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FUNCTION-THEORETIC METRICS AND BOUNDARY

BEHAVIOUR OF FUNCTIONS MEROMORPHIC OR

HOLOMORPHIC IN THE UNIT DISK

SHINJI YAMASHITA

§ 1. Introduction. The metrics to which the title of the present paper

refers are expressed in the form of elements of arc length as follows:

(i) \dw\ in the finite w-plane Wx : \w\ < oo.

(**) 4. i 12 *n the Riemann w-sphere W2 : \w\ ̂  oo.

(iii) \_ Γ~W * n ^ e ° P e n u n ^ disk ^ 3 : 1̂ 1 < *••

Let D : |z\ < 1 be the open unit disk and let Γ : \z\ = 1 be the unit circle

in the 2-plane. We fix a constant p, 1/2 < p < 1, once and for all and we

denote by £3?(ζ) the open disk {z; \z — pζ\ < 1 — p} for ζ^Γ. By a segment

l a t f e Γ we mean an open rectilinear segment connecting ξ and a point of

D. Let w = f(z) be a function from D into Wj(j = 1, 2, 3), being meromor-

phic or holomorphic in D, and set for z = reiθ^D,

δdr, θ)= \f(reίθ)\;

* (r β) \f(reiθ)\ .

\f(reίθ)\ β

corresponding respectively to i = 1, 2 and 3. The word "capacity" always

means "logarithmic capacity". Then our result is stated in the following

THEOREM. Let M be a subset of Γ which is a Borel set in the plane and set

σ = U
CeM'
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110 SHINJI YAMASHITA

Let w — f(z) be a meromorphic or holomorphic function from D into Wj such that

(1) S i { ^ ( r > θ)¥rdrdd < °° U = h 2, 3).

Then there exists a subset Ej of M, being of capacity zero*\ such that for any

— Ej and for any segment X at ζ we have

(2) f δj(r, θ)\dz\ <oo (2 = Λ I )

according as j = 1,2,3.

The condition (2) for = 1,2,3 implies the existence of a limiting value

f(ζ)<=Wj of f{z) as XΞ>Z -* ζ according as j = 1,2,3. Then by the theorem of

Lindelδf-Iversen-Gross [1, p. 5] combined with our condition (1), the function

/ has the angular limit f(ζ) at ζ, in other words, ζ is a Fatou point [1, p. 59]

of / . It should therefore be noted that our theorem in the case j = 1,2 gives

* 'localization" of Beurling-Tsuji's theorem ([3, Theorems 3 and 4], [4, p. 344]).

An application of the theorem for j = 3 is the following. Let GaWz

be a Jordan domain whose non-Euclidean area is finite and let w = Φ{z) be

a one-to-one conformal map from D onto G in the w -plane. Furthermore,

let Φ(ζ) be the Carathέodory extension of Φ to Γ. Then we have \Φ(ζ)\ < 1

except perhaps for a set of ζ<=Γ of capacity zero. Therefore, the boundary

of G touches the circle \w\ = 1 at a "thin" set in this sense.

§ 2. Three lemmas. Let 0 < a < sr/2 and let Δ = {r̂ * 0 < r ^ 1, | θ | ^ α}.

We let Δ*Z)Δ be an open disc whose boundary contains the origin and we

use the same notation 6j(r9 θ) as in §1 for a function / defined in Δ*(j = 1,

2,3). We begin with two lemmas [4, p. 342, Theorem VIII. 47 and p. 343,

Theorem VIII. 48] expressed in one.

LEMMA j{j = 1,2). Let w = f{z) be a function from Δ* into WJf being mero-

morphic or holomorphic in Δ*. Assume that f does not take three distinct points of

W2 in J * and set

Λj(θ) = [δj(r, θ)dr
JO

for \θ\ ̂  a. Assume furthermore that both Λj(—a) and Λj(a) are finite. Then Λj(θ)

is bounded for \θ\ ̂  a.

*> In other words, the outer logarithmic capacity of Ej is zero.
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The following lemma needs a proof.

LEMMA 3. Let w = f(z) be a holomorphic function from J * into W3. Set

Λz{θ) = Pd8(r, θ)dr
Jo

for | 0 | ^ a and assume that both Λz{—a) and Λz{a) are finite. Then Λz(θ) is bounded

for | 0 | ^ a.

Proof. As / is bounded in J*, by the same argument as in the next

paragraph to the theorem in § 1 the origin is a Fatou point of / at which /

has the angular limit /(0) with 1/(0)1 < 1. This implies that we have a

positive constant B such that (1 — \f{rei9)\z)~ι < B on Δ. On the other hand,

both ΛL(—a) and Λι(a) are finite because of <53(r, 0) ^ ^(r, θ) for \θ\ ̂  a.

Lemma 3 follows from Lemma 1 combined with Az{θ) ̂  BΛι{θ) for \θ\ S a.

