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Abstract. We consider the problem of estimating an unknown density or regression curve from
data. In the parametric setting, the curve to estimate is modelled by a function which is known
up to the value of a finite number of parameters. We consider the nonparametric setting, where
the curve is not modelled a priori. We focus on kernel methods, which are popular nonpara-
metric techniques that can be used for both density and regression estimation. While these
methods are appropriate when the data are observed accurately, they cannot be directly applied
to astronomical data, which are often measured with a certain degree of error. It is well known
in the statistics literature that when the observations are measured with errors, nonparamet-
ric procedures become biased, and need to be adjusted for the errors. Correction techniques
have been developed, and are often referred to as deconvolution methods. We introduce those
methods, in both the homoscedastic and heteroscedastic error cases, and discuss their practical
implementation.

Keywords. methods: data analysis, methods: statistical, stars: statistics, galaxies: statistics.

1. Nonparametric curve estimation
1.1. Regression estimation

In the regression problem, we are interested in modelling the unknown relationship be-
tween two random variables X and Y . Specifically, we wish to estimate the unknown
regression curve m(x) = E(Y |X = x) from a sample of independent and identically
distributed (i.i.d.) data (X1 , Y1), . . . , (Xn, Yn ) satisfying

Yi = m(Xi) + εi , (1.1)

where, for all x, E(εi |Xi = x) = 0 and var(εi |Xi = x) < ∞.
There are many examples in astronomy where one is interested in modelling the rela-

tionship between two variables X and Y . For example, in the Hubble diagram, (X,Y )=
(redshift, distance modulus). In Fig. 1, we show a scatterplot of the (Xi, Yi)’s for n = 557
SNe from the Union2 compilation; see Amanullah et al. (2010).

In the parametric estimation setting, we assume that we know the shape of m up to
the value of a finite number, d say, of parameters. Then, estimating the regression curve
m reduces to the estimation of these unknown parameters. For example, if we assume
that the regression curve is a quadratic curve, then m(x) = θ0 + θ1x + θ2x

2 , where θ0 ,
θ1 and θ2 are unknown parameters that need to be estimated from the data. Several
approaches are possible for computing these estimators, such as the least squares and
maximum likelihood procedures.

Parametric estimators can have excellent properties, such as fast convergence rates, but
this is only true when the parametric model (i.e. the assumed shape for m) is correct, at
least approximately. In particular, if we do not have sufficient information about m, and
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Parametric fit with wrong model

Figure 1. Left: distance moduls versus redshift for 557 SNe from the Union2 compilation.
Right: parametric estiimator of E(Y |X = x) using a wrong parametric model.

use a parametric model that is far from the truth, then parametric estimators produce
biased, inconsistent estimators of m. See for example Fig. 1, where we depict a parametric
estimator of m obtained when assuming that m(x) = log(θ0 + θ1 x).

One way to overcome this difficulty is to estimate m using a nonparametric estimator,
that is, an estimator that does not require to formulate a parametric model. For excellent
introductions to techniques of nonparametric estimation of regression curves, see for
example Wand & Jones (1994) and Fan & Gijbels (1996). To understand how such an
estimator may be constructed, recall that the regression curve m(x) is the expectation of
Y , conditional on X = x. Motivated by this, we could think of constructing an estimator
of m by taking m̂0(x) = Ȳ = n−1 ∑n

i=1 Yi , the empirical mean of the Yi ’s. Clearly, this
estimator is too naive since it estimates m by a constant. A more sophisticated approach
for estimating m at a point x could be to take the average of only the Yi ’s whose Xi

is relatively close to x. Letting I denote the indicator function, with this approach we
would estimate m by

m̂1(x) =
n∑

i=1

Yi · I(Xi close to x)
/ n∑

i=1

I(Xi close to x).

As long as we define “close to x” properly, this estimator produces a reasonable estimator
of m, but is not sufficiently smooth to be attractive. See Fig. 2 below for an illustration
of the non smoothness of the estimator in the closely related density estimation problem
introduced in section 1.2.

