1 ‘Shear thickening’ in non-shear flows: the effect of microstructure
H. J. Wilson

5 Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics
L. Wang, Md. M. Alam & Y. Zhou

43 Transition to turbulence in the rotating-disk boundary-layer flow with stationary vortices
E. Appelquist, P. Schlatter, P. H. Alfredsson & R. J. Lingwood

72 Models of energy loss from internal waves breaking in the ocean
S. A. Thorpe

117 Aerodynamic noise from rigid trailing edges with finite porous extensions
A. Kühl & L. J. Aytoun

145 Vortex force map method for viscous flows of general airfoils
J. Li & Z.-N. Wu

167 Roughness-induced transition by quasi-resonance of a varicose global mode
M. A. Bucci, D. K. Puckert, C. Andreano, J.-Ch. Loiseau, S. Cherubini, J.-Ch. Robinet & U. Rist

192 Internal wave generation by tidal flow over a two-dimensional ridge: energy flux asymmetries induced by a steady surface trapped current
K. G. Lamb & M. Dunphy

222 Implication of Taylor’s hypothesis on measuring flow modulation
X. I. A. Yang & M. F. Howland

238 The evolution of second mode internal solitary waves over variable topography
C. Yuan, R. Grimshaw & E. Johnson

260 A note on analytic solutions for entraining stratified gravity currents
M. C. Horsley & A. W. Woods

Contents continued on inside back cover.

277 Turbulent bubble fountains
M. C. Lippert & A. W. Woods

304 Bistability in the synchronization of actuated microfilaments
H. Guo, L. Fauci, M. Shelley & E. Kanso

324 Diffusion and mixing effects in hot jet initiation and propagation of hydrogen detonations
X. Cai, R. Deiterding, J. Liang, M. Sun & Y. Mahmoudi

352 Sound signals of tsunamis from a slender fault
C. C. Mei & U. Kadri

374 Labyrinthine and secondary wave instabilities of a miscible magnetic fluid drop in a Hele-Shaw cell
H. Li, C.-Y. Kao & C.-Y. Wen

397 Turbulence strength in ultimate Taylor-Couette turbulence
R. Ezeta, S. G. Huisman, C. Sun & D. Lobbe

413 Equilibrium structure and diffusion in concentrated hydrodynamically interacting suspensions confined by a spherical cavity
C. Aponte-Rivera, Y. Su & R. N. Zia

451 Higher-order moment theories for dilute granular gases of smooth hard spheres
V. C. Gupta, P. Shukla & M. Torrilhon

502 On the viscous flows of leak-out and spherical cap nucleation
R. J. Ryham

532 Motion of open vortex-current filaments under the Biot–Savart model
D. T. Kennedy & R. A. Van Gorder

560 A Lagrangian fluctuation–dissipation relation for scalar turbulence. Part III. Turbulent Rayleigh–Bénard convection
G. L. Eyink & T. D. Drivas

https://doi.org/10.1017/jfm.2017.914

Published online by Cambridge University Press
The Journal of Fluid Mechanics (ISSN 0022-1120) is published semimonthly in 24 volumes each year by Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge CB2 8BS, UK/Cambridge University Press, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. The subscription price (excluding VAT but including postage) for volumes 834–857, 2018, is £4372 or $8070 (online and print) and £3924 or $6875 (online only) for institutions; £1211 or $2244 (online and print) and £1219 or $2002 (online only) for individuals. The print-only price available to institutional subscribers is £4217 (US $7422 in USA, Canada and Mexico). Single volumes cost £202 (US $356 in the USA, Canada and Mexico) plus postage. Orders, which must be accompanied by payment, should be sent to any bookseller or subscription agent, or direct to the publisher: Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge CB2 8BS. Subscriptions in the USA, Canada and Mexico should be sent to Cambridge University Press, Journals Fulfillment Department, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. EU subscribers (outside the UK) who are not registered for VAT should add VAT at their country’s rate. VAT registered subscribers should provide their VAT registration number. Japanese prices for institutions are available from Kinokuniya Company Ltd, PO Box 55, Chitose, Tokyo 156, Japan. Prices include delivery by air. Copies of the Journal for subscribers in the USA, Canada and Mexico are sent by air to New York. Periodicals postage is paid at New York, NY, and at additional mailing offices. POSTMASTER: send address changes in USA, Canada and Mexico to Journal of Fluid Mechanics, Cambridge University Press, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. Claims for missing issues can only be considered if made immediately upon receipt of the subsequent issue. Copies of back numbers are available from Cambridge University Press.

COPYING

The Journal is registered with the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. Organizations in the USA which are also registered with CCC may therefore copy material (beyond the limits permitted by sections 107 and 108 of US copyright law) subject to payment to CCC of the per-copy fee of $16.00. This consent does not extend to multiple copying for promotional or commercial purposes. Code 0022-1120/2018/$16.00.