§ 3. Proof of Theorem. In the following z = reiθ and eίω are always

points of D and M respectively. To avoid unnecessary complexity we drop

the suffix j of δj(r9 θ) if the argument is true for j = 1, 2, 3. We remark

that δ2(rf θ) is not defined at the poles of / ; but this is not essential in the

following proof.

We set

ί δ(r, θ) for ,
h(r, θ) =

[ 0 for z<=D — σ.

L e t φ Έ= ψ(r, θ) = π — arg {reίθ — 1), w h e r e 0 < r < l , I 0 | ^ π a n d π/2 < a rg

{reίθ — 1) < 3JΓ/2. T h e n by tan ψ = r sin 0/(1 — r cos 0) we h a v e

0) -§-=-W

= JL. I m log {ll(re10 - 1)}

= r(cos 0 - r)/(l - 2r cos 0 + r2).

We next consider the function

(4) H(ω; r9 θ) = h(r, θ + ω)^~.

Then H(ω; r9 0), for a fixed <», is Lebesgue measurable for 0 < r < 1 and

^ π; and H{ω; r9 θ) ̂  0 in the disk
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S = {reiθ; cosθ>r}

and further H(ω; r, Θ) ̂  0 in D — S by (3). Therefore we may consider two

integrals:

\\s{ω; r, Θ)drdθ ̂  0

and

J2(ω) = _ [[ jj(ω; r, θ)drdθ ^ 0
J d D-S

for ^ G M , We first assert that

(I) Λ(ω) < + oo for any eiω^M, so that H{ω; r, θ) possesses a definite integral on

D [2, p . 20] and that

(5) J(ω) = \\DH(ω; r, θ)drdθ = JM - /2(ω).

We let, for the proof, Cr be the circle | s | = r , 0 < r < l . T h e n

- - | | - = Λr - cos 0)/(l - 2r cos 0 + ^2) ^ r/(r + 1) < r

for reιθ<=Cr — S. This can be proved by considering — -4^- as a function of

cos0 (cf. [4, p . 346]). Therefore by (3) and (4) we have

(6) - H(ω; r, θ) ̂  rh(r, θ + ώ), reίθ^Cr - S.

We estimate J2(ω) upwards by (6) and by Schwarz's inequality as follows:

J2(ω) = - [dΛ H(ω;r, θ)dθ ̂  [dr[ rh{ry θ + ω)dθ
JO JCr-S JO JCV-S

h(r, θ + ω)rdrdθ ^ [[ h(r, θ + ω)rdrdθ
D-S JJD

Sπ1/2[^D{h{r, θ)}2rdrdθj

= (ττt/)1/2 < + oo,

where

/2

(7) U = ^D {h{r, θ)Yrdrdθ = j j [δ(r, θ)}2rdrdθ < + oo

by our assumption (1) in the theorem. This completes the proof of (I).
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Let / (ω, ψ) be the chord of the circle \z — peίω\ = 1 — p, with one end-

point eίω, making the directed angle φ, \φ\ <π/2, with the radius of D at eίω.

We shall use the notation / (0, ψ) though ζ = 1 may not be in M. T h e

chord / {ω, φ) has the length

(8) λ(φ) = (2 - 2/o) cos φ,

being independent of ω. We then set for — π/2<φ< π/2,

(9) L{ω, φ) = \,iωtφ)*(r, θ)\dz\ (z = reiθ<E/{ω9 ψ))

and we consider the function x(ώ) on M defined by

(10) χ(ω) = [n L{ω, ψ) cos φdψ.
J / 2
J-»/2

(II) The function X{ω) is Borel measurable on M.

We shall prove this for δ2(r9 θ)*\ In other cases the proofs are simpler

and hence are omitted.

Let ϊk {k = 1,2, •) be the circle \z\ = rk9 2p — 1 S rk < 1, such that
oo

r λ /1 and the set U ϊk contains all the poles of / in the half-open ring

{z; 2p — 1 ^ \z\ < 1}. Let Rv {v = 1,2, •) be the open set, being o the form

of a summation of ring domains whose boundaries are concentric circles

with the centre 2 = 0, such that

/?!=)i?2D 3 n i?v = ΰ rk.

Let 2p — Kβi< < /3m < < 1, βm /1 and let Z)m be the closed ring

{z;2p-l S \z\ ^/3m}. We then set Dmv = Dm - Rv for m, v = 1,2 . We

note first that

(11) L(o), 9) = L 32(r, ^)|rf2| = f rn

(2 = r ^ 5 G / ( 0 , ψ) in the last expression)

and we then consider

z = rexθ(Ξ/{0, φ)ΓiDnv).

*) δ2 may be extended continuously to the poles of / and our proof will be rather
simplified (Added in proof).
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We shall show that for any Λ G M we have Lmv(ω, ψ) -> Lmv{ω0> ψ) as ω->ωQ

uniformly for —πl2<φ<π/2, so that

Xmv(ω) = \ Lmv{ω, φ) cos φdφ
V-x/2

is continuous on M Indeed,

\Lnv{ω, Ψ) ~ Lmv(ω0, φ)\

~ Leo. ^ Π A J ^ ' * + ω) ~ **(r' ^ + ω o ) l l^ !

