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Abstract Motivated by the Landau–Ginzburg model, we study the Witten deformation on a noncompact
manifold with bounded geometry, together with some tameness condition on the growth of the Morse
function f near infinity. We prove that the cohomology of the Witten deformation dTf acting on the
complex of smooth L2 forms is isomorphic to the cohomology of the Thom–Smale complex of f as well as
the relative cohomology of a certain pair (M,U) for sufficiently large T. We establish an Agmon estimate
for eigenforms of the Witten Laplacian which plays an essential role in identifying these cohomologies via
Witten’s instanton complex, defined in terms of eigenspaces of the Witten Laplacian for small eigenvalues.
As an application, we obtain the strong Morse inequalities in this setting.
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1. Introduction

1.1. Overview

In an extremely influential paper [21], Witten introduced a deformation of the de Rham

complex by considering the new differential df = d+ df, where d is the usual exterior

derivative on forms and f is a Morse function. Setting

dTf := d+Tdf,

Witten observed that when T > 0 is large enough, the eigenfunctions of the small

eigenvalues for the corresponding deformed Hodge Laplacian, the so-called Witten

Laplacian, concentrate at the critical points of f . As a result, Witten deformation builds
a direct bridge between the Betti numbers and the Morse indices of the critical points

of f .

Witten deformation on closed manifolds has produced a whole range of beautiful
applications, from Demailly’s holomorphic Morse inequalities [5] to the proof of the

Ray–Singer conjecture and its generalisation by Bismut and Zhang [2] to the instigation

of the development of Floer homology theory.
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Although the Witten deformation on noncompact manifolds is much less studied and
understood, there has been interesting work in the direction. In [6] the cohomology of an

affine algebraic variety is related to that of the Witten complex of Cm (see also [10] for

further development).
This paper is motivated by the study of Landau–Ginzburg models (compare [14]), which

according to Witten [22] are simply different phases of Calabi–Yau manifolds, and hence

equivalent (in a certain sense) to Calabi–Yau manifolds. Suppose there is a nontrivial

holomorphic function W (the superpotential) on a noncompact Kähler manifold Mn

(n= dimCM); then one considers the Witten deformation of the ∂̄ operator:

∂̄W = ∂̄− i

2
∂W,

as its cohomology describes the quantum ground states of the Landau–Ginzburg model

(M,W ). If W is also a Morse function with k critical points, then complex Morse theoretic
consideration leads to the expectation that

H l
∂̄W

(M) =

{
C

k if l = n,

0 otherwise.

For the mathematical study of Landau–Ginzburg models and their significant applica-

tions, we point out the important work of [9]. On the other hand, in [17] the L2 Hodge

theory is used to give a dGBV algebra and Frobenius manifold structure for the Landau–
Ginzburg models.

In this paper, we consider the more general case of Riemannian manifolds: we explore

the relations between the Thom–Smale complex for a Morse function f on a noncompact

manifold M and the deformed de Rham complex with respect to f . The first difficulty one
encounters here is the presence of a continuous spectrum on a noncompact manifold; for

that, one has to impose certain tameness conditions, consisting of the bounded geometry

requirement for the manifold and growth conditions for the function. The notion of strong
tameness is introduced in [7] in the Kähler setting, which guarantees the discreteness of

the spectrum for the Witten Laplacian. Here we introduce a slightly weaker notion which

allows a continuous spectrum but only outside a large interval starting from 0.
It is important to note – and this is another new phenomenon in the noncompact case –

that the Thom–Smale complex may not be a complex in general. Namely, the square of

its boundary operator need not be zero, since M is noncompact. However, we prove that

with the tameness condition, it is.
The crucial technical part of our work is the Agmon estimate for eigenforms of the

Witten Laplacian, which is essential in extending the usual analysis from the compact

setting to the noncompact case. The Agmon estimate was discovered by S. Agmon in
his study of N -body Schrödinger operators in the Euclidean setting and has found many

important applications. The exponential decay of the eigenfunction is expressed in terms

of the so-called Agmon distance (compare [1]). We make essential use of this Agmon
estimate to carry out the isomorphism between the Witten instanton complex defined in

terms of eigenspaces corresponding to the small eigenvalues and the Thom–Smale complex

defined in terms of the critical point data of the function. We remark that the Agmon
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estimate near the critical points also plays an important role in the compact case [13].

The novelty here is that we make essential use of the exponential decay at spatial infinity

provided by the Agmon estimate.
As an application of our results on noncompact manifolds, we obtain corresponding

results for manifolds with boundaries which generalise recent work of [16].

In the rest of the introduction we give precise statements of our main results after
setting up our notations. In subsequent work we will develop the local index theory and

the Ray–Singer torsion for the Witten deformation in the noncompact setting.

1.2. Notations and basic setup

Let (M,g) be an n-dimensional noncompact connected complete Riemannian manifold
with metric g. (M,g) is said to have bounded geometry if the following conditions hold:

1. The injectivity radius r0 of M is positive.

2. |∇mR| ≤ Cm, where ∇mR is the mth covariant derivative of the curvature tensor

and Cm is a constant depending only on m.

On such a manifold, the Sobolev constant is uniformly bounded (see, e.g., [3]). Now

let f :M → R be a smooth function. In [7], the notion of strong tameness for the triple

(M,g,f) is introduced.

Definition 1.1. The triple (M,g,f) is said to be strongly tame if (M,g) has bounded

geometry and

lim sup
p→∞

∣∣∇2f
∣∣(p)

|∇f |2 (p)
= 0

and

lim
p→∞

|∇f | →∞,

where ∇f,∇2f are the gradient and Hessian of f , respectively.

Remark 1.2. Fix p0 ∈M and let d be the distance function induced by g. Here p→∞
simply means that d(p,p0)→∞.

In this paper we only need the following weaker condition:

Definition 1.3. The triple (M,g,f) is said to be well tame if (M,g) has bounded geometry

and

lim sup
p→∞

∣∣∇2f
∣∣(p)

|∇f |2 (p)
<∞

and

lim inf
p→∞

|∇f |> 0.
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As usual, the metric g induces a canonical metric (still denote it by g) on Λ∗(M), which

then defines an inner product (·,·)L2 on Ω∗
c(M):

(φ,ψ)L2 =

∫
M

(φ,ψ)gdvol, φ,ψ ∈ Ω∗
c(M).

Let L2Λ∗(M) be the completion of Ω∗
c(M) with respect to ‖·‖L2 , and for simplicity we

denote L2(M) := L2Λ0(M).

For any T ≥ 0, let dTf := d+ Tdf∧ : Ω∗(M) → Ω∗+1(M) be the so-called Witten
deformation of the de Rham operator d. It is an unbounded operator on L2Λ∗(M) with

domain Ω∗
c(M). Also, dTf has a formal adjoint operator δTf , with Dom(δTf ) = Ω∗

c(M),

such that

(dTfφ,ψ)L2 = (φ,δTfψ)L2 , φ,ψ ∈ Ω∗
c(M).

Set ΔH,Tf = (dTf + δTf )
2
, and we denote the Friedrichs extension of ΔH,Tf by �Tf .

As we will see (Theorem 2.1), if (M,g,f) is well tame, then ΔH,Tf is essentially self-

adjoint (and hence �Tf is the unique self-adjoint extension). In Appendix Appendix A

(also see Theorem 2.3), we will prove the Hodge–Kodaira decomposition when (M,g,f)
is well tame and T is large enough:

L2Λ∗(M) = ker�Tf ⊕ Imd̄Tf ⊕ Imδ̄Tf, (1.1)

where d̄Tf and δ̄Tf are the minimal extensions of dTf and δTf , respectively.
Setting Ω∗

(2)(M) := L2Λ∗(M) ∩ Ω∗(M), we have a chain complex (of unbounded

operators)

· · · dTf−−→ Ω∗
(2)(M)

dTf−−→ Ω∗+1
(2) (M)

dTf−−→ ·· · .

Let H∗
(2) (M,dTf ) denote the cohomology of this complex. In Appendix Appendix A we

will show that H∗
(2) (M,dTf ) ∼= ker�Tf , provided (M,g,f) is well tame and T is large

enough.
Finally we note the following well-known fact (compare [21, 23]):

Proposition 1.4. The Hodge Laplacian ΔH,Tf has the following local expression:

ΔH,Tf =Δ+T∇2
ei,ejf

[
ei∧ ,ιej

]
+T 2 |∇f |2 . (1.2)

Here {ei} is a local frame on TM ,
{
ei

}
is the dual frame on T ∗M and Δ is the usual

Hodge Laplacian.

1.3. Main results

In this subsection, we assume that (M,g) has bounded geometry and f is a Morse function

with finite many critical points. Clearly this will be the case if (M,g,f) is well tame and
f is Morse.

As we mentioned, the main technical result here is the Agmon estimate for the

eigenforms of the Witten Laplacian:
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Theorem 1.1. Let (M,g,f) be well tame and ω ∈ Dom(�Tf ) be an eigenform of �Tf

whose eigenvalue is uniformly bounded in T . Then

|ω(p)| ≤ CT (n+2)/2 exp(−aρT (p))‖ω‖L2,

for any a ∈ (0,1) (provided T is sufficiently large and C is a constant depending on the
dimension n, the function f , the curvature bound, the injectivity radius lower bound r0
and a; for the precise choice of T and C, see the end of Section 3). The definition of the

Agmon distance ρT (p) will be given in Section 3.

The proof of the Agmon estimate, given in Section 7, is to carry out the idea of [1] in

this more general setting.

Set bi(T ) = dimHi
(2) (M,dTf ). If x is a critical point of f , denote by nf (x) the Morse

index of f at x. Let mi be the number of critical points of f with Morse index i. Then

the strong Morse inequalities hold.

Theorem 1.2. If (M,g,f) is well tame, then we have the following strong Morse
inequality:

(−1)k
k∑

i=0

(−1)ibi(T )≤ (−1)k
k∑

i=0

(−1)imi, ∀k ≤ n,

provided T is large enough. And the equality holds for k = n.

In general, bi(T ) may be very sensitive to T . However, we have the following result

regarding the indepedence of bi(T ) in T . Assume that the Morse function f satisfies the

Smale transversality condition. Let
(
C∗(Wu),∂̃′

)
be the Thom–Smale complex given by

f . It is important to note that in general, since M is noncompact, it could happen that(
∂̃′

)2

�= 0. Also let c > 0 be big enough, Uc = {p ∈M : f(p)<−c} and (Ω∗(M,Uc),d) be

the relative de Rham complex.

Theorem 1.3. If (M,g,f) is well tame, then
(
∂̃′

)2

= 0, and therefore the cohomology

H∗
(
C•(Wu),∂̃′

)
is well defined. Moreover, there exists T0 ≥ 0 such that H∗

(2) (M,dTf ) is

isomorphic to H∗
(
C•(Wu),∂̃′

)
for all T > T0. In addition, H∗

(
C•(Wu),∂̃′

)
, and hence

H∗
(2) (M,dTf ), is isomorphic to the relative de Rham cohomology H∗

dR(M,Uc).

Remark 1.5. When (M,g,f) is strongly tame, T0 = 0.

By Theorem 1.3, we can refine our result of Theorem 1.2:

Corollary 1.4. If (M,g,f) is well tame, then bi(T ) is independent of T when T is big

enough. When (M,g,f) is strongly tame, bi(T ) is independent of T > 0.

Remark 1.6. Assume that M is oriented and let ∗ be the Hodge star operator. Then

∗�Tf = �−Tf∗. Hence we have the following Poincaré duality:

Hk (M,dTf )∼=Hn−k (M,d−Tf ) .
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As an another application of Theorem 1.3, we study the Morse cohomology for compact
manifolds with boundary.

Let M be a compact, oriented manifold of dimension n with boundary ∂M . Let Ni

(i∈Λ) be the connected components of ∂M . We fix a collar neighbourhood (0,1]×Ni ⊂M ,
and let r be the standard coordinate on the (0,1] factor.

