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Abstract

For over 100 years it was believed that dietary protein must be completely hydrolysed before its constituent amino acids could be absorbed

via specific amino acid transport systems. It is now known that the uptake of di- and tripeptides into the enterocyte is considerable, being

transported across the intestinal endothelium by the PepT1 Hþ/peptide co-transporter. There is also evidence that some di- and tripeptides

may survive cytosolic hydrolysis and be transported intact across the basolateral membrane. However, other than antigen sampling, the

transport of larger intact macromolecules across the intestinal endothelium of the healthy adult human remains a controversial issue as

there is little unequivocal in vivo evidence to support this postulation. The aim of the present review was to critically evaluate the scientific

evidence that peptides/proteins are absorbed by healthy intestinal epithelia and pass intact into the hepatic portal system. The question

of the absorption of oliogopeptides is paramount to the emerging science of food-derived bioactive peptides, their mode of action

and physiological effects. Overall, we conclude that there is little unequivocal evidence that dietary bioactive peptides, other than di-

and tripeptides, can cross the gut wall intact and enter the hepatic portal system in physiologically relevant concentrations.
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Introduction

A primary function of the gastrointestinal tract (GIT) is

to digest dietary macromolecules and absorb the resultant

nutrients from the complex environment of the gut

lumen into the hepatic portal system. Yet accruing evi-

dence now indicates that certain intact peptides escape

hydrolysis and may exert physiological and immunological

effects directly within the gut wall or systemically after

being absorbed intact into the portal blood.

The intestinal lumen is a noxious environment and

the intestinal epithelia form a selective barrier between

the cells of the underlying lamina propria and the external

environment(1,2). The toxic milieu of the intestinal lumen

includes food antigens, anti-nutritional factors and

potentially damaging secretions (which include bile salts,

acids and digestive enzymes), food toxins and patho-

genic bacteria(2,3). The GIT is also an integral part of the

body’s immune system and the majority of the body’s

immune cells are located in the GIT(3,4). Maintaining the

integrity of the mucosal barrier is paramount for gut

homeostasis and immunological defence, as breaches of

this system have been implicated in a number of inflamma-

tory diseases(5).

The digestion and nutrient assimilation of ingested

protein by the GIT have, according to Matthews(6), been

the subject of speculation and debate since the late 18th

century. At the beginning of the 20th century, the discovery

of the protease-containing ‘erepsin’ by the German physi-

ologist Otto Cohnheim(7) and the demonstration that

amino acids are the products of protein digestion in the

small intestine(8,9) led scientists to believe that proteins

must be fully hydrolysed before their constituent amino

acids are absorbed. We now know that the digestion of

proteins is primarily undertaken by both gastric and

pancreatic proteases, with the resulting large peptides

being hydrolysed further by peptidases present on the

enterocytic brush border. Free amino acids are then

absorbed by the enterocytes via specific amino acid

transport systems(10), for example, the B0 system, a Naþ-

dependent and Cl–-independent transporter that is

responsible for the uptake of most neutral amino acids at

the brush-border membranes (BBM) of the enterocytes.

The doctrine that proteins must be completely

hydrolysed before the absorption of their component

amino acids prevailed until Newey & Smyth(11) provided

the first convincing evidence that dipeptides could be
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absorbed. Subsequently, further studies suggested the

existence of a transport system for the absorption of di-

and tripeptides(12,13), which Ganapathy & Leibach

described in 1983(14). First cloned by Fei et al.(15), this

intestinal transport system is a transmembrane protein

known as the PepT1 Hþ/peptide co-transporter (also

known as solute carrier family 15 member 1; SLC15A1)

which in humans is encoded by the SLC15A1 gene(16).

By the late 1960s and early 1970s researchers had estab-

lished that substrates for transport across the gut wall are

limited to di- and tripeptides(17–19); neither free amino

acids nor peptides containing four or more amino acids

are accepted as substrates by the PepT1 transporter(20–22).

In contrast to other transporters the PepT1 has an

enormous range of substrate specificity(21) which Adibi(23)

suggests includes some 400 dipeptides and 8000 tripep-

tides. Peptides consisting of L-amino acids are preferred

over those containing individual D-amino acid residues,

while those consisting solely of D-stereoisomers are not

transported(24,25). PepT1 (Fig. 1) (16,26,27) is a bidirectional

transporter where the direction and rate of absorption

are dependent upon the membrane potential plus proton

gradient. However, the binding affinity of substrates on

the luminal side is 5–100 % higher than on the intracellular

side of the apical membrane(21). Interestingly the rate of

amino acid absorption via the PepT1 system is believed

to be 70–80 % greater than the luminal absorption of

similar free amino acids(28), a mechanism that may be

attributed to the transporter’s high capacity(29) and/or its

high expression in the small intestine(21).

Although the absorption of di- and tripeptides across

the apical membrane in humans has been proven, little is

known of the existence of a separate basolateral peptide

transporter(16,21). The majority of di- and tripeptides that

enter the enterocytes may not leave the cell intact, due to

the presence of cytosolic peptidases that release amino

acids for intracellular metabolism or efflux into the portal

circulation, via amino acid transporters located on the

basolateral membrane(23). The efflux of hydrolysis-resistant

di- and tripeptides across the basolateral membrane and

into the hepatic portal system seems to be low(16,21,30–32).

Both di- and tripeptides resistant to cytosolic hydrolysis

may also be broken down by vascular endothelial

tissue peptidases and soluble plasma peptidases(33–35);

indeed, the half-life of many peptides in the plasma is

very short(20,36,37).

It has long been established that the mammalian

neonatal small intestine is permeable to g-globulins

from maternal colostrum as a mechanism of passive

immunisation(38) and that this protects the neonate

during the development of immunological competence

and such permeability diminishes with maturation(39).

However, the adult’s intestinal epithelium is not fully

impermeable to all macromolecules; in the healthy

mature gut small amounts of food-derived antigens and

micro-organisms may be absorbed and induce a homeo-

static immune response dominated by immune intolerance

to dietary antigens(40–42). The permeation of intact proteins

is protein specific and tightly regulated(16). Excessive

absorption of antigenic proteins can induce local or

systemic pathogenesis(43,44), for example, inflammatory

bowel disease(45,46), coeliac disease(47,48) and other food

allergies(49). In mature mammals the intestinal epithelium

can absorb small quantities of protein by endocytosis;

however, such absorption may be several orders of magni-

tude smaller than 0·1 % of an administered dose(16). Such

small quantities fall within the scope of antigen sampling.

Enmeshed in the debate of whether peptides, large or

small, can be absorbed intact by the healthy GIT is the

notion of food-derived bioactive peptides, their absorption

from the small intestine and their physiological effects.

Traditionally the principal consideration in the evaluation

of dietary protein quality has been its nutritional value and

the availability of N from constituent amino acids. How-

ever, more recently there has been the discovery that

specific protein fragments have physiological effects and

influence body health(50–53). As a result the physiological

activity of peptides (‘bioactive peptides’) released from

exogenous dietary precursor proteins during digestive

?
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Fig. 1. Digestion and absorption of protein by the mammalian small-intestinal

enterocyte (from Brandsch & Brandsch(16); reproduced with the permission of

Wageningen Academic Publishers). At the apical membrane: 1, peptidases;

2, amino acid transport systems, such as the B0 system; 3, peptide transporter;

4, cytosolic peptidases. At the basolateral membrane: 5, amino acid transport

systems; 6, unknown peptide transport system.
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enzymic proteolysis has been of interest to researchers

since their discovery in the 1970s(54). Both the reported

physiological effects of bioactive peptides and the foods

in which they have been found are numerous(55–57).

Pathways for the absorption of macromolecules from the
gastrointestinal tract

The epithelium of the small intestine is lined with a layer of

absorptive cells joined at their apical poles by junctional

complexes that prevent the ingress of macromolecules.

In addition, the apical surface is coated with mucus

composed of hydrolysis-resistant peptidoglycans holding

IgA, which impedes the absorption of luminal antigens(58).

Nevertheless, a small quantity of hydrolysis-resistant

antigenic material, macromolecules and indeed whole

microbial cells may be absorbed by the mucosal tissues

via transport systems that predominantly involve the

adaptive and innate immune responses of the gut(59,60).