A more sophisticated approach consists in using all the data (Xi, Yi), assigning to each
pair (Xi, Yi) a weight w(Xi) which is small if Xi is far from x, and large if Xi is close to
x. This leads to the estimator

m̂2(x) =
n∑

i=1

Yi w(Xi)
/ n∑

i=1

w(Xi).

It remains to define the weights w(Xi). In Statistics, a very popular way to choose the
weights is to take w(Xi) = K{(x−Xi)/h}, where h > 0 is a smoothing parameter called
the bandwidth and K is a weight function called the kernel, wich is usually smooth and
symmetric. Computed with these particular weights, the estimator m̂2 of m is called the

https://doi.org/10.1017/S1743921314013489 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314013489


30 A. Delaigle

Nadaraya-Watson estimator. It is defined by

m̂NW (x) =
∑n

i=1 Yi K{(Xi − x)/h}∑n
i=1 K{(Xi − x)/h} . (1.2)

The Nadaraya-Watson estimator is a particular case of a more general class of nonpara-
metric estimators of m called local polynomial estimators. Local polynomial estimators
are constructed in a very intuitive way, as follows: while many curves can not be expressed
as a polynomial, locally around each point x, if they are smooth, they can be well ap-
proximated by a polynomial (one way to understand this is through Taylor’s expansion).
Motivated by this, the local polynomial estimator of m(x), of order p, is obtained by
fitting a polynomial of order p locally around x (that is, using mostly the data (Xi, Yi)
for which Xi is close to x). Formally, at each x, approximate the function m(u) by a pth
order polynomial mpol,p(u) = β0,x + β1,x(u − x) + . . . + βp,x(u − x)p , and estimate the
parameters βk,x by β̂k ,x , obtained by minimising a local least squares sum which puts
more weight on observations whose Xi is close to x:

(β̂0,x , . . . , β̂p,x) = argmin(β0 , x ,...,βp , x )

n∑
i=1

{Yi − mpol,p(Xi)}2K{(Xi − x)/h}.

Then, estimate m(x) by m̂(x) = m̂pol,p(x) = β̂0,x + β̂1,x(x−x)+ . . .+ β̂p,x(x−x)p = β̂0,x .
It can be proved that the Nadaraya-Watson estimator is equal to the local polynomial

estimator of order p = 0, which is also called the local constant estimator. In both theory
and practice, the Nadaraya-Watson is known to suffer from boundary effects when the
density fX of the Xi ’s is compactly supported and is not continuous at the endpoints of
its support. Specifically, the bias of the Nadaraya-Watson estimator near such endpoints
tends to be larger (see below for an illustration). The local polynomial estimator of order
p = 1, which is also called the local linear estimator, is less affected by this boundary
effect, and tends to perform better than the local constant estimator. It is one of the
most popular nonparametric regression estimators. It can be written as

m̂LL(x) =
S2(x)T0(x) − S1(x)T1(x)

S2(x)S0(x) − S2
1 (x)

,

where, for k = 0, 1, Tk (x) = n−1h−k−1 ∑n
i=1 Yi (Xi − x)k K{(Xi − x)/h} and for k =

0, 1, 2, Sk (x) = n−1h−k−1 ∑n
i=1(Xi − x)kK{(Xi − x)/h}. The right panel of Fig. 3 com-

pares the local constant and the local linear estimators computed from the data in Fig. 1.
The boundary problem of the local constant estimator is apparent for x small.

1.2. Density estimation
Similar ideas can be used to estimate a density fX from i.i.d. data X1 , . . . , Xn ∼ fX .
For excellent introductions to the problem, see Silverman (1986) and Wand & Jones
(1994). There too, we can construct a nonparametric estimator of fX (x) using mainly the
observations Xi that are close to x. To define this estimator, recall that fX (x) = F ′

