = N_{+}(b) \vee N_{+}(-b) + |s|$$

$$\leq (N_{+}(c) + t - s) \vee (N_{+}(-a) + s - r) + |t|$$

$$\leq (N_{+}(c) + |t|) \vee (N_{+}(-a) + |t| - r) + |t|$$

$$= N_{+}(c) \vee (N_{+}(-a) - r) + 2|t|$$

$$\leq \|(c, t)\| \vee \|(a, r)\| + 2\|(c, t)\|$$

$$\leq 3\|(a, r)\| \vee \|(c, t)\|.$$
Case 2. $s \leq 0$. If $s \leq 0$ then $|r| \geq |s|$. Hence

$$\|(b,s)\| \leq (N_{+}(c) + t - s) \vee (N_{+}(-a) + s - r) + |r|$$

$$\leq (N_{+}(c) + t + |r|) \vee (N_{+}(-a) + |r|) + |r|$$

$$= (N_{+}(c) + t) \vee N_{+}(-a) + 2|r|$$

$$\leq \|(c,t)\| \vee \|(a,r)\| + 2\|(a,r)\|$$

$$\leq 3\|(a,r)\| \vee \|(c,t)\|.$$

Since $\tilde{\mathfrak{B}}_+$ is 3-normal the norm $\|\cdot\|$ and order-norm $\|\cdot\|_+$ on $\tilde{\mathfrak{B}}$ are equivalent, by Proposition 1.2. Thus $\tilde{\mathfrak{B}}$ is $\|\cdot\|_+$ -complete and $\tilde{\mathfrak{B}}_+$ is $\|\cdot\|_+$ -closed.

Next if e = (0, 1) then

$$e \|(a, t)\| - (a, t) = (-a, \|a\|_{+} + |t| - t) \in \mathfrak{B}_{+}$$

 $\mathbf{206}$

because $||a||_+ + |t| - t \ge N_+(a)$. Therefore *e* is maximal in the unit ball of $(\tilde{\mathfrak{B}}, \tilde{\mathfrak{B}}_+, ||\cdot||)$, that is, *e* is an identity of $(\mathfrak{B}, \tilde{\mathfrak{B}}_+, ||\cdot||)$. It now follows from Proposition 1.6 that *e* is an identity of $(\tilde{\mathfrak{B}}, \tilde{\mathfrak{B}}_+, ||\cdot||_+)$ where $||\cdot||_+$ denotes the order-norm on $\tilde{\mathfrak{B}}$. Moreover this norm is given by

$$\|(a,t)\|_{+} = \inf\{\lambda \geq 0; -\lambda e \leq (a,t) \leq \lambda e\}.$$

Since $(a, t) \leq \lambda e$ is equivalent to $(-a, \lambda - t) \in \tilde{\mathcal{B}}_+$ one must have

$$\lambda \geq N_+(a) + t.$$

Similarly $-\lambda e \le (a, t)$ gives $\lambda \ge N_+(-a) - t$. Therefore the order half-norm and order-norm on \mathfrak{B} are given by

$$N_{+}((a, t)) = (N_{+}(a) + t) \vee 0$$

and

$$||(a, t)||_{+} = (N_{+}(a) + t) \vee (N_{+}(-a) - t).$$

This verifies the last statement of the theorem.

EXAMPLE 2.2. If $\mathfrak{B}_+ = \{0\}$ then $N_+(a) = ||a||$ and and $||a||_+ = ||a||$. Thus $\tilde{\mathfrak{B}}_+ = \{(a, t); t \ge ||a||\}$ and $||(a, t)|| = ||a|| + |t| = (||a|| + t) \lor (||a|| - t) = ||(a, t)||_+$. Therefore the norm and order-norm on \mathfrak{B} coincide. Note that \mathfrak{B}_+ is non-trivial despite the triviality of \mathfrak{B}_+ .