The possible pathways for the absorption of peptides

from the intestinal lumen (illustrated in Fig. 2) include:

(a) paracellular pathways, via the tight junctions;

(b) passive diffusion through the enterocytes; (c) endo-

cytosis; and (d) carrier-mediated transport systems, for

example, PepT1.

The paracellular pathway involves structures that join

adjacent intestinal epithelial cells and are delineated by

tight junctions, adherens junctions and desmosomes(40).

The rate-limiting factor in the paracellular diffusion of

molecules involves the tight junctions, a network of

transmembrane proteins (claudins(61), occludin(62) and

junctional adhesion molecule A(63) and tricellulin(64)) that

control the tight junction’s plasticity and permeability.

Tight junctions form pores that range in diameter between

0·4–0·9 nm in the villi to 5–6 nm in the crypts. Tight junc-

tions allow the diffusion of mostly cations and inert small

molecules (,600 Da) such as water-soluble peptides(20).

The human gut has an estimated surface area of 200 m2(65)

and the area available to paracellular diffusion is esti-

mated to be 0·01 % of this(66). However, in the healthy

human gut, paracellular diffusion of antigens through the

tight junctions is very low(58) and remains even in areas

of desquamation(67).

Highly lipid-soluble peptides may enter the enterocytes

by passive diffusion where they are susceptible to hydro-

lytic degradation by cytosolic enzymes(20). Because large

polar molecules such as peptide fragments .600 Da

cannot pass through the hydrophobic enterocyte cell mem-

brane they may be captured by invagination of the apical

membrane into vesicles that normally fuse with lysosomes

to form phagolysosomes. The principal function of the

phagolysosomes is the enzymic digestion of the macromo-

lecules they contain. Only protein that escapes hydrolysis

within these structures can be drawn across the enterocytes

to be secreted at the basolateral membrane. The transcyto-

sis of internalised vesicles may carry specifically bound

ligands (receptor-mediated transcytosis), non-specifically

adsorbed ligands (adsorptive transcytosis) or fluids (fluid-

phase transcytosis) from the apical membrane across the

cell to the basolateral membrane(68,69). Partially degraded

food antigens in early endosomes bind to major histo-

compatibility complex (MHC) class II molecules in an

intracellular endocytotic compartment. Inward invagina-

tion of the MHC II compartment leads to the formation

of exosomes, small membrane vesicles (40–90 nm) bearing

MHC class II/peptide complexes at their surface(40).

Antigen-loaded exosomes can then fuse with the basement

membrane before being released into the extracellular

medium to interact with local immune cells(70). Antigen

sampling is thought to explain the presence of ferritin,

detected using electron microscopy (650 kDa with a size

of 5–6 nm) in membrane-bound vesicles within the

intestinal epithelial cells of the hamster following its

intraluminal infusion(71).

1 2 3 4

A A
A AA A

Intestinal lumen

Bloodstream of the hepatic portal system

Fig. 2. Potential mechanisms of small-intestinal epithelium movement of peptides: 1, paracellular – increased permeability of tight junctions may permit the

passage of peptides; 2, passive diffusion – cell-penetrating peptides are capable of transporting peptides as cargo; 3, endocytosis, followed by the endosomal

release of the peptides; 4, carrier-mediated transport – transport via the intestinal Hþ/di- and tripeptide transporter PEPT1. Inside the enterocyte peptides can be

hydrolysed into their constituent amino acids (AA) before being transported across the basolateral membrane by specific AA transporters. It is thought, although

not proven, that the transport of peptides across the basolateral membrane is mediated through other transporters such as those suggested by Terada

et al.(310,311), Shepherd et al.(312) and Irie et al.(313).
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Another important antigen-sampling pathway for

accessing specific proteins/antigens and bacterial cells

involves the phagocytotic activity of follicle-associated

epithelial cells (M-cells) located in Peyer’s patches. In a

similar fashion, inert particulate materials have also been

shown to be absorbed from the intestinal lumen. Gustave

Herbst in 1843 observed starch grains in the blood of

dogs 3 h after feeding them a starch suspension, obser-

vations that were confirmed by a series of experiments

in animals and human subjects by Volkheimer in 1964(72).

Weiner suggests that most absorbed particles are seque-

stered in macrophages within the Peyer’s patches; non-

sequestered particles are thought to be transported via

the lymph rather than the portal blood(73).

However, the absorption of intact macromolecules from

the healthy adult human intestine remains a controversial

issue as there is little unequivocal in vivo evidence (other

than antigen sampling) in the literature demonstrating

this phenomenon. The aim of the present review was to

critically evaluate the evidence in the scientific literature

that larger peptides and proteins are absorbed, in quan-

tities greater than that required for antigen sampling,

by healthy adult human intestinal epithelia; and that such

molecules can then pass intact into the hepatic portal

system, whereby they may invoke a targeted physiological

response from the host.

Evidence for the absorption of peptides from the healthy
gut of adult humans

Early claims for oligopeptide absorption

A number of articles commonly cited as being evidential

of oligopeptide absorption arose before the discovery of

the PepT1 Hþ/peptide co-transporter. Agar et al.(74)

demonstrated unequivocally the transmural transport of

unhydrolysed dipeptides, such as glycyl–glycine, an obser-

vation soon confirmed by other researchers(11,75). Hueckel &

Rogers(76) reported an increase in bound hydroxyproline-

containing dipeptides but not of free hydroxyproline in

the urine of human subjects fed 30 g of gelatin, indicating

that these peptides were absorbed intact before being

excreted during the succeeding 5·5 h. Interestingly when

the same experiment was repeated with rats both bound

and free hydroxyproline was present in the urine when

the diet contained gelatin. However, in monkeys and

dogs the quantities of free and bound urinary hydroxypro-

line were the same whether the animals ingested a normal

diet or one containing gelatin. This discordant result

demonstrates that the choice of a human analogue is criti-

cal in physiological research. Hellier et al.(77) reported the

intestinal absorption of two dipeptides, glycyl-glycine and

glycyl-L-alanine, in human subjects and noted that the con-

stituent amino acids were absorbed faster when presented

as dipeptides rather than as free amino acids. However, a

third dipeptide, glycyl-L-lysine, known to be transported

intact from the intestinal lumen, was hydrolysed to its

constituent amino acids before reaching the portal

venous blood, emphasising that the fate of dipeptides is

not always the same. Later, Boullin et al.(78) reported the

absorption of six different dipeptides in the rat. The

intact dipeptides were subsequently detected by ion-

exchange chromatography in blood samples taken from

the superior mesenteric vein.

The early work of Adibi(79) and Silk et al.(80) suggests

that not all tripeptides in humans are hydrolysed within

the lumen or at the BBM, and that some of the possible

8000 tripeptides produced during the digestion of dietary

protein may be absorbed intact. Compelling evidence for

the absorption of intact peptides by the gut in humans

comes from individuals with genetic disorders involving

amino acid transporters; these patients do not appear to

suffer from protein malnourishment as the absorption of

intact peptides is unaffected(81–84). Whether tetrapeptides

can be absorbed by the enterocytes of the human jejunum

was studied by Adibi & Morse(85). They determined that

tetraglycine was not absorbed by the enterocytes by the

same mechanism as tri- or diglycine and although they

did not discount the absorption of the tetrapeptide they

could not detect any tetraglycine within the mucosal

cells(85). They have suggested that tetraglycine is hydro-

lysed by mucosal-bound oligopeptidases and the uptake

of homologous glycine oligopeptides by the human

mucosal epithelium is restricted to diglycine and triglycine.

In vivo studies in animals offer only conflicting evidence

for the absorption of tetrapeptides. In the rat, Chung

et al.(86) reported that L-leucyl-triglycine may be absorbed

intact before being hydrolysed by cytoplasmic peptidases.

On the other hand, a study by Burston et al.(87) using

rings of everted rat and hamster jejunum indicated that

intact tetrapeptides were not absorbed but were hydro-

lysed to tri- and dipeptides by brush-border peptidases

before uptake. The absorption of tetrapeptides by passive

or facilitated diffusion has been reported by several

researchers(88–90). Both Chung et al.(86) and Rogers et al.(91)

reported that rat small intestine could actively absorb

intact tetrapeptides(86,91); however, Kerchner & Geary(89)

were critical of Chung’s experimental approach, citing

extensive incubation times and the reuse of perfusion

jejunum loops, with no correction for substrate entrapped

in the extracellular space, insufficient evaluation of the

cytoplasmic peptidase activity and the estimation of

intact tetrapeptide uptake by an indirect method. They

suggest that the unprotected peptides used were rapidly

hydrolysed to their amino acid residues by brush-border

and cytosol enzymes. With extensive incubation times in

an ileum-everted sac preparation coupled with such a

very high substrate concentration (20 mM) this investi-

gation would have been unable to determine whether

the passage of peptide was active or passive. Kerchner &

Geary(89) suggest that neither of these studies conclusively
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demonstrates the presence of an active transport process

for oligopeptides.