X (x),
where FX (x) =

∫ x

−∞ fX (u) du is the cumulative distribution function. This implies that

fX (x) = lim
h→0

FX (x + h) − FX (x − h)
2h

= lim
h→0

P (x − h � X � x + h)
2h

,

which can be estimated by replacing the unknown probability by a proportion computed
from the data:

f̂X (x) =
∑n

i=1 I(x − h � Xi � x + h)
2nh

, (1.3)
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Figure 2. Estimator of the density of distance modulus constructed from the data shown in
Fig. 1, using the non smooth estimator at (1.3) or the kernel density estimator at (1.4) with the
standard normal kernel.

where h is a small positive number. As in the regression case, while this estimator is
reasonable, its lack of smoothness make is relatively unattractive. See for example Fig. 2,
where we show this estimator in the case where the Xi ’s are the distance moduli from
n = 557 SNe from the Union2 compilation and h = 0.8.

A more sophisticated version of this naive estimator is the kernel density estimator
defined by

f̂X (x) = (nh)−1
n∑

i=1

K{(Xi − x)/h}, (1.4)

where the kernel K is a smooth and symmetric density and h > 0 is a bandwidth. In
Fig. 2, we depict this estimator in the case where the Xi ’s are the distance moduli from
557 SNe from the Union2 compilation, taking K to be the density of a standard normal
random variable, and h = 0.8. It is clear from this example that this estimator is very
similar to one at (1.3). However, the fact that it is nice and smooth makes it more
attractive. Such density estimators are useful to understand properties of a population.
For example in this case the two modes of the density suggest two groups or clusters. See
Sun et al. (2002) for interesting aspects of the detection of bumps using nonparametric
density estimators in astronomy.

1.3. Choosing the bandwidth h and the kernel K

As long as it is smooth, the choice of the kernel K is not very important and does not
play a major role in the quality of the estimator. It is usually chosen to be a smooth and
symmetric density, such as the density of a standard normal random variable.

The role of the bandwidth h is much more important. It dictates the closeness of
an observation Xi to x. For example, in the regression case, if h is too small, most
observations will be deemed far from x, and the estimator m̂NW (x) will essentially be
based on the few observations (Xi, Yi) for which Xi is very close to x. As a result it
will tend be too wiggly. On the other hand, if h is too large, most observations will
be considered to be close to x, and the estimator m̂NW (x) will be quite similar to the
naive estimator m̂0(x) introduced above. The bandwidth plays the same role for the
more general local polynomial estimators. For example in Fig. 3 we show the local linear
estimator of m(x) = E(Y |X = x) computed from the data plotted in Fig. 1, using a
standard normal kernel and three different bandwidths: a too small bandwidth, which
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Figure 3. Local linear estimator constructed from the data shown in Fig. 1, using three band-
widths: a too large or too small bandwidth (left graph) or a good bandwidth (right graph). The
right graph depicts the local linear and the Nadaraya-Watson estimators, both computed with
a standard normal kernel and a bandwidth chosen by an automatic procedure.

produces an estimator which almost interpolates the data and causes numerical difficulty
for x large, a too large bandwidth, which oversmoothes the data, and a good bandwidth,
computed using one of the automatic procedures described below.

In practice, h should preferably be chosen by a fully automatic data-driven procedure
and not by eye (the user may find that the estimator with a given bandwidth looks more
attractive than one with a different bandwidth, but in the absence of detailed information
about the true curve, the user’s impression does not necessarily reflect the reality). Let m̂
denote one of the regression estimators introduced above, which depend on a bandwidth
h. Ideally, if we knew the curve m, we would choose h to minimise the error committed
by estimating m by m̂. This error is not unique. It could be the L2 distance between
m and m̂, the L1 distance, or any other sensible criterion. In nonparametric regression,
we often employ an L2 distance called the conditional mean integrated squared error,
defined by MISE(h) = E