Definition 1.7. A smooth function f on M is called a transversal Morse function if it
satisfies the following conditions:

1. f |M\∂M is a Morse function on the manifold M \∂M .

2. f |∂M is a Morse function on the manifold ∂M .

3. For any point x on the collar neighbourhood, −∂f
∂r

∣∣∣
x
�= 0.

For a transversal Morse function f on M , since −∂f
∂r is continuous on any connected

components of ∂M , we can call Ni positive (with respect to f) if −∂f
∂r

∣∣∣
Ni

> 0 and negative

if −∂f
∂r

∣∣∣
Ni

< 0.

Let N+ be the union of all positive boundaries and N− the union of all negative

boundaries. Suppose we have a partition of positive boundaries N+ = N+
1 �N+

2 and a

partition of negative boundaries N− =N−
1 �N−

2 . Now we denote

• by Crit◦,k(f) the set of internal critical points of f with Morse index k, mk =∣∣∣Crit◦,k(f)∣∣∣;
• by Crit+,k

N+
j

(f) (j = 1,2) the set of critical points of f |N+
j

on the positive boundary

N+
j with Morse index k−1, nk,N+

j
=

∣∣∣∣Crit+,k

N+
j

(f)

∣∣∣∣;
• by Crit−,k

N−
j

(f) (j = 1,2) the set of critical points of f |N−
j

on the negative boundary

N−
j with Morse index k, lk,N−

j
=

∣∣∣∣Crit−,k

N−
j

(f)

∣∣∣∣.
Let Crit∗(f) = Crit◦,∗(f)∪Crit+,∗

N+
1

(f)∪Crit−,∗
N−

1

(f).

Theorem 1.5. There is a differential ∂̃′ : Critk(f)→Critk+1(f) making
(
Crit∗(f)⊗R,∂̃′

)
a chain complex. Moreover, H∗

(
Crit•(f)⊗R,∂̃′

)
is isomorphic to the relative de Rham

cohomology H∗ (
M,N−

2 ∪N+
1

)
.

In particular, for N+
1 = N+ and N−

1 = ∅, H∗
(
Crit•(f)⊗R,∂̃′

)
is isomorphic to the

relative de Rham cohomology H∗(M,∂M).

Corollary 1.6. Set bi
(
M,N−

2 ∪N+
1

)
= dim

(
Hi

(
M,N−

2 ∪N+
1

))
. Then we have the

following Morse inequality:

(−1)k
k∑

i=0

(−1)ibi
(
M,N−

2 ∪N+
1

)
≤ (−1)k

k∑
i=0

(−1)i
(
mi+ni−1,N+

1
+ li,N−

2

)
.
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Remark 1.8.

1. Theorem 1.5 is a generalisation of a result in [16].

2. Corollary 1.6 is a generalisation of a result in [18].

1.4. Notation and organisation

In this article, we will generally use φ,ψ to denote differential forms; f a Morse function;

u,v functions; ν,ω eigenforms; x,y,z critical points of f ; p,q general points; and p0 a fixed

point.
This paper is organised as follows. In Section 2 we discuss the spectral theory for the

Witten Laplacian in our setting. We then proceed to establish the exponential decay

estimate for eigenforms of the Witten Laplacian in Section 3. Assuming two technical
results whose proofs are deferred to Sections 7.1 and 7.2 and using a lemma proved in

Section 4 about the Agmon distance, we prove Theorem 1.1, the Agmon estimate.

Section 4 concerns the Thom–Smale theory in our setting. More specifically, we

define the Thom–Smale complex C∗
(
(Wu)′,∂̃′

)
. Then we define a morphism between

the Witten instanton complex and the Thom–Smale complex, J :
(
F

[0,1],∗
Tf ,dTf

)
�→

C∗
(
(Wu)′,∂̃′

)
. We prove that J is well defined by using the Agmon estimate, deferring

the proof that J is a chain map to Section 7.3.

In Section 5 we present a direct proof of the strong Morse inequalities (Theorem 1.2).

In Section 6 we give an application of our results, namely Theorem 1.5. Section 7 collects
the proofs of several technical results. In the first two subsections we prove the lemmas

used in the proof of Agmon estimate. In Section 7.3 we prove that our Thom–Smale

complex is indeed a complex – that is, ∂̃′2 = 0. The rest of the proof of Theorem 1.3
is in Sections 7.4 and 7.5. Finally, in Appendix Appendix A we discuss the Kodaira

decomposition in a more general setting.

2. The Spectrum of the Witten Laplacian

In this section we study the spectral theory of the Witten Laplacian on noncompact

manifolds. In particular, we establish the Kodaira decomposition and the Hodge theorem
for the Witten Laplacian under our tameness condition.

2.1. Essential self-adjointness of df + δf

Theorem 2.1. On a complete Riemannian manifold, if

lim sup
p→∞

∣∣∇2f
∣∣(p)

|∇f |2 (p)
<∞,

then df + δf is essentially self-adjoint.

Proof. Since limsupp→∞
|∇2f|(p)
|∇f |2(p) < ∞, �f is bounded from below by Proposition 1.4.

The rest of the proof is essentially the same as in [4, Section 4]; see also the proof of [11,

Theorem 1.17]. �
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2.2. On the spectrum of �Tf

From now on we will assume that (M,g,f) is well tame. Let K be a compact subset, which

can be taken to be a compact submanifold with boundaries that contains the closure of

a ball of sufficiently large radius of M (we will make a more specific choice of K later in

Section 4), such that εf (K) := infM−K |∇f | > 0,cf (K) := supM−K
|∇2f|
|∇f |2 < ∞. Then on

M −K,

|∇f |> 1

2
εf,

∣∣∇2f
∣∣ < 2cf |∇f |2 . (2.1)

Let CK =maxK
∣∣∇2f

∣∣. First we establish the following basic lemma:

Lemma 2.1. Fix any b ∈ (0,1). There exists T1 = T1 (cf,CR,εf,b) ≥ 0 so that whenever

T > T1, φ ∈Dom(�Tf ). Then∫
M

(�Tfφ,φ)dvol ≥
∫
M

(∇φ,∇φ)dvol+

∫
M−K

b2T 2 |∇f |2 (φ,φ)dvol

−(CR+TCK)

∫
K

(φ,φ)dvol. (2.2)

Here CR is a constant depending only on the sectional curvature bound of g.

Proof. It suffices to show the inequality for a compactly supported smooth form. By

Proposition 1.4, together with the Bochner–Weitzenböck formula, we have∫
M

(�Tfφ,φ)dvol ≥
∫
M

(∇φ,∇φ)dvol− (CR+TCK)

∫
K

(φ,φ)dvol

+

∫
M−K

eT (p)(φ,φ)dvol,

where eT = T 2 |∇f |2
(
1− 4cf

T − 4CR

T 2ε2f

)
. Thus, for any b ∈ (0,1), define

T1(K) := max

{
8cf
1− b2

,

√
8CR

εf
√
1− b2

}
. (2.3)

Then whenever T > T1, one can see 1− 4cf
T − 4CR

T 2ε2f
> b2. Consequently,

∫
M

(�Tfφ,φ)dvol ≥
∫
M

(∇φ,∇φ)dvol+

∫
M−K

|bT∇f |2 (φ,φ)dvol

−(CR+TCK)

∫
K

(φ,φ)dvol. �

Remark 2.2. When (M,g,f) is strongly tame, we can take K to be sufficiently large so

that cf and 1
εf

are as small as we want. As a result, T1 can be made as small as we want

by an appropriate choice of K.
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Theorem 2.2. Let σ be the set of spectrum of �Tf . Then when T >T1, σ∩
[
0,

(
bεf
2

)2

T 2

]
consists of a finite number of eigenvalues of finite multiplicity.

Proof. Let P : L2Λ∗(M)→ L2Λ∗(M) be the integral of the spectral measure of �Tf on[
0,

(
bεf
2

)2

T 2

]
. It suffices to prove that L := Im(P ) is finite-dimensional. For any φ ∈ L,

we have ∫
M

(�Tfφ,φ)dvol ≤
(
bεf
2

)2

T 2

∫
M

|φ|2dvol. (2.4)

Combining with formula (2.2), we have(
bεf
2

)2

T 2

∫
M

|φ|2dvol ≥
∫
M

(∇φ,∇φ)dvol+

∫
M−K

|bT∇f |2 (φ,φ)dvol

−(CR+TCK)

∫
K

(φ,φ)dvol,

provided T > T1. That is,∫
M

(∇φ,∇φ)dvol+

∫
M−K

|bT∇f |2 (φ,φ)dvol

≤
(
bεf
2

)2

T 2

(
1+

4CR

(bεf )
2
T 2

+
4CK

(bεf )
2
T

)∫
K

(φ,φ)dvol+

(
bεf
2

)2

T 2

∫
M−K

(φ,φ)dvol.

(2.5)

Since |bT∇f |2 >
(

bεf
2

)2

T 2 on M −K, when T > T1,

∫
M

(∇φ,∇φ)dvol≤
(
bεf
2

)2

T 2

(
1+

4CR

(bεf )
2
T 2

+
4CK

(bεf )
2
T

)∫
K

(φ,φ)dvol. (2.6)

Now define Q : L→ L2Λ∗(K), by Qu= u|K . By formula (2.6), it’s easy to see that Q is
injective, and Im(Q)⊂W 1,2(Λ∗K). Since W 1,2(Λ∗K) ↪→L2Λ∗(K) is compact, dim(L) =

dim(Im(Q)) must be finite. �
We now state the important consequence of this section. By combining Theorems 2.1

and 2.2 with Proposition A.3 and decomposition (A.4), we have the following:

Theorem 2.3. Assume that (M,g,f) is well tame. Then when T > T1, we have the

Kodaira decomposition

L2Λ∗(M) = ker�Tf ⊕ Im
(
d̄Tf

)
⊕ Im

(
δ̄Tf

)
.

Furthermore, the Hodge theorem holds:

H∗
(2) (M,dTf )∼= ker�Tf .

Remark 2.3. If (M,g,f) is strongly tame, T1 could be arbitrarily small, and hence

Theorem 2.3 holds true for any T > 0.
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3. Exponential decay of eigenfunctions

In this section, we assume that (M,g,f) is well tame and T > T1, where T1 is described
in Lemma 2.1.

Let g̃T := b2T 2 |∇f |2 g be the Agmon metric on M. Let K be the compact set as in

the previous section. In this and later sections, we define the Agmon distance ρT (p) as
the distance between p and K induced by g̃T . Then we have |∇ρT |2 = b2T 2 |∇f |2 almost

everywhere that p /∈K, where the gradient ∇ is induced by g.

For simplicity, denote b2T 2 |∇f |2 by λT . We need the following two technical lemmas,
whose proofs are postponed to Section 7.

Lemma 3.1. Assume w ∈L2(M),0≤ u∈L2(M) and (Δ+λT )u≤w outside the compact

subset K ⊂M in the weak sense. That is,∫
M−K

∇u∇v+λTuvdvol≤
∫
M−K

w ·vdvol, ∀0≤ v ∈ C∞
c (M −K).

Then for any j ∈ N, there exists another compact subset L⊃K of M such that∫
M−L

|u|2λT exp(2bρT,j)dvol≤ C2

∫
M−K

|w|2λ−1
T exp(2bρT,j)dvol

+C1

∫
L−K

|u|2λT exp(2bρT,j)dvol

(3.1)

a ∈ (0,
√
2
2 ), for C1 =

8(1+b2)
(1−b2)2

, C2 =
4

(1−b2)2
.

Here ρT,j := min{ρT ,j}.

Corollary 3.1. If w = cu for some c > 0 and T > 2
√
1+c

bεf
, then

I(u) :=

∫
M

|u|2 exp(2bρT )dvol<∞.

Proof. With this choice of T , λT > 1+ c outside K. Now replacing λT with λT − c and

w with 0 in Lemma 3.1, we get∫
M−L

|u|2 exp(2bρT,j)dvol≤
∫
M−L

|u|2(λT − c)exp(2bρT,j)dvol

≤ C1

∫
L−K

|u|2λT exp(2bρT,j)dvol≤ C1

∫
L−K

|u|2λT exp(4b)dvol<∞.