Evidence for the absorption of larger peptides has been

reported for: the pentapeptide metkephamid in the

rat(92); the orally active cyclic octapeptide analogue of

somatostatin, octreotide, in the rat(93); the renin-inhibiting

nonapeptide in the rabbit jejunum(94); the nonapeptide

vasopressin also in the rabbit(95); and in vivo, the decapep-

tide luteinising hormone-releasing factor(96). Another large

peptide that is absorbed via passive diffusion into entero-

cytes in humans is the orally active immunosuppressive

endecapeptide, cyclosporin A(97,98). This large peptide

is reported as having absolute bioavailabilities between

,5 and 89 %. Using ultrastructural imaging, horseradish

peroxidase (HRP; 40 kDa) has been shown to be absorbed

across the intestinal wall of the rat via transcytotic

vesicles(99). However, in Ussing chamber experiments the

rate of membrane permeation across rabbit jejunum

was found to be extremely low (3 pmol/h per cm2)(100).

M-cells in the Peyer’s patches of the ileum can transport

macromolecules such as lectins or IgA(101,102) although

the concentration of proteins reaching the systemic circula-

tion is considered to be very low(103).

Hemmings et al.(104) reported that the large molecular

mass breakdown products of four iodinated proteins

were absorbed into the circulation and tissues of orally

fed adult rats. In this paper the molecular mass of the

breakdown products was not given and the issue of

whether the irradiated iodine remains with the protein or

if it is transferred to protein synthesised de novo could

not be assured. However, in a later study(105) these ques-

tions were addressed. The molecular mass of the irradiated

breakdown products ranged between 20 and 50 kDa and

their origin was confirmed immunologically using antisera

specific to the original molecule. Using 3H-labelled bovine

IgG the authors detected the presence of this large protein,

or of fragments sufficient in size to retain the markers in

adult ileal epithelial cells by direct deposition autoradio-

graphy at the electron microscopic level(106). They suggest

there may be a universal necessity for body cells to be

permeable to proteins of many types and there is a constant

traffic of protein molecules into all body cells. The method

by which the human gut might absorb such large protein

fragments is unclear although the transcytosis of IgG in

the neonatal rat has been reported(107,108) and an increased

permeability of tight junctions may permit the passage

of larger peptides. Bloch et al.(109) demonstrated that
125I-labelled polypeptide fragments (6–20 kDa) from a

pepsin digestion of bovine serum albumin were transferred

from the mucosal to the serosal surface of the enterocytes

when infused into everted jejunual gut sacs of rats. In sub-

sequent in vivo studies they found that nanogram amounts

of unlabelled immunoreactive fragments were detected

by RIA of mesenteric and portal venous blood follow-

ing their infusion into the jejunum. However, they failed

to detect such fragments in the systemic circulation and

suggest that this must bedue to their rapid clearance. Caution

is required in the interpretation of these results owing to

the direct infusion of the jejunum circumventing hydrolysis

by gastric and intestinal peptidases, the small and nutrition-

ally insignificant amounts of the polypeptides detected in

the portal and mesenteric venous blood and the short half-

life of such fragments in the systemic circulation. On balance

it would appear that small quantities of di- and tripeptides

are absorbed from the adult human digestive tract, but

the evidence for the absorption of larger peptides in other

than very small amounts is not strong.

Food-derived bioactive peptides

The discovery of peptides that may induce physiological

effects in the host following the oral administration of

certain proteins or foods has led to publications that

review such compounds and their sources(110–112). Agyei

& Danquah(113,114) predict that food-derived bioactive

peptides are of such significance that they will, in the

future, sustain a new industry.

Such bioactivity infers the absorption of peptides

and in the eyes of many researchers the absorption

of oligopeptides from the small intestine is a foregone

conclusion(110,111,115,116). However, a critical examination

of the literature reveals that such a hypothesis is difficult

to substantiate. Whereas there is evidence for some

uptake of intact di- and tripeptides from the human GIT,

such uptake is not ubiquitous and there is little support

for the uptake of tetrapeptides and larger peptides.

The lactotripeptides isoleucine–proline–proline and
valine–proline–proline

Some of the most extensively studied food-derived

bioactive peptides are those with potential antihyper-

tensive properties and in particular those that may inhibit

the angiotensin-converting enzymes (ACE)(117). Séverin &

Xia(118) reported that two lactotripeptides (valine–proline–

proline (VPP) and isoleucine–proline–proline (IPP)) from

milk were able to cross the intestinal barrier and, post-

absorption, inhibit the production of angiotensin II

(AngII) in the bloodstream. They caution that not all

bioactive peptides may be so absorbed:

. . .in order to function physiologically in the human

body, the active peptides must be absorbed from the intes-

tine in an active form. Di- and tripeptides can be easily

absorbed in the intestine; however, it is not clear that

larger bioactive peptides containing in excess of three

amino acids are absorbed from the intestine and reach

the target organ. Most of the claimed physiological proper-

ties of the casein-based bioactive peptides have been

carried out in vitro or in animal model systems and these

hypothesized properties remain to be proven in humans.

The key point of this cautionary note is that bio-

active peptides must be absorbed in an active form,
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a point central to the debate as to whether orally ingested

foods can exert physiological changes systemically post-

absorption or not.

The research of Nakamura et al.(119) is often quoted

as demonstrating that ingestion of ‘Calpis’, a Japanese

sour milk, or a preparation of the pure tripeptides (VPP

and IPP), decreased the systolic blood pressure in

spontaneously hypertensive rats (SHR), 6–8 h after oral

administration(20,35,57,116,118,120–126). However, Nakamura

et al.(119) and others(122,127) also showed that the Calpis

sour milk and mixed tripeptides did not change the systolic

blood pressure of the normotensive strain of Wistar–Kyoto

rats, important data that many of the researchers citing this

paper have not mentioned(35,57,116,118,126). Interestingly, at

the conclusion of their 2009 study, Nakamura et al.(128)

state that it has been determined consistently that in

Japanese populations the blood pressure response to the

lactotripeptides is much greater than that in other popu-

lations, although it is unclear why this is so. It should be

emphasised that unlike in their earlier 1995 study(119)

using rats, in this study of human subjects Nakamura

et al.(128) did not use normotensive subjects or a placebo

control with which to compare their data.

Nakamura et al.(128) and others have reported that the two

lactotripeptides VPP and IPP have been shown to have sig-

nificant blood pressure-lowering activity(119,123,129–134).

They consider that both VPP and IPP are absorbed

into the bloodstream and into the cells of the aorta after

oral administration and inhibit ACE activity in vascular

endothelial cells(128,135). The 2009 study by Nakamura

et al. of human subjects was small (n 12) and not

placebo-controlled. In their earlier study, Nakamura and

colleagues(135) suggested that the two lactotripeptides

could be transported intact through the intestinal wall via

paracellular routes. However, the molecular mass of the

lactotripeptides is over 300 Da and, as Lennernäs(66) con-

jectures, compounds with a molecular mass greater than

200 Da are too large for the intercellular space between

the enterocytes and that absorption via paracellular trans-

port is unlikely. The latter hypothesis was corroborated

by observations that small hydrophilic molecules (for

example, creatinine 113 Da) were affected by solvent

drag and transported via the paracellular route, whereas

larger hydrophilic molecules such as D-glucose (180 Da)

and L-DOPA (L-3,4-dihydroxyphenylalanine) (197 Da)

were not(136–138).