[ ∫
{m̂(x) − m(x)}2 dx

∣∣X1 , . . . , Xn

]
. With the latter, the ideal

bandwidth is defined by hopt = argminh MISE(h).
Of course we cannot compute this bandwidth in practice, since it depends on the

unknown m. However, a large statistics literature has been devoted to developing esti-
mators of the MISE which can be computed from the data. Once a good estimator of
the MISE has been computed in this way, the bandwidth can be chosen by minimising
this MISE estimator. Perhaps the most popular data-driven bandwidth is the so-called
plug-in bandwidth of Ruppert et al. (1995), which is obtained in such a way. There, in
a first step the MISE is approximated by its asymptotic dominating part (i.e. the part
that dominates the MISE as the sample size n increases) denoted by AMISE (asymptotic
mean integrated squared error). In a second step, the unknown quantities of the AMISE
are replaced by estimators computed from the data, producing an estimator ̂AMISE of
AMISE. Finally, the plug-in bandwidth hPI is defined by hPI = argminh

̂AMISE(h), or,
more commonly, by hPI = argminh

̂AMISEw (h), where ̂AMISEw denotes a weighted ver-
sion of the ̂AMISE. See section 4 of Fan & Gijbels (1996) for a more detailed description.
We refer to the R package KernSmooth of Wand R port by Ripley (2011) for R codes for
computing this bandwidth for the local linear estimator (see dpill).
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Another popular data-driven bandwidth for computing regression estimators is the
cross-validation bandwidth hCV . It is defined by

hCV = argminh

n∑
i=1

{Yi − m̂(−i)(Xi)}2 , (1.5)

where m̂(−i) denotes the version of the estimator m̂ computed without using the ith
observation. For example, in the case of the Nadaraya-Watson estimator,

m̂
(−i)
NW (x) =

∑n
j �=i Yj K{(Xj − x)/h}∑n

j �=i K{(Xj − x)/h} .

This bandwidth is simple to define but it tends to be too small. Moreover, it is not always
unique (the sum on the right hand side of (1.5) does not always have a unique minimum).

In the density case, typically the bandwidth is chosen to minimise an estimator of
MISE = E

∫
{f̂X (x) − f(x)}2 dx (e.g. the plug-in bandwidth), or of ISE =

∫
{f̂X (x) −

fX (x)}2 dx (e.g. the cross-validation bandwidth). The plug-in bandwidth (Sheather &
Jones (1991)) is constructed using ideas similar to those explained above in the regression
case. Like there, it usually performs very well in practice. We refer to the R function bw.SJ
for computing this bandwidth in the case where K is the standard normal kernel. The
cross-validation bandwidth, hCV , suffers from the same difficulties as those mentioned
in the regression case above, but it is simpler to define than the plug-in bandwidth.
Specifically,

hCV = argminh

{∫
f̂ 2

X (x) dx − 2
n

n∑
i=1

f̂
(−i)
X (Xi)

}
,

where f̂
(−i)
X (x) = {(n − 1)h}−1 ∑n

j �=i K{(Xj − x)/h}.
We conclude this section with three remarks on the bandwidth. First, it is important

to note that different kernels usually require different bandwidths. This is easy to under-
stand since m̂ and f̂X both depend on K. In particular, the MISE and thus the optimal
bandwidth depend on K. Likewise, hPI and hCV both depend on K. What this means in
practice is that if we have computed hPI or hCV for a given kernel, those bandwidths are
generally not appropriate for kernel estimators computed with another kernel. Another
important remark is that a good bandwidth should depend on the sample size n. Specif-
ically, as n increases the optimal bandwidth decreases. What this means in practice is
that a bandwidth computed for a sample of a given size n is generally not appropriate for
a kernel estimator computed from a sample of a different size. Finally, good bandwidths
are usually different for density and for regression estimators. For example, a bandwidth
computed by dpill should not be used to compute a kernel density estimator.

2. Measurement errors
2.1. Introduction

In astronomy, data are rarely measured with perfect accuracy and the quantities we ob-
serve are often approximated versions of those we are interested in. When computed with
data contaminated by measurement errors, the nonparametric procedures introduced in
the previous section are not valid and need to be corrected for the measurement errors.
In this section we consider the classical measurement error problem, where, instead of
observing the variable X of interest, we only manage to observe W = X + U , where U
represents a measurement error. Importantly, X and U are independent and E(U) = 0.
See Carroll et al. (2006) for an introduction to measurement errors.
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Figure 4. Kernel density estimator (naive) constructed from a sample W1 , . . . , Wn of size
n = 1000 contaminated with normal errors Ui such that var(Ui ) = 0.2 var(Xi ), and modi-
fied kernel estimator (corrected) that takes measurement errors into account. The true density
fX is depicted by a continuous line.