Now let j →∞. By the monotone convergence theorem, we finish the proof. �

By refining this argument, we have the following corollary which will be used in the

proof of our Agmon estimate for eigenforms:

Corollary 3.2. If 0 ≤ u ∈ Dom(�Tf ) and �Tfu ≤
(
c+T

∣∣∇2f
∣∣)u for some c > 0 and

T >max
{√

3
b2εf

,
√

2C2c
b2εf

,2cfC2

}
, then

I(u) :=

∫
M

|u|2 exp(2bρT )dvol≤ CT 2‖u‖2,
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where the constant C = C
(
CL,cf,εf,b,c

)
, L = {p ∈ M : ρT (p) ≤ 2} and CL >

maxL |∇f |2.

Proof. Following the proof of Lemma 3.1 given in Section 7.1, put L= {p∈M : ρT (p)≤ 2}.
Since u ∈Dom(�Tf ), then |∇f |u ∈ L2(M).
Then by Lemma 3.1 we deduce∫

M−L

|u|2λT exp(2bρT,j)dvol≤ C1

∫
L−K

|u|2λT exp(2bρT,j)dvol

+C2

∫
M−K

(
c+T

∣∣∇2f
∣∣)λ−1

T |u|2 exp(2bρT,j)dvol

for C1,C2 as before.
Since u ∈ L2(M),

∫
M−K

(
c+T

∣∣∇2f
∣∣)λ−1

T |u|2 exp(2bρT,j)dvol<∞.

We split the second integral on the right-hand side into two; the one over L−K will

be absorbed into the first term. The second term (we omit the volume form here) is

C2

∫
M−L

(
c+T

∣∣∇2f
∣∣)λ−1

T |u|2 exp(2bρT,j)

≤
(

4C2c

b2T 2ε2f
+

2C2cf
T

)∫
M−L

|u|2 exp(2bρT,j) .

Combining the foregoing, we arrive at∫
M−L

|u|2λT exp(2bρT,j)≤ C1

∫
L−K

|u|2
(
λT +

4C2c

b2T 2ε2f
+

2C2cf
T

)
exp(2bρT,j)

+C2

(
4c

b2T 2ε2f
+

2cf
T

)∫
M−L

|u|2 exp(2bρT,j) .

Thus, ∫
M−L

|u|2
(
λT − 4C2c

b2T 2ε2f
+

2C2cf
T

)
exp(2bρT,j)

≤ 2C1

(
CLb2T 2+

4C2c

b2T 2ε2f
+

2C2cf
T

)
e4b‖u‖2,

where CL >maxL |∇f |2. If T >max
{
2
√
3

bεf
, 2

√
C2c

bεf
,2cfC2

}
, then

λT −
(

4C2c

b2T 2ε2f
+

2C2cf
T

)
> 1

outside L. Hence∫
M−L

|u|2 exp(2bρT,j)dvol≤ 2C1

(
CLb2T 2+C2

(
2c

b2T 2εf
+

2cf
T

))
e4b‖u‖2,
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and consequently∫
M

|u|2 exp(2bρT,j)dvol≤
[
2C1

(
CLb2T 2+

2C2c

b2T 2εf
+

2C2cf
T

)
+1

]
e4b‖u‖2,

for T >max
{

2
√
3

bεf
, 2

√
C2c

bεf
,2cfC2

}
.

Now let j →∞. By the monotone convergence theorem again, we finish the proof. �

Remark 3.2. It may seem that CL and CL depend on T , as L = {p ∈M : ρT (p) ≤ 2}.
However, notice that as T becomes bigger, L gets smaller. Hence we can choose CL >
maxp∈L |∇f |(p) and CL >maxp∈L

∣∣∇2f(p)
∣∣, which are then independent of T .

Lemma 3.3 (De Giorgi–Nash–Moser estimates). For r > 0, let Br(p) be the geodesic ball

around p with radius r (in the metric g). Let 0 ≤ u ∈ L2(M), and Δu ≤ cu on B2r(p)
in the weak sense for some constant c ≥ 0. Then there exists constant C3(n,c,r0,R) > 0

depending only on the dimension n, the Sobolev constant (which depends on the injectivity

radius lower bound r0 and curvature bound on R) and c, such that for r ≤ r0

sup
y∈Br(p)

u(y)≤ C3

rn/2
‖u‖L2(B2r(p)).

With this preparation we are now ready to prove our first main estimate for the

eigenforms of �Tf .

Proof of Theorem 1.1. Consider an eigenform ω of �Tf . That is, �Tfω= μ(T )ω, where

the eigenvalue μ(T ) satisfies |μ(T )| ≤ c for some constant c. Then letting u= g(ω,ω)1/2, by
a straightforward computation using Bochner’s formula (for forms) and Kato’s inequality,

we have

�Tfu≤
(
c+ |R|+T

∣∣∇2f
∣∣)u,

where |R| is the upper bound of curvature tensor. Hence by Corollary 3.2 we have, for

T ≥max

{
2
√
3

bεf
,
2
√

C2(c+|R|)
bεf

,2cfC2

}
,

I(u) =

∫
M

|u|2 exp(2bρT )dvol≤ CT 2‖u‖2,

where the constant C = C
(
CL,cf,εf,b,c,|R|,n

)
.

Recall that for the compact set K, formula (2.1) is satisfied. Hence by Proposition 1.4,
the conditions of Lemma 3.3 are satisfied for u on M −K. Namely, for T > T1,

Δu≤ (c+ |R|)u

on M −K. Also, the Agmon distance ρT (p) is the distance between p and K induced by

g̃T and L = {p ∈M : ρT (p) ≤ 2}. Suppose p ∈ M −L. Denote by B̃r(p) the g̃T -geodesic

ball around p with radius r. Set l = supq∈B̃2(p)
|T∇f |(q) and r = 1/(2l). Then one can

easily verify that B2r(q)⊂ B̃2(p), for all q ∈ B̃1(p).
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Choose q0 ∈ B̃2(p) so that |T∇f |(q0) ∈ (l/2,l]. By Lemma 3.1 and the de Giorgi–Nash–

Moser estimate (Lemma 3.3), we have

|u(p)|2 exp(2bρT (p))≤
C3(n,c,r0,R)

rn
‖u‖2L2(B2r(p))

exp(2bρT (p))

≤ C4(n,c,r0,R)

rn

∫
B̃2(p)

|u|2(q)exp(2bρT (q))dvol

≤ C5

(
CL,cf,εf,b,c,R,n,r0

)
|T∇f(q0)|n I(u).

We will prove that

|∇f(q0)|2 ≤ sup
p′∈K

|∇f |2 (p′)exp
(
2cf
bT

ρT (q0)

)
(3.2)

in Lemma 4.6. Hence,

|∇f(q0)|2 ≤ sup
p′∈K

|∇f |2 (p′)exp
(
2cf
bT

ρT (q0)

)
≤ sup

p′∈K
|∇f |2 (p′)exp(ερT (q0))

for any small ε, provided T ≥ 2cf
bε . It follows then that

|u(p)|2 ≤ C6

(
CL,cf,εf,a,b,c,R,n,r0

)
I(u)Tn exp(−2aρT (p))

for any a < b, provided T ≥ ncf
b(b−a) . Hence if

T ≥ T2(K) := max

{
2
√
3

bεf
,
2
√

C2 (c+ |R|)
bεf

,2cfC2,
ncf

b(b−a)

}
, (3.3)

then we have

|u(p)|2 ≤ C7

(
CL,cf,εf,a,b,c,r0,|R|,n

)
Tn+2 exp(−2aρT (p))‖u‖2. �

Remark 3.4. The foregoing proof gives the inequality for p ∈M −L= {ρT (p)> r0} for

some constant r0 independent of T , which is what we need for later applications. For

p ∈ L, using the same reasoning as in Remark 3.2, there exists a constant C > 0, which
is independent of T , such that

Δu≤ CTu (3.4)

for all p ∈ L. Therefore via Moser iteration as in Lemma 3.3 and similar arguments as

before, one can show that

|u|2(p)≤ C ′Tn‖u‖2L2 ≤ C ′ exp(2a)Tn exp(−aρT )‖u‖2L2 .

Remark 3.5. When (M,g,f) is strongly tame, T2 can be arbitrarily small.

4. Thom–Smale theory

In this and the next section, we assume that f is a Morse function on M . Moreover, let

K be a suitable compact subset of M such that εf (K)> 0, ε > 0 is small enough (to be

https://doi.org/10.1017/S1474748021000232 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000232


656 X. Dai and J. Yan

determined later) and T5(ε,K) :=
cf
ε . Then outside K we have

T
∣∣∇2f

∣∣ ≤ εT 2 |∇f |2 , (4.1)

provided T ≥ T5.

Remark 4.1. We can take T5 to be arbitrarily small if (M,g,f) is strongly tame.

In this section, we always assume that T ≥ T5. Under these conditions we will define the

Thom–Smale complex
(
C∗(W

u),∂̃
)
, but we leave the proof that ∂̃2 = 0 to Section 7.3.

The remainder of this Section is devoted to the pairing between the Thom–Smale complex
and the Witten instanton complex.

Before defining the Thom–Smale complex, there is still a subtle issue for noncompact

cases. The gradient vector field −∇f may not be complete – that is, its flow curves may

not exist for all time. But notice that if we rescale the vector field by some positive
function, the corresponding integral curves will simply be reparameterisations of the

original integral curves.

For this purpose, we fix a positive smooth function F such that

F |M−K =
1

bT |∇f |2
.

Then we have the following:

Lemma 4.2.

1.

bT |f(p)−f(q)| ≤ d̃T (p,q), ∀p,q ∈M. (4.2)

2. Let Φ̃t be the flow generated by Yf := −F∇f , and p ∈ M . If the flow line Φ̃t(p),
t∈ [s1,s2] is outside K, then it is the minimal geodesic connecting Φ̃s1(p) and Φ̃s2(p)

with respect to metric g̃T . Moreover,

d̃T

(
Φ̃s1(p),Φ̃s2(p)

)
= bT

∣∣∣f (
Φ̃s1(p)

)
−f

(
Φ̃s2(p)

)∣∣∣ = |s2−s1|. (4.3)

3. Yf is a complete vector field.

Proof. (1) Let γ :
[
0,d̃T (p,q)

]
→M be the minimal geodesic connecting p and q with

respect to g̃T . Let ∇̃T be the Levi–Civita connection induced by g̃T . One computes

d

ds
f(γ(s)) = g̃T

(
∇̃T f,γ′(s)

)
= g̃T

(
∇f

b2T 2 |∇f |2
,γ′(s)

)

≤
√
g̃T

(
∇f

b2T 2|∇f |2 ,
∇f

b2T 2|∇f |2
)
=

1

bT
.

Consequently, bT |f(p)−f(q)| ≤ d̃T (p,q).

https://doi.org/10.1017/S1474748021000232 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000232


Witten deformation for noncompact manifolds with bounded geometry 657

(2) We give a direct proof (see [13, Lemma A2.2] for another).

We first show that γ(s) := Φ̃s(p), s ∈ [s1,s2], is a geodesic. Since g̃T (Yf,Yf ) = 1 outside

K, we let ẽT1 (s),...,ẽ
T
n (s) be a local orthomormal frame on γ with ẽT1 = Yf . One can easily

show that outside K, −Yf/(bT ) is the gradient of f with respect to g̃T . In order to prove

γ′′ = 0, it suffices to prove g̃T
(
γ′′,ẽTi

)
= 0,i≥ 2.

Indeed,

g̃T
(
γ′′,ẽTi

)
= g̃T

(
∇̃T

Yf
Yf,ẽ

T
i

)
=−g̃T

(
Yf,

[
Yf,ẽ

T
i

])
=

[
Yf,ẽ

T
i

]
f

=−Yf g̃T

(
ẽTi ,

Yf

bT

)
+ ẽTi g̃T

(
Yf,

Yf

bT

)
= 0.