In an in vitro study using monolayer-cultured human

intestinal Caco-2 cells, Satake et al.(139) also suggested

that lactotripeptides were transported across the cells

via the paracellular route. They suggest that because the

passage of VPP across the Caco-2 cell monolayers was

only weakly inhibited by the addition of a competitive

substrate, that the PepT1 peptide transporter was not the

major pathway. They also reported that no intact VPP

was detected in the Caco-2 cells, suggesting that any

peptides entering the cells were rapidly hydrolysed by

cytosolic peptidases. As the lactotripeptides are only

weakly hydrophobic, absorptive transcytosis could also

be discounted as a major transport mechanism(140). Like-

wise, Camenisch et al.(140) predicted that lactotripeptides

would not be expected to penetrate Caco-2 cells via trans-

cellular passive diffusion. With little or no evidence that

lactotripeptides are absorbed via the PepT1 transporter

suggests that this pathway may not be open to all di- and

tripeptides. Therefore the belief that the transporter can

essentially transport all di- and tripeptides(21,23,24,141) may

require amendment. To this end, Brandsch et al.(142) have

reported that the PepT1 transporter can accept most but

not all proteinogenic di- and tripeptides as substrates.

Mizuno et al.(123), experimenting with human volunteers,

administered the two peptides orally, in tablet form, at four

different dose rates. They found that the reduction in sys-

tolic blood pressure was dose-dependent and most effective

in mildly hypertensive subjects. However, they also found

that there was no statistically significant reduction in diastolic

blood pressure among their test groups or in comparison

with the control group who received a placebo. If such

an antihypertensive effect can be sustained, then it may

be mediated through receptors on the intestinal wall(57,143).

A study in the pig by van der Pijl et al.(144) highlighted

that efficacy studies usually present end-point measure-

ments (for example, blood pressure), but hardly ever

report plasma concentrations of the bioactive peptides

involved. They found no data in the literature pertaining

to the absolute bioavailability or other pharmacokinetic/

pharmacodynamic properties of the lactotripeptides. With

respect to the pharmacokinetics of three proline-rich

tripeptides (VPP, IPP and leucine–proline–proline) van der

Pijl et al.(144) went to extraordinary lengths to determine

the very low concentration of these intact peptides in the

bloodstream following intragastric infusion. Using liquid

chromatography/MS they found the absolute bioavai-

lability of the three peptides to be approximately 0.1 %.

In one experiment the half-lives of absorption and elimin-

ation for VPP and IPP following intragastric dosing (4 mg

of each lactotripeptide per kg body weight dissolved in

40 ml of iso-osmolar saline) were determined by van der

Pijl et al.(144) to be 12 ^ 6 and 9 ^ 1 min, respectively.

This suggested that the low absorption of these peptides

was due to peptidase activity in the lumen, BBM and

cytosol. With the effective plasma concentration for the

inhibition of ACE being estimated by van Platerink

et al.(145) to be 5·6 mmol, the plasma concentrations

determined by van der Pijl et al.(144) were approximately

1000-fold less and far below the effective concentration

required to have any influence on lowering blood press-

ure. The pharmacokinetic properties of the tripeptides

tested make it unlikely that physiological effects, such as

a reduction in blood pressure, are the result of prolonged

high plasma peptide concentrations.

In human subjects, following an oral dose of lactotripep-

tide in enriched yoghurt (250 ml containing approximately
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20 mg of both IPP and VPP), Foltz et al.(125) determined

the maximal plasma concentration of IPP to be less than

1 pmol/ml and concluded this to be far below its effective

concentration for ACE inhibition determined in vitro.

The required plasma concentration of the lactotripeptides

known to exert ACE inhibition are approximately 1000-

fold higher than reported plasma concentrations in

animal or human trials(125).

Despite these results demonstrating a low bioavailability

for the peptides leading to plasma concentrations below

the effective concentration for ACE inhibition(125,144),

many researchers continue to report that lactotripeptides

are absorbed in physiologically meaningful amounts (for

reviews, see Korhonen(146) and Ricci et al.(147)).

Both Fitzgerald et al.(148) and Foltz et al.(125) report that

previously studied ACE-inhibitory bioactive peptides

failed to lower blood pressure in in vivo studies, high-

lighting the intestinal breakdown of the so-called stable

proline-rich tripeptides(20,149). Only a few of the great

number of the milk peptides that have been identified as

having antihypertensive properties in in vitro experiments

have so far been proven to be clinically effective in vivo,

in either animal or human studies(20,148,150–152).

Having studied the lactotripeptides in detail(117,125,144),

Foltz et al.(30,125) and van der Pijl et al.(144) stated that

although these peptides possess high proteolytic stabi-

lity their bioavailability in pigs is less than 0·1 %, with a

very low elimination half-life. In humans the maximal

plasma concentration was no greater than high picomolar

concentrations(30). Foltz et al.(30) argue that there is no

scientific evidence that any other dietary peptides have

better absorption than the lactotripeptides or plasma clear-

ance profiles that could result in acceptable bioavailability

or transiently high, free plasma concentrations.

A very low bioavailability for the dipeptide valine–

tyrosine (VY), extracted from sardine muscle, was

observed in a study by Matsui et al.(153). From a maximal

oral dose of 12 mg dissolved in 100 ml of water the highest

plasma concentration of VY was determined to be 1·9

pmol/ml (equivalent to 532 pg/ml), 2 h after its adminis-

tration. Although the plasma peptide concentration

increased post-ingestion it did so in a non-linear dose-

dependent manner. The maximum plasma concentration

was determined to be 1/300 of the IC50 (half-maximal

inhibitory concentration) for VY. They did not find any

statistically significant differences in blood pressure or

blood chemistry between VY and the control groups in

normotensive subjects. Matsui et al.(153) concluded that

this very low degree of absorption was the result of

hydrolysis from membrane-bound peptidases. They con-

sidered that alternatively VY was absorbed intact into the

circulatory system and then rapidly accumulated in

organs such as the aorta and kidney, resulting in a low

and slow release of VY into the blood.

Other bioactive peptides present in milk

Milk, in particular, is known to be a rich source of bioactive

peptides. The physiological properties and structural

composition of the many milk-derived bioactive peptides

have been comprehensively reviewed(52,154–157) and

many of the effects of such bioactive peptides contained

within milk proteins, both bovine and human, are listed

in Table 1. Such bioactive components of milk are

encrypted within the major milk protein precursors and

are released during the digestive process by enzymic pro-

teolysis. A recent paper by Martı́nez-Maqueda et al.(158)

lists 134 different peptides with antihypertensive properties

derived from a variety of plant and animal proteins, includ-

ing forty-nine derived from milk. The principal mechanism

of action for peptides with antihypertensive effects, as dis-

cussed above, is the inhibition of angiotensin-I-converting

enzyme (ACE). ACE is a constituent enzyme of the renin–

angiotensin system (RAS), a mechanism that plays a crucial

role in the regulation of blood pressure together with

fluid and electrolyte balance(159). Although the blood

pressure-lowering capability of the peptides described by

Martı́nez-Maqueda et al.(158) was reported as having been

demonstrated in in vivo assays involving animal models

(for example, SHR and humans), the different mecha-

nisms of action that contribute to their antihypertensive

effect still require further investigation. The absorption

of ACE-inhibiting peptides in humans was reported by

Martı́nez-Maqueda et al.(158) for the peptide histidine–

leucine–proline–leucine–proline (HLPLP), just one of

seventeen small ACE-inhibitory peptides studied by van

Platerink et al.(160). An alternative to absorption suggested

by Martı́nez-Maqueda et al.(158) involves the action of small

peptides on opioid receptors present in the gut wall.

A large number of studies have focused on the opioid

properties that many of these peptides exhibit and the

physiological effects that these molecules might have (see

Table 2). Dietary exogenous opioid molecules have been

termed exorphins(161) and as well as being in milk they

have been found in a variety of other proteinaceous

staple foods including gluten in cereals(162,163) and Hb in

meat(164,165). From as early as 1979(166,167), many of the bio-

active peptides derived from milk, and casein in particular,

have been demonstrated to have opioid properties such as

those described in Table 2. Although exorphins may not be

absorbed intact, their physiological influence resulting

from their interaction with opioid receptors in the GIT is

in little doubt. Several studies report that small opiate-

acting peptides released during digestion by proteolytic

hydrolysis can affect intestinal function(168–170).