Clearly, if we compute the kernel density estimator at (1.4) using data W1 , . . . ,Wn

having the distribution of W , instead of data X1 , . . . , Xn having the distribution of X,
then instead of obtaining a consistent estimator of the density fX , we will obtain a
consistent estimator of the density fW of W . For example, in Fig. 4, we show the kernel
density estimator computed from a sample W1 , . . . ,Wn of size n = 1000, where, for
each i, Wi = Xi + Ui , the Xi ’s have a bimodal density shown in Fig. 4, and the Ui ’s
are normally distributed, with var(Ui) = 0.2 var(Xi). This estimator, which ignores the
presence of measurement errors, is often referred to as a naive estimator. It is a consistent
estimator of fW , but a non consistent, biased, estimator of fX . In this example the bias
is noticeable from the fact that the peaks and the valleys of the estimator are attenuated
compared to those of fX . In Fig. 4 we also show a corrected estimator that takes the
measurement errors into account. It is a consistent estimator of fX , and, for example, is
able to better estimate the peaks and the valleys of fX .

Likewise, if we compute one of the regression estimators of m(x) = E(Y |X = x) defined
in section 1.1 from data (W1 , Y1), . . . , (Wn, Yn ) instead of data (X1 , Y1), . . . , (Xn, Yn ),
where Wi = Xi + Ui with Xi and Ui independent as above, then instead of a consistent
estimator of m(x), we will obtain a consistent estimator of E(Y |W = x).

While the measurement errors Ui are not observed, often in astronomy we can compute
the distribution of Ui . Exploiting this fact, we shall assume throughout section 2 that
the distribution of the Ui ’s in known, and under this assumption we shall see how to
adapt the kernel density and regression estimators to this errors-in-variables context. In
particular we shall see how to transform them into consistent estimators of fX and m.

2.2. Deconvolution kernel density estimator

Suppose we observe i.i.d. data W1 , . . . ,Wn , where, for i = 1, . . . , n, Wi = Xi + Ui with
Xi ∼ fX and Ui ∼ fU independent. The error density fU is known, E(Ui) = 0 and the
goal is to estimate the density fX from the Wi ’s. For V = X, U and W , let φV (t) =∫

eitxfV (x) dx denote the characteristic function of V . By the Fourier inversion theorem,
we can write

fX (x) =
1
2π

∫
e−itxφX (t) dt.
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Moreover, the independence of Xi and Ui implies that φW (t) = φX (t)φU (t). Therefore,
assuming that φU (t) �= 0, we have φX (t) = φW (t)/φU (t). Since fU is known, then φU is
known too, and since we observe data W1 , . . . ,Wn , then we can estimate φW (t) by the
empirical characteristic function φ̂W (t) = n−1 ∑n

j=1 eitWj . Therefore, we can estimate
φX (t) by φ̂X (t) = φ̂W (t)/φU (t). From there, it is tempting to define an estimator of
fX (x) by f̂X (x) = (2π)−1

∫
e−itx φ̂X (t) dt. However, φ̂X (t) is a very poor estimator of

φX (t) for |t| large, which makes the estimator f̂X (x) inappropriate.
To overcome this difficulty, we need to modify φ̂X (t) so as to put less emphasis on

it for |t| large. One way to do this is to replace φ̂W (t) by the Fourier transform of the
kernel estimator f̂W (w) = (nh)−1 ∑n

j=1 K{(Wi −w)/h} of fW . Indeed, it can be proved
that the Fourier transform of f̂W is given by φ̃W (t) = φ̂W (t)φK (ht), where φK denotes
the Fourier transform of the kernel K. Based on this, we can define a new estimator of
φX (t) by φ̃X (t) = φ̃W (t)/φU (t) = φ̂X (t)φK (ht). Now the factor φK (ht) is small when
|t| is large, which reduces the impact of φ̂X (t) when the latter is a poor estimate of
φX (t). Motivated by this, the deconvolution kernel estimator of Carroll & Hall (1988)
and Stefanski & Carroll (1990) is defined by

f̂X (x) =
1
2π

∫
e−itx φ̂W (t)φK (ht)/φU (t) dt.