^ {max rei»<=Dnv I a2(r, ^ + ώ) — 52(r, ^ + ω0) \} X

so that our assertion follows from the uniform continuity of the function

δt(r, θ) on the compact set Dmv. Set

and further set

J-ff
m(ύ), 9) cos

/2

Then t v W / 4 W as y / o o and Xm(ω)/*X{ω) as m/* oo. This proves our

proposition (II).

(Ill) Γfo inequality Jλ{ω) ^ (2/? - i)χ(ω) M ώ > r Λ«y ^ ε M

We remember that £ "̂(1) is the disk | z — p | < 1 — p and we let

Then Jt{ω) ^ /?(<») since S D ^ ( 1 ) and H{ω; r, θ) ̂  0 in 5. To estimate /?(α

downwards, we set for r ^

ί = |r^i<? - 1| and ψ = π - arg (r^ί<? - 1) for

r/2 < arg (r^ί<? - 1) < 3*/2.

Then 1 > r = (1 — 2t cos ^ + t2)ί/2, and on the chord /(0, ^), for a fixed ψ,

IΨ\ <π/2, we have

rfr = (ί — cos ^)(1 - 2ί cos ^ + t2)"ι/zdt

^ (cos ^ - ί)(~ rfO (for dt ^ 0).
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We note that r decreases as t increases on s{0, φ) and cos ψ ^ t since reιθ<=

£&(ϊ)czS. Furthermore, on the circle Cr : \z\ = r, 0 < r < 1, we have

H{ω; r, θ)dθ = h{ry θ + ω)dψ

by (4). We therefore obtain

= [π/2 dφ\ h{r, θ + ω)dr

S π/2 CλW

dφ\ δ(r, 6> + ω ) ( c o s ^ - t)dt
-π/2 JO

(where λ{Φ) is defined in (8); we note that h{rf θ + ω) = 5(r, 6> + α>) for r^f<?

since

ΪΓ/2 JO

(because of cos ^ — ^ ^ (2/o — 1) cos ψ for 0 ^ /

S π/2 C^(^)

rf^\ δ(r, θ + ω) cos φdt
—ΪΓ/2 JO

L(ω, ^) cos φdφ
/2

(cf. (11); the formula (11) is true for δ)

= (2/> - l)χ(ω).

(IV) Γfe wί E = j ^ G M ; χ(ω) = + oo} is of capacity zero.

By (II) the set E is a Borel set in the plane, so that E is capacitable

by the celebrated Choquet theorem. Therefore we have only to prove that

E is of inner capacity zero. Assume on the contrary that E contains a

closed set F of positive capacity and let

u(z) = \ log (1/1 a; - eim\)dμ(ω) ^ V< +
OF

be the conductor potential [4, p. 55] of F, where V is a constant and μ is a

Borel measure on F of total mass μ(F) = 1. Then we have [4, p. 345]
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(12)

and

(13) r-^L = - j J L arg (re« -

We next consider the function

(14) Q{ω;r, θ)Ξ=H{ω;r, θ - ω)

= Λ(r, 0)r{cos (0 — <y) — r}/{l — 2r cos (0 —

for reιθ<ED and eίa>(=F (cf. (3), (4)). Then Q is a Borel measurable function

on the product space D x F and by (13) and (14) we have

h{r, 0)r~- = \FQ(o>l r, θ)dμ{ω).

On the other hand, both h(r, θ) and - |^- are square summable on D with

respect to the measure rdrdθ by (7) and (12). Therefore, we have by

Schwarz's inequality,

{ω\ r, θ)dμ{ω)

= (f A(r, θ)r^-drdθ Ψ ± oo.

By Fubini's theorem [2, p. 87] applied to the positive and the negative parts

of Q respectively we have

(15) / = J/WβOjJ Q(ω; r, θ)drdθ =^=±00.

Now, by (3), (4), (5) and (14) we have

J(ω) = \\Dh{r, θ 4- «>)^L{- arg (r^<# - l))drdθ

= \\Dh(r, θ)-^{- arg (re" - eί(a)}drdθ
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so that by (15),

/ = \ J{ω)dμ{ω) =^±00.

However, by (5), (III) and the very definition of E we have J{ω) = + 00 for

This is a contradiction.

(V) The set E is the exceptional set in the statement of the theorem.

Let eiω<=ΞM— E. Then X{ω) < + 00, so that by the definition of X{ω) (cf.

(10)), the quantity L{ω, ψ) (cf. (9)) is finite for a.e., φ, \φ\ <π/2. Consequen-

tly, there are two chords /(ω, ψx) and /(ω, <p2), — π/2 < φt < φ2 < π/2, at

eίω such that L(ω, <pk) < + °of k = 1,2. By Lemma j for = 1,2,3 and by

our assumption (1) we know that L{ω, ψ) < + 00 for any φ, ψ\ <φ < <p2. Re-

peating this process, we have the required property (2) at the point eiω^M

-E.
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