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Abstract
We state and prove an extension of the global Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture to
the case of some Eisenstein series on unitary groups 𝑈𝑛 ×𝑈𝑛+1. Our theorems are based on a comparison of the
Jacquet-Rallis trace formulas. A new point is the expression of some interesting spectral contributions in these
formulas in terms of integrals of relative characters. As an application of our main theorems, we prove the global
Gan-Gross-Prasad and the Ichino-Ikeda conjecture for Bessel periods of unitary groups.
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1. Introduction

1.1. Arthur parameters and weak base change

1.1.1.
In some sense, this paper is a sequel of [BPCZ22], where we proved the global Gan-Gross-Prasad (see
[GGP12, section 24]) and the Ichino-Ikeda conjectures for a product of unitary groups 𝑈 (𝑛) ×𝑈 (𝑛 + 1)
(see [II10] and [Har14]). The goal of the present paper is two-fold: first, we state and prove an extension
of these two conjectures to the case of some Eisenstein series. Second, we show that this extension,
when applied to some specific Eisenstein series, implies the global Gan-Gross-Prasad conjecture and
its refinement à la Ichino-Ikeda for general Bessel periods of unitary groups. To state our results, we
first review the notion of Arthur parameter.

1.1.2. Hermitian Arthur parameter.
Let 𝐸/𝐹 be a quadratic extension of number fields and c be the nontrivial element of the Galois
group Gal(𝐸/𝐹). Let A be the ring of adèles of F. Let 𝑛 � 1 be an integer. Let 𝐺𝑛 be the group
of automorphims of the E-vector space 𝐸𝑛. We view 𝐺𝑛 as an F-group by Weil restriction. For an
automorphic representation Π of 𝐺𝑛 (A), we denote by Π∗ its conjugate-dual. Let us introduce some
definitions. A discrete Hermitian Arthur parameter of 𝐺𝑛 is an irreducible automorphic representation
Π of 𝐺𝑛 (A) such that

• Π is isomorphic to the full induced representation Ind𝐺𝑛

𝑄 (Π1 � . . . � Π𝑟 ), where Q is a parabolic
subgroup of 𝐺𝑛 with Levi factor 𝐺𝑛1 × . . . × 𝐺𝑛𝑟 where 𝑛1 + . . . + 𝑛𝑟 = 𝑛;

• Π𝑖 is a conjugate self-dual cuspidal automorphic representation of 𝐺𝑛𝑖 (A), and the Asai L-function
𝐿(𝑠,Π𝑖 ,As(−1)𝑛+1

) has a pole at 𝑠 = 1 for 1 � 𝑖 � 𝑟 .
• the representations Π𝑖 are mutually non-isomorphic for 1 � 𝑖 � 𝑟;

The integer r and the representations (Π𝑖)1�𝑖�𝑟 are unique (up to a permutation). We set 𝑆Π = (Z/2Z)𝑟 .
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For our purpose, we need more general Arthur parameters of 𝐺𝑛, which we call regular Hermitian
Arthur parameters and which are by definition the automorphic representations Π of 𝐺𝑛 such that

• Π is isomorphic to the full induced representation Ind𝐺𝑛

𝑄 (Π1 � . . .�Π𝑟 �Π0 �Π∗
𝑟 � . . .�Π

∗
1), where

Q is a parabolic subgroup of 𝐺𝑛 with Levi factor 𝑀𝑄 = 𝐺𝑛1 × . . . × 𝐺𝑛𝑟 × 𝐺𝑛0 × 𝐺𝑛𝑟 × . . . × 𝐺𝑛1 ,
where 𝑛0 + 2(𝑛1 + . . . + 𝑛𝑟 ) = 𝑛;

• Π0 is a discrete Hermitian Arthur parameter of 𝐺𝑛0 ;
• Π𝑖 is a cuspidal automorphic representation of 𝐺𝑛𝑖 (A) (with character central trivial on 𝐴∞

𝐺𝑛𝑖
) for

1 � 𝑖 � 𝑟;
• the representations Π1, . . . ,Π𝑟 ,Π∗

1, . . . ,Π
∗
𝑟 are mutually non-isomorphic .

The representation Π0 is uniquely determined by Π and is called the discrete component of Π. We set

𝑆Π = 𝑆Π0 .

The parabolic subgroup Q depends on the ordering on the representations Π1, . . . ,Π𝑟 ,Π∗
1, . . . ,Π

∗
𝑟 :

we fix one.
Let 𝔞∗𝑄,C be the complex vector space of unramified characters of 𝑄(A). We have the real subspaces

𝔞∗𝑄 and 𝑖𝔞∗𝑄, respectively, of real and unitary characters. Let w be the permutation that exchanges the
two blocks 𝐺𝑛𝑖 corresponding to Π𝑖 and Π∗

𝑖 for all 1 � 𝑖 � 𝑟 . We set

𝔞∗Π,C = {𝜆 ∈ 𝔞∗𝑄,C | 𝑤𝜆 = −𝜆}.

For any 𝜆 ∈ 𝔞∗Π,C, we define Π𝜆 as the full induced representation

Ind𝐺𝑛

𝑄

(
(Π1 � . . . � Π𝑟 � Π0 � Π∗

𝑟 � . . . � Π∗
1) ⊗ 𝜆

)
.

If 𝜆 ∈ 𝑖𝔞∗Π = 𝔞∗Π,C ∩ 𝑖𝔞∗𝑄, then Π𝜆 is irreducible.

1.1.3. Unitary groups and (weak) base change
For any integer 𝑛 � 1, let H𝑛 be the set of isomorphism classes of nondegenerate c-Hermitian spaces
h over E of rank n. We identify any ℎ ∈ H𝑛 with a representative, and we denote by 𝑈 (ℎ) its
automorphism group. Let ℎ ∈ H and 𝑃 ⊂ 𝑈 (ℎ) be a parabolic subgroup with Levi factor 𝑀𝑃 .
There exist a decomposition 𝑛0 + 2(𝑛1 + . . . + 𝑛𝑟 ) = 𝑛 and ℎ𝑛0 ∈ H𝑛0 such that 𝑀𝑃 is identified
with 𝐺𝑛1 × . . . × 𝐺𝑛𝑟 ×𝑈 (ℎ𝑛0 ). Let 𝜎 be a cuspidal automorphic subrepresentation of 𝑀𝑃 (A) (with
central character trivial on the central subgroup 𝐴∞

𝑃 defined in §2.1.6). Accordingly, we have 𝜎 =
Π1 � . . . �Π𝑟 �𝜎0 with Π𝑖 a cuspidal automorphic representation of 𝐺𝑛𝑖 (with central character trivial
on 𝐴∞

𝐺𝑛𝑖
).

We shall say that a regular Hermitian Arthur parameter Π of 𝐺𝑛 is a weak base-change of (𝑃, 𝜎) if
there exist a parabolic subgroup Q of 𝐺𝑛 with Levi factor 𝑀𝑄 = 𝐺𝑛1 × . . .×𝐺𝑛𝑟 ×𝐺𝑛0 ×𝐺𝑛𝑟 × . . .×𝐺𝑛1

and a discrete Hermitian Arthur parameter Π0 of 𝐺𝑛0 such that

1. Π is isomorphic to the full induced representation Ind𝐺𝑛

𝑄 (Π1 � . . . � Π𝑟 � Π0 � Π∗
𝑟 � . . . � Π∗

1);
2. for almost all places of F that split in E, the local component Π0,𝑣 is the split local base change of

𝜎0,𝑣 .

Note that this implies that the representations Π1, . . . ,Π𝑟 ,Π∗
1, . . . ,Π

∗
𝑟 are mutually non-isomorphic and

that Π0 is in fact the discrete component of Π. If condition 2 above is satisfied, we shall also say that Π0
is the weak base change of 𝜎0.

IfΠ is a weak base-change of (𝑃, 𝜎), we can naturally identify the space𝔞∗𝑃,C of unramified characters
of 𝑃(A) with 𝔞∗Π,C, and so we will not distinguish between the two spaces. Thus, for 𝜆 ∈ 𝔞∗Π,C, we can
consider the full induced representation Σ𝜆 = Ind𝑈ℎ

𝑃 (𝜎 ⊗ 𝜆).
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1.1.4.
We can extend the notions above to the case of a product. Let 𝑛, 𝑛′ � 1 be integers. A regular Hermitian
Arthur parameter of 𝐺𝑛 × 𝐺𝑛′ is then an automorphic representation of the form Π = Π𝑛 � Π𝑛′ , where
Π𝑘 is a regular Hermitian Arthur parameter of 𝐺𝑘 for 𝑘 = 𝑛, 𝑛′. Then we set 𝑆Π = 𝑆Π𝑛 × 𝑆Π𝑛′

and
𝔞∗Π,C = 𝔞∗Π𝑛 ,C

× 𝔞∗Π𝑛′ ,C
etc. For 𝜆 = (𝜆𝑛, 𝜆𝑛′ ) ∈ 𝔞∗Π,C, we set Π𝜆 = Π𝑛,𝜆𝑛 � Π𝑛′,𝜆𝑛′

. A parameter Π is
discrete if both Π𝑛 and Π𝑛′ are discrete.

Let ℎ ∈ H𝑛 and ℎ′ ∈ H𝑛′ . Let 𝑃 = 𝑃𝑛 × 𝑃𝑛′ be a parabolic subgroup of 𝑈 (ℎ) ×𝑈 (ℎ′). We say that a
regular Hermitian Arthur parameter Π = Π𝑛 � Π𝑛′ of 𝐺𝑛 × 𝐺𝑛′ is a weak base-change of (𝑃, 𝜎) if Π𝑛
and Π𝑛′ are, respectively, weak base-changes of (𝑃𝑛, 𝜎𝑛) and (𝑃𝑛′ , 𝜎𝑛′ ), where 𝜎 = 𝜎𝑛 � 𝜎𝑛′ .

1.2. An extension of the Gan-Gross-Prasad conjecture to some Eisenstein series

1.2.1. Corank 1 and regular Hermitian Arthur parameter
Let 𝑛 � 1. Consider the ‘corank 1’ case𝐺 = 𝐺𝑛×𝐺𝑛+1. LetΠ = Π𝑛�Π𝑛+1 be a regular Hermitian Arthur
parameter of G. We can write Π𝑘 = Ind𝐺𝑘

𝑄𝑘
(Π1,𝑘 � . . . � Π𝑟𝑘 ,𝑘 ) for some parabolic subgroup 𝑄𝑘 ⊂ 𝐺𝑘

for 𝑘 = 𝑛, 𝑛 + 1 and some cuspidal automorphic representations of 𝐺𝑛𝑖,𝑘 (A) with 𝑛1,𝑘 + . . . + 𝑛𝑟𝑘 ,𝑘 = 𝑘 .
We shall say that the parameter Π is H-regular if for all 1 � 𝑖 � 𝑟𝑛 and 1 � 𝑗 � 𝑟𝑛+1, the representation
Π𝑖,𝑛 is not isomorphic to the contragredient of Π 𝑗 ,𝑛+1.
Remark 1.2.1.1. In the core of the paper, H will stand for the diagonal subgroup 𝐺𝑛 of G, and the term
H-regular refers to the fact that H-regular Hermitian Arthur parameter features some particularly nice
properties with respect to the (regularized) Rankin-Selberg period over that subgroup (roughly stemming
from the fact that the Rankin-Selberg L-function of Π has no poles). A discrete Hermitian Arthur
parameter is necessarily H-regular. Otherwise, we would get a self-conjugate cuspidal representation
Π𝑖 of 𝐺𝑛𝑖 for some 𝑛𝑖 � 1 such that both Asai L-functions 𝐿(𝑠,Π𝑖 ,As+) and 𝐿(𝑠,Π𝑖 ,As−) have a pole
at 𝑠 = 1: this is not possible.

On the unitary side, let ℎ0 ∈ H1 be the element of rank 1 given by the norm 𝑁𝐸/𝐹 . Then we attach
to any ℎ ∈ H𝑛 the following algebraic groups over F:
• the product of unitary groups 𝑈ℎ = 𝑈 (ℎ) ×𝑈 (ℎ ⊕ ℎ0), where ℎ ⊕ ℎ0 denotes the orthogonal sum;
• the unitary group 𝑈 ′

ℎ of automorphisms of h viewed as a subgroup of 𝑈ℎ by the obvious diagonal
embedding.

1.2.2.
Let 𝑃 = 𝑀𝑃𝑁𝑃 ⊂ 𝑈ℎ be a parabolic subgroup with Levi factor 𝑀𝑃 and unipotent radical 𝑁𝑃 . Let
𝜎 be a cuspidal automorphic subrepresentation of 𝑀𝑃 (A) with central character trivial on 𝐴∞

𝑃 . Let
A𝑃,𝜎 (𝑈ℎ) be the space of automorphic forms on the quotient 𝐴∞

𝑃𝑀𝑃 (𝐹)𝑁𝑃 (A)\𝑈ℎ (A) such that for
all 𝑔 ∈ 𝑈ℎ (A),

𝑚 ∈ 𝑀𝑃 (A) ↦→ 𝛿𝑃 (𝑚)−
1
2 𝜑(𝑚𝑔)

belongs to the space of 𝜎. Here, 𝑁𝑃 is the unipotent radical of P and 𝛿𝑃 is the modular character of 𝑃(A).
The representation of 𝑈ℎ (A) on A𝑃,𝜎 (𝑈ℎ) is isomorphic to the induced representation Σ = Ind𝑈ℎ

𝑃 (𝜎).
Let 𝜑 ∈ A𝑃,𝜎 (𝑈ℎ). For 𝜆 ∈ 𝔞∗Π,C, we introduce the Eisenstein series 𝐸 (𝜑, 𝜆) and the Ichino-Yamana
regularized period

P𝑈 ′
ℎ
(𝜑, 𝜆) =

∫
[𝑈 ′

ℎ
]

Λ𝑇𝑢 𝐸 (𝑥, 𝜑, 𝜆) 𝑑𝑥, (1.2.2.1)

where [𝑈 ′
ℎ] = 𝑈 ′

ℎ (𝐹)\𝑈
′
ℎ (A) is equipped with the Tamagawa measure, Λ𝑇𝑢 is the truncation operator

introduced by Ichino-Yamana in [IY19] depending on an auxiliary parameter T whose definition is
recalled in §3.3.2. The integral is absolutely convergent. Moreover, if the base change of Σ is a H-
regular Arthur parameter (which will be our assumption), then the integral does not depend on T (see
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proposition 3.5.3.1 below). In this case, P𝑈 ′
ℎ
(𝜑, 𝜆) is a meromorphic function, which is regular outside

the singularities of the Eisenstein series. In particular, it is holomorphic on 𝑖𝔞∗Π .

1.2.3. The Gan-Gross-Prasad conjecture for some Eisenstein series
Theorem 1.2.3.1. Let Π be a H-regular Hermitian Arthur parameter of G and let 𝜆 ∈ 𝑖𝔞∗Π . The following
two statements are equivalent:

1. The complete Rankin-Selberg L-function of Π𝜆 (including Archimedean places) satisfies

𝐿

(
1
2
,Π𝜆

)
≠ 0;

2. There exist ℎ ∈ H𝑛, a parabolic subgroup 𝑃 ⊂ 𝑈ℎ with Levi factor 𝑀𝑃 and 𝜎 an irreducible
cuspidal automorphic subrepresentation of 𝑀𝑃 (A) such that Π is a weak base change of (𝑃, 𝜎) and
the period integral 𝜑 ↦→ P𝑈 ′

ℎ
(𝜑, 𝜆) induces a nonzero linear form on A𝑃,𝜎 (𝑈ℎ).

Remark 1.2.3.2. The Levi subgroup 𝑀𝑃 is determined up to conjugation by the parameter Π. Moreover,
we have 𝑃 = 𝑈ℎ if Π is discrete. In this case, the theorem is proved in [BLZZ21, Theorem 1.8] if Π is
cuspidal and in [BPCZ22, Theorem 1.1.5.1] for a general discrete Hermitian parameter. The novelty of
the theorem is to consider non-discrete Arthur parameters and thus periods of proper Eisenstein series
on unitary groups.

1.2.4. Factorization of periods of some Eisenstein series à la Ichino-Ikeda
Let ℎ ∈ H𝑛. Let P be a parabolic subgroup of 𝑈ℎ with Levi factor 𝑀𝑃 and let 𝜎 be an irreducible
cuspidal automorphic subrepresentation of 𝑀𝑃 (A) such that the weak base change of (𝑃, 𝜎) is a regular
Hermitian Arthur parameter Π. We have a restricted tensor product decomposition 𝜎 =

⊗′
𝑣 ∈𝑉𝐹

𝜎𝑣
over the set 𝑉𝐹 of places of F. We assume that 𝜎 is tempered – that is, for every place v, the local
representation 𝜎𝑣 is tempered. Let 𝜆 ∈ 𝑖𝔞∗Π . We define Π𝜆 and Σ𝜆 as above. Let Σ𝜆,𝑣 = Ind𝑈ℎ

𝑃 (𝜎𝑣 ⊗ 𝜆)
and Π𝜆,𝑣 be their local components.

We set

L(𝑠, Σ𝜆) =
(
𝑠 −

1
2

)− dim(𝔞∗Π) 𝑛+1∏
𝑖=1

𝐿(𝑠 + 𝑖 − 1/2, 𝜂𝑖)
𝐿(𝑠,Π𝜆)

𝐿(𝑠 + 1/2,Π𝜆,As′)
,

where 𝜂 denotes the quadratic idele class character associated to the extension 𝐸/𝐹, 𝐿(𝑠, 𝜂𝑖) is the
completed Hecke L-function associated to 𝜂𝑖 and 𝐿(𝑠,Π𝜆,As′) is the L-function associated to As(−1)𝑛 �
As(−1)𝑛+1 . Note that with our hypothesis, the function 𝐿(𝑠,Π𝜆,As′) has a pole of order dim(𝔞∗Π) at 𝑠 = 1.
Thus, the function (𝑠−1)− dim(𝔞∗Π)𝐿(𝑠,Π𝜆,As′) is holomorphic and nonvanishing at 𝑠 = 1. In particular,
the function L(𝑠,Σ𝜆) is holomorphic at 𝑠 = 1

2 .
We denote by L(𝑠,Σ𝜆,𝑣 ) the corresponding quotient of local L-factors; namely, for s in some half-

space, we have

L(𝑠,Σ𝜆) =
(
𝑠 −

1
2

)− dim(𝔞∗Π) ∏
𝑣 ∈𝑉𝐹

L(𝑠,Σ𝜆,𝑣 ).

For each place v of F, we define a local normalized period P ♮ℎ,𝜎𝑣
: Σ𝑣 × Σ𝑣 → C as follows:

P ♮ℎ,Σ𝜆,𝑣
(𝜑𝑣 , 𝜑

′
𝑣 ) = L

(
1
2
,Σ𝜆,𝑣

)−1 ∫
𝑈 ′

ℎ
(𝐹𝑣 )

(Σ𝜆,𝑣 (ℎ𝑣 )𝜑𝑣 , 𝜑
′
𝑣 )𝑣𝑑ℎ𝑣 , 𝜑𝑣 , 𝜑

′
𝑣 ∈ Σ𝑣 .