EXAMPLE 2.3. If \mathfrak{B} is the hermitian part of a C^* -algebra \mathfrak{A} , ordered by the positive elements \mathfrak{A}_+ of \mathfrak{A} , then the construction of Theorem 2.1 coincides with the addition of an algebraic identity [5]. Since $N_+(a) = ||a_+||$, where a_+ is the positive part of a, and since the C^* -norm and order-norm coincide (Example 1.4) one has the connection

$$||(a, t)|| = (||a_+|| + t) \lor (||a_-|| - t)$$

between the C^* -norms on $\tilde{\mathfrak{B}}$ and \mathfrak{B} .

3. Positive operators

In this section we examine the extension of operators from the ordered Banach space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|)$ to the space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$ with identity *e* constructed in Theorem 2.1. If \mathfrak{B}_+ is normal $\|\cdot\|$ and $\|\cdot\|_+$ are equivalent norms by Proposition 1.2, \mathfrak{B} is $\|\cdot\|_+$ -complete, \mathfrak{B}_+ is $\|\cdot\|_+$ -closed, and each bounded linear operator *A* on $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|)$ defines a bounded operator on the renormed space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$. Therefore we can unambiguously consider the extension of *A* from $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|)$ to $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|_+)$. First we give a characterization of positive operators, that is, operators A with the property that $A\mathfrak{B}_+ \subseteq \mathfrak{B}_+$.

LEMMA 3.1. Let A be a bounded linear operator on the ordered Banach space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|)$. The following conditions are equivalent:

1. $A\mathfrak{B}_{+} \subseteq \mathfrak{B}_{+}$, 2. $N_{+}(Aa) \leq ||A||N_{+}(a), a \in \mathfrak{B}$, 3. $N_{+}(Aa) \leq \alpha N_{+}(a), a \in \mathfrak{B}$, for some $\alpha \geq ||A||$.

PROOF. $1 \Rightarrow 2$. One has

$$N_+(Aa) = \inf\{ \|Aa + b\|; b \in \mathfrak{B}_+ \}$$

$$\leq \inf\{ \|Aa + Ab\|; b \in \mathfrak{B}_+ \}$$

$$\leq \|A\|N_+(a).$$

 $2 \Rightarrow 3$. This is trivial.

 $3 \Rightarrow 1$. If $a \in \mathfrak{B}_+$ then $N_+(-a) = 0$ and hence $N_+(-Aa) = 0$. But this is equivalent to $Aa \in \mathfrak{B}_+$.

Now suppose that \mathfrak{B}_+ is normal and hence the bounded linear operator A on \mathfrak{B} is a bounded operator on the renormed space $(\mathfrak{B}, \|\cdot\|_+)$. The simplest form of extension of A from \mathfrak{B} to $\tilde{\mathfrak{B}}$ is defined by

$$A_{\alpha}(a,t) = (Aa, \alpha t)$$

where $\alpha \in \mathbf{R}$. Note that A_{α} is automatically linear and we next examine criteria for it to be positive.

THEOREM 3.2. Let A be a bounded linear operator on the ordered Banach space $(\mathfrak{B}, \mathfrak{B}_+, \|\cdot\|)$. Assume \mathfrak{B}_+ is normal and consider the extension A_{α} of A to the extended space $(\tilde{B}, \tilde{B}_+, \|\cdot\|_+)$ with identity e. If $\alpha \ge \|A\|$ the following conditions are equivalent:

1. $A\mathfrak{B}_{+} \subseteq \mathfrak{B}_{+}$, 2. $A_{\alpha}\tilde{\mathfrak{B}}_{+} \subseteq \tilde{\mathfrak{B}}_{+}$, 3. $||A_{\alpha}|| = \alpha$, 4. $||A_{\alpha}|| \leq \alpha$.

PROOF. $2 \Rightarrow 1$. If $a \in \mathfrak{B}_+$ then $(a, 0) \in \tilde{\mathfrak{B}}_+$ and $A_{\alpha}(a, 0) = (Aa, 0) \subseteq \tilde{\mathfrak{B}}_+$ by assumption. Thus $N_+(-Aa) = 0$ and $Aa \in \mathfrak{B}_+$.