The existence of three opioid receptors (m, d and k)

was described simultaneously by three different groups

of researchers in 1973(171–173) and have been exhaus-

tively reviewed in the Handbook of Experimental

Pharmacology (174). It is supposed that the m, d and k

opioid receptors belong to the G-protein-coupled receptor
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Table 1. Examples of bioactive peptides derived from bovine milk proteins

Bioactive peptide Protein precursor
Amino acid
segment Peptide sequence† Bioactivity

Bioactive peptides derived from casein precursors
1 a-Casein exorphin aS1-Casein f90–96 RYLGYLE Opioid agonist
2 a-Casein exorphin aS1-Casein f90–95 RYLGYL Opioid agonist
3 a-Casein exorphin aS1-Casein f91–96 YLGYLE Opioid agonist
4 b-Casomorphin-11 b-Casein f60–70 YPFPGPIPNSL Opioid agonist
5 b-Casomorphin-7 b-Casein f60–66 YPFPGPI Opioid agonist, immunomodulatory and ACE inhibitor
6 b-Casomorphin-5 b-Casein f60–64 YPFPG Opioid agonist
7 Casoxin 6 k-Casein f33–38 SRYPSY · OCH3 Opioid antagonist
8 Casoxin A k-Casein f35–42 YPSYGLNY Opioid antagonist
9 Casoxin B k-Casein F58–61 YPYY Opioid antagonist
10 Casoxin C k-Casein f25–34 YIPIQYVLSR Opioid antagonist
11 Casoplatelin k-Casein f106–116 MAIPPKKNQDK Antithrombotic
12 aS1-Casokinin-5 aS1-Casein f23–27 FFVAP ACE inhibitor
13 aS1-Casokinin-6 aS1-Casein f194–199 TTMPLW Immunomodulatory and ACE inhibitor
14 aS1-Casokinin-7 aS1-Casein f28–34 FPEVFGK ACE inhibitor
15 b-Casokinin-7 b-Casein f177–183 AVPYPQR ACE inhibitor
16 b-Casokinin-10 b-Casein f193–202 YQQPVLGPVR Immunomodulatory and ACE inhibitor
17 Immunopeptide b-Casein f63–68 PGPIPN Immunomodulatory
18 Immunopeptide b-Casein f191–193 LLY Immunomodulatory
19 Casein phosphopeptide aS1-Casein F43–58 DIGS*ES*TEDQAMEDIM Ca binding and transport
20 Casein phosphopeptide aS1-Casein F59–79 QMEAES*IS*S*S*EEIVPNS*VEQK Ca binding and transport
21 Casein phosphopeptide b-Casein f1–25 RELEELNVPGEIVES*LS*S*S*EESITR Ca binding and transport
Bioactive peptides derived from whey protein precursors
22 Serorphin Bovine serum albumin f399–404 YGFQNA Opioid agonist
23 a-Lactorphin a-Lactalbumin f50–53 YGLF · NH2 Opioid agonist and ACE inhibitor
24 b-Lactorphin b-Lactoglobulin f102–105 YLLF · NH2 Opioid agonist and ACE inhibitor
25 Lactoferricin Lactoferrin‡ f17–41 FKCRRWNRMKKLGAPSIT-CVRRAF Immunomodulatory and antimicrobial
26 b-Lactotensin a-Lactoglobulin f146–149 HIRL Ileum contraction
27 Immunopeptide a-Lactalbumin f50–51 f18–19 YG Immunopotentiation
28 Immunopeptide a-Lactalbumin f18–20 YGG Immunopotentiation
29 Albutensin A Bovine serum albumin f208–216 ALKAWSVAR Ileum contraction and ACE inhibitor

ACE, angiotensin-converting enzyme; S*, phosphoserin.
† One-letter amino acid codes were used.
‡ Lactoferrin is a neutrophil-derived glycoprotein found in secreted mammalian fluids(170).
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family and have seven transmembrane helices which are

characteristic of the group(175). All three of these receptors

have been detected in the small intestine and are located

in the myenteric plexus(176,177).

Opioid receptor ligands are classified into two

groups ‘typical’ and ‘atypical’ designated by Teschemacher

et al.(178). The ‘typical’ peptides all originate from three

endogenous precursor proteins pro-opiomelanocortin

(endorphins), pro-enkephalin (enkephalins) and pro-

dynorphin (dynorphins)(179). All the typical opioid

peptides share the same N-terminal amino acid sequence,

YGGF. Although they can bind to more than one type of

receptor, they usually have a greater affinity for just one,

dynorphins for k-receptors, the enkephalins for d-receptors

and the endorphins for m-, d- and e-receptors(180).

The ‘atypical’ receptor ligands originate from a variety of

precursor proteins either endogenous or exogenous

and, although their N-terminal amino acid sequence may

vary, they all have a terminal tyrosine residue in common

(all except opioid receptor ligands that originate from

a-casein) and another aromatic amino acid residue, such

as tyrosine or phenylalanine, in the third or fourth position.

The biological activity of these peptides is dependent

upon the terminal tyrosine residue, as its absence elimin-

ates all bioactivity(181). A proline residue at position 2

also appears to be necessary for the correct orientation

of the peptide when it binds to the opioid receptor(182).

Opioid antagonists have much in common with the

‘atypical’ agonists though they do not usually have a similar

N-terminal amino acid sequence. The antagonistic potency

of naturally occurring milk-borne peptides is relatively low

though some synthetic derivatives have very high potency

and receptor selectivity. The synthetic alkaloid agonists

naloxone and naltrexone are often used in opioid peptide

research as inhibitory confirmation of the presence of an

agonistic opioid receptor ligand.

Of the forty-nine antihypertensive peptides derived from

milk listed by Martı́nez-Maqueda et al.(158), five have

amino acid motifs of reported opioid agonists(178,183–189).

These opioid peptides might lower blood pressure through

receptors expressed within the gut wall to bring about ACE

inhibition, implying that no absorption is required(190).

Two of the other small peptides listed by Martı́nez-

Maqueda et al.(158) (attributed to Jiang et al.(191) as having

ACE-inhibitory properties) have amino acid motifs

reported by Yoshikawa et al.(192) to be opioid antagonists.

Derived from k-casein there are four more peptides (caso-

xins) present in milk known to be opioid antagonists(192).

The small peptides listed by Martı́nez-Maqueda et al.(158)

are different in that they contain di- and tri-amino acid

sequences that are reported to have antihypertensive

properties (for example, tyrosine–proline (YP) and

leucine–phenylalanine–phenylalanine (LLF)). It is possible

that many of the listed peptides may be degraded by

enzymic hydrolysis to release di- and tripeptides which

may then be absorbed via the PepT1 peptide transporter.

Opioid-acting peptides

In a recent review, Hernández-Ledesma et al.(193)

also suggested that opioid receptors are probably

involved with antihypertensive effects, citing a-lactorphin,

Table 2. Exorphins: peptides derived from milk having opioid properties

Bioactive peptide Protein precursor Opioid receptor Bioactivity Physiological effect

1 a-Casein exorphin aS1-Casein d Opioid agonist In adults:
2 a-Casein exorphin aS1-Casein d Opioid agonist Increases in intestinal transit

time†, amino acid uptake‡
and water balance§

3 a-Casein exorphin aS1-Casein d Opioid agonist
4 b-Casomorphin-11 b-Casein m Opioid agonist
5 b-Casomorphin-7 b-Casein m Opioid agonist
6 b-Casomorphin-5 b-Casein m Opioid agonist Additionally in neonates:
7 Serorphin Bovine serum albumin m* Opioid agonist Analgesiak that results in

calmness and sleep{
8 a-Lactorphin a-Lactalbumen m* Opioid agonist
9 b-Lactorphin b-Lactoglobulin m* Opioid agonist
10 Casoxin 4 k-Casein m and k Opioid antagonist
11 Casoxin 6 k-Casein m and k Opioid antagonist
12 Casoxin A k-Casein m and k** Opioid antagonist
13 Casoxin B k-Casein m and k** Opioid antagonist
14 Casoxin C k-Casein m and k** Opioid antagonist
15 Casoxin D aS1-Casein m and d** Opioid antagonist Vasorelaxation and smooth

muscle contraction††

* Represents opioid activity with low potency.
† Schulte-Frohlinde et al.(183), Teschemacher et al.(178), Froetschel(184) and Allescher et al.(185).
‡ Brandsch et al.(186).
§ Daniel et al.(187).
kMatthies et al.(188) and Taira et al.(189).
{Taira et al.(189).
** Represents low affinity to this receptor.
†† Yoshikawa et al.(192).
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b-lactorphin and human casein-derived fragments as

examples of peptides in which their antihypertensive

effects are abolished by the opioid receptor antagonist

naloxone. In earlier studies Nurminen et al.(194) determined

that following a single subcutaneous injection of the

tetrapeptide YGLF, derived from a-lactalbumin, both the

systolic and diastolic blood pressures were lowered in

SHR and normotensive rats. Using mesenteric arterial

preparations Sipola et al.(195) proposed that the blood

pressure-lowering effect of YGLF in SHR is mediated via

vasodilation in mesenteric arteries following peripheral

opioid receptor stimulation and subsequent NO release.