It can be rewritten as

f̂X (x) = (nh)−1
n∑

j=1

KU {(Wj − x)/h}, (2.1)

where

KU (x) = (2π)−1
∫

e−itxφK (t)/φU (t/h) dt. (2.2)

It is interesting to note that infx KU (x) < 0, even if infx K(x) � 0. As a result, in
finite samples, while f̂X integrates to 1, it is often not positive everywhere, although in
general, f̂X (x) vanishes only at points x where fX (x) is rather small. Since a density is
always positive, it is convenient to replace f̂X (x) by f̃X (x) = max{0, f̂X (x)}. This is the
estimator we used to construct the corrected estimator shown in Fig. 4. If needed, f̃X

can also be rescaled so that it integrates to 1. See Hall & Murison (1993).
While the choice of the kernel K is usually not important in kernel estimation proce-

dures from data measured without errors, one has to be more careful in this case since
the kernel needs to be such that the integral in (2.2) exists. This is not trivially the case.
For example if K is the standard normal kernel and U ∼ N(0, σ2), then this integral
only exists for sufficiently large values of h. However, when the sample size n is large, we
should use a sufficiently small bandwidth (as already noticed earlier, h should decrease
to zero as n increases, and this is true both in theory and in practice). To ensure that
the integral at (2.2) exists, in the deconvolution literature it is standard to take a ker-
nel whose characteristic function is compactly supported. Two such kernels are usually
employed: the sinc kernel, denoted here by K1 , whose Fourier transform is defined by
φK 1 (t) = I(|t| � 1), and the kernel which we shall denote here by K2 , whose Fourier
transform is defined by φK 2 (t) = (1 − t2)3 · I(|t| � 1). See, for example, Fan (1991).

2.3. Errors-in-variables regression estimator
In the errors-in-variables regression context, we observe i.i.d. data (W1 , Y1), . . . , (Wn, Yn ),
where, for i = 1, . . . , n, Wi = Xi + Ui with Xi ∼ fX and Ui ∼ fU . Moreover, E(Ui) = 0
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and Yi = m(Xi) + εi , where E(εi |Xi) = 0, var(εi |Xi) < ∞, and the Ui ’s are independent
of the εi ’s, the Yi ’s and the Xi ’s. Finally m and fX are unknown but fU is known, and
the goal is to estimate m from the (Wi, Yi)’s.

To construct a consistent estimator of m in this context, we start by comparing the
standard kernel density estimator with the deconvolution kernel estimator introduced
in the previous section. In particular, comparing (1.4) and (2.1), we can see that the
deconvolution kernel density estimator takes the same form as the standard kernel density
estimator, except that K is replaced by KU and the Xi ’s are replaced by the Wi ’s. This
motivates us to modify the Nadaraya-Watson estimator at (1.2) in a similar manner, and
define a kernel estimator that takes measurement errors into account by

m̂(x) =
∑n

i=1 Yi KU {(Wi − x)/h}∑n
i=1 KU {(Wi − x)/h} . (2.3)

This estimator was introduced by Fan & Truong (1993). Under appropriate regularity
conditions, including the one that |φU (t)| > 0 for all t, it can be proved that it is a
consistent estimator of m.

It is also possible to define a version of local polynomial estimators which takes the
measurement errors into account. These estimators are less easy to define, and we refer to
Delaigle et al. (2009) for details. See also Delaigle (2014) for a more general description
of how to construct consistent nonparametric estimators in errors-in-variables problems.
In practice, unlike the error-free case, in the errors-in-variables context the local constant
estimator, which corresponds to the estimator defined at (2.3), tends to perform better
than the local linear estimator.