It depends on the choice of a Haar measure 𝑑ℎ𝑣 on 𝑈 ′
ℎ (𝐹𝑣 ) as well as an invariant inner product on

𝜎𝑣 which gives in the usual way an invariant product on Σ𝑣 denoted by (·, ·)𝑣 . By the temperedness
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assumption, the integral is absolutely convergent [Har14, Proposition 2.1] and the local factorL(𝑠,Σ𝜆,𝑣 )
has neither zero nor pole at 𝑠 = 1

2 .
We introduce on A𝑃,𝜎 (𝑈ℎ) the Petersson inner product given by

(𝜑, 𝜑)Pet =
∫
𝐴∞𝑃𝑀𝑃 (𝐹 )𝑁𝑃 (A)\𝑈ℎ (A)

|𝜑(𝑔) |2𝑑𝑔, 𝜑 ∈ 𝜎.

Recall that we have normalized the period integralP𝑈 ′
ℎ
(𝜆) by choosing the invariant Tamagawa measures

on [𝑈 ′
ℎ]. We also normalize the Petersson product by using the quotient of Tamagawa measures. We

assume that the local Haar measures 𝑑ℎ𝑣 on 𝑈 ′
ℎ (𝐹𝑣 ) are such that the product

∏
𝑣 𝑑ℎ𝑣 gives the

Tamagawa measure on 𝑈 ′
ℎ (A).

Theorem 1.2.4.1. Let Π and (𝑃, 𝜎) as above. For 𝜆 ∈ 𝑖𝔞∗Π and every nonzero factorizable vector
𝜑 = ⊗′

𝑣𝜑𝑣 ∈ A𝑃,𝜎 (𝑈ℎ) � ⊗′
𝑣 ∈𝑉𝐹

Σ𝑣 , we have

|P𝑈 ′
ℎ
(𝜑, 𝜆) |2

(𝜑, 𝜑)Pet
= |𝑆Π |

−1L
(

1
2
,Σ𝜆

)∏
𝑣

P ♮ℎ,Σ𝜆,𝑣
(𝜑𝑣 , 𝜑𝑣 )

(𝜑𝑣 , 𝜑𝑣 )𝑣
. (1.2.4.1)

Remark 1.2.4.2. By [Har14, Theorem 2.12] and our choice of measures, almost all factors in the right-
hand side are equal to 1. As in remark 1.2.3.2, the statement reduces to [BPCZ22, Theorem 1.1.6.1] for
a discrete Hermitian Arthur parameter Π and even to [BLZZ21, Theorem 1.10] if Π is moreover simple.

1.3. The case of Bessel periods

1.3.1.
Let 𝑛 � 𝑚 � 0 be two integers of the same parity. We have 𝑛 = 𝑚 + 2𝑟 for some 𝑟 � 0. Recall that
we denote by ℎ0 the 1-dimensional Hermitian space given by the norm 𝑁𝐸/𝐹 . Let ℎ𝑠 ∈ H2 be the
orthogonal sum of ℎ0 and −ℎ0. For any ℎ ∈ H𝑚, we define ℎ̃ ∈ H𝑛 to be the orthogonal sum of h
and r copies of ℎ𝑠 denoted by ℎ1

𝑠 , . . . , ℎ
𝑟
𝑠 . For each 1 � 𝑖 � 𝑟 , let (𝑥𝑖 , 𝑦𝑖) be a hyperbolic basis of ℎ𝑖𝑠;

that is, we have ℎ𝑖𝑠 (𝑥𝑖 , 𝑥𝑖) = ℎ𝑖𝑠 (𝑦𝑖 , 𝑦𝑖) = 0 and ℎ𝑖𝑠 (𝑥𝑖 , 𝑦𝑖) = 1. We consider also the orthogonal sum
ℎ𝑛+1 = ℎ̃ ⊕ ℎ0 ∈ H𝑛+1. We denote by 𝑣0 the vector of ℎ0 corresponding to 1 ∈ 𝐸 . We have a diagonal
embedding

𝑈 (ℎ) ↩→ Gℎ = 𝑈 (ℎ) ×𝑈 (ℎ𝑛+1)

for which the image of𝑈 (ℎ) in𝑈 (ℎ𝑛+1) is the subgroup which acts by the identity on ℎ0 ⊕ ℎ1
𝑠 ⊕ . . .⊕ ℎ𝑟𝑠 .

Let 𝐵 ⊂ 𝑈 (ℎ𝑛+1) be the stabilizer of the isotropic flag

(0) � vect(𝑥1) � vect(𝑥1, 𝑥2) � . . . � vect(𝑥1, . . . , 𝑥𝑟 ). (1.3.1.1)

Let N be the unipotent radical of B. Then the group 𝑈 (ℎ) normalizes N. Let Bℎ = 𝑈 (ℎ) � ({1} × 𝑁):
this is the so-called Bessel subgroup of Gℎ .

1.3.2. Bessel periods
Let 𝜓 : A/𝐹 → C× be a nontrivial continuous character. We define a character 𝜓𝑁 : [𝑁] → C× by

𝜓𝑁 (𝑢) = 𝜓

(
𝑟−1∑
𝑖=1

ℎ𝑛+1 (𝑢𝑥𝑖+1, 𝑦𝑖) + ℎ𝑛+1 (𝑢𝑣0, 𝑦𝑟 )

)
, 𝑢 ∈ [𝑁] .

This character extends uniquely to a character 𝜓Bℎ : [Bℎ] → C× that coincides with 𝜓𝑁 on [𝑁] and is
trivial on [𝑈 (ℎ)]. Let 𝜎 be a cuspidal automorphic subrepresentation of Gℎ (A). We define the global
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Bessel period for 𝜑 ∈ 𝜎 by the absolute convergent integral

PBℎ ,𝜓 (𝜑) =
∫
[Bℎ ]

𝜑(𝑔)𝜓Bℎ (𝑔)𝑑𝑔.

1.3.3. The Gan-Gross-Prasad conjecture for Bessel periods
Let 𝐺♭ = 𝐺𝑚 × 𝐺2𝑛+1. We can now state our first theorem about Bessel periods.

Theorem 1.3.3.1. Let Π be a discrete Hermitian Arthur parameter of 𝐺♭. The following assertions are
equivalent:

1. The complete Rankin-Selberg L-function of Π satisfies

𝐿

(
1
2
,Π

)
≠ 0;

2. There exist a Hermitian form ℎ ∈ H𝑚 and an automorphic cuspidal subrepresentation 𝜎 of Gℎ (A)
such that its weak base to 𝐺♭ is Π and the Bessel period

𝜑 ↦→ PBℎ ,𝜓 (𝜑)

does not vanish identically on 𝜎.

Remarks 1.3.3.2.

• The case 𝑟 = 0 is just a particular case of Theorem 1.3.3.1.
• Assume 𝑚 = 0. Then the L-function is the constant function of value 1. So the assertion 1 is

automatically satisfied. However, the group Gℎ is the quasi-split unitary group 𝑈2𝑟+1 of rank 2𝑟 + 1.
Moreover, the Bessel subgroup is a maximal unipotent subgroup of 𝑈2𝑟+1. Then the Bessel period is
the so-called Fourier-Whittaker coefficient. The theorem is proved in the work of Ginzburg-Rallis-
Soudry; see [GRS11].

• The direction 2 ⇒ 1 is also proved by D. Jiang-L. Zhang; see [JZ20, Theorem 5.7].

1.3.4.
In our approach, Theorem 1.3.3.1 is a consequence of Theorem 1.2.3.1. To explain this, we may and
shall assume 𝑟 > 0. We start with a discrete Hermitian Arthur parameter Π of 𝐺♭. It can be written
Π = Π𝑚�Π𝑛+1, where Π𝑚 and Π𝑛+1 are respective discrete parameters of 𝐺𝑚 and 𝐺𝑛+1. Let 𝛼1, . . . , 𝛼𝑟
be r characters of 𝐸×\A1

𝐸 such that the characters 𝛼1, . . . , 𝛼𝑟 , 𝛼
∗
1, . . . , 𝛼

∗
𝑟 are two by two distinct (we

recall that 𝛼∗
𝑖 denotes the conjugate-dual of 𝛼𝑖). Let 𝑄𝑛 ⊂ 𝐺𝑛 be a parabolic subgroup of Levi factor

𝐺𝑟1 × 𝐺𝑚 × 𝐺𝑟1. Then

Π̃ = Ind𝐺𝑛

𝑄𝑛
(𝛼1 � . . . � 𝛼𝑟 � Π𝑚 � 𝛼∗

1 � . . . � 𝛼∗
𝑟 ) � Π𝑛+1

is a regular Hermitian Arthur parameter of 𝐺 = 𝐺𝑛 × 𝐺𝑛+1. Even if Π̃ is not discrete, it is at least H-
regular in the sense of §1.2.1: this is an obvious consequence of remark 1.2.1.1 and the assumption on
the characters 𝛼𝑖 . We have an identification C𝑟 � 𝔞∗

Π̃,C
such that if 𝜆𝑠 ∈ 𝔞∗

Π̃,C
is the image of (𝑠, . . . , 𝑠)

with 𝑠 ∈ C, we have

Π̃𝜆𝑠 = Ind𝐺𝑛

𝑄𝑛
(𝛼1 | · |

𝑠
𝐸 � . . . � 𝛼𝑟 | · |𝑠𝐸 � Π𝑚 � 𝛼

∗
1 | · |

−𝑠
𝐸 � . . . � 𝛼∗

𝑟 | · |
−𝑠
𝐸 ) � Π𝑛+1.

For simplicity, we set Π̃𝑠 = Π̃𝜆𝑠 . By elementary properties of Rankin-Selberg L-function, it is clear that
assertion 1 of 1.3.3.1 is equivalent to 1′:

1′. There exists 𝑠 ∈ 𝑖R such that 𝐿( 1
2 , Π̃𝑠) ≠ 0.
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Let ℎ ∈ H𝑚 and 𝜎 be an automorphic cuspidal subrepresentation of Gℎ whose weak base to 𝐺♭ is
Π. Let 𝑃𝑛 ⊂ 𝑈 ( ℎ̃) be the parabolic subgroup stabilizing the isotropic flag

0 � vect(𝑥𝑟 ) � vect(𝑥𝑟 , 𝑥𝑟−1) � . . . � vect(𝑥𝑟 , . . . , 𝑥1).

(Note that this flag is opposite position to (1.3.1.1).) and set 𝑃 = 𝑃𝑛 ×𝑈 (ℎ𝑛+1); a parabolic subgroup
of 𝑈ℎ̃ = 𝑈 ( ℎ̃) × 𝑈 (ℎ𝑛+1). Then 𝐺𝑟1 × Gℎ is a Levi factor 𝑀𝑃 of P. Set �̃� = 𝛼1 � . . . � 𝛼𝑟 � 𝜎. This
is an automorphic cuspidal representation of 𝑀𝑃 (A), and Π̃ is the weak base change of (𝑃, 𝜎). Let
𝜑 ∈ A𝑃, �̃� (𝑈ℎ̃). As in subsection 1.2, we denote by 𝑈 ′

ℎ̃
the ‘diagonal’ subgroup of 𝑈ℎ̃ . In the case at

hand, the restriction of the Eisenstein series 𝐸 (𝜑, 𝜆) to [𝑈 ′
ℎ̃
] is rapidly decreasing for any 𝜆 ∈ 𝔞Π̃,C,

where the Eisenstein series is regular, and for any such 𝜆, we have

P𝑈 ′
ℎ̃
(𝜑, 𝜆) =

∫
[𝑈 ′

ℎ
]

𝐸 (𝑥, 𝜑, 𝜆) 𝑑𝑥

where the left-hand side is defined according to (1.2.2.1) and the right-hand side is absolutely conver-
gent (see Proposition 3.5.3.1 assertion 3). Moreover, the map 𝑠 ↦→ P𝑈 ′

ℎ̃
(𝜑, 𝜆𝑠) is meromorphic and

holomorphic on 𝑖R. We prove in Proposition 8.8.2.1 that the map 𝜑 ∈ A𝜎 (Gℎ) ↦→ PBℎ ,𝜓 (𝜑) does not
vanish identically if and only if there is 𝑠 ∈ C such that the map 𝜑 ↦→ P𝑈 ′

ℎ̃
(𝜑, 𝜆𝑠) does not vanish iden-

tically on A𝑃, �̃� (𝑈ℎ̃). This last fact is eventually a consequence of some unfolding identity that roughly
takes the following form:

P𝑈 ′
ℎ̃
(𝜑, 𝜆𝑠) =

∫
B′ (A)\𝑈 ′

ℎ̃
(A)

PBℎ ,𝜓 (𝜑𝑠 (ℎ))𝑑ℎ

for 𝜑 ∈ A𝑃, �̃� (𝑈ℎ̃), where 𝜑𝑠 stands for the corresponding element of Ind𝑈ℎ̃

𝑃 (�̃� ⊗ 𝜆𝑠) (given through
the choice of a suitable Iwasawa decomposition 𝑈ℎ̃ (A) = 𝑃(A)𝐾 that is implicit in the definition of the
Eisenstein series 𝐸 (𝜑, 𝜆𝑠)) and B′ = 𝑈 (ℎ) � 𝑉 with V the unipotent radical of the parabolic subgroup
of 𝑈 ( ℎ̃) stabilizing the isotropic subspace vect(𝑥1, . . . , 𝑥𝑟 ). It should be emphasized however that this
identity does not make sense per se, as the Eulerian integral on the right-hand side is not absolutely
convergent in general. More precisely, it has to be ‘interpreted in the sense of L-functions’, which
requires some nontrivial unramified computations of local integrals involving Bessel functions. We
refer the reader to Section 8 and, more specifically, 8.7 and 8.8 for details.

It follows that condition 2 of Theorem 1.3.3.1 holds for ℎ ∈ H𝑚 and 𝜎 if and only if the following
assertion holds:

2’. There exists 𝑠 ∈ 𝑖R such that 𝜑 ↦→ P𝑈 ′
ℎ̃
(𝜑, 𝜆𝑠) does not vanish identically on A𝑃,𝜎 (𝑈ℎ̃).

It is then straightforward to deduce Theorem 1.3.3.1 from Theorem 1.2.3.1.

1.3.5. Local Bessel periods
From now on, we fix ℎ ∈ H𝑚 and a decomposition of the character 𝜓 = ⊗𝑣 ∈𝑉𝐹𝜓𝑣 from which we get
a decomposition 𝜓Bℎ = ⊗𝑣 ∈𝑉𝐹𝜓Bℎ ,𝑣 , where 𝜓Bℎ ,𝑣 is a character of Bℎ (𝐹𝑣 ). Let v be a place of F. The
integral ∫

Bℎ (𝐹𝑣 )

𝑓𝑣 (𝑔𝑣 )𝜓Bℎ ,𝑣 (𝑔𝑣 )𝑑𝑔𝑣

is well defined for a smooth and compactly supported function 𝑓𝑣 on Gℎ (𝐹𝑣 ) and extends to a continuous
linear form 𝑓𝑣 ↦→ PBℎ ,𝜓𝑣 ( 𝑓𝑣 ) on the space of tempered functions; see subsection 8.4. It depends on the
choice of a Haar measure on Bℎ (𝐹𝑣 ).
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Let 𝜎𝑣 be a tempered irreducible representation of Gℎ (𝐹𝑣 ) equipped with an invariant inner product
(·, ·)𝑣 . Let 𝜑𝑣 and 𝜑′

𝑣 be vectors of 𝜎𝑣 . The associated matrix coefficient defined by 𝑓𝜑𝑣 ,𝜑
′
𝑣
(𝑔) =

(𝜎𝑣 (𝑔)𝜑𝑣 , 𝜑
′
𝑣 )𝑣 for all 𝑔 ∈ Gℎ (𝐹𝑣 ) belongs to this space and we set

PBℎ ,𝜓𝑣 (𝜑𝑣 , 𝜑
′
𝑣 ) = PBℎ ,𝜓𝑣 ( 𝑓𝜑𝑣 ,𝜑

′
𝑣
).

1.3.6. The Ichino-Ikeda conjecture for Bessel periods
Let 𝜎 be a tempered automorphic cuspidal subrepresentation 𝜎 of Gℎ (A). Tempered means that we
have a decomposition 𝜎 = ⊗′

𝑣 ∈𝑉𝐹
𝜎𝑣 with 𝜎𝑣 tempered for all v. We also assume that the weak base

change of 𝜎 to 𝐺♭ is a discrete Hermitian parameter Π. As in §1.2.4, we define the ratio of L-functions
L(𝑠, 𝜎) and its local counterparts L(𝑠, 𝜎𝑣 ) for 𝑠 ∈ C. Explicitly, we have

L(𝑠, 𝜎𝑣 ) =
𝑛+1∏
𝑖=1

𝐿(𝑠 + 𝑖 − 1/2, 𝜂𝑖𝑣 )
𝐿(𝑠,Π𝑣 )

𝐿(𝑠 + 1/2,Π𝑣 ,As′)
,

where As′ = As(−1)𝑚 ⊗ As(−1)𝑛+1 and L(𝑠, 𝜎) is the product of the local factors in some half-plane. We
use the local factor to define the normalized local Bessel period

P ♮Bℎ ,𝜓𝑣
(𝜑𝑣 , 𝜑

′
𝑣 ) = L

(
1
2
, 𝜎𝑣

)−1
PBℎ ,𝜓,𝑣 ( 𝑓𝜑𝑣 ,𝜑

′
𝑣
).

We assume that the product of local measures on Bℎ (𝐹𝑣 ) gives the Tamagawa measure on Bℎ (A).
On 𝜎, we use the Petersson inner product (·, ·)Pet normalized by the Tamagawa measure on Gℎ (A).

Theorem 1.3.6.1. Let 𝜎 and Π as above. For every nonzero factorizable vector 𝜑 = ⊗′
𝑣𝜑𝑣 ∈ 𝜎, we have

|PBℎ ,𝜓 (𝜑) |
2

(𝜑, 𝜑)Pet
= |𝑆Π |

−1L
(

1
2
, 𝜎

)∏
𝑣

P ♮Bℎ ,𝜓𝑣
(𝜑𝑣 , 𝜑𝑣 )

(𝜑𝑣 , 𝜑𝑣 )𝑣
. (1.3.6.1)

Remarks 1.3.6.2.

1. In the right-hand side, almost all factors are equal to 1; see [Liu16, Theorem 2.2].
2. The statement has been conjectured by Y. Liu in a more general context; see [Liu16, conjecture 2.5].
3. For 𝑚 = 0, the group Gℎ is the quasi-split unitary group 𝑈2𝑟+1 of rank 2𝑟 + 1. The theorem has been

conjectured by Lapid and Mao, [LM15, conjecture 1.1].
4. The proof we give is along the same lines as for Theorem 1.3.3.1; namely, it is eventually deduce it

from Theorem 1.2.4.1 in a similar fashion.