Strangely, YGLF did not alter the vascular responses in

the mesenteric arteries from age-matched normotensive

Wistar–Kyoto rats(195). Ovokinin(2-7) (RADHPF), another

NO-dependent vasorelaxing peptide, isolated from a

chymotryptic digest of ovalbumin, has also been demon-

strated to lower the blood pressure of SHR and to

have no effect on the blood pressure of normotensive

Wistar–Kyoto rats(190). Studies such as these suggest

that such opioid peptides may lower blood pressure

through receptors expressed in the GIT, implying that

no absorption is required. Miguel et al.(196) noted that

mechanisms other than ACE inhibition have been reported

to explain the antihypertensive effect of various peptide

sequences, for example, vasodilation(197–199) and anti-

oxidant activity(200–202).

Interestingly a local RAS has been reported to be

present in the small intestine, with the key components

being expressed at the gene and protein levels of the

jejunal and ileal enterocytes(203). Angiotensinogen, ACE,

together with angiotensin I (AngI) and AngII receptors,

are localised in the microvilli of the BBM(204–206). ACE,

a metalloproteinase, hydrolyses AngI (a decapeptide)

to AngII (an octapeptide). The AngII released then binds

to AngII receptors in the BBM(203,207) and at low doses

AngII stimulates jejunal Na and water absorption. At

higher doses of AngII, fluid absorption is inhibited via an

AngI receptor-dependent process(208). Enterocyte-derived

AngII is also involved in the regulation of Naþ-D-glucose

cotransporter 1 (SGLT1)-mediated intestinal glucose tran-

sport at the BBM(204). Yoshioka et al.(209) proposed that

ACE associated with the BBM may function as a

membrane-bound peptidase. A comparison of intestinal

fluid absorption between male SHR and normotensive

male controls has been reported, with enhanced fluid

absorption in both hypertensive adults and in young

SHR before hypertension has developed(210). Na and fluid

homeostasis is therefore abnormal in SHR compared with

normotensive rats(211), and in view of a possible relation-

ship between high salt intake and hypertension(212) it

would appear possible that an abnormality in Na and

fluid homeostasis may be significant in the develop-

ment of hypertension in SHR and possibly in human

hypertension(210). By administering captopril intravenously

or by bilateral nephrectomy, Dorey et al.(210) demonstrated

that the circulating RAS was not responsible for the high

level of fluid transport in SHR as neither of these pro-

cedures suppressed fluid transport. However, the presence

of the intestinal RAS was not known to these authors at

the time, and Na and fluid transport across the gut wall,

controlled by the local RAS, would not be affected by

either procedure adopted by Dorey et al.(210). As ACE

inhibitors (for example, Ramipril) have been shown to

inhibit human brush-border ACE activity(205) it follows

that the absorption of Na and fluid across the gut wall

will be affected. Such changes are therefore consistent

with the hypothesis that antihypertensive drugs and dietary

bioactive peptides have an extracellular effect on the

intestinal RAS by changing the passage of Na and fluid

across the gut wall and thus lowering systemic blood

pressure. This might explain why the lactotripeptides

VPP and IPP have been shown to lower blood pressure(123)

with plasma concentrations below the effective concen-

tration for ACE inhibition(125,144).

The nonpeptide (for example, captopril) and peptidomi-

metic dipeptide (for example, enalapril) ACE-inhibitory

drugs are active-site-directed, competitive inhibitors with

sub-nanomolar Ki values of 10210–10211(213) that have been

reported by many researchers to be transported across

the gut wall via the PepT1 peptide transporter(214,215).

However, according to Brandsch et al.(142), transport

of these compounds remains a matter of controversy.

Whichever way they are transported across the gut wall,

the pharmacological effectiveness of these compounds

lies in their absorption from the intestinal lumen and into

the hepatic portal system to react directly with the

cardiovascular RAS and is therefore not restricted to

stimulating the extracellular intestinal RAS.

Absorption of larger peptides

Although the absorption into the enterocytes of di- and

tripeptides has been demonstrated, there are conflicting

views regarding the absorption of larger peptides(33,216).

Many in vitro studies have demonstrated that milk

is a rich source of bioactive peptides(34,57,154,157,217–220);

however, few peptides have been shown to be biologically

active in vivo following the ingestion of milk or fermented

milk products (i.e. it has not been ascertained whether

the functional domains of milk proteins survive digestion

and reach the blood in concentrations of any physiological

significance(143)). For example, Petrilli et al.(221) demon-

strated that b-casomorphins, the family of bioactive

peptides derived from milk b-casein(222,223), do not

survive digestive degradation. In addition, Schmelzer

et al.(224) determined that no significant amounts of

b-casomorphins or other known bioactive peptides are

formed during the peptic digestion of bovine b-casein

under simulated gastric conditions. Vermeirssen et al.(20)

also came to a similar conclusion, stating that no

intact transepithelial passage has been detected for these

Absorption of peptides from the healthy gut 317

N
ut

ri
tio

n 
R

es
ea

rc
h 

R
ev

ie
w

s

https://doi.org/10.1017/S0954422414000225 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422414000225


peptides. However, there are many papers outlining

physiological effects/functions of milk-borne bioactive

peptides(33,50,52,56,57,150,154,157,168,170,220,225,226). The prevail-

ing current opinion is that the majority of the known

bioactive peptides do not pass into the bloodstream in

meaningful amounts and that any known physiological

effects are mediated through receptors on the intestinal

wall(57,143).

One of the most quoted/misquoted papers on the subject

is that of Gardner(227) stating that it has been observed that

large peptides or proteolysis-resistant proteins can enter

the bloodstream, albeit in small amounts. However, Gardner

did not give any direct evidence for the absorption of

intact protein in humans; instead the following was

offered in support of the hypothesis that intact proteins

and macromolecular fragments of them may be absorbed:

(a) That antibodies to many food proteins and their

immune complexes have been detected in the circu-

lation of healthy individuals(228–232). However, he

qualified this statement by suggesting that such anti-

bodies may arise through the intestinal immune

system responding to luminal proteins rather than

absorbed ones.

(b) That RIA techniques(233,234) show the presence of

orally administered proteins such as ovalbumin in

the blood. However, referring back to the researchers

cited by Gardner, Husby et al.(233) fed ten children

(aged 2.5–13 years) a test meal containing 2 ml

of raw egg and 10 ml cows’ milk per kg body

weight through a gastric tube placed adjacent to

the ligament of Treitz. Five of the children had

been diagnosed with coeliac disease and the five

controls were also suspected of having coeliac dis-

ease. Although they found ovalbumin in the plasma

of three of the five coeliac patients and all five of

the controls, the feeding conditions and all the

experimental subjects being children, with or sus-

pected of suffering from coeliac disease, suggest

their results should be treated with caution. With

respect to Jakobsson et al.(234), the target protein

was not found to be absorbed in all subjects. The

protein a-lactalbumin purified from human milk

was not detected (,5 mg/l) in the serum of adult

men, non-pregnant women or in the serum from

formula-fed infants. However, a-lactalbumin was

found in serum from pregnant women, cord blood

and from newborn non-fed infants.

(c) That intact or largely intact HRP was found in the

blood of carp and trout(235,236). However, it must be

questioned as to whether observations in fish apply

to adult humans. Interestingly, Heyman(58) reported

that during active cows’ milk allergy there was an

eightfold increase in the absorption of the bystander

protein HRP and an alteration of the epithelial

integrity. However, after several months on a cows’

milk-free diet and during a symptom-free period

the absorption of HRP and paracellular permeability

returned to normal values, indicating that the

increased intestinal permeability to antigens was

not the primary cause of the condition(58).