We now prove that γ is the shortest geodesic connecting γ(s1) and γ(s2) in (M,g̃T ).

Assume that σ : [s1,s
′
2] �→ M is another normal geodesic connecting γ(s1) and γ(s2)

induced by g̃T . Then g̃T (σ′(s1),Yf ) < 1. Set α(s) = f ◦ γ(s) and β(s) = f ◦ σ(s); then
we have α(s1) = β(s1), α

′(s) = −1 and β′(s) = −g̃T (σ′(s),Yf ◦γ(s)) ≥ −1. Hence by a

comparison theorem in ordinary differential equations, we must have α(s) ≤ β(s). Now
σ (s′2) = γ(s2) and s′2−s1 =Length(σ). Thus a(s′2)≤ β (s′2) =α(s2). Since α is decreasing,

we must have s′2 ≥ s2.

Therefore, Φ̃s(y), s ∈ [s1,s2], is one of the shortest geodesics connecting y and Φ̃t(y).

Hence d̃T

(
Φ̃s1(p),Φ̃s2(p)

)
= |s2−s1|.Moreover, since ∂

∂sf
(
Φ̃s(p)

)
= Yff = g (∇f,Yf ) =

1
bT , we have

bT
∣∣∣f (

Φ̃s1(p)
)
−f

(
Φ̃s2(p)

)∣∣∣ = |s2−s1|.

(3) To prove that Yf is complete, we show that for any p ∈ M , there exists a uniform
constant ε0 > 0 such that Φ̃t(p) is well defined on (−ε0,ε0).

Recall that L :=
{
p ∈M : d̃T (p,K)≤ 2

}
. It suffices to show that for any p ∈ M −L,

Φ̃t(p) is well defined on (−1,1), as L is compact.

But this is clear: on M −K, bTF−1g (Yf,Yf ) = g̃T (Yf,Yf ) = 1, and
(
M,bTF−1g

)
is

complete, and Φ̃t(p), t ∈ (−1,1), is a geodesic inside M −K with respect to bTF−1g. �

Now we can talk about the unstable and stable manifolds of Yf .

Let x be a critical point of the Morse function f and W s(x) and Wu(x) be the stable
and unstable manifold of x, respectively, with respect to flow Φ̃t defined in Lemma 4.2.

(See [23, Chapter 6] for a precise definition of stable and unstable manifolds.) We will

further assume that f satisfies the Smale transversality condition, namely thatW s(x) and

Wu(y) intersect transversally. Then the Thom–Smale complex
(
C∗(W

u),∂̃
)
is defined by

C∗(W
u) =⊕x∈Crit(f)RW

u(x),
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and

Ci(W
u) =⊕x∈Crit(f),nf (x)=iRW

u(x).

To define the boundary operator, let x and y be critical points of f , with nf (y)=nf (x)−1.
For x ∈ Crit(f), set

∂̃Wu(x) =
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x,y)Wu(y).

Here the integer m(x,y) is the signed counts of the flow lines in W s(y)∩Wu(x).

In order to see that the integer m(x,y), and hence the coboundary operator, is well

defined, we now make a more judicious choice of K. Fix any p0 ∈ M . Let d̃ be the
distance function induced by (the Agmon metric) |∇f |2 g, and set

D = sup
y∈Crit(f)

d̃(y,p0)+2 sup
y,z∈Crit(f)

d̃(y,z). (4.4)

We choose K so that

B̃D+1(p0)⊂K◦,

where K◦ denotes the interior of K and B̃r(p0) :=
{
p ∈M : d̃(p,p0)≤ r

}
. From the

definition of D, it is clear that all critical points are contained in K◦. Moreover, we
make the following remark:

Remark 4.3. The choice of K together with equation (4.3) guarantees that for any

x,y ∈ Crit(f), W s(x)∩Wu(y)⊂K◦. See also Lemma 7.6 for more detail.

Thus, just as in the compact case, by transversality m(x,y) is well defined.

We will prove in Section 7.3 that under our tameness condition, ∂̃2 = 0. Thus,(
C∗(W

u),∂̃
)
is a complex.

Let F
[0,1],∗
Tf be the space spanned by the eigenforms of �Tf with eigenvalue lying in

[0,1]. By Theorem 2.2, F
[0,1],∗
Tf is finite-dimensional when T is big enough. By previous

discussions, the cohomology of the Witten instanton complex is H∗
(2) (M,dTf ) when T is

large enough.

To prove Theorem 1.3, we now consider the chain map J :
(
F

[0,1],∗
Tf ,dTf

)
�→

C∗
(
(Wu)′,∂̃′

)
. Here C∗

(
(Wu)′,∂̃′

)
denotes the dual chain complex. Let Wu(x)′ be

the dual basis of Wu(x). Then

Jω =
∑

x∈Crit(f)

Wu(x)′
∫
Wu(x)

exp(Tf)ω.

However, there is a technical issue here we need to address. When Wu(x) is compact, the
integral

∫
Wu(x)

exp(Tf)ω is clearly well defined, but Wu(x) here may be noncompact.

We will be content here only with the well-definedness of the map, and leave the proof

that J is indeed a chain map to Section 7.3 (see Corollary 7.2).
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Let r > 0 be small enough and B
nf (x)
r (x)⊂K be the nf (x)-dimensional ball in Wu(x)

with center x and radius r with respect to metric g. As before, let Φ̃t be the flow generated

by −F∇f . Then Wu(x) = ∪t>0Φ̃
t
(
B

nf (x)
r (x)

)
. Moreover, by the definition of unstable

manifold, if t1 < t2, then Φ̃t1
(
B

nf (x)
r (x)

)
⊂ Φ̃t2

(
B

nf (x)
r (x)

)
.

Therefore, for any ω ∈ F
[0,1],∗
Tf ,

∣∣∣∣∣
∫
Wu(x)

exp(Tf)ω

∣∣∣∣∣ =
∣∣∣∣∣∣ limt→∞

∫
(Φ̃t)

(
B

nf (x)
r (x)

) exp(Tf)ω

∣∣∣∣∣∣
≤ C exp(Tf(x)) lim

t→∞

∫
B

nf (x)
r (x)

|ω| ◦ Φ̃t
∣∣∣det((

Φ̃t
)
∗

)∣∣∣dvolWu(x).

The well-definedness of J is now reduced to the following two technical lemmas, as well

as Theorem 1.1 and the well tameness of (M,g,f).

Lemma 4.4. Suppose t > 0 is big enough and y ∈B
nf (x)
r (x)− Φ̃−tK. Then∣∣∣ρT (

Φ̃t(y)
)
− t

∣∣∣ < T sup
p∈K

|∇f |diam(K),

where diam(K) is the diameter of K with respect to metric g.

Proof. For any y ∈B
nf (x)
r (x)− Φ̃−tK, equation (4.3) and the triangle inequality give∣∣∣ρT (

Φ̃t(y)
)
− t

∣∣∣ = ∣∣∣d̃T (
Φ̃t(y),K

)
− d̃T

(
Φ̃t(y),y

)∣∣∣
≤ T sup

p∈K
|∇f |diam(K),

where d̃T is the distance induced by g̃T . �

Lemma 4.5. Fix any y ∈B
nf (x)
r (x)− Φ̃−tK and set p= Φ̃t(y). We have∣∣∣Φ̃t

∗(y)
∣∣∣ ≤ C7(T )exp

(
6ερT (p)

b

)
.

Hence,

∣∣det(Φt
)
∗ (y)

∣∣ ≤ C7(T )exp

(
6nf (x)ερT (p)

b

)
.

Here C7 is a constant independent of y. In particular, for the fixed a∈ (0,1) in Theorem 1.1

and b∈ (a,1), any choice of 0< ε≤ ab
12n will guarantee that J is well defined for T >T5(ε).

Proof. Let e be a unit tangent vector of Wu(x) at y and extend e to a local unit vector

field (still denoted by e) of Wu(x) near y. Noting that from Formula (4.1)

∣∣∣∇Φ̃t
∗e

(
Φ̃t

)
∗
(Yf )

∣∣∣ ≤ 3ε

b

∣∣∣(Φ̃t
)
∗
e
∣∣∣,
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we have ∣∣∣∣ ∂∂tg
((

Φ̃t
)
∗
e(y),

(
Φ̃t

)
∗
e(y)

)∣∣∣∣
= 2

∣∣∣g(
∇(Φ̃t)∗e(y)

(
Φ̃t

)
∗
Yf,

(
Φ̃t

)
∗
e(y)

)∣∣∣
≤ 6ε

b

∣∣∣g((
Φ̃t

)
∗
e(y),

(
Φ̃t

)
∗
e(y)

)∣∣∣ .
By a classical result in ordinary differential equations, we have

g
((

Φ̃t
)
∗
e(y),

(
Φ̃t

)
∗
e(y)

)
≤ C8 exp

(
6εt

b

)
.

Our lemma follows from Lemma 4.4. �

Now when (M,g,f) is well tame, we set T0 to be the smallest nonnegative number such

that for all δ > 0,

1. whenever T ≥ T0+ δ, Theorem 1.1 holds true for the Agmon distance with respect

to some compact subset K(δ)⊂M depending on δ,

2. Theorem 2.3 holds true whenever T > T0 and

3. the map J is well defined whenever T > T0.

Fix a compact set K as before. Then

T0 ≤max{T1(K),T2(K),T5(K)}. (4.5)

(Compare definition (2.3) for the description of T1 and definition (3.3) for T2.) Moreover,

if (M,g,f) is strongly tame, T0 = 0.
We note in passing the following lemma, which plays an important role in estimating

the eigenforms previously:

Lemma 4.6. Suppose T ≥ T0. Then for any q ∈M ,

|∇f |2 (q)≤ sup
p∈K

|∇f |2 (p)exp
(
2cf
bT

ρT (q)

)
.

Proof. Let γ : [0,ρT (q)] �→M be a normal minimal g̃T -geodesic connecting K and q. Then

we have g(γ′,γ′) = 1
b2T 2|∇f |2 outside K.

Let h(t) = |∇f |2 ◦γ; then

h′(t) = 2g (∇γ′∇f,∇f)≤ 2

bT

∣∣∇2f
∣∣ ≤ 2cf

bT
|∇f |2 = 2cf

bT
h(t),

and hence |∇f |2 (q)≤ |∇f |2 ◦γ(0)exp
(

2cf
bT ρT (q)

)
. �

Now we give a direct proof of the isomorphism of H∗
(2) (M,dTf ) and H∗

dR(M,Uc) under

the assumption that f is proper:
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Theorem 4.1. Assume that f is proper. Set I = infp∈K f(p),S = supp∈K f(p) and fix

c > |I|+ |S|+2. Then for Uc = {p ∈M : f(p) < −c},
(
Ω∗

(2)(M),dTf

)
and (Ω∗(M,Uc),d)

are quasi-isomorphic.

Proof. We may as well set K = f−1[I,S]. Motivated by [10], consider (Cone∗,dC), where
Conej =Ωj(M)⊕Ωj−1(Uc):

dC(φ,φ
′) = (dφ,−d|Uc

φ′+φ|Uc
) .

Then (Cone∗,dC) and (Ω∗(M,Uc),d) are quasi-isomorphic.

Set U ′
c = {p ∈ M : f(p) > c} and U = Uc ∪U ′

c. Let Φ̄t be the flow in U generated by
Xf =− ∇f

bT |∇f |2 on Uc, and Xf = ∇f
bT |∇f |2 on U ′

c.

Define a map L : F
[0,1],j
Tf �→ Conej :

ω �→
(
exp(Tf)ω,−

∫ ∞

0

(
Φ̄s

)∗ (
exp(Tf)ιXf

ω
)
ds|Uc

)
.

By Theorem 1.1 and a similar argument as in Lemma 4.4, we have

∣∣∣(Φ̄s
)∗

ιXf
ω
∣∣∣ ≤ C exp

(
−

∫ s

0

aTdt

)
≤ C exp(−aTs).