1.4. On some spectral contributions of the Jacquet-Rallis trace formulas

1.4.1.
In this subsection, we explain some new ingredients that play a role in the proof of Theorems 1.2.3.1
and 1.2.4.1. As many other contributions on the subject (among them, see [Zha14b], [Zha14a], [Xue19],
[Beu21], [BP21], [BLZZ21], [BPCZ22]), we follow the strategy of the seminal paper [JR11] of Jacquet
and Rallis. More precisely, besides the local harmonic analysis performed in the mentioned papers, our
work is based on the geometric comparison, fully established in [CZ21], of the relative trace formulas
constructed in [Zyd20] of the unitary groups 𝑈ℎ for ℎ ∈ H𝑛 and the corresponding group G. However,
to be able to exploit this comparison, we need to obtain more tractable expressions for the spectral
contributions we are interested in.
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1.4.2.
Let us first explain our result in the unitary case namely for the group𝑈 = 𝑈ℎ and its subgroup𝑈 ′ = 𝑈 ′

ℎ .
Let 𝔛(𝑈) be the set of cuspidal data of U. According to the work of Zydor (see [Zyd20, section 4]),
the contribution of 𝜒 ∈ 𝔛(𝑈) to the relative trace formula for the group U is built upon the absolutely
convergent integral ∫

[𝑈 ′ ]×[𝑈 ′ ]

𝐾𝑇𝑓 ,𝜒 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦.

Here, 𝐾𝑇𝑓 ,𝜒 is a suitably modified version à la Arthur of the 𝜒-part 𝐾 𝑓 ,𝜒 of the automorphic kernel
𝐾 𝑓 (𝑥, 𝑦) =

∑
𝛾∈𝑈 (𝐹 ) 𝑓 (𝑥

−1𝛾𝑦) associated to a Schwartz function f on 𝑈 (A); see (3.2.2.1) below for
the precise definition. It depends on a truncation paramerer T. It turns out that the integral above is an
exponential-polynomial function in T whose purely polynomial part is constant and gives by definition
the 𝜒-contribution denoted by 𝐽𝑈𝜒 ( 𝑓 ) of the relative trace formula; see Theorem 3.2.3.1 for this slight
extension of Zydor’s work to Schwartz test functions. The problem, however, is to get an expression
for 𝐽𝜒 ( 𝑓 ) that reflects the Langlands spectral decomposition of 𝐾 𝑓 ,𝜒 and that is related to the periods
(1.2.2.1) we are interested in. The starting point is the following new independent characterization of
𝐽𝑈𝜒 ( 𝑓 ): the integral ∫

[𝑈 ′ ]×[𝑈 ′ ]

(𝐾 𝑓 ,𝜒Λ
𝑇
𝑢 ) (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 (1.4.2.1)

is absolutely convergent and is asymptotic to an polynomial exponential in the variable T whose purely
polynomial term is constant and equal to 𝐽𝑈𝜒 ( 𝑓 ); see Corollary 3.3.5.2. Here, 𝐾 𝑓 ,𝜒Λ𝑇𝑢 means that we
have applied the Ichino-Yamana truncation operator Λ𝑇𝑢 already mentioned in §1.2.2 to the right variable
of the kernel 𝐾 𝑓 ,𝜒. Let us now assume that the cuspidal datum 𝜒 is (𝑈,𝑈 ′)-regular in the sense of
§3.5.2. Then the expression (1.4.2.1) does not depend on T and thus is equal to 𝐽𝑈𝜒 ( 𝑓 ). To state our
result, we fix a representative (𝑀𝑃 , 𝜎) where 𝑀𝑃 is a Levi factor of a parabolic subgroup 𝑃 = 𝑀𝑃𝑁𝑃
of U and 𝜎 is a cuspidal automorphic representation of 𝑀𝑃 (A). Let A𝑃,𝜎,cusp(𝑈ℎ) be the space of
automorphic forms on the quotient 𝐴∞

𝑃𝑀𝑃 (𝐹)𝑁𝑃 (A)\𝑈 (A) such that for all 𝑔 ∈ 𝑈 (A),

𝑚 ∈ 𝑀𝑃 (A) ↦→ 𝛿𝑃 (𝑚)−
1
2 𝜑(𝑚𝑔)

belongs to the 𝜎-isotypic component of the space of cuspidal automorphic forms on the quotient
𝐴∞
𝑃𝑀𝑃 (𝐹)\𝑀𝑃 (A). Working throughout Langlands spectral decomposition of 𝐾 𝑓 ,𝜒, we get (see The-

orem 3.5.7.1):

𝐽𝑈𝜒 ( 𝑓 ) =
∫
𝑖𝔞∗𝑃

𝐽𝑈𝑃,𝜎 (𝜆, 𝑓 ) 𝑑𝜆, (1.4.2.2)

where the right-hand side is the absolutely convergent integral of the relative character defined by

𝐽𝑈𝑃,𝜎 (𝜆, 𝑓 ) =
∑

𝜑∈B𝑃,𝜎

P𝑈 ′ (𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)P𝑈 ′ (𝜑, 𝜆).

Here, the periods P𝑈 ′ (·, 𝜆) are those defined in (1.2.2.1), and 𝐼𝑃 (𝜆, 𝑓 ) denotes the induced action of
f twisted by 𝜆. The sum is over some orthonormal basis B𝑃,𝜎 of A𝑃,𝜎,cusp(𝑈); see §3.5.5 for the
Petersson inner product.

1.4.3.
Let us turn to the linear case – namely, 𝐺 = 𝐺𝑛 ×𝐺𝑛+1. In this case, we have to consider two subgroups
– namely, 𝐻 = 𝐺𝑛 diagonally embedded in G and 𝐺 ′ = 𝐺 ′

𝑛 × 𝐺 ′
𝑛+1, where 𝐺 ′

𝑛 = GL(𝑛, 𝐹) is naturally
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embedded in 𝐺𝑛 = GL(𝑛, 𝐸). Let 𝜒 be a cuspidal datum of G and let f be a Schwartz function on
𝐺 (A). As before, we denote by 𝐾 𝑓 ,𝜒 the 𝜒-part of the automorphic kernel. According to [BPCZ22,
Theorem 1.2.4.1], the contribution 𝐼𝜒 ( 𝑓 ), as defined by Zydor in [Zyd20], is also the constant term of
the polynomial exponential (in the variable T) which is asymptotic to the absolutely convergent integral

∫
[𝐻 ]

∫
[𝐺′ ]

Λ𝑇𝑟 𝐾𝜒 (ℎ, 𝑔) 𝜂𝐺′ (𝑔)𝑑𝑔𝑑ℎ.

Here, 𝜂𝐺′ is the quadratic character defined in §4.1.1 and Λ𝑇𝑟 is a truncation operator (in the parameter
T) introduced by Ichino-Yamana and well-suited for the study of Rankin-Selberg period. Assume that 𝜒
is represented by a pair (𝑀, 𝜋), where M is the Levi factor of a parabolic subgroup P of G. We assume
also that 𝜒 is (𝐺, 𝐻)-regular and Hermitian in the sense of §4.1.3. Then we have (see Theorem 4.1.8.1)

𝐼𝜒 ( 𝑓 ) = 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

𝐼𝑃,𝜋 (𝜆, 𝑓 ) 𝑑𝜆.

Here, L is a Levi subgroup of G containing M and determined by 𝜋 (see §4.1.4). For 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , the
relative character 𝐼𝑃,𝜋 (𝜆, 𝑓 ) is given by one of the two expressions

𝐼𝑃,𝜋 (𝜆, 𝑓 ) =
∑

𝜑∈B𝑃,𝜋

P(𝐸 (𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)) · 𝐽 (𝜉, 𝜑, 𝜆)

=
∑

𝜑∈B𝑃,𝜋

𝑍𝑅𝑆 (0,𝑊 (𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆))𝛽𝜂 (𝑊 (𝜑, 𝜆))

〈𝑊 (𝜑, 𝜆),𝑊 (𝜑, 𝜆)〉Pet
.

The sums are over some orthonormal bases B𝑃,𝜋 for the Petersson inner product of the space
A𝑃,𝜋,cusp (𝐺) (defined as above). The first expression is built upon P(𝐸 (𝜑, 𝜆)) and 𝐽 (𝜉, 𝜑, 𝜆). The for-
mer is the regularized Rankin-Selberg period à la Ichino-Yamana (see [IY15]) of the Eisenstein series
associated to the pair (𝑃, 𝜋). The latter is the intertwining (Flicker-Rallis) period of Jacquet-Lapid-
Rogawski [JLR99]. The second expression uses Whittaker functionals 𝑊 (𝜑, 𝜆) associated to Eisenstein
series and linear forms on the Whittaker models of Ind𝐺 (A)

𝑃 (A)
(𝜋 ⊗ 𝜆) equipped with the Petersson product

〈·, ·〉Pet. The linear forms 𝑍𝑅𝑆 and 𝛽𝜂 are counterparts of the period and the intertwining period. In
the Rankin-Selberg case, the link is recalled in Proposition 4.2.5.1: it is based on [IY15] which gen-
eralizes the classical Rankin-Selberg theory. In the Flicker-Rallis case, the precise relation is given in
Proposition 4.2.7.1, which generalizes the work of Flicker [Fli88]. Besides some reductions based on
[BPCZ22, section 9], the bulk of the proof of proposition is the object of Section 5. Note also that we
prove in Section 5 a result that is of independent interest: we express a basic intertwining period of
Jacquet-Lapid-Rogawski in terms of an integral of a Whittaker functional; see Theorem 5.5.1.1. The
second expression of the relative character is better suited for the proof of Theorem 1.2.4.1. In Section 6,
we give an alternative proof of this spectral expansion of 𝐼𝜒 ( 𝑓 ), for (𝐺, 𝐻)-regular 𝜒, that is based on
the theory of Zeta integrals.

Finally, let us remark that if 𝜒 is a (𝑈,𝑈 ′)-regular cuspidal datum of U attached to a cuspidal
representation of 𝑀𝑃𝑛 (A) ×𝑈 (ℎ ⊕ ℎ0) (A) for some parabolic subgroup 𝑃𝑛 of 𝑈 (ℎ), then the modified
kernel 𝐾𝑇𝑓 ,𝜒 (𝑥, 𝑦) coincides with the usual 𝜒-part of the kernel. Then one can directly get the expression
(1.4.2.2) in which the 𝑈 ′-periods are absolutely convergent. This includes, in particular, the Eisenstein
series needed for the deduction of the Gan-Gross-Prasad and Ichino-Ikeda conjectures for general Bessel
periods, as outlined in subsection 1.3.
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1.5. Organization of the paper

1.5.1.
The reader will find the main notations and some prelimary results in Section 2. The Section 3 is
devoted to the study of some spectral contributions of the Jacquet-Rallis trace formula for unitary
groups. The main general result is Theorem 3.2.3.1, which gives a more tractable expression to compute
spectral contributions. The proof of Theorem 3.2.3.1 is the bulk of subsections 3.3 and 3.4. Then in
subsection 3.5, the spectral contribution for some cuspidal data are explicitly given in terms of relative
characters (see Theorem 3.5.7.1). In Section 4, we turn to the Jacquet-Rallis trace formula for general
linear groups. The main result is Theorem 4.1.8.1, which expresses the spectral contribution for some
cuspidal data in terms of relative characters. In subsection 4.2, we show that these relative characters
can expressed in terms of Whittaker functionals; see Theorem 4.2.8.1. The main result of Section 5
is Theorem 5.5.1.1, which relates some basic intertwining period of Jacquet-Lapid-Rogawski to some
integral of a Whittaker functional: it is used in the proof of Theorem 4.2.8.1, but it is also of independent
interest. Its proof occupies the whole part of Section 5. As explained above, we provide in Section 6
an alternative proof for the description of the spectral contributions to the Jacquet-Rallis trace formula
for general linear groups that can be obtained by combining Theorem 4.1.8.1 with Theorem 4.2.8.1.
In Section 7, we explain the proof of Theorems 1.2.3.1 and 1.2.4.1 based on the comparison of the
Jacquet-Rallis trace formulas and the results obtained before. The aim of the final Section 8 is to
establish the reduction of Theorems 1.3.3.1 and 1.3.6.1 to special cases of Theorems 1.2.3.1 and 1.2.4.1,
respectively. Its most technical part is in subsection 8.7, where necessary unramified computation is
performed. Finally, Appendix A presents a probably well-known extension of Weyl’s character formula
to non-connected groups that is necessary for the unramified computation.

2. Preliminaries

2.1. Algebraic and adelic groups

2.1.1.
We shall try to follow the usual notations of Arthur and the main notations of the previous article
[BPCZ22]. For the reader’s convenience, we briefly recall our choices.

2.1.2.
We denote by F a number field, 𝑉𝐹 (resp. 𝑉𝐹,∞) the set of its places (resp. Archimedean places) and
A its ring of adèles. For 𝑣 ∈ 𝑉𝐹 , let 𝐹𝑣 be its completion at v. For any finite subset 𝑆 ⊂ 𝑉𝐹 , we set
𝐹𝑆 = ⊗𝑣 ∈𝑆𝐹𝑣 and 𝐹∞ = 𝐹𝑉𝐹,∞ . We denote by | · | the morphism A× → R×+ given by the product of
normalized absolute values | · |𝑣 on each 𝐹𝑣 .

2.1.3.
Let G be a reductive group defined over F. All the subgroups of G we consider are assumed to be defined
over F. We fix 𝑃0 ⊂ 𝐺 a minimal parabolic subgroup and 𝑀0 a Levi factor of 𝑃0. A parabolic subgroup
of G which contains 𝑃0, resp. 𝑀0, is said to be standard, resp. semi-standard. Let P be a semi-standard
parabolic subgroup of G. It has a Levi decomposition 𝑃 = 𝑀𝑃𝑁𝑃 such that 𝑀𝑃 is a semi-standard
Levi factor (that is, 𝑀0 ⊂ 𝑀𝑃) and 𝑁𝑃 is the unipotent radical of P. Such a group 𝑀𝑃 is called a
semi-standard Levi subgroup of G. It is said to be standard if, moreover, P is standard. Let 𝑋∗(𝑃) be the
group of rational characters of P defined over F. Attached to P are real vector spaces 𝔞∗𝑃 = 𝑋∗(𝑃) ⊗Z R
and 𝔞𝑃 = HomZ(𝑋∗(𝑃),R) in canonical duality:

〈·, ·〉 : 𝔞∗𝑃 × 𝔞𝑃 → R. (2.1.3.1)

If 𝑃 ⊂ 𝑄 ⊂ 𝐺, we have natural maps 𝔞∗𝑄 → 𝔞∗𝑃 and 𝔞𝑃 → 𝔞𝑄. The kernel of the second one is denoted
by 𝔞𝑄𝑃 . We have natural decomposition 𝔞𝑃 = 𝔞𝑄𝑃 ⊕ 𝔞𝑄 and dually 𝔞∗𝑃 = 𝔞𝑄,∗𝑃 ⊕ 𝔞∗𝑄. We put a subscript
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C to denote the extension of scalars to C. Then one has a decomposition

𝔞𝑄,∗
𝑃,C

= 𝔞𝑄,∗𝑃 ⊕ 𝑖𝔞𝑄,∗𝑃 ,

where 𝑖2 = −1. We shall denote by � and � the associated projections. The complex conjugate is then
defined by �̄� = �(𝜆) − 𝑖�(𝜆). Note that the spaces 𝔞𝑄𝑃 , 𝔞𝑄,∗𝑃 depend only on the Levi factors 𝑀𝑄 and
𝑀𝑃 and thus are also denoted by 𝔞

𝑀𝑄

𝑀𝑃
, 𝔞𝑀𝑄 ,∗

𝑀𝑃
etc.

Let Ad𝑄𝑃 be the adjoint action of 𝑀𝑃 on the Lie algebra of 𝑀𝑄 ∩ 𝑁𝑃 . Let 𝜌𝑄𝑃 be the unique element
of 𝔞𝑄,∗𝑃 such that for every 𝑚 ∈ 𝑀𝑃 (A), we have

| det(Ad𝑄𝑃 (𝑚)) | = exp(〈2𝜌𝑄𝑃 , 𝐻𝑃 (𝑚)〉).

For every 𝑔 ∈ 𝐺 (A), we set

𝛿𝑄𝑃 (𝑔) = exp(〈2𝜌𝑄𝑃 , 𝐻𝑃 (𝑔)〉).

If the context is clear, we set 𝜌𝑃 = 𝜌𝐺𝑃 and 𝛿𝑃 = 𝛿𝐺𝑃 . Usually, we replace the subscript 𝑃0 simply by 0
(for example, 𝔞0 = 𝔞𝑃0 , 𝜌0 = 𝜌𝑃0 , etc.).

2.1.4.
Let 𝑃 be a standard parabolic subgroups of G. Let 𝐴𝑃 = 𝐴𝑀𝑃 be the maximal central F-split torus
of 𝑀𝑃 . Let Δ𝑃0 be the set of simple roots of 𝐴0 in 𝑀𝑃 ∩ 𝑃0. Let Δ𝑄𝑃 be the image of Δ𝑄0 \ Δ𝑃0 by
the projection 𝔞∗0 → 𝔞∗𝑃 . It is a basis of 𝔞𝑄,∗𝑃 whose dual basis is the subset of coweights Δ̂𝑄,∨𝑃 ⊂ 𝔞𝑄𝑃 .
We have also the set of coroots Δ𝑄,∨𝑃 which is a basis of 𝔞𝑄𝑃 . We have the dual basis given by the set
of simple weights Δ̂𝑄𝑃 ⊂ 𝔞𝑄,∗𝑃 . The sets Δ𝑄𝑃 and Δ̂𝑄𝑃 determine open cones in 𝔞0 whose characteristic
functions are denoted respectively by 𝜏𝑄𝑃 and 𝜏𝑄𝑃 . We set

𝔞∗,𝑄+
𝑃 =

{
𝜆 ∈ 𝔞∗𝑃 | 〈𝜆, 𝛼∨〉 � 0, ∀𝛼∨ ∈ Δ𝑄,∨𝑃

}
.

We define similarly 𝔞𝑄+
𝑃 using roots instead of coroots. If 𝑄 = 𝐺, the exponent G is omitted.

2.1.5.
Let W be the Weyl group of (𝐺, 𝐴0) – namely, the quotient of the normalizer of 𝐴0 in 𝐺 (𝐹) by 𝑀0.
For 𝑃 = 𝑀𝑃𝑁𝑃 and 𝑄 = 𝑀𝑄𝑁𝑄 two standard parabolic subgroups of 𝐺, we denote by 𝑊 (𝑃,𝑄) or
𝑊 (𝑀𝑃 , 𝑀𝑄) the set of 𝑤 ∈ 𝑊 such that 𝑤Δ𝑃0 = Δ𝑄0 . For 𝑤 ∈ 𝑊 (𝑃,𝑄), we have 𝑤𝑀𝑃𝑤

−1 = 𝑀𝑄.
When 𝑃 = 𝑄, the group 𝑊 (𝑃, 𝑃) is simply denoted by 𝑊 (𝑃) or 𝑊 (𝑀𝑃). We will also write 𝑊𝑀𝑃 for
the Weyl group of (𝑀𝑃 , 𝐴0).