As indicated in section 2.2, the function KU is not positive everywhere and, in practice,
the denominator of the right hand side of (2.3) can vanish (or be very close to zero) at
some points x, which creates numerical problems. The latter can be avoided by preventing
the denominator from getting too small. One way to do this is to replace (2.3) by

m̂(x) =
∑n

i=1 Yi KU {(Wi − x)/h}
max

[∑n
i=1 KU {(Wi − x)/h}, ρ

] ,

where ρ is a positive number, sometimes referred to as a ridge parameter.

2.4. Heteroscedastic errors
As highlighted by Feigelson & Babu (2012), in astronomy, the measurement errors are
often heteroscedastic. There, the independent contaminated data W1 , . . . ,Wn are such
that Wi = Xi + Ui , with Xi and Ui independent, Xi ∼ fX and Ui ∼ fUi

. In particular,
each observation may have its own error density fUi

, which we assume to be known. As
before, E(Ui) = 0. In this case, the observations Wi that are contaminated by “a lot
of noise” contain less information than the observations that are contaminated by “less
noise”. Intuitively, when constructing estimators, the least contaminated observations
should be given more emphasis than the most contaminated observations. It remains to
define the notions of “a lot of noise”, “less noise”, etc, and to seek a way of giving more
importance to more reliable observations.

First, contrary to what may be thought, “a lot of noise” does not always mean “a large
error variance”. In nonparametric errors-in-variables problems, the effect of measurement
errors is also measured by the speed at which the characteristic function of the noise,
φU (t), tends to zero as |t| tends to infinity. Specifically, the faster φU (t) tends to zero as
|t| increases, the more the measurement errors affect the quality of the estimators. For
example, if the errors Ui are normally distributed, then nonparametric estimators of fX

and m converge at a logarithmic rate, i.e. like (log n)−α for some α > 0. By contrast, if
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the errors Ui have a Laplace distribution, then this rate is rather n−α for some α > 0. Of
course the variance of the Ui ’s also plays a role in the quality of nonparametric estimators:
the larger that variance, the more difficult it is to estimate fX and m.

These considerations indicate that combining observations that are contaminated by
errors which are not identically distributed is a rather subtle problem. For example,
a naive construction could be as follows. Let φUi

and φWi
denote the characteristic

functions of Ui and Wi , and assume that |φUi
(t)| > 0 for all t. Then we have

φX (t) = φWj
(t)/φUj

(t) = n−1
n∑

j=1

φWj
(t)/φUj

(t).

Since E(eitWj ) = φWj
(t), using the same ideas as in section 2.2, and in particular using

the Fourier inversion theorem, we could define an estimator of fX (x) by

f̂X (x) =
1

2πn

n∑
j=1

∫
e−itx eitWj

φUj
(t)

φK (ht) dt.

As highlighted by Delaigle & Meister (2008), this would be a consistent estimator, but
with rather poor properties. For example, suppose that half of the observations were
observed with Laplace error, and the other half with normal errors. Then it can be
proved that the converge rate of this estimator would be logarithmic. In other words, the
estimator would inherit from the convergence rate induced by the least favourable errors
Ui . In this example, we would do worse by using all the observations than by using only
the observations contaminated by Laplace errors (the latter would lead to a convergence
rate of order n−α for some α > 0). This indicates that the observations Wj were not
combined in an adequate way since our estimator should improve as we use more data.

Delaigle & Meister (2008) proposed an estimator which does not suffer from this
problem. They proceed as follows. To understand their estimator, note that φX (t) =
φWj

(t)/φUj
(t) implies that φX (t) = φWj

(t)φ̄Uj
(t)/|φUj

(t)|2 or again that φX (t)|φUj
(t)|2 =

φWj
(t)φ̄Uj

(t) (here ā denotes the conjugate of a complex number a). In turn this implies
that φX (t)

∑n
j=1 |φUj

(t)|2 =
∑n

j=1 φWj
(t)φ̄Uj

(t), so that

φX (t) =
n∑

j=1

φWj
(t)φ̄Uj

(t)
/ n∑

k=1

|φUk
(t)|2 .