Hence, L is well defined.

To see that L is a chain map, one computes

L(dTfω) =

(
exp(Tf)dTfω,−

∫ ∞

0

(
Φ̄s

)∗ (
exp(Tf)ιXf

dTfω
)
ds

)

=

(
exp(Tf)dTfω,−

∫ ∞

0

(
Φ̄s

)∗ (
ιXf

exp(Tf)dTfω
)
ds

)

=

(
d(exp(Tf)ω),−

∫ ∞

0

(
Φ̄s

)∗ (
ιXf

d(exp(Tf)ω
)
ds

)

=

(
d(exp(Tf)ω),−

∫ ∞

0

(
Φ̄s

)∗ (
LXf

(exp(Tf)ω)−dιXf
(exp(Tf)ω

)
ds

)

=

(
d(exp(Tf)ω),−

∫ ∞

0

[
d

ds

(
Φ̄s

)∗
(exp(Tf)ω)−

(
Φ̄s

)∗ (
d(exp(Tf)ιXf

ω
)]

ds

)

=

(
d(exp(Tf)ω), exp(Tf)ω+d

∫ ∞

0

(
Φ̄s

)∗ (
exp(Tf)ιXf

ω
)
ds

)
= dCL(ω).

Hence L induces a homomorphism (still denote it by L) between H∗
(
Ω•

(2)(M),dTf

)
and

H∗(Cone•,dC). The proof of the fact that L is a bijection is tedious, and will be given in

Section 7.6. �
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5. Morse inequalities

In this section we assume that T ≥ T0. In fact, we also assume that in a neighbourhood Ux

of critical points x of f , we have coordinate system z = (z1,...,zn) such that for k= nf (x),

f = f(x)− z21 −·· ·− z2k+ z2k+1+ ...+ z2n, g = dz21 + · · ·+dz2n. (5.1)

This is a generic condition. Without loss of generality, we assume that Ux is a Euclidean

open ball around x with radius 1. Also, these open sets are disjoint.

Recall that mi denotes the number of critical points of f with Morse index i. We have
the following proposition:

Proposition 5.1. There exists T3 ≥ T0 big enough (see formula (4.5) for the definition

of T0), so that whenever T ≥ T3, the number of eigenvalues (counted with multiplicity) in

[0,1] of �Tf |Ωi
(2)

(M) equals mi – that is, dimF
[0,1],∗
Tf =mi.

The proof of Proposition 5.1 follows from that of [23, Proposition 5.5], except for the

proof of the following proposition, which requires a slight modification using the well-tame

condition:

Proposition 5.2. There exist constants C > 0, T4 > 0 such that for any smooth form

φ ∈ Ω∗
(2)(M) with supp(φ)⊂M −∪x∈CritfUx and T ≥ T4, one has

‖�Tfφ‖L2 ≥ CT‖φ‖L2 .

Here supp(φ) denotes the support of φ.

Proof. Since f is well tame, there exist δ1,δ2 > 0 such that |∇f | ≥ δ1 and
∣∣∇2f

∣∣≤ δ2 |∇f |2
on M −∪x∈CritfUx. Then our proposition follows from the same argument as in [23,

Proposition 4.7]. �

On the other hand,
(
F

[0,1],∗
Tf ,dTf

)
forms a complex, the so-called Witten instanton

complex, whose cohomology is H∗
(2) (M,dTf ), when T is big enough by Theorem 2.3. As a

result, our Theorem 1.2 (the strong Morse inequalities) follows from Proposition 5.1 and
our Hodge theorem when T > T3. For the case of T ∈ (T0,T3], see Section 7.

6. An application of Theorem 1.3

Let (M,g) be an oriented, compact Riemannian manifold with boundary ∂M . Set M̃ :=
M ∪T, where T ∼= ∂M × [1,∞). Then we can extend the metric g to M̃ , so that near

infinity, the metric g on M̃ is of product type – that is, g∂M +dr2. Clearly
(
M̃,g

)
has

bounded geometry.

We have the following technical lemma:

Lemma 6.1. Given a transversal Morse function f and a partition of boundaries N+ =

N+
1 �N+

2 , N− =N−
1 �N−

2 , one can extend f to a function f̃ on M̃ such that

1.
∣∣∣f̃ ∣∣∣(x)→∞ as x→∞,
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2. f̃ < 0 on
(
N+

1 �N−
2

)
× (2,∞),

3. f̃ has critical points Crit∗
(
f̃
)
=Crit◦,∗(f)∪Crit+,∗

N+
1

(f)∪Crit−,∗
N−

1

(f) and

4.
(
M̃,g,f̃

)
is well tame.

Proof. We use x = (x′,r),x′ ∈ ∂M,r ∈ (0,1] to denote x ∈ ∂M × (0,1]. Since f is a

transversal Morse function, there exists s0 < 1 such that
∣∣∣∂f∂r (x′,r)

∣∣∣ �= 0 on ∂M × (s0,1].

Hence, by considering the Taylor expansion of f(x′,r) in r, there is a smooth function
θ on ∂M × (s0,1] such that

1. f(x′,r) = f(x′,1)+ ∂f
∂r (x

′,1)θ(x′,r),

2. θ(x′,r) = (r−1)+o((r−1)) near ∂M ×{1} and

3. ∂θ
∂r (x

′,r) = 1+o(1).

Assume that s0 is close enough to 1 so that on ∂M×(s0,1], θ(x
′,r)<min

{
−(r−1)2,1/2(r−1)

}
,

∂θ
∂r (x

′,r′)> 0. Let η1 be a smooth function on (−∞,∞) such that

1. 0< η < 1 on (s0,1) and η ≡ 0 on (−∞,s0), η ≡ 1 on (1,∞); and

2. η′(r)> 0, for all r ∈ (s0,1).

Then for all x′ ∈N+
1 ∪N−

1 , let

f̃(x′,r) = f(x′,1)+
∂f

∂r
(x′,1)

(
(1−η(r))θ(x′,r)−η(r)(r−1)2

)
;

and for all x′ ∈N+
2 ∪N−

2 , let

f̃(x′,r) = f(x′,1)+
∂f

∂r
(x′,1)((1−η(r))θ(x′,r)+η(r)1/2(r−1)).

One easily verifies that f̃ satisfies our conditions. �

Since the Thom–Smale complex
(
C∗(Wu),∂̃′

)
of f̃ induces a differential operator ∂̃′

on Crit∗(f), Theorem 1.5 follows from Theorem 1.3.

7. The Agmon estimate

In this section we first carry out the main technical estimates of the paper. Then in
Section 7.3 we establish the Stokes formula for the Thom–Smale complex in our setting

and deduce among its consequences that the square of the coboundary operator for the

Thom–Smale complex is zero. The remaining subsections are devoted to the rest of the
proofs for Theorems 1.3 and 4.1.

7.1. Proof of Lemma 3.1

Proof. Our proof is adapted from that of [1, Theorem 1.5].
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Let L = {p ∈ M : ρT (p) ≤ 2}. Let ηk ∈ C∞
c (R) (k large enough) be a smooth bump

function such that

ηk(t) =

{
0 if |t|< 1 or |t|> k+1,

1 if |t| ∈ (2,k),

and |η′k(t)| ≤ 2, ηk(t) ∈ [0,1], for all t ∈ R.

Set ρT,j =min{ρT ,j}, and

λT,j =

{
λT if ρT < j,

0 otherwise.

Clearly |∇ρT,j |2 = λT,j almost everywhere and λT ≥ λT,j .
Now set ϕk,j = (ηk ◦ρT )exp(bρT,j). Then by assumption we have∫

M

∇u∇
(
ϕ2
k,ju

)
+λT (uϕk,j)

2
dvol≤

∫
M

wϕ2
k,judvol.

Noting that ∇u∇
(
ϕ2
k,ju

)
= |∇(ϕk,ju)|2−|∇ϕk,j |2u2 ≥−|∇ϕk,j |2u2, we have∫

M−K

(
λT |uϕk,j |2−|u|2 |∇ϕk,j |2

)
dvol≤

∫
M−K

wuϕ2
k,jdvol. (7.1)

Omitting the volume form dvol, since∫
M−K

wuϕ2
k,j ≤

1

1− b2

∫
M−K

(λT )
−1w2ϕ2

k,j +
1− b2

4

∫
M−K

λTu
2ϕ2

k,j

and

|∇ϕk,j |2 ≤
1+ b2

2
(ηk ◦ρT )2 |∇ρT,j |2 exp(2bρT,j)+

1+ b2

1− b2
(η′k ◦ρT )

2 |∇ρT |2 exp(2bρT,j)

=
1+ b2

2
(ηk ◦ρT )2λT,j exp(2bρT,j)+

1+ b2

1− b2
(η′k ◦ρT )

2
λT exp(2bρT,j),

by formula (7.1) we have

3+ b2

4

∫
M−K

λT (ηk ◦ρT )2u2 exp(2bρT,j)−
1+ b2

2

∫
M−K

λT,j(ηk ◦ρT )2u2 exp(2bρT,j)

≤ 1

1− b2

∫
M−K

w2(ηk ◦ρT )2λ−1
T exp(2bρT,j)

+
1+ b2

1− b2

∫
M−K

u2 (η′k ◦ρT )
2
λT exp(2bρT,j)

≤ 1

1− b2

∫
M−K

w2λ−1
T exp(2bρT,j)

+2
1+ b2

1− b2

∫
L−K

u2λT exp(2bρT,j)+2
1+ b2

1− b2

∫
B̃k+1−B̃k

u2λT exp(2bj).

(7.2)
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Letting k →∞, by the monotone convergence theorem and the fact that
∫
M
λTu

2 <∞,

we have

3+ b2

4

∫
M−L

λTu
2 exp(2bρT,j)−

1+ b2

2

∫
M−L

λT,ju
2 exp(2bρT,j)

≤ 1

1− b2

∫
M−K

w2λ−1
T exp(2bρT,j)+2

1+ b2

1− b2

∫
L−K

u2λT exp(2bρT,j) . �

7.2. Proof of Lemma 3.3

Proof. The proof is a standard argument of Moser iteration, and we present it here for

convenience.
The starting point is the differential inequality

cu≥Δu (7.3)

weakly on B2r(p).

Set r1 = 2r, rk+1 = rk− (1/2)kr and nk = (n/(n−2))k−1.

Let ηk ∈ C∞
c (B2r) be bump functions such that

ηk =

{
1 on Brk+1

,

0 on B2r−Brk,

and |∇ηk(q)|< 2
rk+1−rk

, ηk(q) ∈ [0,1], for all q ∈B2r.

Set um = min{u,m} and φ1 = η21um ∈ H1
0 (B2r). Notice that φ1 = 0 and ∇φ1 = 0 in

{u≥m}. Hence by formula (7.3) we have∫
Br1

c(um)2dvol ≥
∫
B2r

cuφ1dvol ≥
∫
B2r

∇u∇φ1dvol

=

∫
B2r

η21 |∇um|2+2η1∇η∇umumdvol

≥
∫
B2r

η21 |∇um|2−1/2η21 |∇um|2−2 |∇ηum|2 dvol

≥
∫
B2r

η21 |∇um|2−1/2η21 |∇um|2−2 |∇ηum|2 dvol

≥ 1/2

∫
Br2

|∇um|2 dvol−4/(r2− r1)
2

∫
Br1

|um|2 dvol.

Hence we have∫
Br2

|∇um|2 dvol≤
(
2c+8/(r1− r2)

2
)∫

Br2

c(um)2dvol≤C(n)/(r1−r2)
2

∫
Br2

c(um)2dvol.

By Sobolev inequality,(∫
Br1

|um|2n2 dvol

)1/n2

≤ C(n)/(r1− r2)
2

∫
Br2

c(um)2dvol.
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That is,

‖um‖L2n2(Br2)
≤ (C(n)/(r1− r2))‖um‖L2n1(Br1)

.