2.1.6.
Let 𝐾 =

∏
𝑣 ∈𝑉𝐹

𝐾𝑣 ⊂ 𝐺 (A) be a ‘good’ maximal compact subgroup in good position relative to 𝑀0
(called ‘admissible’ in [Art81, p. 9]). We write

𝐾 = 𝐾∞𝐾
∞,

where 𝐾∞ =
∏
𝑣 ∈𝑉𝐹,∞

𝐾𝑣 and 𝐾∞ =
∏
𝑣 ∈𝑉𝐹\𝑉𝐹,∞

𝐾𝑣 . We have a homomorphism 𝐻𝑃 : 𝑃(A) → 𝔞𝑃
such that 〈𝜒, 𝐻𝑃 (𝑝)〉 = log |𝜒(𝑝) | for any 𝑝 ∈ 𝑃(A) and 𝜒 ∈ 𝑋∗(𝑃). By Iwasawa decomposition
𝐺 (A) = 𝑃(A)𝐾 , it extends to a map 𝐻𝑃 : 𝐺 (A) → 𝔞𝑃 which is left-invariant by 𝑀𝑃 (𝐹)𝑁𝑃 (A) and
right-invariant by K. We denote 𝐴∞

𝑃 = 𝐴∞
𝑀𝑃

the neutral component of the group of real points of the
maximal Q-split torus of the Weil restriction Res𝐹/Q(𝐴𝑃). Then the restriction of 𝐻𝑃 to 𝐴∞

𝑃 is an
isomorphism.
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We set [𝐺]𝑃 = 𝑀𝑃 (𝐹)𝑁𝑃 (A)\𝐺 (A) and [𝐺]𝑃,0 = 𝐴∞
𝑃𝑀𝑃 (𝐹)𝑁𝑃 (A)\𝐺 (A). Let [𝐺]1

𝑃 be the
subset of [𝐺]𝑃 where the map 𝐻𝑃 vanishes. If 𝑃 = 𝐺, we shall omit the subscript P.

2.1.7.
We fix a height ‖ · ‖ on 𝐺 (A) as in [BPCZ22, section 2.4]. Let 𝑃 ⊂ 𝐺 be a standard parabolic subgroup.
We set for 𝑥 ∈ [𝐺]𝑃

‖𝑥‖𝑃 = inf
𝛾∈𝑀𝑃 (𝐹 )𝑁𝑃 (A)

‖𝛾𝑥‖.

2.1.8. Haar measures
Let us explain briefly our choice and notations of measures; see [BPCZ22, section 2.3] for more details.
We fix a nontrivial continuous additive character 𝜓 ′ : A/𝐹 → C×. For each place 𝑣 ∈ 𝑉𝐹 , the local
component 𝜓 ′

𝑣 of 𝜓 ′ determines an autodual Haar measure on 𝐹𝑣 . The choice of an invariant rational
volume form on G then determines a Haar measure 𝑑𝑔𝑣 on 𝐺 (𝐹𝑣 ). We have an Artin-Tate L-function
𝐿𝐺 (𝑠) =

∏
𝑣 ∈𝑉𝐹

𝐿𝐺,𝑣 (𝑠); see [Gro97] and more generally 𝐿𝑆𝐺 (𝑠) =
∏
𝑣 ∈𝑉𝐹\𝑆 𝐿𝐺,𝑣 (𝑠) for 𝑆 ⊂ 𝑉𝐹 finite.

Then Δ𝑆,∗𝐺 (simply Δ∗
𝐺 if S is empty) is defined to be the leading coefficient in the Laurent expansion

of 𝐿𝐺 (𝑠) at 𝑠 = 0. We also set Δ𝐺,𝑣 = 𝐿𝐺,𝑣 (0). The Tamagawa measure 𝑑𝑔 on 𝐺 (A) is defined by
𝑑𝑔 = 𝑑𝑔𝑆 × 𝑑𝑔𝑆 , where 𝑑𝑔𝑆 =

∏
𝑣 ∈𝑆 𝑑𝑔𝑣 and 𝑑𝑔𝑆 = (Δ𝑆,∗𝐺 )−1 ∏

𝑣∉𝑆 Δ𝐺,𝑣𝑑𝑔𝑣 for 𝑆 ⊂ 𝑉𝐹 finite.
We equip 𝔞𝑃 with the Haar measure that gives a covolume 1 to the lattice Hom(𝑋∗(𝑃),Z) and 𝑖𝔞∗𝑃

with the dual Haar measure. The group 𝐴∞
𝑃 is equipped with the Haar measure compatible with the

isomorphism 𝐴∞
𝑃 � 𝔞𝑃 induced by the map 𝐻𝑃 . The groups 𝔞𝐺𝑃 � 𝔞𝑃/𝔞𝐺 and 𝑖𝔞𝐺,∗𝑃 � 𝑖𝔞∗𝑃/𝑖𝔞

∗
𝐺 are

provided with the quotient Haar measures.
The homogeneous space [𝐺] (resp. [𝐺]1 � [𝐺]0) is equipped with the quotient of the Tamagawa

measure on 𝐺 (A) by the counting measure on 𝐺 (𝐹) (resp. by the product of the counting measure on
𝐺 (𝐹) with the Haar measure we fixed on 𝐴∞

𝐺). For P a standard parabolic subgroup, we equip similarly
[𝐺]𝑃 with the quotient of the Tamagawa measure on 𝐺 (A) by the product of the counting measure
on 𝑀𝑃 (𝐹) with the Tamagawa measure on 𝑁𝑃 (A). Since the action by left translation of 𝑎 ∈ 𝐴∞

𝑃 on
[𝐺]𝑃 multiplies the measure by 𝛿𝑃 (𝑎)

−1, taking the quotient by the Haar measure on 𝐴∞
𝑃 induces a

‘semi-invariant’ measure on [𝐺]𝑃,0 = 𝐴∞
𝑃\[𝐺]𝑃 .

2.2. Space of functions

2.2.1.
For two positive functions f and g on a set X, we write 𝑓 (𝑥) � 𝑔(𝑥), 𝑥 ∈ 𝑋 if there exists a constant
𝐶 > 0 such that 𝑓 (𝑥) � 𝐶𝑔(𝑥) for every 𝑥 ∈ 𝑋 . We write 𝑓 (𝑥) ∼ 𝑔(𝑥), 𝑥 ∈ 𝑋 if 𝑓 (𝑥) � 𝑔(𝑥) and
𝑔(𝑥) � 𝑓 (𝑥).

2.2.2.
For every 𝐶 ∈ R ∪ {−∞} with 𝐷 > 𝐶, we set H>𝐶 = {𝑧 ∈ C | �(𝑧) > 𝐶}.

2.2.3. Schwartz spaces
As before, G is a reductive group defined over F. We let 𝔤∞ be the Lie algebra of 𝐺 (𝐹∞) and U (𝔤∞) be
the enveloping algebra of its complexification and Z (𝔤∞) ⊂ U (𝔤∞) be its center.

We shall briefly review several useful locally convex topological spaces of functions; see [BPCZ22,
section 2.5] for more details. Let S (𝐺 (A)) be the Schwartz space of 𝐺 (A): it contains the dense
subspace 𝐶∞

𝑐 (𝐺 (A)) of smooth and compactly supported functions. Let 𝑃 ⊂ 𝐺 be a standard parabolic
subgroup. Let S0 ([𝐺]𝑃) be the space of measurable functions 𝜑 : [𝐺]𝑃 → C such that

‖𝜑‖∞,𝑁 = sup
𝑥∈[𝐺 ]𝑃

‖𝑥‖𝑁𝑃 |𝜑(𝑥) | < ∞ (2.2.3.1)
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for every 𝑁 > 0. Let S ([𝐺]𝑃) be the Schwartz space of [𝐺]𝑃 that is the space of smooth functions
𝜑 : [𝐺]𝑃 → C such that for every 𝑁 > 0 and 𝑋 ∈ U (𝔤∞), we have

‖𝜑‖𝑁 ,𝑋 = sup
𝑥∈[𝐺 ]𝑃

‖𝑥‖𝑁𝑃 | (𝑅(𝑋)𝜑) (𝑥) | < ∞.

The space of functions of uniform moderate growth on [𝐺]𝑃 is defined as

T ([𝐺]𝑃) =
⋃
𝑁>0

T𝑁 ([𝐺]𝑃),

where T𝑁 ([𝐺]𝑃) is the space of smooth functions 𝜑 : [𝐺]𝑃 → C such that for every 𝑋 ∈ U (𝔤∞), we
have

‖𝜑‖−𝑁 ,𝑋 = sup
𝑥∈[𝐺 ]𝑃

‖𝑥‖−𝑁𝑃 | (𝑅(𝑋)𝜑) (𝑥) | < ∞. (2.2.3.2)

All these spaces are equipped with locally convex topologies. The space S0 ([𝐺]𝑃) is equipped with
the family of semi-norms ‖·‖∞,𝑁 ; it is a Fréchet space. The spaces S (𝐺 (A)), S ([𝐺]𝑃), T𝑁 ([𝐺]𝑃) and
T ([𝐺]𝑃) are LF-spaces: we refer the reader to [BPCZ22, section 2.5] for a precise description of the
topology.

2.2.4. Automorphic forms
Here, we refer the reader to [BPCZ22, section 2.7] for more details. The space A𝑃 (𝐺) of automorphic
forms on [𝐺]𝑃 is the subspace of Z (𝔤∞)-finite functions in T ([𝐺]𝑃). Let A𝑃,cusp(𝐺) ⊂ A𝑃 (𝐺) be
the subspace of cuspidal automorphic forms: these are the functions 𝜑 ∈ A𝑃 (𝐺) such that 𝜑𝑄 = 0 for
every proper parabolic subgroup 𝑄 � 𝑃. The constant term 𝜑𝑄 is defined by

𝜑𝑄 (𝑥) =
∫
[𝑁𝑄 ]

𝜑(𝑢𝑥)𝑑𝑢

for all 𝑥 ∈ 𝐺 (A). A cuspidal automorphic representation 𝜋 of 𝑀𝑃 (A) is a topologically irreducible
subrepresentation of Acusp(𝑀𝑃). For every 𝜆 ∈ 𝔞∗𝑃,C, we define 𝜋𝜆 = 𝜋 ⊗ 𝜆 as the space of functions of
the form

𝑚 ∈ [𝑀𝑃] ↦→ exp(〈𝜆, 𝐻𝑃 (𝑚)〉)𝜑(𝑚)

for 𝜑 ∈ 𝜋.
We denote by A𝜋,cusp (𝑀𝑃) the 𝜋-isotypic component of Acusp (𝑀𝑃). The normalized smooth induc-

tion Ind𝐺 (A)

𝑃 (A)
(A𝜋,cusp (𝑀𝑃)) is denoted by A𝑃,𝜋,cusp (𝐺) and is identified with the space of automorphic

forms 𝜑 ∈ A𝑃 (𝐺) such that

𝑚 ∈ [𝑀𝑃] ↦→ exp(−〈𝜌𝑃 , 𝐻𝑃 (𝑚)〉)𝜑(𝑚𝑔)

belongs to A𝜋,cusp (𝑀𝑃) for every 𝑔 ∈ 𝐺 (A). The algebra S (𝐺 (A)) acts on A𝑃,𝜋,cusp(𝐺) by right
convolution. For every 𝜆 ∈ 𝔞∗𝑃,C, we denote by 𝐼 (𝜆) the action on A𝑃,𝜋,cusp(𝐺) we get by transport
from the action of S (𝐺 (A)) on A𝑃,𝜋𝜆 ,cusp and the identification A𝑃,𝜋,cusp → A𝑃,𝜋𝜆 ,cusp given by
𝜑 ↦→ exp(〈𝜆, 𝐻𝑃 (.)〉)𝜑. Assume that the central character of 𝜋 is unitary. Then we equip A𝑃,𝜋,cusp(𝐺)

with the Petersson inner product given by

‖𝜑‖2
Pet = 〈𝜑, 𝜑〉Pet =

∫
[𝐺 ]𝑃,0

|𝜑(𝑔) |2𝑑𝑔.

Note that for every cuspidal automorphic representation 𝜋 of 𝑀𝑃 (A), there exists a unique 𝜆 ∈ 𝔞∗𝑃,C
such that the central character of 𝜋𝜆 is trivial on 𝐴∞

𝑀 . Unless otherwise stated, the cuspidal automorphic
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representations we consider are always normalized in the sense that they are assumed to have a central
character which is trivial on 𝐴∞

𝑀 .
Let �̂� be the set of isomorphism classes of irreducible unitary representations of K. A K-basis B𝑃,𝜋

of A𝑃,𝜋,cusp (𝐺) is by definition the union over of 𝜏 ∈ �̂� of orthonormal bases B𝑃,𝜋,𝜏 for the Petersson
inner product of the finite dimensional subspaces A𝑃,𝜋,cusp (𝐺, 𝜏) of functions in A𝑃,𝜋,cusp (𝐺) which
transform under K according to 𝜏.

For any 𝜑 ∈ A𝑃,cusp (𝐺), 𝑔 ∈ 𝐺 (A) and 𝜆 ∈ 𝔞∗𝑃,C and any parabolic subgroup 𝑄 ⊃ 𝑃, we introduce
the Eisenstein series

𝐸𝑄 (𝑔, 𝜑, 𝜆) =
∑

𝛿∈𝑃 (𝐹 )\𝑄 (𝐹 )

exp(〈𝜆, 𝐻𝑃 (𝛿𝑔)〉𝜑(𝛿𝑔). (2.2.4.1)

The right-hand side is convergent for �(𝜆) in a suitable cone, and for more general 𝜆, the left-hand
side is given by meromorphic continuation. Let P and Q be standard parabolic subgroups of G. For any
𝑤 ∈ 𝑊 (𝑃,𝑄) and 𝜆 ∈ 𝔞∗𝑃,C, we have the intertwining operator

𝑀 (𝑤, 𝜆) : A𝑃 (𝐺) → A𝑄 (𝐺).

For more details and continuity properties of these constructions, we refer the reader to [BPCZ22,
§§2.7.3, 2.7.4].

2.2.5. Cuspidal datum
Let 𝑃 ⊂ 𝐺 be a standard parabolic subgroup of G. Let 𝐿2 ([𝐺]𝑃) be the space of square integrable
functions on [𝐺]𝑃 . Let 𝔛(𝐺) be the set of cuspidal data of G. Recall that 𝔛(𝐺) is the quotient of the
set of pairs (𝑀𝑃 , 𝜋) such that

• P is a standard parabolic subgroup of G;
• 𝜋 is the isomorphism class of a cuspidal automorphic representation of 𝑀𝑃 (A) with central character

trivial on 𝐴∞
𝑃

by the following equivalence relation: (𝑀𝑃 , 𝜋) ∼ (𝑀𝑄, 𝜏) if there exists 𝑤 ∈ 𝑊 (𝑃,𝑄) such that
𝑤𝜋𝑤−1 � 𝜏. Then for any standard parabolic subgroup P of G, we have the Langlands decomposition
(see [BPCZ22, section 2.9] for more details):

𝐿2 ([𝐺]𝑃) =
�⊕
𝜒∈𝔛 (𝐺)

𝐿2
𝜒 ([𝐺]𝑃).

The Schwartz algebra acts on 𝐿2 ([𝐺]𝑃) and for each 𝜒 ∈ 𝔛(𝐺) on 𝐿2
𝜒 ([𝐺]𝑃) by right convolution.

For each 𝑓 ∈ S (𝐺 (A)), we get integral operators whose kernels are denoted respectively by 𝐾 𝑓 ,𝑃 and
𝐾 𝑓 ,𝑃,𝜒. We shall use also the decomposition

𝐿2 ([𝐺]𝑃,0) =
�⊕
𝜒∈𝔛 (𝐺)

𝐿2
𝜒 ([𝐺]𝑃,0).

2.3. Around Arthur’s partition

2.3.1.
Let 𝑇1, 𝑇 ∈ 𝔞0 and P be a standard parabolic subgroup of G. We define

𝐴𝑃,∞𝑃0
(𝑇1) = {𝑎 ∈ 𝐴∞

0 | 〈𝛼, 𝐻0(𝑎)〉 � 〈𝛼,𝑇1〉, ∀𝛼 ∈ Δ𝑃0 }
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and

𝐴𝑃,∞𝑃0
(𝑇1, 𝑇) = {𝑎 ∈ 𝐴𝑃,∞0 (𝑇1) | 〈𝜛, 𝐻0 (𝑎)〉 � 〈𝜛,𝑇〉, ∀𝜛 ∈ Δ̂𝑃0 }.

2.3.2. Siegel domains
Let 𝑇− ∈ 𝔞𝐺0 and 𝜔0 ⊂ 𝑃0 (A)

1 be a compact subset such that 𝑃0 (A)
1 = 𝑃0 (𝐹)𝜔0. Let P be a standard

parabolic subgroup of G. We define

𝔰𝑃 (𝜔0, 𝑇−, 𝐾) = 𝜔0𝐴
𝑃,∞
𝑃0

(𝑇−)𝐾.

There exists 𝑇− ∈ −𝔞𝐺,+0 such that for all standard parabolic subgroup of G, we have 𝐺 (A) =
𝑃(𝐹)𝔰𝑃 (𝜔0, 𝑇−, 𝐾).We will fix𝑇− and𝜔0 and we set 𝔰𝑃 = 𝔰𝑃 (𝜔0, 𝑇, 𝐾): this is a Siegel domain of [𝐺]𝑃 .

Note that for any standard parabolic subgroup P of G, we have ‖𝑥‖ ∼ ‖𝑥‖𝑃 for 𝑥 ∈ 𝔰𝑃; see [BPCZ22,
(2.4.1.3)].

2.3.3.
For any standard parabolic subgroup P of G and𝑇 ∈ 𝔞+0 , we consider the characteristic function 𝐹𝑃 (·, 𝑇)

of 𝜔0𝐴
𝑃,∞
0 (𝑇−, 𝑇)𝐾 ⊂ 𝔰𝑃 . This function descends on [𝐺]𝑃 . There is a point 𝑇0 ∈ 𝔞𝐺,+0 such that for all

𝑇 ∈ 𝑇0 + 𝔞𝐺,+0 and all standard parabolic subgroup Q of G, we have the following formula which gives
a partition of [𝐺]𝑄 (see [Art78, Lemma 6.4] and also [LW13, Proposition 3.6.3]):∑

𝑃0⊂𝑃⊂𝑄

∑
𝛿∈𝑃 (𝐹 )\𝑄 (𝐹 )

𝐹𝑃 (𝛿𝑔, 𝑇)𝜏𝑄𝑃 (𝐻𝑃 (𝛿𝑔) − 𝑇) = 1. (2.3.3.1)

Note that the relation implies a simpler definition of 𝐹𝑃 (·, 𝑇) for 𝑇 ∈ 𝑇0 + 𝔞𝐺,+0 ; the function 𝐹𝑃 (·, 𝑇)
is the characteristic function of the following set:

{𝑔 ∈ [𝐺]𝑃 | ∀𝜛 ∈ Δ̂𝑃0 , 𝛿 ∈ 𝑃(𝐹) 〈𝜛, 𝐻0(𝛿𝑔) − 𝑇〉 � 0}. (2.3.3.2)

Indeed, this is a straightforward consequence of [Art85, Lemma 2.1] and the definition of the operator
Λ𝑇 there.