Further, Gardner(227) cited the work of Walker

et al.(237,238) who studied the in vitro absorption of dietary

antigen and antigen–antibody complexes to corroborate

their hypothesis. This will be discussed in more detail

below, relative to the work of Roberts et al.(115). Another

paper often quoted is that of Fiat et al.(239) who cite

Gardner(227). Gardner describes the GIT as a major site of

immunological competence, as substantial numbers of

lymphocytes and macrophages are found throughout the

intestinal lamina propria. He hypothesises that absorption

occurs predominantly by transcellular endocytosis in

the M-cells (or lymphoepithelial cells(240)) and that this

allows subepithelial lymphocytes direct access to luminal

antigens. Transcellular endocytosis occurs when protein

molecules bind to receptors on the BBM, which are then

encapsulated into phagolysosomes. Proteolysis in the

phagolysosomes minimises the entry of intact bioactive

peptides into the circulation, which Gardner(241) states is

likely to be deleterious. So, although antibodies to numer-

ous food proteins may occur in the circulation of healthy

individuals, this should not be taken as evidence for

the presence of the original peptide antigens within the

blood. Gardner also states that it is not yet possible to

state with reliable accuracy what fraction of the protein

will enter the circulation in macromolecular form.

Much more work has been undertaken since Gardner

wrote his paper in 1988(227), yet still little is known

about the absorption of the larger bioactive peptides.

Teschemacher et al.(242), in a classic review, suggested

that b-casomorphins and their precursors have not been

identified in the cardiovascular compartment in more

than negligible concentrations and it is unlikely that they

have any functional role in adult mammals outside the

GIT. Teschemacher also states that enzymic degradation

in the intestinal wall and in the blood appears to prevent

the accumulation of peptides in plasma(242–244). For

example dipeptidyl-peptidase is one of the enzymes that

effectively degrades b-casomorphins in plasma(222) and in

the intestinal brush border(245). Meisel & Fitzgerald(170)

also point out that opioid casein fractions have not

been detected in the plasma of adult mammals and that

only in the neonate is the intestine permeable to caso-

morphins and their precursors. Teschemacher et al.(242)

and the reviews by Clare & Swaisgood(154), Gill et al.(246)

and Shah(155) reach similar conclusions to that of

Gardner(227). Froetschel(184) found that there is no evidence

to support the theory that opioid peptides, such as the

b-casomorphins, are transported into the bloodstream to

the brain, or that they can cross the blood–brain barrier.

No bioactive peptides or their native proteins have any
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established physiological role though they do have a

variety of physiological effects.

However, to demonstrate the physiological effects of

the multitude of bioactive peptides, researchers have

often introduced them directly into the blood(247), the

cerebrospinal fluid(165,248,249) or even directly into the

brain(250–252). Conclusive evidence for the functional

significance of milk-derived opioid peptides has not yet

been presented(169) and the effects demonstrated by

researchers for isolated or synthesised peptides derived

from milk represent evidence of a pharmacological activity

and not of a physiological role.

Roberts et al.(115) studied the effect of amino acid chain

length on the absorption of biologically active peptides

from the GIT. Studying the absorption of just three

peptides of differing chain length (thyrotropin-releasing

hormone, a tripeptide; luteinising hormone-releasing

hormone, a decapeptide; and human insulin, a fifty-one-

amino acid polypeptide), they concluded that ‘large

peptides’ (sic) as large as fifty-one amino acids generated

from dietary proteins can be absorbed intact through the

intestine and produce biological effects at the tissue

level. This conclusion has been quoted by many other

researchers(20,116,120,121,126,144,253).

A number of factors need to be considered, however, to

critically test such a claim:

(a) The study of Roberts et al.(115) was undertaken using

rats. Although this is an accepted animal model for

simple-stomached mammals in general, the results

do not necessarily relate to humans.

(b) The polypeptides were administered into the small

intestine of the animal distal to the pancreatic duct

and level with the ligament of Treitz, effectively

bypassing both gastric and pancreatic degradative

hydrolysis.

(c) The authors stated that the absorptive capacity of the

small intestine in the experimental animals was not

assessed and that the animal received a surgical pro-

cedure which placed a feeding tube within the small

intestine that ‘may have altered gut permeability and

absorption’. It is known, for example, that such

a naso-ileal tube affects gastric emptying(254,255),

increases intestinal transit time(256), can stimulate

intestinal secretions(256,257), and that the effect of a

gastrointestinal tube on the absorption and secretion

of other substances has not been fully investigated.

(d) Although Roberts et al.(115) measured serum insulin

in the plasma of the experimental animals they did

not state if this compound was the human insulin

administered enterally or native rat insulin. In addi-

tion they did not determine the serum levels of the

peptides administered, only their physiological effect

(i.e. for thyrotropin-releasing hormone by deter-

mining serum thyroid-stimulating hormone levels

and for luteinising hormone-releasing hormone

they determined serum follicle-stimulating hormone

levels). They also did not rule out that the physio-

logical effects may have been mediated directly via

the gut lumen or through receptors on the BBM.

(e) Roberts et al.(115) tested for the absorption of human

insulin, which has a different amino acid sequence

to that of rat insulin, and used a very large enteral

dose of 25 mg (avoiding both gastric and upper

small intestine digestive hydrolysis) to produce the

measurable physiological effect.

Considering the above, Roberts et al.(115) may possibly

have over-extrapolated their conclusions by assuming

that: (a) the oral intake of dietary peptides would be

the same as enteral administration; (b) that gastric and

pancreatic hydrolysis of such dietary peptides would be

negligible; and (c) that all dietary peptides resistant to

digestive degradation would be absorbed from the small

intestine to the same extent as their experimental peptides

(human insulin, thyrotropin-releasing hormone and lutei-

nising hormone-releasing hormone).

Jahan-Mihan et al.(111) claim that the absorption of

intact proteins and peptides was demonstrated after

animals were exposed to an intraduodenal infusion of

somatostatin and with an increased concentration of

somatostatin found in the blood. The paper they cite in

support of this conjecture is that of Rao et al.(258), who

demonstrated the absorption of radioisotope-labelled [125I]

[Tyr11]somatostatin-14 following its intraduodenal admi-

nistration in anaesthetised adult and neonatal rats.

Somatostain-14 is a peptide-inhibitory hormone containing

fourteen amino acids and with a molecular mass of 1638

Da. Intraduodenally administered somatostatin-14 has

been shown to inhibit pancreatic secretions in rats(259)

and dogs(260,261). Rao et al.(258) demonstrated that intraduo-

denally administered [125I][Tyr11]somatostatin-14 rapidly

disappeared from the duodenal lumen of both suckling

and adult rats (half-life being 2 min). The loss of radioac-

tivity from the lumen coincided with its simultaneous

appearance in the tissues of the duodenal wall, blood,

liver and kidney. Using C 18 Bond Elut cartridges and

HPLC no intact [125I][Tyr11]somatostatin-14 was found in

any of those tissues and suggests that the [125I][Tyr11]

somatostatin-14 was rapidly metabolised intraduodenally

and that no somatostatin had been absorbed by the

gut wall and transferred to the blood or other organs.

Rao et al.(258) suggest that the inhibition of pancreatic

secretions observed by Sarfati & Morisset(259) in rats and

of Konturek et al.(260,261) in dogs is mediated by somato-

statin receptors in the duodenal wall. The argument that

deiodination may occur before intestinal absorption(262)

appears to be unfounded, as Rao et al.(258) found no

free 125I in any of the tissues described and unlabelled

somatostatin-14 disappeared from the duodenal lumen at

the same rate as that of the labelled compound. Such

results suggest that peptidases in the duodenal lumen
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and at the surface of the BBM were responsible for the

metabolism of the somatostatin-14. Rao et al.(258) also

observed that the duodenal half-life for the [125I][Tyr11]

somatostatin-14 was longer for the neonatal rats than in

the adult rats, suggesting that milk-borne somatostatin

may be more hydrolytically stable and biologically active

for longer in the gut of the neonate rat, protected by pep-

tidase inhibitors within the milk(258).