Let m→∞; then we have

‖u‖L2n2(Br2)
≤ (C(n)/(r1− r2))‖u‖L2n1(Br1)

.

Consider φk = η2k
(
u2nk−1
m

)
∈H1

0 (B2r). By the same arguments as before, we have

‖u‖L2nk+1(Brk+1)
≤ (C(n)/(rk− rk+1))

1/(nk)‖u‖L2nk(Brk)
.

As a consequence,

‖u‖L∞(Br) = lim
k→∞

‖u‖L2nk(Brk)

≤ CΠ∞
k=1(C(n)/(rk− rk+1))

1/(nk)‖u‖L2(B2r)

= C(C(n)/r)(
∑∞

k=1 1/(nk))2
∑∞

k=1 k/nk‖u‖L2(B2r)

≤ C/rn/2‖u‖L2(B2r). �

We state two lemmas that will be needed shortly.

Lemma 7.1. Suppose that u,w ∈ L2(M) and �Tfu ≤ w in the weak sense (and u ≥ 0).

For r > 0 small enough, p /∈L, let Br(p) be the geodesic ball around p with radius r induced

by g. Then

sup
y∈Br(p)

u(y)≤ C2

rn/2
(
‖u‖L2(B2r(p))+‖w‖L2(B2r(p))

)
,

where C2 > 0 is a constant that depends only on the dimension n, the injectivity radius
lower bound r0 and the curvature bound.

Proof. The proof is actually similar to the proof of Lemma 3.3, requiring only some slight

modification. See [12, Theorem 4.1] for a reference. �

By the same argument as the proof of Theorem 1.1, we have the following:

Lemma 7.2. Let (M,g,f) be well tame, with w ∈ L2(M) satisfying∫
M

λ−1
T |w|2 exp(a′′ρT )dvol <∞

for some a′′ ∈ (0,b). If φ ∈ L2(M) is a weak solution of �Tfφ≤ w, then

|φ(p)| ≤ C exp(−a′′ρT (p)).
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7.3. On the Thom–Smale complex

In this subsection, we will show that the Thom–Smale complex defined in Section 4 is

indeed a complex. The key here is to establish the analogue of the so called Stokes formula

in our setting. We use a doubling construction to reduce it to the compact case and make

essential use of the uniform lower bound of |∇f | outside suitably chosen compact sets,
which guarantees that the flow lines coming out of the compact region will never return

(see also Remark 7.7).

Intuitively the idea may be explained as follows. When the Morse function f is proper,
such compact regions can be chosen to be the sublevel set a ≤ f ≤ b. Since f decreases

along its negative gradient flow, a flow line out of the region will obviously not return.

In general, however, f may not be proper, but it turns out that the Agmon distance is
a good replacement. Indeed, when f is proper, f measures the Agmon distance between

its level sets.

First we recall the Stokes formula in the compact case. The following is a restatement

of [15, Proposition 6]:

Proposition 7.3. Let (N,g) be a compact Riemannian manifold (without boundary) and
f be a Morse function. Assume that (N,g,f) satisfies the Thom–Smale transversality

condition. Then for any critical point x ∈ Crit(f) with Morse index nf (x) and any φ ∈
Ωnf (x)−1(M), we have the following so-called Stokes formula:∫

Wu(x)

dφ=
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x,y)

∫
Wu(y)

φ.

For our noncompact case with tame conditions and Thom–Smale transversality, we

similarly have the following:

Proposition 7.4. For any critical point x ∈ Crit(f) with Morse index nf (x) and any

φ ∈ Ω
nf (x)−1
c (M), we have the following Stokes formula:∫

Wu(x)

dφ=
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x,y)

∫
Wu(y)

φ.

Before giving the proof of this proposition, we first draw a couple of consequences.

Corollary 7.1. Let ∂̃ : C∗(W
u) �→ C∗−1(W

u) be the map constructed in Section 4; then

∂̃2 = 0.

Proof. Otherwise, ∂̃2Wu(x) �= 0. Then there exists φ ∈ Ω
nf (x)−2
c (M) such that∫

∂̃2Wu(x)

φ �= 0.

But by Proposition 7.4, ∫
∂̃2Wu(x)

φ=

∫
Wu(x)

d2φ= 0,

which is a contradiction. �
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Corollary 7.2. Set ω ∈ F
[0,1],nf (x)−1
Tf . Then we have∫

Wu(x)

exp(Tf)dTfω =
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x,y)

∫
Wu(y)

exp(Tf)ω.

In particular, the map J introduced in Section 4 is a chain map.

Proof. By Theorem 1.1 and Lemma 4.5, for any ε > 0 there exists φ ∈ Ω
nf−1
c (M) such

that for any y ∈ Crit(f) with nf (y) = nf (x)−1,∫
Wu(x)

|exp(Tf)dTfω−dφ|< ε,

∫
Wu(y)

|exp(Tf)ω−φ|< ε.

Now the corollary follows from Proposition 7.4. �

We now turn to the proof of Proposition 7.4. We start with the following observation:

Lemma 7.5. Let (N,∂N) be a compact manifold with boundary. Moreover, assume that

near the boundary ∂N , the manifold is of product type (0,1]× ∂N. Suppose that f is a

Morse function on N − [1/2,1]× ∂N . Then there exists a Morse function f̄ on N such

that f̄ |N−[1/4,1]×∂N = f and f̃
∣∣∣
[3/4,1]×∂N

= r. Here r is the standard coordinate on the

(0,1] factor.

The proof is essentially the same as that of [19, Theorem 2.5].

Recall from Section 4 that d̃ denotes the distance function induced by the Agmon metric

|∇f |2 g. Let Φt denote the flow generated by −∇f. By reparameterisation, the results in

Lemma 4.2 can be restated for Φt and d̃. Namely, we have

|f(p)−f(q)| ≤ d̃(p,q), ∀p,q ∈M, (7.4)

and

d̃
(
Φt1(p),Φt2(p)

)
=

∣∣f (
Φt1(p)

)
−f

(
Φt2(p)

)∣∣ . (7.5)

Set

D = sup
y∈Crit(f)

d̃(y,p0)+2 sup
y,z∈Crit(f)

d̃(y,z)

(compare equation (4.4)).

Lemma 7.6. For any fixed x ∈ Crit(f) and any D̄ > D, let B̃D̄(x) be the ball centered

at x with radius D̄ in the distance d̃ and B̃◦
D̄
(x) be the interior of B̃D̄(x). Then for

any y,z ∈ Crit(f), Wu(y)∩W s(z) ⊂ B̃◦
D̄
(x). Moreover, if p /∈ B̃D̄(x) lies in the unstable

manifold Wu(x), then {Φt(p) : t≥ 0}∩ B̃D̄(x) = ∅.

Proof. Since f is decreasing along the flow Φt, by equation (7.5), for any p ∈Wu(y)∩
W s(z),

d̃(y,p) = f(y)−f(p)≤ f(y)−f(z) = d̃(y,z).
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Hence

d̃(x,p)≤ d̃(x,y)+ d̃(y,p)≤ d̃(x,y)+ d̃(y,z)≤D.

Similarly, if q /∈ B̃D̄(x) lies in the unstable manifold Wu(x), then for any t≥ 0,

d̃
(
x,Φt(q)

)
= f(x)−f

(
Φt(q)

)
≥ f(x)−f(q) = d̃(x,q)≥ D̄,

as desired. �

Now we are ready to prove Proposition 7.4.

Proof of Proposition 7.4. We reduce it to the compact case by a doubling construction
and make use of Proposition 7.3.

For any φ ∈ Ω
nf (x)
c (M), define

D̄ := sup
p∈Critf∪supp(φ)

d̃(p,p0)+2 sup
p,q∈Critf∪supp(φ)

d̃(p,q).

We can find a compact submanifold (N,∂N) with boundary, such that B̃D̄(x)⊂N◦. Here
supp(φ) denotes the support of φ and N◦ denotes the interior of N . Thus, supp(φ) ⊂
B̃◦

D̄
(x).

Now consider the double (DN =N+∪N−,gDN ) of N , gDN |B̃D̄(x) = g. By Lemma 7.5,

we can find a Morse function f̄ on DN such that f̄ |B̃D̄(x) = f . We may as well assume

that
(
DN,gDN,f̄

)
satisfies the Thom–Smale transversality condition. Then for any y,z ∈

Crit
(
f̄
)
with Morse index nf̄ (y) = nf̄ (z)+ 1, let mDN (y,z) be the signed count of the

number of flow lines in Wu
DN (y)∩W s

DN (z), where W s
DN and Wu

DN denote, respectively,

the stable and unstable manifolds with respect to f̄ on DN .

We make the following observations:

1. By Lemma 7.6 and its proof, if z ∈ B̃D̄(x) is a critical point of f̄ with nf̄ (z) =
nf̄ (x)− 1, we have mDN (x,z) = m(x,z). Indeed, suppose γ is a flow line on DN

connecting x and z and is not contained in B̃D̄(x). Let w ∈ γ∩∂B̃D̄(x) be the place

where γ first meets ∂B̃D̄(x). Then

D ≥ d̃(x,z)≥ f(x)−f(z) = f̄(x)− f̄(z)> f̄(x)− f̄(w) = f(x)−f(w) = d̃(x,w) =D,

which is a contradiction. Here the strict inequality follows from the fact that f̄

decreases along its flow lines, and the second-to-last equation follows from the fact

that the part of flow lines of f̄ inside B̃D̄(x) coincides with flow lines of f as

gDN |B̃D̄(x) = g, f̄
∣∣
B̃D̄(x)

= f .

As a result, flow lines (if they exist) connecting x and z in DN must be contained
in B̃D̄(x). By Lemma 7.6, they are exactly flow lines connecting x and z in M .

Therefore, mDN (x,z) =m(x,z).

2. If z /∈ B̃D̄(x) is a critical point of f̄ , and W s
DN (z)∩Wu

DN (x) �= ∅, then Wu
DN (z)∩

supp(φ) = ∅.
To see why, let γ be a flow line connecting x and z inDN , and let w ∈ γ∩∂B̃D̄(x) be

the first place where γ meets ∂B̃D̄(x). By equation (7.5), f̄(x)− f̄(z)> f̄(x)− f̄(w) =
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f(x)−f(w) = d̃(x,w) = D̄. Hence

f̄(z)< inf
p∈supp(φ)

f̄(p). (7.6)

Otherwise, there is p ∈ supp(φ) such that f̄(z) ≥ f̄(p). Then by formula (7.4), D̄ ≥
d̃(x,p) ≥ f(x)− f(p) = f̄(x)− f̄(p) ≥ f̄(x)− f̄(z) > D̄. By formula (7.6), Wu

DN (z)∩
supp(φ) = ∅.

As a result, by Proposition 7.3,

∫
Wu(x)

dφ=

∫
Wu

DN (x)

dφ=
∑

z∈Crit(f̄),nf̄ (z)=nf̄ (x)−1

mDN (x,z)

∫
Wu

DN (z)

φ

=
∑

y∈Crit(f),nf (y)=nf (x)−1

mDN (x,y)

∫
Wu(y)

φ (by Observation 2)

=
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x,y)

∫
Wu(y)

φ (by Observation 1),

as claimed. �

Remark 7.7. Here we have made essential use of the fact that |∇f | has a positive lower

bound outside some compact set K0. Indeed, in this case,
(
M, |∇f |2 g

)
is complete, and

hence B̃r(p) is compact for all r > 0, p ∈ M . Therefore one can always find a compact
manifold with boundary N containing B̃D̄(x). Moreover, by our choice of D̄, for all q ∈(
M − B̃D̄(x)

)
∩Wu(x), f(q)< infq′∈supp(φ)∪Crit(f) f(q

′). Therefore, since f is decreasing

along the flow, once a flow line escapes B̃D̄(x) it never flows back to supp(φ)∪Crit(f).

Consequently, we have Lemma 7.6, Observations 1 and 2.