We shall use several times the following simple lemma.

Lemma 2.3.3.1. Let 𝑃 ⊂ 𝑄 be parabolic subgroup of G. Let 𝑔 ∈ 𝐺 (A) be such that
𝐹𝑃 (𝑔, 𝑇)𝜏𝑄𝑃 (𝐻𝑃 (𝑔) − 𝑇) = 1. Then we have

∀𝛼 ∈ Δ𝑄0 \ Δ𝑃0 , 〈𝛼, 𝐻0(𝑔)〉 > 〈𝛼,𝑇〉.

In particular, if 𝑔 ∈ 𝔰𝑃 , then 𝑔 ∈ 𝔰𝑄.

Proof. Let 𝛼 ∈ Δ𝑄0 \Δ𝑃0 . We write 𝛼 = 𝛼𝑃 + 𝛼
𝑃 according to the decomposition 𝔞∗0 = 𝔞∗𝑃 ⊕ 𝔞𝑃,∗0 . Since

we have 〈𝛼𝑃 , 𝛽∨〉 = 〈𝛼, 𝛽∨〉 � 0 for all 𝛽 ∈ Δ𝑃0 , we know that 𝛼𝑃 is a non-positive linear combination
of elements of Δ̂𝑃0 . Thus, the condition 𝐹𝑃 (𝑔, 𝑇) = 1 implies that

〈𝛼𝑃 , 𝐻0 (𝑔)〉 � 〈𝛼𝑃 , 𝑇〉.

The condition 𝜏𝑄𝑃 (𝐻𝑃 (𝑔) − 𝑇) = 1 implies that we have 〈𝛼𝑃 , 𝐻0 (𝑔)〉 > 〈𝛼𝑃 , 𝑇〉. We conclude that
〈𝛼, 𝐻0(𝑔)〉 > 〈𝛼,𝑇〉 for all 𝛼 ∈ Δ𝑄0 \ Δ𝑃0 . The last assertion is then obvious since T is positive. �
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2.3.4.
Let 𝜙 : 𝔞0 → C be a function and let 𝑇 ∈ 𝑇0 + 𝔞𝐺,+0 . For any standard parabolic subgroup Q of G, we
define for all 𝑔 ∈ [𝐺]𝑄,

𝑑𝑄 (𝜙, 𝑔, 𝑇) =
∑

𝑃0⊂𝑃⊂𝑄

∑
𝛿∈𝑃 (𝐹 )\𝑄 (𝐹 )

𝐹𝑃 (𝛿𝑔, 𝑇)𝜏𝑄𝑃 (𝐻𝑃 (𝛿𝑔) − 𝑇) exp(𝜙(𝐻𝑃 (𝛿𝑔))).

We will mainly use 𝑑𝑄 (𝜆, 𝑔, 𝑇) for 𝜆 ∈ 𝔞∗0. The next proposition shows that the function 𝑑𝑄 (𝜆, ·, 𝑇) is
an example of a function that satisfies [Fra98, Proposition 2.1] (such a kind of function is also used in
[BPCZ22, §2.4.3]).

Proposition 2.3.4.1. Let 𝜆 ∈ 𝔞∗0 and 𝑄 ⊂ 𝐺 a parabolic subgroup.

1. Let T ⊂ 𝑇0 + 𝔞𝐺,+0 be a compact subset. We have

exp(〈𝜆, 𝐻0(𝑔)〉) ∼ 𝑑𝑄 (𝜆, 𝑔, 𝑇)

for all 𝑔 ∈ 𝔰𝑄 and 𝑇 ∈ T . In particular, all functions 𝑑𝑄 (𝜆, 𝑇) are equivalent for 𝑇 ∈ T .
2. Let K be a compact subset of 𝐺 (A) and let 𝑇 ∈ 𝑇0 + 𝔞𝐺,+0 . We have

𝑑𝑄 (𝜆, 𝑔, 𝑇) ∼ 𝑑𝑄 (𝜆, 𝑔𝑐, 𝑇)

for all 𝑔 ∈ [𝐺]𝑄, 𝑐 ∈ K.

Proof. 1. If we write 𝜆 = 𝜆𝑄 + 𝜆𝑄 according to the decomposition 𝔞∗0 = 𝔞∗𝑄 + 𝔞𝑄,∗0 , we see that
𝑑𝑄 (𝜆, 𝑔, 𝑇) = exp(〈𝜆𝑄, 𝐻𝑄 (𝑔)〉)𝑑𝑄 (𝜆𝑄, 𝑔, 𝑇) for all 𝑇 ∈ 𝑇0 + 𝔞+0 and all 𝑔 ∈ [𝐺]𝑄. Since we also have
exp(〈𝜆, 𝐻0 (𝑔)〉) = exp(〈𝜆𝑄, 𝐻𝑄 (𝑔)〉) exp(〈𝜆𝑄, 𝐻0(𝑔)〉), we may and shall assume that 𝜆 ∈ 𝔞𝑄,∗0 . Let
𝑔 ∈ 𝔰𝑄 and 𝑇 ∈ T . There exists 𝑃 ⊂ 𝑄 such that 𝐹𝑃 (𝑔, 𝑇)𝜏𝑄𝑃 (𝐻𝑃 (𝑔) − 𝑇) = 1. Then, by definition, we
get 𝑑𝑄 (𝜆, 𝑔, 𝑇) = exp(〈𝜆, 𝐻𝑃 (𝑔)〉). It suffices to prove that 𝐻0(𝑔) − 𝐻𝑃 (𝑔) stays in a compact subset
which depends only on T for any 𝑔 ∈ 𝔰𝑃 such that 𝐹𝑃 (𝑔, 𝑇) = 1. In fact, the latter condition implies
〈𝜛, 𝐻0(𝑔)〉 � 〈𝜛,𝑇〉 for all 𝜛 ∈ Δ̂𝑃0 , and 𝑔 ∈ 𝔰𝑃 implies that 〈𝛼, 𝐻0 (𝑔)〉 � 〈𝛼,𝑇−〉 for all 𝛼 ∈ Δ̂𝑃0 .
Hence, the projection of 𝐻0 (𝑔) on 𝔞𝑃0 stays in a fixed compact subset, but this projection is nothing else
but 𝐻0(𝑔) − 𝐻𝑃 (𝑔).

2. First, we observe that 𝐻0(𝑘𝑐) stays in a fixed compact for 𝑘 ∈ 𝐾 and 𝑐 ∈ K. By assertion 1, we
may replace T by any element in 𝑇0 + 𝔞𝐺,+0 . In particular, we may and shall assume that T is such that
𝑇 − 𝐻0(𝑘𝑐) ∈ 𝑇0 + 𝔞𝐺,+0 for all 𝑘 ∈ 𝐾 and 𝑐 ∈ K. For any 𝑔 ∈ 𝐺 (A), we shall denote 𝑘 (𝑔) an element
of K such that 𝑔𝑘 (𝑔)−1 ∈ 𝑃0 (A).

Let 𝑔 ∈ 𝐺 (A) and 𝑐 ∈ K. Then there exist a unique parabolic sugroup 𝑃 ⊂ 𝑄 and 𝛿 ∈ 𝑄(𝐹) such
that 𝐹𝑃 (𝛿𝑔𝑐, 𝑇)𝜏𝑄𝑃 (𝐻𝑃 (𝛿𝑔𝑐) − 𝑇) = 1. Observe that 𝐻0(𝛿𝑔𝑐) = 𝐻0 (𝛿𝑔) + 𝐻0 (𝑘 (𝛿𝑔)𝑐). We deduce on
the one hand that 𝜏𝑄𝑃 (𝐻𝑃 (𝛿𝑔) − (𝑇 − 𝐻0 (𝑘 (𝛿𝑔)𝑐)) = 1 is equivalent to 𝜏𝑄𝑃 (𝐻𝑃 (𝛿𝑔𝑐) − 𝑇) = 1, and on
the other hand, we also have 𝐹𝑃 (𝛿𝑔, 𝑇 − 𝐻0(𝑘 (𝛿𝑔)𝑐)) = 1; indeed, for all 𝜛 ∈ Δ̂𝑃 , we have

〈𝜛, 𝐻0(𝛿𝑔)〉 = 〈𝜛, 𝐻0 (𝛿𝑔𝑐)〉 − 〈𝜛, 𝐻0 (𝑘 (𝛿𝑔)𝑐)〉

� 〈𝜛,𝑇 − 𝐻0(𝑘 (𝛿𝑔)𝑐)〉

since 𝐹𝑃 (𝛿𝑔𝑐, 𝑇) = 1. From this, we get

𝑑𝑄 (𝜆, 𝑔, 𝑇 − 𝐻0(𝑘 (𝛿𝑔)𝑐)) = exp(〈𝜆, 𝐻𝑃 (𝛿𝑔)〉) = 𝑑𝑄 (𝜆, 𝑔𝑐, 𝑇) exp(−〈𝜆, 𝐻0 (𝑘 (𝛿𝑔)𝑐)〉).

Using assertion 1 and the fact that 𝐻0 (𝑘 (𝛿𝑔)𝑐) stays in a fixed compact set, we can easily conclude. �
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Lemma 2.3.4.2. Let 𝑄 ⊂ 𝑅 be standard parabolic subgroups of G. There exists 𝑇1 ∈ 𝑇0 + 𝔞𝐺,+0 such
that for all 𝑇 ∈ 𝑇1 + 𝔞

𝐺,+
0 , all 𝜆 ∈ 𝔞∗0 and all 𝑔 ∈ 𝐺 (A) such that 𝐹𝑄 (𝑔, 𝑇)𝜏𝑅𝑄 (𝐻𝑄 (𝑔) −𝑇) = 1, we have

𝑑𝑄 (𝜆, 𝑔, 𝑇0) = 𝑑𝑅 (𝜆, 𝑔, 𝑇0).

Proof. Both the hypothesis and the conclusion are invariant under left translation by 𝑄(𝐹). It suffices to
prove the result for 𝑔 ∈ 𝔰𝑄 such that 𝐹𝑄 (𝑔, 𝑇)𝜏𝑅𝑄 (𝐻𝑄 (𝑔) − 𝑇) = 1. First, there exists a unique standard
parabolic subgroup 𝑃 ⊂ 𝑄 such that 𝐹𝑃 (𝑔, 𝑇0)𝜏

𝑄
𝑃 (𝐻𝑄 (𝑔) −𝑇0) = 1. In the proof of Proposition 2.3.4.1,

we have shown that 𝐻0(𝑔) − 𝐻𝑃 (𝑔) stays in a fixed compact subset for 𝑔 ∈ 𝔰𝑄 such that 𝐹𝑃 (𝑔, 𝑇0) = 1.
In particular, we can assume that for such elements g, we have

〈𝛼,𝑇1〉 > 〈𝛼𝑃 , 𝑇0〉 + 〈𝛼, 𝐻0 (𝑔) − 𝐻𝑃 (𝑔)〉. (2.3.4.1)

By Lemma 2.3.3.1, we have 〈𝛼, 𝐻0(𝑔)〉 > 〈𝛼,𝑇〉 for all 𝛼 ∈ Δ𝑅0 \Δ𝑄0 . So we have for all 𝛼 ∈ Δ𝑅0 \Δ𝑄0 ,

〈𝛼𝑃 , 𝐻0(𝑔)〉 = 〈𝛼, 𝐻𝑃 (𝑔)〉 = 〈𝛼, 𝐻0 (𝑔)〉 + 〈𝛼, 𝐻𝑃 (𝑔) − 𝐻0 (𝑔)〉

> 〈𝛼,𝑇〉 + 〈𝛼, 𝐻𝑃 (𝑔) − 𝐻0 (𝑔)〉

� 〈𝛼,𝑇1〉 + 〈𝛼, 𝐻𝑃 (𝑔) − 𝐻0 (𝑔)〉

> 〈𝛼𝑃 , 𝑇0〉

by (2.3.4.1). In particular, we see that we have 𝜏𝑅𝑃 (𝐻𝑄 (𝑔) −𝑇0) = 1. Thus, by definition, 𝑑𝑅 (𝜆, 𝑔, 𝑇0) =
exp(〈𝜆, 𝐻𝑃 (𝑔)〉) = 𝑑𝑄 (𝜆, 𝑔, 𝑇0). �

Proposition 2.3.4.3. Let 𝑄 ⊂ 𝑅 be standard parabolic subgroups of G such that Δ𝑅0 \ Δ𝑄0 = {𝛼} for
some simple root 𝛼. Let c such that 𝑐 > 〈𝛼,𝑇0,𝑃〉 for all parabolic subgroups 𝑃 ⊂ 𝑄.

For any 𝑔 ∈ 𝐺 (A), there is at most one element 𝛿 ∈ 𝑄(𝐹)\𝑅(𝐹) such that 𝑑𝑄 (𝛼, 𝛿𝑔, 𝑇0) > exp(𝑐).

Proof. Let 𝑔 ∈ 𝐺 (A) such that 𝑑𝑄 (𝛼, 𝑔, 𝑇0) > exp(𝑐). Using left translations by𝑄(𝐹), we may and shall
assume that there exists a standard parabolic subgroup 𝑃 ⊂ 𝑄 such that 𝐹𝑃 (𝑔, 𝑇0)𝜏

𝑄
𝑃 (𝐻𝑃 (𝑔) −𝑇0) = 1.

Then the condition 𝑑𝑄 (𝛼, 𝑔, 𝑇0) > exp(𝑐) is equivalent to 〈𝛼, 𝐻𝑃 (𝑔)〉 > 𝑐, and so 〈𝛼, 𝐻𝑃 (𝑔)〉 >
〈𝛼,𝑇0,𝑃〉. So we have also 𝐹𝑃 (𝑔, 𝑇0)𝜏

𝑅
𝑃 (𝐻𝑃 (𝑔)−𝑇0) = 1. Now the uniqueness follows from the partition

(2.3.3.1) applies to [𝐺]𝑅. �

3. On the spectral expansion of the Jacquet-Rallis trace formula for unitary groups

3.1. Notations

3.1.1.
Let 𝐸/𝐹 be a quadratic extension of number fields and c be the nontrivial element of the Galois group
Gal(𝐸/𝐹). Let A be the ring of adèles of F. Let 𝑛 � 0 be an integer. Let H𝑛 be the set of isomorphism
classes of pairs (𝑉, ℎ), where V is a E-vector space of dimension n and h a nondegenerate c-Hermitian
form on V. For any (𝑉, ℎ) ∈ H𝑛, we identify (𝑉, ℎ) with a representative, and we shall denote by𝑈 (𝑉, ℎ)
or simply 𝑈 (ℎ) its automorphisms group. We will fix (𝑉0, ℎ0) ∈ H1.

3.1.2.
We attach to any ℎ ∈ H𝑛 the following algebraic groups over F:

• the unitary group 𝑈 ′
ℎ = 𝑈 (ℎ) of automorphisms of h;

• the unitary group 𝑈 ′′
ℎ = 𝑈 (ℎ ⊕ ℎ0) where ℎ ⊕ ℎ0 denoted the orthogonal sum;

• the product of unitary groups 𝑈ℎ = 𝑈 ′
ℎ ×𝑈 ′′

ℎ .
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We have an embedding

𝑈 ′
ℎ ↩→ 𝑈 ′′

ℎ 𝑔 ↦→

(
𝑔 0
0 1

)
(3.1.2.1)

and a diagonal embedding 𝑈 ′
ℎ ↩→ 𝑈ℎ .

3.1.3.
Let 𝑛 � 1 be an integer and (𝑉, ℎ) ∈ H𝑛. We fix a parabolic subgroup 𝑃′

0 of 𝑈 ′
ℎ and a Levi factor 𝑀 ′

0 of
𝑃′

0 both defined over F and minimal for these properties. As a parabolic subgroup, 𝑃′
0 is the stabilizer

of a flag of totally isotropic subspaces of V. Let 𝑃′′
0 be the parabolic subgroup of 𝑈 ′′

ℎ stabilizing the
same flag. Let 𝑀 ′′

0 be the unique Levi factor of 𝑃′′
0 that contains 𝑀 ′

0. Then 𝑃0 = 𝑃′
0 × 𝑃′′

0 is a parabolic
subgroup of 𝑈ℎ with Levi factor 𝑀0 = 𝑀 ′

0 × 𝑀 ′′
0 . We fix also a pair (𝐵′′

0 , 𝑇
′′
0 ) consisting of a minimal

parabolic F-subgroup of 𝑈 ′′
ℎ and a Levi factor defined over F. We may and shall assume 𝐵′′

0 ⊂ 𝑃′′
0 and

𝑇 ′′
0 ⊂ 𝑀 ′′

0 . We fix maximal good compact subgroups 𝐾 ′
ℎ ⊂ 𝑈 ′

ℎ (A) and 𝐾 ′′
ℎ ⊂ 𝑈 ′′

ℎ (A), respectively,
in good position relative to 𝑀 ′

0 and 𝑇 ′′
0 in the sense of §2.1.6. We set 𝐾ℎ = 𝐾 ′

ℎ × 𝐾 ′′
ℎ ⊂ 𝑈ℎ (A). Any

𝑔 ∈ 𝑈ℎ = 𝑈 ′
ℎ ×𝑈 ′′

ℎ will be written (𝑔′, 𝑔′′) without any further comment.
From now on, (𝑉, ℎ) is fixed, and we shall omit it in the notations; thus, we have 𝑈 = 𝑈ℎ , 𝑈 ′ = 𝑈 ′

ℎ
and so on.