Historically it has been claimed that various digestive

enzymes are selectively absorbed intact from the intestinal

lumen directly into the bloodstream(263–273) via the

superior mesenteric vein from where they are extracted

by the pancreas during the passage of blood through the

pancreatic capillary bed. Having reclaimed pancreatic

digestive enzymes from the circulation it was hypothesised

that they are then resecreted by the exocrine pancreas

into the duodenum along with other components of

pancreatic juice in what has been controversially described

as enteropancreatic circulation(274–276). While there is

evidence of the absorption of small quantities of digestive

enzymes from the small intestine (for example, ,0·2 %

pancreatic amylase(277,278)) such quantities are insufficient

to support the existence of a physiologically significant

enteropancreatic circulation mechanism(277–280). Interest-

ingly, Levitt et al.(277) reported that the net flux of amylase

was from the pancreas into the blood and not the other

way round; evidence contrary to the theory that circulating

enzymes can be reclaimed by the pancreas. Following the

publication of two articles by Levitt and colleagues(277,279)

and another by Rosenblum et al.(278) and the study by

Rohr et al.(280), Rothman & Grendell(281) sought to justify

their hypothesis by dismissing the contrary experimental

evidence reported in the three papers. The authors of the

four papers cited by Rothman & Grendell(281) vehemently

defended their findings and reiterated there was no

evidence to support the existence of a physiologically

important enteropancreatic circulation of enzymes and a

good deal of evidence to the contrary(279,282). Rosenblum

et al.(283) suggested that although further studies under

different experimental conditions might modify their

conclusions, those who champion the importance of

enteropancreatic circulation should support their belief

with new data. In an effort to reignite the entero-

pancreatic circulation debate, Rothman et al.(274) published

an extensive review citing many papers in support of

their hypothesis.

One widely reported dietary protein that may be

absorbed across the gut wall and enter the bloodstream

intact is ovalbumin(284–288). Ovalbumin is the predominant

protein in egg white, it contains 385 amino acids, has

a molecular mass of 46.4 kDa(289) and a cross-sectional

diameter of 4 nm(290). The intestinal absorption of

ovalbumin is known to invoke systemic immunological

tolerance(291) and a mucosal secretion of IgA(292). However,

in individuals with food allergy, ovalbumin can also stimu-

late the development of IgE-mediated food allergy(293–295).

Castell et al.(296) have suggested that the absorption of

macromolecules, including intact proteins, may occur

under specific circumstances and that this phenomenon

could be involved in the pathophysiology of certain

intestinal diseases (for example, cows’ milk allergy and

inflammatory bowel disease)(5,58,296–298).

Oral delivery of pharmacologically active proteins
and peptides

Pharmacologically active proteins and peptides are cur-

rently emerging as an imperative part of various treatment

protocols and in particular cancer therapeutics(299). How-

ever, despite extensive research, the administration of

therapeutic peptides and proteins orally remains a chal-

lenge for pharmaceutical industries and researchers.

Acidity and high enzymic proteolysis within the GIT

are significant barriers to the successful delivery of intact

proteins/peptides to the targeted site. Gupta et al.(299)

emphasise in their recent review that low permeability of

the intestinal barrier is also a factor adding to the low bio-

availability of any orally delivered proteins and peptides.

Added to which, the short circulatory half-life exhibited

by such peptides in vivo requires them to be administered

frequently, which in turn increases the cost of treatment

and results in low patient compliance(300). One solution

to this is the development of nano-carrier-based delivery

that protects therapeutic proteins from degradation. As

the surface of these particles can be modified towards

hydrophilic or lipophilic properties, these systems promise

high enterocytic permeability. Gupta et al.(299) have

suggested that nano-encapsulated proteins and peptides

may also have enhanced stability in vivo that leads to

increased circulation half-lives so the active peptides can

reach the target tissue in effective concentrations. How-

ever, despite this, there are currently only a few orally

delivered peptide/protein biopharmaceutical systems

available and continued research is required to reap the

promised effectiveness of these systems.

Essential in the treatment of diabetes mellitus is the

peptide hormone insulin, which is currently administered

to sufferers via subcutaneous injections. For patients who

require daily injections of insulin the development of a

less invasive route of administration would increase their

quality of life significantly. Although the oral administration

of insulin meets this criterion, Kamei et al.(301) point out

that two barriers must be overcome: the impermeability

of insulin through the epithelial membranes and local

digestion and enzymic degradation. To overcome the

poor pharmacokinetics of oral administered insulin cell-

penetrating peptides (CPP) could deliver exogenous

proteins into cells and have the potential to facilitate effec-

tive insulin permeation from the intestinal lumen into the

systemic circulation. In their review Kamei et al.(301)

describe how the co-administration of insulin with

the short hydrophilic peptide penetratin, a typical CPP,
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increased intestinal insulin bioavailability to 35 %. The

development of more effective CPP requires further research

at this time. Recently, Renukuntla et al.(302) renewed

the debate on the barriers to the oral delivery of peptide

and protein drugs and reviewed many of the novel phar-

maceutical approaches to circumvent these barriers and

enhance oral bioavailability of these macromolecules.

Although liposomes have been used for the past 30 years

as carriers of proteins and peptides requiring protection

from the deleterious effects of the GIT, Swaminathan &

Ehrhardt(303) note that the majority of data generated has

been from in vitro studies or from work using rodents.

Even though many of these studies have demonstrated

that liposomes are effective carriers, the extrapolation

from such models to human pharmacotherapy is challen-

ging. Recently, liposomes loaded into alginate–chitosan

microspheres or hyaluronic acid gels have been found to

be promising vectors in the oral administration of protein

or peptide drugs(304), for example, insulin delivery(305).

Absorption, distribution, metabolism and excretion

Foltz et al.(30) have cautioned us all, stating that although

peptide absorption and peptide stimulatory/inhibitory

effects may have been demonstrated in vitro, ex vivo and

in vivo evidence for the absorption of oligopeptides in

humans is lacking. Although selected peptides (for example,

C-terminal proline-containing peptides) exhibit resistance to

luminal peptidases, they remain susceptible to brush-border

and cytosolic peptidases so that only minor fragments are

expected to reach the systemic circulation(30). Knowing the

plasma concentrations and kinetics of orally administered

peptides is essential for planning meaningful studies to

assess the bioactivity of dietary peptides. Foltz et al.(30)

have stated that it is only valid to propose in vivo efficacy

for bioactive peptides when the peptide exhibits reasonable

proteolytic stability and physiologically relevant absorption,

distribution, metabolism and excretion (ADME) profiles.

Currently there is a lack of scientific evidence demonstra-

ting that peptides, originating from dietary sources, have

absorption or plasma clearance profiles that result in

acceptable bioavailability. Foltz et al.(30) concur with others

that ADME properties may be conducive to supporting

peptide activity only under certain pathophysiological

conditions such as food allergies or inflammatory bowel

disease(46,58,294,306–309). The majority of in vitro studies, to

identify bioactive peptides, have been conducted at high

micromolar and even millimolar concentrations with incu-

bation times lasting as long as 24 h. These conditions are

often not realistic nor physiologically relevant(30).

Conclusion

In conclusion there is little unequivocal evidence that

larger peptides can cross the gut wall and enter the hepatic

portal system in physiologically relevant concentrations.

The tissues of the GIT separate the internal environ-

ment from an exterior environment that contains, in addi-

tion to dietary nutrients, possible allergens, toxins and

pathogens(1,2). The intestinal epithelial layer is pervious

to many compounds but is particularly selective in both

the types and quantities of compounds that may be

absorbed. To maintain the integrity of the mucosal barrier

the GIT is an integral part of the body’s immune system

where the majority of the body’s immune cells are

located(3,4). Not all protein present in the intestinal lumen

is fully hydrolysed by the time it reaches the small intestine

and selective transport systems absorb many di- and

tripeptides (with further intra-cellular digestion) which

form the bulk of amino acids entering the hepatic portal

system(28). Larger peptides, protein particulates and micro-

bial cells may cross the gut wall, though only in very small

quantities. Indeed, most peptides and proteins that are

absorbed are hydrolysed by cytosolic peptidases and thus

do not pass through the basolateral membrane intact(23).

Most of those that do are antigens that quickly interact

with localised immune cells(2,40). Proteins induced by

oral immunisation inhibit the absorption of the antigen

on rechallenge(273). Any surviving peptides that are largely

absorbed are broken down by vascular endothelial tissue

peptidases and soluble plasma peptidases(33).

Overall, there is little unequivocal evidence that dietary

bioactive peptides, other than possibly di- and tripeptides,

can cross the gut wall and enter the hepatic portal system

in physiologically relevant concentrations(57,118,143).
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