7.3.1. A counterexample. To close out this subsection, we present a counterexample

provided by Shu Shen (whom we thank) which shows that if we drop the condition that

|∇f | have a positive lower bound near infinity, the conclusion ∂̃2 = 0 can fail.
Consider the following heart-shaped topological sphere S, with f being the height

function. Then we have four critical points x,y,z,w, as indicated. Let γ be a flow line

connecting y and w, and remove a point p on γ. Make a conformal change of metric
near the point p so that S−{p} is complete under this new metric. Now one can check

that |∇f(q)| → 0, as q → p. On the other hand, since the flow line is invariant under the

conformal change of metric, γ−{p} is still a (broken) flow line. And in this case, ∂̃2x=w,
which is nonzero.

In our previous arguments, the fact that |∇f | has a positive lower bound near infinity

plays a crucial role (see Remark 7.7).
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p

γ

y

x z

w

7.4. Isomorphism of H∗(C•(Wu),∂̃′) and H∗
dR(M,Uc)

For simplicity, we assume that f is a self-indexed Morse function – that is, if x is a critical
point of f with Morse index i, we require f(x) = i.

Let Vi = f−1
(
−∞,i+ 1

2

]
, 0≤ i≤ n.

Recall our assumption that in a neighbourhood Ux of critical points x of f , we have a

coordinate system z = (z1, . . . ,zn) such that

f = f(x)− z21 −·· ·− z2nf (x)
+ z2nf (x)+1+ · · ·+ z2n,

g = dz21 + · · ·+dz2n.

Moreover, Ux is a Euclidean open ball around x with radius 1. Also, these open balls are

disjoint.

We have the following observation:

Lemma 7.8. V0 can be written as a disjoint union of ∪x∈Crit(f),nf (x)=0Ũx and V , where

V is some open subset diffeomorphic to Uc and Ũx is a Euclidean ball around x with

radius 1
2 . Also, Vn is diffeomorphic to M .

Proof. Define Xf := ∇f
|∇f |2 and let Φt be the flow generated by Xf . Then we have(

Φc+ 1
2 (Uc)

)
∩

(
∪x∈Crit(f),nf (x)=0Ũx

)
= ∅.

This is for the following reasons:

• If f(p)≤ c− 1
2 , then f

(
Φc+ 1

2 (p)
)
< 0. Hence Φc+ 1

2 (p) /∈ ∪x∈Crit(f),nf (x)=0Ũx.

• If c− 1
2 ≤ f(p) < c, and if Φc+ 1

2 (p) ∈ Ũx for some x ∈ Crit(f) with Morse index

nf (x) = 0, then Φc+ 1
2 (p)∈W s(x), which implies p∈W s(x). But this is impossible,

since f(p)<−c < 0 = f(x).

We can similarly prove that Vn is diffeomorphic to M . �
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Let C∗(Vi,Uc) be the complex of relative singular chains. Then we have

C∗(Vn,Uc)⊃ C∗(Vn−1,Uc)⊃ ·· ·C∗(V0,Uc).

By Lemma 7.8 and a spectral sequence argument similar to the proof of [2, Theorem 1.6],
one can show that

H∗
(
C•(Wu),∂̃

)
�H∗(M,Uc).

Thus, it follows from the universal coefficient theorem that

H∗
(
C•(Wu),∂̃′

)
�H∗

dR(M,Uc).

7.5. Isomorphism of H∗
(2)(M,dTf ) and H∗(C•(Wu),∂̃′)

We will first show that the chain map J :
(
F

[0,1],∗
Tf ,dTf

)
�→ C∗

(
(Wu)′,∂̃′

)
defined in

Section 4 is in fact an isomorphism when T is sufficiently large. Hence J induces an
isomorphism between H∗

(2) (M,dTf ) and H∗(C•(Wu),∂) in that case.

More precisely, the arguments follow those in [23, Chapter 6], with a necessary

modification which we will only indicate here. The basic idea is to construct an explicit
map which approximates the inverse of J (up to a constant multiple) as T → ∞.

Therefore, there exists T6 > T0 such that J is an isomorphism whenever T > T6. (We

point out that the explicit description of T6 is more involved than that of T0.)
In fact, the modification we need is a more refined estimate in [23, Theorem 6.7].

Namely, we have

|Pτx,T − τx,T | ≤ C exp
(
−a′T

√
ρ2+1

)
‖τx,T ‖L2, (7.7)

where P is the orthogonal projection from L2Λ(M) to F [0,1],∗, and C, a′ < a are positive

constants.

Here τx,T is defined as follows (and the explicit map from C∗
(
(Wu)′,∂̃′

)
to(

F
[0,1],∗
Tf ,dTf

)
assigns a normalising multiple of Pτx,T to Wu(x)∗). Notice that in

Section 5, we require that in a neighbourhood U of x, the metric and Morse function be

of the form of equation (5.1). Let αx be a bump function whose support is contained in
U and αx ≡ 1 in a neighbourhood V of x, and set

τx,T = αx exp
(
−T 2|z|2

)
dz1∧·· ·∧dznf (x).

Then �Tfτx,T = 0 in V and M −U .
To obtain estimate (7.7), pick a bump function η with compact support such that η ≡ 1

on K. Then our Agmon estimate yields

|(1−η)(Pτx,T − τx,T )| ≤ C exp(−aTρ)‖τx,T ‖L2 .

On the other hand, the estimate

|η(Pτx,T − τx,T )| ≤ C exp(−cT )‖τx,T ‖L2

follows from exactly the same argument in the proof of [23, Theorem 6.7].
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Now it remains to prove that when T ∈ (T0,T6], H
∗
(2) (M,dTf ) and H∗(C•(Wu),∂) are

still isomorphic.

We only present the proof for the case when (M,g,f) is strongly tame (the case for well
tame being exactly the same except in notation). In this case, we have T0 = 0. The idea

is to show that if S > 0, then for any T ∈ [7/8S,S], H∗
(2) (M,dTf ) and H∗

(2) (M,dSf ) are

isomorphic. Hence H∗
(2) (M,dTf ) is independent of T ∈ (0,∞), which finishes the proof of

isomorphism of H∗
(2) (M,dTf ) and H∗(C•(Wu),∂).

For simplicity, we prove that H∗
(2) (M,d7f ) and H∗

(2) (M,d8f ) are isomorphic, the general

case being similar.
Thus fix coefficients a= 63

64 and b= 127
128 in Lemma 2.1 and Theorem 1.1.

DefineMf :
(
F

∗,[0,1]
8f ,d8f

)
�→

(
Ω∗

(2)(M),d7f

)
; for all w ∈F

∗,[0,1]
8f ,Mf (w)= exp(f)w. Sim-

ilarly, M−f :
(
F

∗,[0,1]
7f ,d7f

)
�→

(
Ω∗

(2)(M),d8f

)
; for all w ∈ F

∗,[0,1]
7f , M−f (w) = exp(−f)w.

Clearly these are chain maps once we check that Mf and M−f are well defined. To this

end, we verify that |f(p)| ≤ supq∈K |f(q)|+ 1
bT ρT (p). Indeed, let γ : [0,ρT (p)] be a normal

minimal geodesic connecting K and p, in the metric g̃T . Then∣∣∣∣ ddtf ◦γ(t)
∣∣∣∣ =

∣∣∣∣〈∇̃f,γ′
〉
g̃T

∣∣∣∣ ≤ 1

bT
.

Now the L2 bound of Mf (w) (resp., M−f (w)) follows by Theorem 1.1 and the standard

volume comparison. Hence Mf induces a homomorphism (still denote it by Mf ) from

H∗
(2) (M,d8f ) to H∗

(2) (M,d7f ).

Our next step is to show that Mf is injective. Suppose we have w ∈ ker(�8f ) such
that Mfw is exact, which means that we can find α ∈ Im(δ7f ) such that exp(f)w =

d7fα(= (d7f + δ7f )α).

Thus

�7fα= (d7f + δ7f )exp(f)w = exp(f)d8fw+exp(2f)δ6fw

= 0+exp(2f)(δ8fw− ι2fw) =−exp(2f)ι2fw.

By Lemma 7.2, |α| ≤ C exp(−1/3ρ7). Consequently, exp(−f)α ∈ L2Λ∗(M), and w =

d8f exp(−f)α is exact.

As a result, Mf is injective. Similarly, M−f is injective. Therefore, H∗
(2) (M,d8f ) and

H∗
(2) (M,d7f ) are isomorphic.

7.6. L is bijective

As promised, here we finish the proof of Theorem 4.1 by presenting the details of the
argument that the map L defined in the proof is a bijection.

First we show that L is injective. Set ω ∈ F
[0,1],j
Tf such that L(ω) is exact. Then there

exist φ ∈ Ωj−1(M) and φ′ ∈ Ωj−2(Uc) such that

exp(Tf)ω = dφ, ω′ = φ−dφ′,

where ω′ =−
∫ ∞
0

(
Φ̄s

)∗ (
exp(Tf)ιXf

ω
)
ds.
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Let c′ = c+2, and then choose a smooth function χ :M �→ R such that χ|Uc′ = 1 and

χ|M−Uc
= 0. Then denoting ψ = φ−d(χφ′), we have

dψ = exp(Tf)ω, ψ|Uc′ = ω′.

Also, on Uc′,

ιXf
ψ =−ιXf

∫ ∞

0

(
Φ̄s

)∗ (
exp(Tf)ιXf

ω
)
ds

=−
∫ ∞

0

(
Φ̄s

)∗ (
exp(Tf)ιXf

ιXf
ω
)
ds= 0.

(7.8)

Next, choose a smooth function η such that η = 0 on K and η = 1 in f−1((S+1,∞)∪
(−∞,I−1)). Now we would like to construct ψ′ satisfying exp(−Tf)ψ′ ∈ L2Λ∗(M) and
dψ′ = exp(Tf)ω. For this purpose, we set

ψ′(p) = ψ(p)−d

(
η

∫ 0

bT (−f(p)+I/2+S/2)

(
Φ̄s

)∗
ιXf

ψds

)
, p ∈ f−1(S,∞),

ψ′(p) = ψ(p)−d

(
η

∫ bT (−f(p)+I/2+S/2)

0

(
Φ̄s

)∗
ιXf

ψds

)
, p ∈ f−1(−∞,I),

ψ′(p) = ψ(p), p ∈ f−1[I,S].

By equation (7.8), we have ψ′ = ψ on Uc′ .
Thus for p ∈ U ′

c′ ,

ιXf
ψ′ = ιXf

ψ− ιXf
d

(
η

∫ 0

bT (−f(p)+I/2+S/2)

(
Φ̄s

)∗
ιXf

ψds

)

= ιXf
ψ− ιXf

d

(∫ 0

bT (−f(p)+I/2+S/2)

(
Φ̄s

)∗
ιXf

ψds

)
(since η ≡ 1 on U ′

c′)

= ιXf
ψ−

(∫ 0

bT (−f(p)+I/2+S/2)

ιXf
d
(
Φ̄s

)∗
ιXf

ψds

)

− bT ιXf
df

(
Φ̄bT (−f(p)+I/2+S/2)

)∗
ιXf

ψ

= ιXf
ψ−

(∫ 0

bT (−f(p)+I/2+S/2)

d

ds

(
Φ̄s

)∗
ιXf

ψds−
(
Φ̄bT (−f(p)+I/2+S/2)

))∗

ιXf
ψ

= ιXf
ψ− ιXf

ψ+
(
Φ̄bT (−f(p)+I/2+S/2)

)∗
ιXf

ψ−
(
Φ̄bT (−f(p)+I/2+S/2)

)∗
ιXf

ψ

= 0.

As a consequence,

d

ds

(
Φ̄s

)∗
ψ′|s=t = ιXf

(
Φ̄t

)∗
dψ′ = ιXf

(
Φ̄t

)∗
exp(Tf)ω

on Uc′ ∪U ′
c′ .
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Therefore, on U ′
c, we have∣∣∣(Φ̄t

)∗
ψ′

∣∣∣ = ∣∣∣∣
∫ t

0

ιXf

(
Φ̄s

)∗
exp(Tf)ωds

∣∣∣∣
≤

∫ t

0

∣∣∣ιXf

(
Φ̄s

)∗
exp(Tf)ω

∣∣∣ds
≤

∫ t

0

∣∣∣(Φ̄s
)∗

exp(Tf)ω
∣∣∣ds

≤ C exp
((
b−1−a

)
t
)

(since on U ′
c,

(
Φ̄t

)∗
ω ≤ C exp(−at)).