3.1.4.
Let F ′

0 be the set of parabolic subgroups of 𝑈 ′ that contain 𝑃′
0. For any 𝑃′ ∈ F ′

0, let 𝑃′′ be the parabolic
subgroup of 𝑈 ′ which stabilizes the flag of totally isotropic subspaces of V that defines 𝑃′. Note that
𝑃′′ ∩𝑈 ′ = 𝑃′. We get a one-to-one map

𝑃′ ↦→ 𝑃 = 𝑃′ × 𝑃′′ (3.1.4.1)

from F ′
0 onto a subset, denoted by F0 of parabolic subgroups of U. For any standard parabolic subgroup

𝑃′ of 𝑈 ′, resp. 𝑃′′ of 𝑈 ′′, resp. P of U, we will denote by Δ𝑃
′

0 , resp. Δ𝑃′′

0 , resp. Δ𝑃0 , the set of simple
roots of 𝐴𝑀 ′

0
, resp. 𝐴𝑇 ′′

0
, resp. 𝐴𝑀 ′

0×𝑇
′′

0
in 𝑃′

0 ∩ 𝑀𝑃′ , resp. 𝐵′′
0 ∩ 𝑀𝑃′′ , resp. (𝑃′

0 × 𝐵′′
0 ) ∩ 𝑀𝑃 . We

set 𝔞′0 = 𝔞𝑀 ′
0
= 𝔞𝑃′

0
. The inclusion 𝑃′

0 ⊂ 𝑃′′
0 gives an identification 𝔞𝑃′′

0
= 𝔞𝑃′

0
= 𝔞′0. Using the map

𝑎∗
𝐵′′

0
→ 𝔞∗

𝑃′′
0
= 𝔞∗

𝑃′
0

dual to the inclusion 𝐴𝑃′′
0
⊂ 𝐴𝑇 ′′

0
, we see that any 𝜆 ∈ 𝔞∗

𝐵′′
0

defined a linear map
𝔞′0 → R still denoted by 𝜆. Let 𝑃′ ∈ F ′

0 and 𝑃′′ ⊂ 𝑈 ′′ be the associated parabolic subgroup. Observe
that if 𝜆 is a simple root �̃� ∈ Δ𝑈

′′

0 \Δ𝑃
′′

0 , the linear map 𝔞′0 → Rwe get is equal, up to a positive constant,
to a unique root 𝛼 ∈ Δ𝑈

′

0 \ Δ𝑃
′

0 .
Following §2.3.2, we have the notion of Siegel domains. They depend on auxiliary choices 𝜔′

0, 𝑇
′
−

for 𝑈 ′ and 𝜔′′
0 , 𝑇

′′
− for 𝑈 ′′. The Siegel domains for 𝑈 = 𝑈 ′ ×𝑈 ′′ will be the product of Siegel domains

for 𝑈 ′ and 𝑈 ′′. We may and shall assume that 𝑇 ′
− and 𝑇 ′′

− are chosen so that

𝐴𝑃
′,∞
𝑃′

0
(𝑇 ′

−) ⊂ 𝐴𝑃
′′,∞
𝐵′′

0
(𝑇 ′′

− ). (3.1.4.2)

We fix a height ‖ · ‖ on 𝑈 (A); see §2.1.7. By (diagonal) restriction, this gives a height on 𝑈 ′(A).
Note that for P and 𝑃′ as above, we have ‖𝑥‖𝑃′ ∼ ‖𝑥‖𝑃 for 𝑥 ∈ 𝑈 ′(A), as it follows from [Beu21,
proposition A.1.1 (ix)].

3.1.5.
We fix a point 𝑇0 ∈ 𝔞′0 as in §2.3.3, and we set

𝑑𝑃′ (𝜆) = 𝑑𝑃′ (𝜆, 𝑇0)
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for any 𝑃′ ∈ F ′
0 and 𝜆 ∈ 𝔞∗0. The precise choice of 𝑇0 is irrelevant in the sequel, and we will not use this

notation anymore. We proceed in the same way to define 𝑑𝑃′′ (𝜆).

Proposition 3.1.5.1.

1. Let 𝜆 ∈ 𝔞∗
𝐵′′

0
. We have

𝑑𝑃′′ (𝜆, 𝑥) ∼ 𝑑𝑃′ (𝜆, 𝑥) 𝑥 ∈ [𝑈 ′]𝑃′ . (3.1.5.1)

2. For �̃� ∈ Δ𝑈
′′

0 \ Δ𝑃
′′

0 , there exists 𝑟 > 0 such that

𝑑𝑃′′ (�̃�, 𝑥) ∼ 𝑑𝑃′ (𝛼, 𝑥)𝑟 𝑥 ∈ [𝑈 ′]𝑃′ ,

where 𝛼 ∈ Δ𝑈
′

0 \ Δ𝑃
′

0 is deduced from �̃� as above.

Proof. 1. Both sides of (3.1.5.1) are invariant by left 𝑃′(𝐹)-translation. Thus, it suffices to prove the
equivalence on 𝔰𝑃′ = 𝜔′

0𝐴
𝑃′,∞
𝑃′

0
(𝑇 ′

−)𝐾
′. Note that if 𝑎 ∈ 𝐴𝑃

′,∞
𝑃′

0
(𝑇 ′

−), then 𝑎−1𝜔′
0𝑎 is included in a fixed

compact subset K ⊂ 𝑈 ′(A) that does not depend on a. Thus, by Proposition 2.3.4.1 assertion 2, we
have 𝑑𝑃′′ (𝑥𝑎𝑘) ∼ 𝑑𝑃′′ (𝑎) for 𝑥 ∈ 𝜔′

0, 𝑎 ∈ 𝐴𝑃
′,∞
𝑃′

0
(𝑇 ′

−) and 𝑘 ∈ 𝐾 ′. By the inclusion (3.1.4.2) and

Proposition 2.3.4.1 assertion 1, we have 𝑑𝑃′′ (𝑎) ∼ exp(〈𝜆, 𝐻𝐵′′
0
(𝑎)〉) for 𝑎 ∈ 𝐴𝑃

′,∞
𝑃′

0
(𝑇 ′

−). Then we have
𝐻𝐵′′

0
(𝑎) = 𝐻𝑃′

0
(𝑎) = 𝐻𝑃′

0
(𝑥𝑎𝑘) and exp(〈𝜆, 𝐻𝐵′′

0
(𝑎)〉) ∼ 𝑑𝑃′ (𝜆, 𝑥𝑎𝑘) by Proposition 2.3.4.1 assertion 1

applied to 𝑃′. 2. is a consequence of 1 and the fact that the restriction of �̃� to 𝔞′0 is 𝑟𝛼 for some 𝑟 > 0. �

3.1.6. Sufficiently positive T
We will fix an euclidean norm ‖.‖ on 𝔞′0, invariant by the Weyl group. For 𝑇 ∈ 𝔞′0, let

𝑑 (𝑇) = inf
𝛼∈Δ𝑈′

0

〈𝛼,𝑇〉.

We will fix𝐶 > 0 and 𝜀 > 0, respectively, large and small enough constants. We shall throughout assume
that T is ‘sufficiently positive’; that is, we assume T satisfies the inequality 𝑑 (𝑇) � max(𝜀‖𝑇 ‖, 𝐶). In
particular, we shall assume that Lemma 2.3.4.2 holds for any sufficiently positive T and our functions
𝑑𝑃′ (𝜆) and 𝑑𝑃′′ (𝜆).

3.2. Truncated kernel

3.2.1.
Let 𝑓 ∈ S (𝑈 (A)). For any cuspidal datum 𝜒 ∈ 𝔛(𝑈) and any standard parabolic subgroup P of U, we
get kernels 𝐾 𝑓 ,𝑃 , resp. 𝐾 𝑓 ,𝑃,𝜒; see §2.2.5. If 𝑃 = 𝑈, we shall omit the subscript U.

3.2.2.
For any 𝑇 ∈ 𝔞′0, 𝑥, 𝑦 ∈ 𝑈 ′(A) and 𝜒 ∈ 𝔛(𝑈), we set

𝐾𝑇𝑓 ,𝜒 (𝑥, 𝑦) =
∑
𝑃′ ∈F ′

0

𝜖𝑃′

∑
𝛾∈𝑃′ (𝐹 )\𝑈 ′ (𝐹 )

∑
𝛿∈𝑃′ (𝐹 )\𝑈 ′ (𝐹 )

𝜏𝑃′ (𝐻𝑃′ (𝛿𝑦) − 𝑇)𝐾 𝑓 ,𝑃,𝜒 (𝛾𝑥, 𝛿𝑦), (3.2.2.1)

where we set

𝜖𝑃′ = (−1)dim(𝔞𝑃′ ) (3.2.2.2)

and 𝐾 𝑓 ,𝑃,𝜒 is the kernel attached to the parabolic subgroup P of U image of 𝑃′ by (3.1.4.1). Recall that
we set 𝜏𝑃′ = 𝜏𝑈

′

𝑃′ .
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Remark 3.2.2.1. This is the kernel used in [Zyd20] for compactly supported functions. Since we consider
more general test functions, we need a comment here. Let P and 𝑃′ be as above. First, the sum over
𝛿 ∈ 𝑃′(𝐹)\𝑈 ′(𝐹) may be taken in a finite set which depends on y (see [Art78] Lemma 5.1). Second, by
[BPCZ22, Lemma 2.10.1.1], there exists 𝑁0 > 0 such that for any 𝑁 > 0 and any continuous semi-norm
‖ · ‖𝑁 ′ on T𝑁 ′ ( [𝑈]𝑃) with 𝑁 ′ = 𝑁 + 𝑁0, there exists a continuous semi-norm ‖ · ‖S on S (𝑈 (A)) such
that we have ∑

𝜒∈𝔛 (𝑈 )

‖𝐾 𝑓 ,𝑃,𝜒 (𝑥, ·)‖𝑁 ′ � ‖ 𝑓 ‖S ‖𝑥‖
−𝑁
𝑃 (3.2.2.3)

for all 𝑥 ∈ [𝑈]𝑃 and 𝑓 ∈ S (𝑈 (A)). It follows that the sum over 𝛾 ∈ 𝑃′(𝐹)\𝑈 ′(𝐹) is absolutely
convergent.

3.2.3.
The next theorem is an extension to Schwartz test functions of the work of Zydor in [Zyd20, section 4].
The proof will be given in subsection 3.4 below.
Theorem 3.2.3.1. Let 𝑇 ∈ 𝔞′0 be sufficiently positive.
1. We have ∑

𝜒∈𝔛 (𝑈 )

∫
[𝑈 ′ ]×[𝑈 ′ ]

|𝐾𝑇𝑓 ,𝜒 (𝑥, 𝑦) | 𝑑𝑥𝑑𝑦 < ∞.

2. Let 𝜒 ∈ 𝔛(𝑈). As a function of T, the integral

𝐽𝑈,𝑇𝜒 ( 𝑓 ) =
∫
[𝑈 ′ ]×[𝑈 ′ ]

𝐾𝑇𝑓 ,𝜒 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 (3.2.3.1)

coincides with an exponential-polynomial function in T whose purely polynomial part is constant
and denoted by 𝐽𝑈𝜒 ( 𝑓 ).

3. For any 𝜒 ∈ 𝔛(𝑈), the distribution 𝐽𝑈𝜒 is continuous, left and right 𝑈 ′(A)-invariant.
4. The sum

𝐽𝑈 ( 𝑓 ) =
∑

𝜒∈𝔛 (𝑈 )

𝐽𝑈𝜒 ( 𝑓 ) (3.2.3.2)

is absolutely convergent and defines a continuous distribution 𝐽𝑈 .

3.3. Truncation operator and distributions 𝑱𝑼𝝌

3.3.1.
The goal of this section is to state Theorem 3.3.5.1, which gives the asymptotics of the distributions
𝐽𝑈,𝑇𝜒 ( 𝑓 ) defined in Theorem 3.2.3.1 when the parameter goes to infinity. The theorem will be useful
for subsequent computations in Section 3.5.

3.3.2. The Ichino-Yamana truncation operator
Let𝑇 ∈ 𝔞′0 sufficiently positive. In [IY19], Ichino-Yamana defined a truncation operator which transforms
functions of uniform moderate growth on [𝑈 ′′] into rapidly decreasing functions on [𝑈 ′]; see [IY19,
lemma 2.2]. By applying it to the right component of [𝑈] = [𝑈 ′] × [𝑈 ′′], we get a truncation operator
which we denote by Λ𝑇𝑢 . It associates to any function 𝜑 on [𝑈] the function on [𝑈 ′] defined by the
following formula: for any 𝑥 ∈ [𝑈 ′],

(Λ𝑇𝑢 𝜑) (𝑥) =
∑
𝑃′ ∈F ′

0

𝜖𝑃′

∑
𝛿∈𝑃′ (𝐹 )\𝑈 ′ (𝐹 )

𝜏𝑃′ (𝐻𝑃′ (𝛿𝑥) − 𝑇)𝜑𝑈 ′×𝑃′′ (𝛿𝑥), (3.3.2.1)
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where we follow notations involved in (3.2.2.1) and in §3.1.4. Moreover, 𝜑𝑈 ′×𝑃′′ is the constant term of
𝜑 along the parabolic subgroup 𝑈 ′ × 𝑃′′ of U, where 𝑃′ × 𝑃′′ is the image of 𝑃′ by (3.1.4.1). We shall
recall and precise the main properties of Λ𝑇𝑢 .

Remark 3.3.2.1. To avoid confusions, we emphasize that in (3.3.2.1), the map 𝜑𝑈 ′×𝑃′′ is evaluated at
𝛿𝑥 ∈ 𝑈 ′(A) where 𝑈 ′ is viewed as a diagonal subgroup of U.

3.3.3. Properties of 𝚲𝑻
𝒖

Proposition 3.3.3.1.

1. The map 𝜑 ↦→ Λ𝑇𝑢 𝜑 induces a linear continuous map from T ([𝑈]) to S0 ([𝑈 ′]).
2. For every 𝑁1, 𝑁2 > 0 and 𝑟 > 0, there exists a continuous semi-norm ‖.‖ on T𝑁1 ([𝑈]) such that

| (Λ𝑇𝑢 𝜑) (𝑥) − 𝐹𝑈
′

(𝑥, 𝑇)𝜑(𝑥) | � 𝑒−𝑟 ‖𝑇 ‖ ‖𝑥‖−𝑁2
𝑈 ′ ‖𝜑‖

for all 𝑥 ∈ [𝑈 ′], 𝜑 ∈ T𝑁1 ([𝑈]) and 𝑇 ∈ 𝔞′0 sufficiently positive.

Proof. The assertion 1 can be easily extracted from [IY19, (proof of) lemma 2.2]. For the convenience
of the reader, we give some details. First, it suffices to show that for any 𝑁 > 0, there exists a continuous
semi-norm ‖.‖ on T ([𝑈]) such that for all 𝜑 ∈ T ([𝑈]), we have

‖Λ𝑇𝑢 𝜑‖∞,𝑁 � ‖𝜑‖.

We recall that ‖𝜓‖∞,𝑁 = sup𝑥∈[𝑈 ′ ] ‖𝑥‖
𝑁
𝑈 ′ |𝜓(𝑥) | for any function 𝜓 on [𝑈 ′]. We can write for 𝑥 ∈ [𝑈 ′],

(Λ𝑇𝑢 𝜑) (𝑥) =
∑
𝑃′

1⊂𝑃
′
2

∑
𝛿∈𝑃′

1 (𝐹 )\𝑈
′ (𝐹 )

𝐹𝑃
′
1 (𝛿𝑥, 𝑇)𝜎2

1 (𝐻0 (𝛿𝑥) − 𝑇)𝜑1,2(𝛿𝑥), (3.3.3.1)

where 𝐻0 = 𝐻𝑃′
0

and 𝜎2
1 = 𝜎

𝑃′
2
𝑃′

1
is the eponymous function with values in {0, 1} introduced by Arthur

in [Art78, section 6] for the group 𝑈 ′ and

𝜑1,2 =
∑

𝑃′
1⊂𝑃

′⊂𝑃′
2

𝜖𝑃′𝜑𝑈 ′×𝑃′′ (3.3.3.2)

with 𝜑𝑈 ′×𝑃′′ as above. Note that if 𝑃′
1 = 𝑃′

2, then 𝜎2
1 = 0 unless 𝑃′

1 = 𝑃′
2 = 𝑈 ′. In this case, the

corresponding term is 𝐹𝑈 ′
(𝑥, 𝑇)𝜑(𝑥) for which the result is obvious. The other cases are deduced from

the next lemma, which also gives assertion 2. �

Lemma 3.3.3.2. Assume 𝑃′
1 � 𝑃′

2. For every 𝑁1, 𝑁2 > 0 and 𝑟 > 0, there exists a continuous semi-norm
‖.‖ on T𝑁1 ([𝑈]) such that∑

𝛿∈𝑃′
1 (𝐹 )\𝑈

′ (𝐹 )

𝐹𝑃
′
1 (𝛿𝑥, 𝑇)𝜎2

1 (𝐻𝑃′
0
(𝛿𝑥) − 𝑇) |𝜑1,2 (𝛿𝑥) | � 𝑒−𝑟 ‖𝑇 ‖ ‖𝑥‖−𝑁2

𝑈 ′ ‖𝜑‖

for all 𝑥 ∈ [𝑈 ′], 𝜑 ∈ T𝑁1 ([𝑈]) and 𝑇 ∈ 𝔞′0 sufficiently positive.

3.3.4. Proof of Lemma 3.3.3.2
Let g be an element in𝑈 (A) which we write 𝑔 = (𝑔′, 𝑔′′) with 𝑔′ ∈ 𝑈 ′(A) and 𝑔′′ ∈ 𝑈 ′′(A). Let 𝑁 > 0.
By [MW94, preuves du lemme I.2.10 et du corollaire I.2.11], for any 𝜆 which is a linear combination of
elements of Δ𝑃

′′
2

0 \Δ
𝑃′′

1
0 with positive coefficients, there exists a continuous semi-norm ‖ · ‖ on T𝑁 ([𝑈])

such that

|𝜑1,2 (𝑔) | � exp(−〈𝜆, 𝐻𝐵′′
0
(𝑔′′)〉)‖𝑔‖𝑁 ‖𝜑‖ (3.3.4.1)
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for all 𝑔 ∈ 𝑈 (A) such that 𝑔′ ∈ 𝑈 ′(A), 𝑔′′ ∈ 𝔰𝑃′′
2

and all 𝜑 ∈ T𝑁 ([𝑈]). We want to apply this
majorization to an element 𝑔 = (𝑥, 𝑥) where 𝑥 ∈ 𝑈 ′(A) satisfies 𝐹𝑃

′
1 (𝑥, 𝑇)𝜎2

1 (𝐻𝑃′
0
(𝑥) − 𝑇) = 1. Since

this condition and the map 𝑥 ∈ 𝑈 ′(A) ↦→ 𝜑1,2 (𝑥, 𝑥) are 𝑃′
1 (𝐹)-left invariant, we may assume that

𝑥 ∈ 𝔰𝑃′
1
. By [Art78, lemma 6.1], x also satisfies 𝐹𝑃′

1 (𝑦, 𝑇)𝜏
𝑃′

2
𝑃′

1
(𝐻𝑃′

1
(𝑦) − 𝑇) = 1, so by Lemma 2.3.3.1,

we have 𝑥 ∈ 𝔰𝑃′
2
. We can deduce from the proof of Proposition 3.1.5.1 and the majorization (3.3.4.1) that

there exists a fixed compact subset K ⊂ 𝑈 ′(A) such that 𝔰𝑃′
2
⊂ 𝔰𝑃′′

2
K and that there exists a continuous

semi-norm ‖ · ‖ on T𝑁 ([𝑈]) such that

|𝜑1,2 (𝑥) | � exp(−〈𝜆, 𝐻𝑃′
0
(𝑥)〉)‖𝑥‖𝑁 ‖𝜑‖ (3.3.4.2)

for all 𝑥 ∈ 𝔰𝑃′
2

and 𝜑 ∈ T𝑁 ([𝑈]). Here, we wrote x instead of (𝑥, 𝑥) in the left-hand side. Since the
restriction to 𝔞𝑃′

0
of elements of Δ𝑃

′′
2

0 \Δ
𝑃′′

1
0 are (up to some positive constants) the restriction of elements

of Δ𝑃
′
2

0 \ Δ
𝑃′

1
0 , we can conclude by the next Lemma 3.3.4.1 and the fact that, for all 𝑁 > 0, there exists

𝑐, 𝑁 ′ > 0 such that for all 𝑥 ∈ [𝑈 ′], ∑
𝛿∈𝑃′

1 (𝐹 )\𝑈
′ (𝐹 )

‖𝛿𝑥‖−𝑁
′

𝑃1
� 𝑐‖𝑥‖−𝑁𝑈 ′ .