Motivated by the fact that E(eitWj ) = φWj
(t), using arguments similar to those used

above, Delaigle & Meister (2008) propose to estimate fX (x) by

f̂X (x) =
1

2πn

n∑
j=1

∫
e−itx eitWj φ̄Uj

(t)∑n
k=1 |φUk

(t)|2 φK (ht) dt. (2.4)

See Delaigle & Meister (2008) for properties of this estimator.
To illustrate this estimator, we used the data described by De Blok et al. (2001) and

used by Wang & Wang (2011). They concern the velocity of n = 318 stars from 26 low
surface brightness galaxies, and for these data the variance of each Ui is available. In
Fig. 5 we show the estimator f̂X (x) at (2.4) computed from these data, assuming that
the Ui ’s are normally distributed with the known error variances, or Laplace distributed
with those error variances. In this example the two estimators are so close that they can
hardly be distinguished on the graph (this is not always the case!).

In the regression case, where we observe independent data (W1 , Y1), . . . , (Wn, Yn ) with
the Wi ’s as above and where Yi = m(Xi)+ εi as in section 2.3, Delaigle & Meister (2007)
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Figure 5. Deconvolution kernel estimator of the density of relative velocity for 318 stars from 26
low surface brightness galaxies, using the estimator of Delaigle & Meister (2008) for heteroscedas-
tic errors and assuming that the errors have a Laplace distribution or a normal distribution.

suggest the following regression estimator:

m̂(x) =

∑n
j=1 Yj

∫
e−itx

{
φ̄Uj

(t)
/ ∑n

k=1 |φUk
(t)|2

}
φK (ht) dt∑n

j=1

∫
e−it(x−Wj )

{
φ̄Uj

(t)
/ ∑n

k=1 |φUk
(t)|2

}
φK (ht) dt

·

2.5. Bandwidth choice and code for computing the estimators
As in the case where the data are observed without measurement errors, in order for the
estimators introduced above to work well, the bandwidth h needs to be chosen with a
lot of care. In the density case, the plug-in techniques of Sheather & Jones (1991) can be
adapted to the measurement error context. See Delaigle & Gijbels (2002) and Delaigle
& Gijbels (2004). A cross-validation bandwidth can also be constructed; see Stefanski &
Carroll (1990).

The situation is much more complex in the regression case. For example, there the
plug-in techniques depend on many more unknown functions than in the standard error-
free context, which makes them particularly unattractive. Moreover, in the measurement
error context it is not possible to compute the cross-validation bandwidth defined at (1.5):
even though we can compute the estimator m̂(−i) , we need to compute it at Xi , which we
cannot do since we only observe the Wi ’s. Thus it does not seem that standard bandwidth
selection techniques can be used in this context. Delaigle & Hall (2008) suggested a
procedure based on Simulation Extrapolation (SIMEX) which can be applied to select
the bandwidth of a variety of errors-in-variables problems, including the one of regression
estimation.

Matlab codes for computing all the estimators described in section 2 are available on
the author’s webpage at www.ms.unimelb.edu.au/~aurored. On that webpage, code
for computing the plug-in, cross-validation and SIMEX bandwidths in the errors-in-
variables density and regression estimation problems are also available. Some limited
R codes written by Achilleas Achilleos, and which focus on density estimation with a
local bandwidth as described in Achilleos & Delaigle (2012), are also available there.
An R package called decon written by Wang & Wang (2011) also exists. However, at
the time of writing this paper, this package did not seem to compute the bandwidths in
an appropriate manner. See Delaigle (2014) for a detailed description of the problems
with this R package, and Delaigle & Gijbels (2007) for a description of numerical issues
that can be encountered when computing deconvolution kernel estimators.

https://doi.org/10.1017/S1743921314013489 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314013489


Nonparametric curve estimation and measurement errors 39

Acknowledgements

This work was supported by the Australian Research Council. The author thanks Véronique
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