 $1 \Rightarrow 3$. Because $\alpha \ge ||A||$ Condition 1 is equivalent to $N_+(Aa) \le \alpha N_+(a)$ for all $a \in \mathfrak{B}$ by Lemma 3.1. Therefore

$$N_+(A_{\alpha}(a,t)) = (N_+(Aa) + \alpha t) \vee 0$$

$$\leq \alpha (N_+(a) + t) \vee 0$$

$$= \alpha N_+((a,t)).$$

Consequently

$$||A_{\alpha}(a,t)||_{+} \leq \alpha ||(a,t)||_{+}$$

But one also has $||A_{\alpha}e||_{+} = \alpha ||e||_{+} = \alpha$ and hence $||A_{\alpha}|| = \alpha$.

 $3 \Rightarrow 4$. This is evident.

To conclude the proof we recall that since e is an identity of $(\tilde{\mathfrak{B}}, \tilde{\mathfrak{B}}_+, \|\cdot\|_+)$

$$\|e-(a,t)\|_+\leq 1$$

implies $(a, t) \in \tilde{\mathfrak{B}}_+$. Conversely, if $(a, t) \in \tilde{\mathfrak{B}}_+$ and $||(a, t)||_+ \le 1$ then $N_+(-a) \le t$ and $N_+(a) + t \le 1$. Therefore

$$\|e - (a, t)\|_{+} = (N_{+}(-a) + 1 - t) \vee (N_{+}(a) - 1 + t) \leq 1.$$

 $4 \Rightarrow 2$. Assume $(a, t) \in \tilde{\mathfrak{B}}_+$ and $||(a, t)||_+ \leq 1$. Then setting $B = A_{\alpha}/\alpha$ one has Be = e and hence

$$\|e - B(a, t)\|_{+} = \|A_{\alpha}(e - (a, t))\|_{+} / \alpha$$

= $(\|A_{\alpha}\|/\alpha)\|(e - (a, t))\|_{+} \le 1$

by Condition 4 and the above. Therefore $B(a, t) \in \tilde{\mathcal{B}}_+$ and consequently $A_{\alpha}\tilde{\mathcal{B}}_+ \subseteq \tilde{\mathcal{B}}_+$.

REMARK. The equivalence of Conditions 2 and 3 is an analogue of the C^* -algebraic result that an operator which leaves the identity fixed is positive if, and only if, it has norm one (see, for example, [5] Corollary 3.2.6).

References

- [1] E. M. Alfsen, Compact convex sets and boundary integrals (Springer-Verlag, 1971).
- [2] W. Arendt, P. R. Chernoff and T. Kato, 'A generalization of dissipativity and positive semigroups,' J. Operator Theory 8 (1982), 167-180.
- [3] L. Asimov and A. J. Ellis, Convexity theory and its application in functional analysis (Academic Press, 1980).
- [4] O. Bratteli, T. Digernes and D. W. Robinson, 'Positive semigroups on ordered Banach spaces,' *J. Operator Theory*, to appear.
- [5] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, Vol. I (Springer-Verlag, 1979).

- [6] J. Grosberg and M. Krein, 'Sur la décomposition des fonctionelles en composantes positives,' C. R. Acad. Sci. URSS 25 (1939), 723-726.
- [7] R. V. Kadison, 'A representation theory for commutative topological algebras,' Mem. Amer. Math. Soc. No. 7 (1951).
- [8] M. Krein, 'Propriétés fondamentales des ensembles coniques normaux dans l'espace de Banach,' C. R. Acad. Sci. URSS 28 (1940), 13-17.
- [9] A. L. Peressini, Ordered topological vector spaces (Harper and Rowe, 1967).
- [10] H. H. Schaefer, Banach lattices and positive operators (Springer-Verlag, 1974).

Department of Mathematics Institute of Advanced Studies The Australian National University P.O. Box 4 Canberra, A.C.T. 2600 Australia