(7.9)

We claim that exp(−Tf)ψ′ ∈ L2Λ∗(M). If granted, then dψ′ = exp(Tf)ω, and hence

dTf exp(−Tf)ψ′ = ω – that is, ω is trivial in H∗
(
Ω•

(2),dTf

)
.

Now we prove the claim. It suffices to prove that
∫
Uc′∪U ′

c′
|exp(−Tf)ψ′|2 dvol < ∞.

Let Kc′ = f−1{−c′} and K ′
c = f−1{c}, and endow them with induced metrics. Define a

diffeomorphism Ψc′ :Kc′ × (0,∞) �→ Uc′ as follows:

Ψc′(p,t) = Φ̄t(p).

Similarly, we can define a diffeomorphism Ψ′
c :K

′
c× (0,∞) �→ U ′

c.

On Uc′ , |ψ′|= |ω′|, and hence for p ∈Kc′ ,

∣∣∣(Φ̄t
)∗

(exp(−Tf)ψ′)(p)
∣∣∣ =

∣∣∣∣(Φ̄t
)∗

(exp(−Tf)(p)

∫ ∞

0

(
Φ̄s

)∗ (
exp(Tf)ιXf

ω(p)
)
ds

∣∣∣∣
= exp

(
Tc′+ b−1t

)∫ ∞

0

((
exp

(
−Tc′− b−1(s+ t)

)(
Φ̄s+t

)∗
ιXf

ω(p)
)
ds

)

≤
∫ ∞

0

(
exp

(
−b−1s

)∣∣∣(Φ̄s+t
)∗

ιXf
ω(p)

∣∣∣)ds (7.10)

(a)

≤ C exp(−at)

∫ ∞

0

exp
(
−

(
a+ b−1

)
s
)
ds

≤ C ′ exp(−at),

where inequality (a) follows from the fact that(
Φ̄s+t

)∗
ω ≤ C exp(−a(s+ t)).

Then ∫
Uc′

|exp(−Tf)ψ′|2 dvol =
∫ ∞

0

∫
Kc′

(Ψ′
c)

∗
(
|exp(−Tf)ω′|2 dvolKc′dt

)

≤ C ′
∫ ∞

0

∫
Kc′

exp(−2at)(Ψ′
c)

∗ (
dvolKc′dt

)
(by equation (7.10))

≤ C

∫ ∞

0

∫
Kc′

exp(−2a′t)dvolKc′dt <∞ (compare Lemma 4.5),

where a′ is some positive number which is smaller than a.
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For p ∈ U ′
c, we have∣∣∣(Φ̄t

)∗
(exp(−Tf)ψ′)(p)

∣∣∣ = ∣∣∣(exp(
−Tc− b−1t

)(
Φ̄t

)∗
ψ′

)
(p)

∣∣∣
≤ C exp(−at) (by equation (7.9)).

Similarly, we have
∫
U ′

c
|exp(−Tf)ψ′|2 dvol <∞.

Now we show that L is surjective. We claim that any cohomology class ξ ∈Hj(M,Uc)

can be represented by a smooth closed j-form φ so that φ|Uc
=0. Moreover, on U , ιXf

φ=0

and
(
Φ̄t

)∗
φ does not depend on t for large t. Given the claim, it follows that exp(−Tf)φ∈

L2Λ∗(M) via a similar argument as before. Hence we can find ν ∈ ker�Tf such that

ν−exp(−Tf)φ is exact. Therefore, we can find ψ ∈ Im(δTf ) such that ν−exp(−Tf)φ=

dTfψ = (dTf + δTf )ψ. As a result, �Tfψ = 0 on Uc, and hence ψ is of exponential decay

in Uc, which implies that L(ψ) is well defined. Now L(ν)−L(exp(−Tf)φ) = dCL(ψ),
yielding L(ν) ∈ ξ – that is, L is surjective.

Thus, it suffices to prove the claim. Indeed, one can first realise ξ by a closed form φ

on M with dφ = 0 and φ|Uc
= 0. Now let η :M �→ R denote a smooth function which is

identically 0 on K and identically 1 on f−1((S+1,∞)∪ (−∞,− I−1)). The form

φ′(p) = φ(p)−d

(
η

∫ 0

bT (−f(p)+I/2+S/2)

(
Φ̄s

)∗
ιXf

φds

)

is cohomologous to φ and satisfies the additional conditions as claimed.

Appendix A. Decomposition of L2 space

In this section, we investigate the decomposition (1.1). For this purpose we first have to

understand the Friedrichs extension of ΔH,f . Here we assume that all operators considered
in this section are closable, as are our dTf and δTf (compare [20, Theorem VIII.1]).

A.1. Review on Friedrichs extension

Let A be a nonnegative, symmetric (unbounded) operator on a Hilbert space H, with

Dom(A) = V – that is,

(Aα,β)H = (α,Aβ)H, ∀α,β ∈ V ; (Aα,α)H ≥ 0.

Define a norm ‖·‖V1
on V by

‖α‖2V1
= (α,α)H+(α,Aα)H.

Let V1 be the completion of V under ‖·‖V1
. Then for any β ∈ H, one can construct a

bounded linear functional Lβ on V1 as follows:

Lβ(φ) = (φ,β)H, φ ∈ V1. (A.1)

Since |(φ,β)H| ≤ ‖φ‖H‖β‖H ≤ ‖φ‖H‖β‖V1
, Lβ is indeed bounded functional on V1. By

Riesz representation, there exists γ ∈ V1 such that (φ,γ)V1
= (φ,β)H.

https://doi.org/10.1017/S1474748021000232 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000232


Witten deformation for noncompact manifolds with bounded geometry 677

Set B :H→ V1, β �→ γ; then B is bounded and injective. Taking �=B−1− I, where I is

the identity (inclusion) map, � is the Friedrichs extension of A, with Dom(�) = Im(B).

Remark A.1. From the construction of the Friedrichs extension � of A, we can see that
Dom(�) = Im

(
(I+�)−1

)
.

Let T, S be two unbounded operators on the Hilbert space H such that

1.

V =Dom(T) = Dom(S), TV ⊂ V , and

2. S is a formal adjoint of T : ∀α,β ∈ V :

(Tα,β)H = (α, Sβ)H.

Let ‖·‖W be the norm on V given by

‖α‖2W = (α,α)H+(Tα,Tα)H, α ∈ V ,

and W be the completion of V under the norm ‖·‖W . Then we can extend T to T̄min

with Dom
(
T̄min

)
=W.

Let S̄max be the closure of S with Dom
(
S̄max

)
= {α ∈H : |(α,Tφ)H| ≤Mα‖φ‖H, ∀φ ∈ V }.

Namely, for any α ∈ Dom
(
S̄max

)
, since V is dense in H, by Riesz representation, there

exists a unique ν ∈H such that (ν,φ)H = (α,Tφ). Now define S̄max(α) = ν.

Since TV ⊂ V , ST is symmetric and nonnegative, with Dom(ST ) = V.

Proposition A.2. The Friedrichs extension Δ of ST is just S̄maxT̄min.

Proof. Since TV ⊂ V , we see that V1 constructed in equation (A.1) is the same as W.

Indeed, for any φ,ψ ∈ V , we have

(ψ,φ)H+(Tψ,Tφ)H = (ψ,φ)H+(STψ,φ)H.

Hence we have

Dom(Δ) =
{
α ∈W : α= (I+Δ)−1f, f ∈H

}
,

Dom
(
S̄maxT̄min

)
=

{
α ∈W : T̄minα ∈Dom

(
S̄max

)}
.

We now divide our discussion into two cases.

(a) We first prove that DomS̄maxT̄min ⊂ Dom(Δ), and for all α ∈ Dom
(
S̄max

)
,

S̄maxT̄minα=Δα.

For any α ∈DomS̄maxT̄min, let

β = α+S̄maxT̄minα. (A.2)

Then for any φ ∈W, we have

(α,φ)W = lim
n→∞

(α,φn)W

= lim
n→∞

(α,φn)H+
(
T̄minα,Tφn

)
H
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= lim
n→∞

(α,φn)H+
(
S̄maxT̄minα,φn

)
H

(
since φn ∈ V , T̄minα ∈Dom

(
S̄max

))
= lim

n→∞

(
α+S̄maxT̄minα,φn

)
H =

(
α+S̄maxT̄minα,φ

)
H

= (β,φ)H, (A.3)

where φn ∈ V and φn → φ in the norm ‖·‖W . By the construction of the Friedrichs
extension and equation (A.3), we deduce that α ∈ (I +Δ)−1H and (I +Δ)α = β.

Comparing with equation (A.2), we obtain S̄maxT̄minα=Δα.

(b) We next show that Dom(Δ)⊂Dom
(
S̄maxT̄min

)
.

Take any α ∈Dom(Δ)⊂W . We can find f ∈H such that α= (I+Δ)−1f. We now just

need to show that T̄minα ∈ Dom
(
S̄max

)
. For this, it suffices to prove that for all g ∈ V ,∣∣(T̄minα,Tg

)
H

∣∣ ≤M‖g‖H for some M > 0.
In fact, by standard functional calculus,∣∣(T̄minα,Tg

)
H

∣∣ = |(α,STg)H| (via αn ∈ V , αn → α ∈ ‖·‖W )

=
∣∣((I+Δ)−1f,Δg

)
H

∣∣
=

∣∣(f,(I+Δ)−1Δg
)
H

∣∣
≤M‖g‖H. �

A.2. The Friedrichs extension of ΔH,f

By Proposition A.2, the Friedichs extension �f of ΔH,f is(
df + δf

)
max

(
df + δf

)
min

.

If 0 is an eigenvalue of �f with finite multiplicity, we have the decomposition

L2Λ∗(M) = ker�f ⊕ Im
(
df + δf

)
max

. (A.4)

Could we say more about decomposition (A.4)?

Proposition A.3. Let T, S be two unbounded operators on a Hilbert space H such that

the following are true:

1.

V =Dom(T) = Dom(S), TV ⊂ V.

2. Im(T ) is orthogonal to Im(S), and

(Tα,β)H = (α, Sβ)H.

3. T +S is essential self-adjoint – that is, (T +S)min = (T +S)max.

Then

T +S = T̄min|DomS̄min∩DomT̄min
+ S̄min|DomS̄min∩DomT̄min

= T̄max|DomS̄max∩DomT̄max
+ S̄max|DomS̄max∩DomT̄max

.
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Proof. Since Dom(T +S)min is the closure of V under the metric

(φ,φ)H+((T +S)φ,(T +S)φ)H = (φ,φ)H+(Tφ,Tφ)H+(Sφ,Sφ)H, (**)

we have Dom(T +S)min ⊂DomS̄min∩DomT̄min. Also, for any φ ∈Dom(T +S)min,

(T +S)minφ= lim
n→∞

(T +S)φn = lim
n→∞

Tφn+Sφn =Tminφ+Sminφ,

where φn ∈ V → φ in the metric (**).

For each φ ∈DomS̄max∩DomT̄max, ψ ∈ V , we have

(φ,(T +S)ψ)H = (φ,Tψ)H+(φ,Sψ)H

=
(
T̄maxφ,ψ

)
H+

(
S̄maxφ,ψ

)
H

≤ C‖ψ‖H.

Therefore φ ∈ Dom
(
(T +S)max

)
and (T +S)maxφ = T̄maxφ+S̄maxφ, which means that

DomS̄min∩DomT̄min ⊂Dom
(
(T +S)max

)
. �

Our Theorem 2.3 – the Kodaira decomposition for the Witten decomposition – follows
from equation (A.4), Theorem 2.1 and Proposition A.3.
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