Lemma 3.3.4.1. For every 𝑁 � 0 and 𝑟 > 0, there exists 𝑡 > 0 and 𝐶 > 0 such that for any

𝜆 =
∑

𝛼∈Δ
𝑃′

2
0 \Δ

𝑃′
1

0

𝑥𝛼𝛼 with 𝑥𝛼 > 𝑡, (3.3.4.3)

we have

𝐹𝑃
′
1 (𝑥, 𝑇)𝜎2

1 (𝐻𝑃′
0
(𝑥) − 𝑇) exp(−〈𝜆, 𝐻𝑃′

0
(𝑥)〉) � 𝐶𝑒−𝑟 ‖𝑇 ‖ ‖𝑥‖−𝑁𝑃′

1

for all 𝑥 ∈ 𝔰𝑃′
1

and 𝑇 ∈ 𝔞′0 sufficiently positive.

Proof. Any 𝐻1 ∈ 𝔞𝑃′
1

can be written 𝐻1 = 𝐻2
1 + 𝐻2 according to the decomposition 𝔞𝑃′

1
= 𝔞

𝑃′
2
𝑃′

1
⊕ 𝔞𝑃′

2
.

By [Art80, Corollary 6.2], there is 𝑐1 > 0 such that

‖𝐻1‖ � 𝑐1 (1 + ‖𝐻2
1 ‖) (3.3.4.4)

for all 𝐻1 ∈ 𝔞𝑃′
1

such that 𝜎2
1 (𝐻1) ≠ 1. There exist 𝑐2, 𝑐3, 𝑐4 > 0 such that for all 𝑥 ∈ 𝔰𝑃′

1
, we have

‖𝑥‖𝑃′
1
� 𝑐2‖𝑥‖ � 𝑐3 exp(𝑐4‖𝐻0 (𝑥)‖),

where we set 𝐻0 = 𝐻𝑃′
0
. We assume from now on that we have

𝐹𝑃
′
1 (𝑥, 𝑇)𝜎2

1 (𝐻0 (𝑥) − 𝑇) ≠ 0. (3.3.4.5)

In particular, we have 𝑥 ∈ 𝔰𝑃′
2

as we have already seen it in §3.3.4 – discussion below (3.3.4.1). According

to (3.3.4.4), the norm of 𝐻0(𝑥) is bounded in terms of the norm of the projection of 𝐻0 (𝑥) on 𝔞
𝑃′

2
𝑃′

0
, so

up to some positive constant, it is bounded by

1 +
∑
𝛼∈Δ

𝑃′
2

𝑃′
0

|〈𝛼, 𝐻0 (𝑥)〉|.
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Since we assume 𝐹𝑃
′
1 (𝑥, 𝑇) = 1 and 𝑥 ∈ 𝔰𝑃′

1
, the norm of the projection of 𝐻0 (𝑥) on 𝔞

𝑃′
1
𝑃′

0
is bounded

by some multiple of ‖𝑇 ‖. For all 𝛼 ∈ Δ
𝑃′

2
𝑃′

0
\ Δ

𝑃′
1
𝑃′

0
, we have 〈𝛼, 𝐻0(𝑥)〉 > 〈𝛼,𝑇〉 � 0 since we assume

𝜎2
1 (𝐻0(𝑥) − 𝑇) ≠ 0; see [Art78, lemma 6.1]. Hence, we deduce that there exist 𝑐5, 𝑐6 such that for all

𝑥 ∈ 𝔰𝑃′
1

that satisfy (3.3.4.5), we have

‖𝑥‖𝑃′
1
� 𝑐2‖𝑥‖ � 𝑐5 exp(𝑐6 (‖𝑇 ‖ +

∑
𝛼∈Δ

𝑃′
2

𝑃′
0
\Δ

𝑃′
1

𝑃′
0

〈𝛼, 𝐻0 (𝑥)〉)).

The lemma is then obvious since for such x, and all 𝛼 ∈ Δ
𝑃′

2
𝑃′

0
\ Δ

𝑃′
1
𝑃′

0
and any sufficiently positive T (see

§3.1.6), we have 〈𝛼, 𝐻0 (𝑥)〉 > 〈𝛼,𝑇〉 � 𝜀‖𝑇 ‖. �

3.3.5.
We can apply the operator Λ𝑇𝑢 to the right variable of the kernel 𝐾 𝑓 ,𝜒 (𝑥, 𝑦): we get a function on
[𝑈] × [𝑈 ′] denoted by 𝐾 𝑓 ,𝜒Λ𝑇𝑢 .

Theorem 3.3.5.1.

1. For all 𝑇 ∈ 𝔞′0 sufficiently positive, there exists a continuous semi-norm ‖.‖ on S (𝑈 (A)) such that
for all 𝑓 ∈ S (𝑈 (A)), we have∑

𝜒∈𝔛 (𝑈 )

∫
[𝑈 ′ ]×[𝑈 ′ ]

��(𝐾 𝑓 ,𝜒Λ𝑇𝑢 ) (𝑥, 𝑦)�� 𝑑𝑥𝑑𝑦 � ‖ 𝑓 ‖. (3.3.5.1)

2. For all 𝑟 > 0, there exists a continuous semi-norm ‖.‖ on S (𝑈 (A)) such that for any 𝑇 ∈ 𝔞′0
sufficiently positive and 𝑓 ∈ S (𝑈 (A)), we have∑

𝜒∈𝔛 (𝑈 )

����𝐽𝑈,𝑇𝜒 ( 𝑓 ) −

∫
[𝑈 ′ ]×[𝑈 ′ ]

(𝐾 𝑓 ,𝜒Λ
𝑇
𝑢 ) (𝑥, 𝑦) 𝑑𝑥𝑑𝑦

���� � 𝑒−𝑟 ‖𝑇 ‖ ‖ 𝑓 ‖. (3.3.5.2)

From Theorem 3.2.3.1 assertion 2 and from Theorem 3.3.5.1, we get the following:

Corollary 3.3.5.2. The absolutely convergent integral∫
[𝑈 ′ ]×[𝑈 ′ ]

(𝐾 𝑓 ,𝜒Λ
𝑇
𝑢 ) (𝑥, 𝑦) 𝑑𝑥𝑑𝑦

is asymptotic to an exponential-polynomial in the variable T whose purely polynomial term is constant
and equal to 𝐽𝑈𝜒 ( 𝑓 ).

3.4. Proof of main theorems

3.4.1. Proof of Theorem 3.3.5.1 assertion 1
Let 𝑁1, 𝑁2 > 0. Let 𝑁0 > 0 be as in Remark 3.2.2.1 (for 𝑃 = 𝑈). We set 𝑁 ′

1 = 𝑁1 + 𝑁0. Let 𝑇 ∈ 𝔞′0 be
sufficiently positive. By Proposition 3.3.3.1, there exists a continuous semi-norm ‖ · ‖𝑁 ′

1
on T𝑁 ′

1
([𝑈])

such that for all 𝜒 ∈ 𝔛(𝑈), all 𝑥 ∈ [𝑈] and 𝑦 ∈ [𝑈 ′], we have

‖𝑦‖𝑁2
𝑈 ′ | (𝐾 𝑓 ,𝜒Λ

𝑇
𝑢 ) (𝑥, 𝑦) | � ‖𝐾 𝑓 ,𝜒 (𝑥, ·)‖𝑁 ′

1
.
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Then, by Remark 3.2.2.1, more particularly the majorization (3.2.2.3) for 𝑃 = 𝑈, there exists a continuous
semi-norm ‖ · ‖S on S (𝑈 (A)) such that for all 𝑥 ∈ [𝑈] and 𝑦 ∈ [𝑈 ′],∑

𝜒∈𝔛 (𝑈 )

| (𝐾 𝑓 ,𝜒Λ
𝑇
𝑢 ) (𝑥, 𝑦) | � ‖ 𝑓 ‖S ‖𝑥‖

−𝑁1
𝑈 ‖𝑦‖−𝑁2

𝑈 ′ .

Now the map (𝑥, 𝑦) ↦→ ‖𝑥‖−𝑁1
𝑈 ‖𝑦‖−𝑁2

𝑈 ′ is integrable on [𝑈 ′] × [𝑈 ′] for large 𝑁1, 𝑁2; see [Beu21,
Proposition A.1.1 (ix)].

3.4.2. Asymptotics of several truncated kernels
We shall use the two following results.

Theorem 3.4.2.1. For every 𝑁1, 𝑁2, 𝑟 > 0, there exists a continuous semi-norm ‖.‖ on S (𝑈 (A)) such
that ∑

𝜒∈𝔛 (𝐺)

���𝐾𝑇𝑓 ,𝜒 (𝑥, 𝑦) − 𝐾 𝑓 ,𝜒 (𝑥, 𝑦)𝐹
𝑈 ′

(𝑦, 𝑇)
��� � 𝑒−𝑟 ‖𝑇 ‖ ‖𝑥‖−𝑁1

𝑈 ′ ‖𝑦‖−𝑁2
𝑈 ′ ‖ 𝑓 ‖ (3.4.2.1)

for 𝑓 ∈ S (𝑈 (A)), (𝑥, 𝑦) ∈ [𝑈 ′] × [𝑈 ′] and 𝑇 ∈ 𝔞′0 sufficiently positive.

The proof of Theorem 3.4.2.1 will be given in §3.4.5 below.

Corollary 3.4.2.2. For every 𝑁1, 𝑁2, 𝑟 > 0, there exists a continuous semi-norm ‖.‖ on S (𝑈 (A)) such
that ∑

𝜒∈𝔛 (𝐺)

���𝐾𝑇𝑓 ,𝜒 (𝑥, 𝑦) − (𝐾 𝑓 ,𝜒Λ
𝑇
𝑢 ) (𝑥, 𝑦)

��� � 𝑒−𝑟 ‖𝑇 ‖ ‖𝑥‖−𝑁1
𝑈 ′ ‖𝑦‖−𝑁2

𝑈 ′ ‖ 𝑓 ‖ (3.4.2.2)

for 𝑓 ∈ S (𝑈 (A)), (𝑥, 𝑦) ∈ [𝑈 ′] × [𝑈 ′] and 𝑇 ∈ 𝔞′0 sufficiently positive.

Proof. Let 𝑁1, 𝑁
′
1, 𝑁2 > 0 be as in §3.4.1. By assertion 2 of Proposition 3.3.3.1, for every 𝑟 > 0, there

exists a continuous semi-norm ‖ · ‖𝑁 ′
1

on T𝑁 ′
1
([𝑈]) such that for all 𝑓 ∈ S (𝑈 (A)), 𝜒 ∈ 𝔛(𝑈), 𝑥 ∈ [𝑈],

𝑦 ∈ [𝑈 ′] and 𝑇 ∈ 𝔞′0 sufficiently positive, we have

| (𝐾 𝑓 ,𝜒Λ
𝑇
𝑢 ) (𝑥, 𝑦) − 𝐾 𝑓 ,𝜒 (𝑥, 𝑦)𝐹

𝑈 ′

(𝑦, 𝑇) | � 𝑒−𝑟 ‖𝑇 ‖ ‖𝑦‖−𝑁2
𝑈 ′ ‖𝐾 𝑓 ,𝜒 (𝑥, ·)‖𝑁 ′

1
.

From this and the majorization (3.2.2.3) (for 𝑃 = 𝐺), we deduce that there exists a continuous semi-
norm ‖ · ‖S on S (𝑈 (A)) such that for all 𝑓 ∈ S (𝑈 (A)), 𝑥 ∈ [𝑈], 𝑦 ∈ [𝑈 ′] and 𝑇 ∈ 𝔞′0 sufficiently
positive, we have∑

𝜒∈𝔛 (𝑈 )

| (𝐾 𝑓 ,𝜒Λ
𝑇
𝑢 ) (𝑥, 𝑦) − 𝐾 𝑓 ,𝜒 (𝑥, 𝑦)𝐹

𝑈 ′

(𝑦, 𝑇) | � 𝑒−𝑟 ‖𝑇 ‖ ‖ 𝑓 ‖S ‖𝑥‖
−𝑁1
𝑈 ‖𝑦‖−𝑁2

𝑈 ′ .

By [Beu21, Proposition A.1.1 (ix)], we have ‖𝑥‖𝑈 ∼ ‖𝑥‖𝑈 ′ for 𝑥 ∈ [𝑈 ′]. The corollary is then a
straightforward consequence of the inequality above and Theorem 3.4.2.1. �

3.4.3. Proof of Theorem 3.2.3.1
First, we mention that all the statements but the continuity are stated and proved for compactly supported
functions; see [Zyd20, theorems 4.1, 4.5 and 4.7]. We just need the extension to Schwartz functions.
The assertion 1 of Theorem 3.2.3.1 is a direct consequence of Corollary 3.4.2.2 and assertion 1 of
Theorem 3.3.5.1. This gives also the continuity of the distributions 𝐽𝑈,𝑇𝜒 and their sum over 𝜒 ∈ 𝔛(𝑈).

The assertion 2 of Theorem 3.2.3.1 can be proved as in [Zyd20, proof of theorems 4.5]. We take
for granted the obvious extension of Corollary 3.4.2.2 and Theorem 3.3.5.1 assertion 1 to the auxiliary
kernels of [Zyd20, section 4.1] relative to some parabolic subgroups of U. Indeed, it can be proved
with the same technics and is left to the reader. In particular, the formula of [Zyd20, proposition 4.4]
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holds for Schwartz functions, and each term in right-hand side of the formula (among them 𝐽𝑈𝜒 ( 𝑓 )) is
a continuous distribution. From this, we deduce assertion 3 of Theorem 3.2.3.1 as in [Zyd20, theorem
4.7]. Finally, assertion 4 follows from assertion 1.

3.4.4. Proof of Theorem 3.3.5.1 assertion 2
It is an obvious application of Corollary 3.4.2.2.

3.4.5. Proof of Theorem 3.4.2.1
We shall use the notation of the proof of Proposition 3.3.3.1. We start from the expression for all
𝑥, 𝑦 ∈ [𝑈 ′]

𝐾𝑇𝑓 ,𝜒 (𝑥, 𝑦) − 𝐾 𝑓 ,𝜒 (𝑥, 𝑦)𝐹
𝑈 ′

(𝑦, 𝑇)

=
∑
𝑃′

1�𝑃
′
2

∑
𝛿∈𝑃′

1 (𝐹 )\𝑈
′ (𝐹 )

∑
𝛾∈𝑃′

2 (𝐹 )\𝑈
′ (𝐹 )

𝐹𝑃
′
1 (𝛿𝑦, 𝑇)𝜎2

1 (𝐻𝑃′
1
(𝛿𝑦) − 𝑇)𝐾1,2, 𝑓 ,𝜒 (𝛾𝑥, 𝛿𝑦),

where 𝜎2
1 = 𝜎

𝑃′
2
𝑃′

1
is as in (3.3.3.1), the sum is over 𝑃′

1, 𝑃
′
2 ∈ F ′

0 and we set for 𝑥 ∈ 𝑃′
2(𝐹)\𝑈

′(A) and
𝑦 ∈ 𝑃′

1 (𝐹)\𝑈
′(A),

𝐾1,2, 𝑓 ,𝜒 (𝑥, 𝑦) =
∑

𝑃′
1⊂𝑃⊂𝑃

′
2

𝜖𝑃′

∑
𝛾∈𝑃′ (𝐹 )\𝑃′

2 (𝐹 )

𝐾 𝑓 ,𝑃,𝜒 (𝛾𝑥, 𝑦).

From now on, we fix 𝑃′
1 � 𝑃′

2. Let 𝛼 ∈ Δ
𝑃′

2
0 \ Δ

𝑃′
1

0 and let 𝑃′
1 �

𝛼𝑃′
1 ⊂ 𝑃′

2 be defined by
Δ

𝛼𝑃′
1

0 = Δ
𝑃′

1
0 ∪ {𝛼}. For any 𝛼𝑃′

1 ⊂ 𝑃′ ⊂ 𝑃′
2, we denote by 𝑃′

𝛼 the parabolic subgroup 𝑃′
1 ⊂ 𝑃′

𝛼 � 𝑃′

defined by Δ𝑃
′
𝛼

0 = Δ𝑃
′

0 \ {𝛼}.
We denote by P and 𝑃𝛼 the parabolic subgroups associated to 𝑃′ and 𝑃′

𝛼 (see the map (3.1.4.1)). For
any 𝛼𝑃′

1 ⊂ 𝑃′ ⊂ 𝑃′
2, we set for 𝑥 ∈ 𝑃′(𝐹)\𝑈 ′(A) and 𝑦 ∈ 𝑃′

1 (𝐹)\𝑈
′(A),

𝐾𝛼𝑓 ,𝑃,𝜒 (𝑥, 𝑦) = 𝐾 𝑓 ,𝑃,𝜒 (𝑥, 𝑦) −
∑

𝛾∈𝑃′
𝛼 (𝐹 )\𝑃′ (𝐹 )

𝐾 𝑓 ,𝑃𝛼 ,𝜒 (𝛾𝑥, 𝑦).

Note that we have for all 𝑥 ∈ 𝑃′
2 (𝐹)\𝑈

′(A) and 𝑦 ∈ 𝑃′
1 (𝐹)\𝑈

′(A),

𝐾1,2, 𝑓 ,𝜒 (𝑥, 𝑦) =
∑

𝛼𝑃′
1⊂𝑃

′ ⊂𝑃′
2

𝜖𝑃′

∑
𝛿∈𝑃′ (𝐹 )\𝑃′

2 (𝐹 )

𝐾𝛼𝑓 ,𝑃,𝜒 (𝛿𝑥, 𝑦). (3.4.5.1)

We fix 𝑃′ as in the sum above, and we start by majorizing each 𝐾𝛼𝑃,𝜒, 𝑓 (𝑥, 𝑦).