US Tear Sheet Service, 3501 Market Street, Philadelphia, PA 19104, USA is authorized to supply single copies of separate articles for private use only. Organizations authorized by the Copyright Licensing Agency may also copy material subject to the usual conditions.

For all other use of material from the Journal permission should be sought from Cambridge or the American Branch of Cambridge University Press.

Information on Journal of Fluid Mechanics is available on cambridge.org/FLM. For further information on other Press titles access cambridge.org.

Readers should note that where reference is made to a Web site for additional material relating to an article published in Journal of Fluid Mechanics this material has not been refereed and the Editors and Cambridge University Press have no responsibility for its content.

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the World’s forests. Please see www.fsc.org for information.

The cover image is based on the figure by the title in “Shear thickening in non-shear flows: the effect of microstructure”, H. J. Wilson, which was taken from the featured article ‘Microstructure and thickening of dense suspensions under extensional and shear flows’, R. Seto, G. G. Giusteri & A. Martinello. Vol. 825, R3.

The initial development of a jet caused by fluid, body and free surface interaction.

Part 5. Paraicillar capillary waves on an initially horizontal surface J. Billingham, D. J. Needham, E. Korsukova & R. J. Munro

Understanding evolution of vortex rings in viscous fluids A. Timaiar, S. Advaith & S. Banu

Drag coefficient of a liquid domain with distinct viscosity in a fluid membrane H. Tanj & Y. Fujitani

The effect of turbulence on mass transfer rates of small inertial particles with surface reactions N. E. L. Haugen, J. Krüger, D. Mitra & T. Lovás

A boundary integral method with volume-changing objects for ultrasound-triggered margination of microbubbles A. Guckenberger & S. Gekle

On the hydrodynamic and acoustic nature of pressure proper orthogonal decomposition modes in the near field of a compressible jet M. Maninetti, T. Pugliaioli, R. Cusumano & T. Castelain

Theories of binary fluid mixtures: from phase-separation kinetics to active emissions M. E. Cates & E. Tjhung

Motion of a helical vortex O. Velasco Fuentes

How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection Y.-Z. Zhang, C. Sun, Y. Bao & Q. Zhou

JFM Perspectives (online only)

P1 Theories of binary fluid mixtures: from phase-separation kinetics to active emissions M. E. Cates & E. Tjhung

JFM Rapids (online only)

R1 Motion of a helical vortex O. Velasco Fuentes

R2 How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection Y.-Z. Zhang, C. Sun, Y. Bao & Q. Zhou

S indicates supplementary data or movies available online.
SUMMARY OF INSTRUCTIONS FOR AUTHORS

Submission

Authors wishing to have papers published in the Journal should submit them via the online submission and refereeing system, ScholarOne Manuscripts, at https://mc.manuscriptcentral.com/jfm. Papers may be submitted to any editor or associate editor but JFM Rapids articles (10 printed pages or fewer) must be submitted to Professors Guazzelli, Caulfield, Dabiri, Henningson or Lohse who should be consulted in advance. Submission of a paper implies a declaration by the author that the work is not being considered for publication elsewhere and that it has not already been considered by a different editor of the Journal. Conference Reports must be submitted within three months of the meeting.

Preparation of papers

Authors are encouraged to write their papers clearly, concisely and attractively, so that their work will be readily understood. A brief summary of editorial requirements for notation, English and presentation is available on the JFM web page (address above). Authors are urged to use the JFM latex style macros. The [referee] option should be used for initial submission. The style file and template files are available at cambridge.org/core/journals/journal-of-fluid-mechanics/information/instructions-contributors. While use of the JFM latex style file is preferred (and note that this is mandatory for JFM Rapids submissions), ordinary latex or plain tex files can also be accepted. Other software, such as Word, will be converted to latex by the Press or retyped. Manuscripts not prepared using the JFM latex style file should be typed in double spacing, with references listed at the end in alphabetical order of authors and with a separate list of figure captions.

Extensive detailed mathematical relations, tables or figures likely to be useful only to a few specialists will not be printed, but will be available as an electronic supplement to the online version or from the JFM Editorial Office.

Movies

Refereed movies that are integral to a paper can be supplied during the submission process and will be published as supplementary materials.

Accepted papers

Once a paper is accepted, final production files (e.g. the LaTeX source) must be uploaded to the ScholarOne Manuscripts site. Full details are given on the JFM web page. Do not email files to the JFM Editorial Office unless requested to do so.

Charges

There is no charge for publication, but the cost of any colour figures in standard articles must be borne by authors. Authors will receive a PDF file of their published article via email. For standard articles only, offprints can be purchased if ordered when the proofs are returned.

Address questions or comments to Mrs Amanda Johns (Editorial Assistant) or Mrs Alison James (Production Editor) at the Journals Department, Cambridge University Press, Shaftesbury Road, Cambridge CB2 8BS, UK; tel: 44 (0)1223 347922; fax: 44 (0)1223 325802; e-mail: JFMproduction@cambridge.org.