Lemma 3.4.5.1. There exists 𝑛0 > 0 such that for any 𝑛1, 𝑛2 > 0, there is a continuous semi-norm ‖ · ‖

on S (𝑈 (A)) such that ∑
𝜒∈𝔛 (𝑈 )

|𝐾𝛼𝑓 ,𝑃,𝜒 (𝑥, 𝑦) | � ‖ 𝑓 ‖𝑑𝑃′
1
(𝛼, 𝑦)−𝑛1 ‖𝑦‖𝑛2+𝑛0

𝑃′
1

‖𝑥‖−𝑛2
𝑃′ .

for all 𝑥 ∈ 𝑃′(𝐹)\𝑈 ′(A), 𝑦 ∈ 𝑃′
1 (𝐹)\𝑈

′(A) and 𝑇 ∈ 𝔞+0 sufficiently positive such that

𝐹𝑃
′
1 (𝑦, 𝑇)𝜎2

1 (𝐻𝑃′
1
(𝑦) − 𝑇) = 1. (3.4.5.2)

Proof. Let 𝑦 ∈ 𝑈 ′(A). By using left translation by 𝑃′
1 (𝐹), we may and shall assume that 𝑦 ∈ 𝔰𝑃′

1
. Assume

that y satisfies also the Condition (3.4.5.2): by [Art78, lemma 6.1], y thus satisfies 𝐹𝑃′
1 (𝑦, 𝑇)𝜏

𝑃′
2
𝑃′

1
(𝐻𝑃′

1
(𝑦)−

𝑇) = 1. By Lemma 2.3.3.1 and then Lemma 2.3.4.2, we have 𝑦 ∈ 𝔰𝑃′
2

and 𝑑𝑃′
𝛼
(𝛼, 𝑦) = 𝑑𝑃′

1
(𝛼, 𝑦). Since
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we have ‖𝑦‖𝑃′
1
∼ ‖𝑦‖ for 𝑦 ∈ 𝔰𝑃′

1
and 𝑑𝑃′

𝛼
(𝛼, 𝑦) ∼ exp(〈𝛼, 𝐻𝑃′

0
(𝑦)〉) for 𝑦 ∈ 𝔰𝑃′

𝛼
, we may and shall

freely replace 𝑑𝑃′
1
(𝛼, 𝑦) by either 𝑑𝑃′

𝛼
(𝛼, 𝑦) or exp(〈𝛼, 𝐻𝑃′

0
(𝑦)〉) and ‖𝑦‖𝑃′

1
by ‖𝑦‖ in the inequality we

have to prove.
Let us observe that we have∑

𝛾∈𝑃𝛼 (𝐹 )\𝑃 (𝐹 )

𝐾 𝑓 ,𝑃𝛼 ,𝜒 (𝛾𝑥, 𝑦) =
∫
[𝑁𝛼 ]

𝐾 𝑓 ,𝑃,𝜒 (𝑥, 𝑛𝑦) 𝑑𝑛,

where 𝑁𝛼 = 𝑁𝑃𝛼 . We have 𝑃𝛼 = 𝑃′
𝛼 × 𝑃′′

𝛼, where 𝑃′
𝛼 ⊂ 𝑃′ and 𝑃′′

𝛼 ⊂ 𝑃′′ are maximal parabolic
subgroups. We set 𝑁 ′′

𝛼 = 𝑁𝑃′′
𝛼
. We denote by �̃� the unique element of Δ𝑃′′

0 \ Δ𝑃
′′
𝛼

0 .
Thus, we see that 𝐾𝛼𝑃,𝜒, 𝑓 (𝑥, 𝑦) is the sum of three terms:

𝐾1,𝛼
𝑓 ,𝑃,𝜒 (𝑥, 𝑦) = 𝐾 𝑓 ,𝑃,𝜒 (𝑥, 𝑦) −

∫
[𝑁 ′′

𝛼 ]

𝐾 𝑓 ,𝑃,𝜒 (𝑥, 𝑛𝑦) 𝑑𝑛 (3.4.5.3)

𝐾2,𝛼
𝑓 ,𝑃,𝜒 (𝑥, 𝑦) =

∫
[𝑁 ′′

𝛼 ]

𝐾 𝑓 ,𝑃,𝜒 (𝑥, 𝑛𝑦) 𝑑𝑛 −

∫
[𝑁𝛼 ]

𝐾 𝑓 ,𝑃,𝜒 (𝑥, 𝑛𝑦) 𝑑𝑛 (3.4.5.4)

𝐾3,𝛼
𝑓 ,𝑃,𝜒 (𝑥, 𝑦) =

∑
𝛾∈Ω𝑃,𝛼

𝐾 𝑓 ,𝑃𝛼 ,𝜒 (𝛾𝑥, 𝑦), (3.4.5.5)

where Ω𝑃,𝛼 is the complement in 𝑃𝛼 (𝐹)\𝑃(𝐹) of the diagonal image of 𝑃′(𝐹).
By a variant of (3.3.4.2), for all 𝑛1, 𝑛2 > 0, there exists a continuous semi-norm ‖ · ‖ on T𝑛2 ([𝑈])

such that for all 𝑓 ∈ S (𝑈 (A)), 𝜒 ∈ 𝔛(𝑈), 𝑥 ∈ [𝑈]𝑃 and 𝑦 ∈ 𝔰𝑃′ , we have

|𝐾1,𝛼
𝑓 ,𝑃,𝜒 (𝑥, 𝑦) | � exp(−𝑛1〈𝛼, 𝐻𝑃′

0
(𝑦)〉)‖𝑦‖𝑛2 ‖𝐾 𝑓 ,𝑃,𝜒 (𝑥, ·)‖.

By [BPCZ22, Lemma 2.10.1.1], there exists 𝑛0 > 0 such that for any 𝑛2 > 0 and any continuous
semi-norm ‖ · ‖ on T𝑛2 ([𝑈]), there is a continuous semi-norm ‖ · ‖S on S (𝑈 (A)) such that∑

𝜒∈𝔛 (𝑈 )

‖𝐾 𝑓 ,𝑃,𝜒 (𝑥, ·)‖ � ‖ 𝑓 ‖S ‖𝑥‖
−(𝑛2−𝑛0)
𝑃

for all 𝑓 ∈ S (𝑈 (A)) and 𝑥 ∈ [𝑈]𝑃 . We conclude that there exists 𝑛0 such for all 𝑛1, 𝑛2 > 0, there is a
semi-norm ‖ · ‖S on S (𝑈 (A)) such that∑

𝜒∈𝔛 (𝑈 )

|𝐾1,𝛼
𝑓 ,𝑃,𝜒 (𝑥, 𝑦) | � exp(−𝑛1〈𝛼, 𝐻𝑃′

0
(𝑦)〉)‖ 𝑓 ‖S ‖𝑦‖

𝑛2+𝑛0 ‖𝑥‖−𝑛2
𝑃′ (3.4.5.6)

for all 𝑓 ∈ S (𝑈 (A)), 𝑥 ∈ [𝑈 ′]𝑃′ and 𝑦 ∈ 𝔰𝑃′ . In the same way, one proves that the bounds (3.4.5.6)
holds for 𝐾2,𝛼

𝑓 ,𝑃,𝜒 (𝑥, 𝑦).
We introduce the weight function

𝑤(𝑥) = min(𝑑𝑃′′
𝛼
(�̃�, 𝑥 ′), 𝑑𝑃′′

𝛼
(�̃�, 𝑥 ′′))

for 𝑥 = (𝑥 ′, 𝑥 ′′) ∈ [𝑈]𝑃𝛼 = [𝑈]𝑃′
𝛼
× [𝑈]𝑃′′

𝛼
. In the following, we shall view 𝛼 + �̃� as an element of

𝔞∗
𝑃′

0
⊕ 𝔞∗

𝐵′′
0
. By [BPCZ22, Lemma 2.10.1.1], there exists 𝑛0 > 0 such that for any 𝑛1, 𝑛2 > 0, there is a

continuous semi-norm ‖ · ‖S on S (𝑈 (A)) such that∑
𝜒∈𝔛 (𝑈 )

|𝐾 𝑓 ,𝑃𝛼 ,𝜒 (𝑥, 𝑧) | � ‖ 𝑓 ‖S𝑤(𝑧)−𝑛1 ‖𝑧‖𝑛2+𝑛0
𝑃𝛼

𝑤(𝑥)𝑛1 ‖𝑥‖−𝑛2
𝑃𝛼
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for all 𝑓 ∈ S (𝑈 (A)) and 𝑥, 𝑧 ∈ [𝑈]𝑃𝛼 . Thus, for all 𝑥 ∈ 𝑃′(𝐹)\𝑈 ′(A) and 𝑧 ∈ [𝑈 ′]𝑃′
𝛼
, we have∑

𝜒∈𝔛 (𝑈 )

∑
𝛾∈Ω𝑃,𝛼

|𝐾 𝑓 ,𝑃𝛼 ,𝜒 (𝛾𝑥, 𝑧) | � ‖ 𝑓 ‖S𝑤(𝑧)−𝑛1 ‖𝑧‖𝑛2+𝑛0
𝑃𝛼

∑
𝛾∈Ω𝑃,𝛼

𝑤(𝛾𝑥)𝑛1 ‖𝛾𝑥‖−𝑛2
𝑃𝛼

. (3.4.5.7)

By Proposition 2.3.4.3, there is 𝑐 > 0 such that for all 𝛾 = (𝛾′, 𝛾′′) ∈ 𝑃(𝐹) = 𝑃′(𝐹) × 𝑃′′(𝐹) and
any 𝑥 ∈ 𝑈 ′(A) (viewed as a diagonal element of 𝑈 (A)) such that 𝑤(𝛾𝑥) > 𝑐, we have 𝛾′′ ∈ 𝑃′′

𝛼 (𝐹)𝛾
′.

Thus, such a 𝛾 cannot belong to the subset Ω𝑃,𝛼. In this way, for 𝑥 ∈ 𝑈 ′(A), we have∑
𝛾∈Ω𝑃,𝛼

𝑤(𝛾𝑥)𝑛1 ‖𝛾𝑥‖−𝑛2
𝑃𝛼
� 𝑐𝑛1

∑
𝛾∈𝑃𝛼 (𝐹 )\𝑃 (𝐹 )

‖𝛾𝑥‖−𝑛2
𝑃𝛼

. (3.4.5.8)

By Proposition 3.1.5.1, we have 𝑤(𝑧) ∼ 𝑑𝑃′
𝛼
(𝛼, 𝑧)𝑟 for some 𝑟 > 0 and all 𝑧 ∈ [𝑈 ′]𝑃′

𝛼
. We deduce

from (3.4.5.7) and (3.4.5.8) that there exists 𝑛0 > 0 such that for any 𝑛1, 𝑛2 > 0, there is a continuous
semi-norm ‖ · ‖S on S (𝑈 (A)) such that∑

𝜒∈𝔛 (𝑈 )

|𝐾3,𝛼
𝑓 ,𝑃,𝜒 (𝑥, 𝑦) | � ‖ 𝑓 ‖S𝑑𝑃′

𝛼
(𝛼, 𝑦)−𝑛1 ‖𝑦‖𝑛2+𝑛0 ‖𝑥‖−𝑛2

𝑃′

for 𝑦 ∈ 𝔰𝑃′
𝛼

and 𝑥 ∈ 𝑃′(𝐹)\𝑈 ′(A). The conclusion is clear. �

Lemma 3.4.5.2. There exists 𝑛0 > 0 such that for any 𝑛2 > 0 and any 𝜆 in the open convex cone
generated by Δ

𝑃′
2

0 \ Δ
𝑃′

1
0 , there is a continuous semi-norm ‖ · ‖ on S (𝑈 (A)) such that∑
𝜒∈𝔛 (𝑈 )

|𝐾1,2, 𝑓 ,𝜒 (𝑥, 𝑦) | � ‖ 𝑓 ‖𝑑𝑃′
1
(−𝜆, 𝑦)‖𝑦‖𝑛2+𝑛0

𝑃′
1

‖𝑥‖−𝑛2
𝑃′

2
.

for all 𝑓 ∈ S (𝑈 (A)), 𝑇 ∈ 𝔞′0 sufficiently positive, 𝑥 ∈ 𝑃′
2 (𝐹)\𝑈

′(A) and 𝑦 ∈ 𝑃′
1 (𝐹)\𝑈

′(A) such that
𝐹𝑃

′
1 (𝑦, 𝑇)𝜎2

1 (𝐻𝑃′
1
(𝑦) − 𝑇) = 1.

Proof. Let 𝑃′
1 ⊂ 𝑃′ ⊂ 𝑃′

2 and 𝛼 ∈ Δ
𝑃′

2
0 \ Δ

𝑃′
1

0 . By Lemma 3.4.5.1, there exists 𝑛0 > 0 such that for
all 𝑛1, 𝑛2 > 0, there is a continuous semi-norm ‖ · ‖ on S (𝑈 (A)) such that for all f, T and y as in the
statement and all 𝑥 ∈ 𝑃′(𝐹)\𝑈 ′(A), we have∑

𝜒∈𝔛 (𝑈 )

|𝐾𝛼𝑓 ,𝑃,𝜒 (𝑥, 𝑦) | � ‖ 𝑓 ‖𝑑𝑃′
1
(𝛼, 𝑦)−𝑛1 ‖𝑦‖𝑛2+𝑛0

𝑃′
1

‖𝑥‖−𝑛2
𝑃′ .

Using the decomposition (3.4.5.1), we see that there exists 𝑛0 > 0 such that for any 𝑛1, 𝑛2 > 0, there is
a continuous semi-norm ‖ · ‖ on S (𝑈 (A)) such that∑

𝜒∈𝔛 (𝑈 )

|𝐾1,2, 𝑓 ,𝜒 (𝑥, 𝑦) | � ‖ 𝑓 ‖𝑑𝑃′
1
(𝛼, 𝑦)−𝑛1 ‖𝑦‖𝑛2+𝑛0

𝑃′
1

‖𝑥‖−𝑛2
𝑃′

2

for all f, T, x and y as in the statement. The result follows easily. �

Let 𝑛0 be as in Lemma 3.4.5.2. For any 𝑛1, 𝑛2, 𝑟 > 0, there are 𝜆 and 𝐶 > 0 as in Lemma 3.3.4.1
such that for all 𝑦 ∈ 𝑃′

1 (𝐹)\𝑈
′(A) and 𝑇 ∈ 𝔞′0 sufficiently positive, we have

𝐹𝑃
′
1 (𝑦, 𝑇)𝜎2

1 (𝐻𝑃′
1
(𝑦) − 𝑇)𝑑𝑃′

1
(−𝛼, 𝑦)‖𝑦‖𝑛0+𝑛2+𝑛1

𝑃′
1

� 𝐶 exp(−𝑟 ‖𝑇 ‖).

This indeed follows from Lemma 3.3.4.1: we may take 𝑦 ∈ 𝔰𝑃′
1

and use the fact that 𝑑𝑃′
1
(−𝜆, 𝑦) is

equivalent to exp(〈−𝜆, 𝐻𝑃′
0
(𝑦)〉) for 𝑦 ∈ 𝔰𝑃′

1
(see Proposition 2.3.4.1).
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As a consequence, we get by Lemma 3.4.5.2 that for any 𝑛1, 𝑛2 > 0, there exists a continuous semi-
norm ‖ · ‖ on S (𝑈 (A)) such that

𝐹𝑃
′
1 (𝑦, 𝑇)𝜎2

1 (𝐻𝑃′
1
(𝑦) − 𝑇)

∑
𝜒∈𝔛 (𝑈 )

|𝐾1,2, 𝑓 ,𝜒 (𝑥, 𝑦) | � ‖ 𝑓 ‖𝑒−𝑟 ‖𝑇 ‖ ‖𝑥‖−𝑛2
𝑃′

2
‖𝑦‖−𝑛1

𝑃′
1

for all T sufficiently positive, all 𝑥 ∈ 𝑃′
2(𝐹)\𝑈

′(A) and 𝑦 ∈ 𝑃′
1 (𝐹)\𝑈

′(A) and all 𝑓 ∈ S (𝑈 (A)). It is
then straightforward to get Theorem 3.4.2.1.

3.5. The (𝑼,𝑼′)-regular contribution in the Jacquet-Rallis trace formula

3.5.1.
The goal of the section is to get Theorem 3.5.7.1 below which gives a computation of the distributions
𝐽𝑈𝜒 of Theorem 3.2.3.1 in terms of relative characters for some specific cuspidal data which we are
going to define.

3.5.2.
Recall that we have 𝑈 = 𝑈 ′ ×𝑈 ′′. Let 𝜒 = (𝜒′, 𝜒′′) ∈ 𝔛(𝑈) = 𝔛(𝑈 ′) × 𝔛(𝑈 ′′) be a cuspidal datum.
Let (𝑀 = 𝑀 ′ × 𝑀 ′′, 𝜋 = 𝜋′ � 𝜋′′) be a representative where 𝑀 = 𝑀𝑃 is standard Levi subgroup of
a standard parabolic subgroup P of U. For any integer r, we set 𝐺𝑟 = Res𝐸/𝐹 GL(𝑟, 𝐸). We can find
hermitian forms ℎ′ and ℎ′′ respectively of rank 𝑛′ and 𝑛′′, integers 𝑛′1, . . . , 𝑛

′
𝑟 ′ and 𝑛′′1 , . . . , 𝑛

′′
𝑟 ′′ and

for 1 � 𝑖 � 𝑟 ′ cuspidal representations 𝜋′
𝑖 of 𝐺𝑛′𝑖 (A) (with central character trivial on 𝐴∞

𝐺𝑛′
𝑖

) and for
1 � 𝑖 � 𝑟 ′′ cuspidal representations 𝜋′′

𝑖 of 𝐺𝑛′′𝑖 (A) (with central character trivial on 𝐴∞
𝐺𝑛′′

𝑖

), cuspidal
representations 𝜎′ and 𝜎′′ respectively of 𝑈 (ℎ′) (A) and 𝑈 (ℎ′′) (A) such that such that

• 𝑛′ + 2(𝑛′1 + . . . + 𝑛′𝑟 ′ ) = 𝑛 and 𝑛′′ + 2(𝑛′′1 + . . . + 𝑛′′𝑟 ′′ ) = 𝑛 + 1;
• 𝑀 ′ � 𝐺𝑛′1 × . . . × 𝐺𝑛′

𝑟′
×𝑈 (ℎ′) and 𝑀 ′′ � 𝐺𝑛′′1 × . . . × 𝐺𝑛′′

𝑟′′
×𝑈 (ℎ′′);

• 𝜋′ = 𝜋′
1 � . . . � 𝜋′

𝑟 ′ � 𝜎′ and 𝜋′′ = 𝜋′′
1 � . . . � 𝜋′′

𝑟 ′′ � 𝜎′′ accordingly.

We shall say that 𝜒 is

• U-regular (or simply regular) if both 𝜒′ and 𝜒′′ are regular. We say that 𝜒′ is regular if the repre-
sentations 𝜋′

1, . . . , 𝜋
′
𝑟 ′ , (𝜋

′
1)

∗, . . . , (𝜋′
𝑟 ′ )

∗ are two by two distinct (the same definition applies to 𝜒′′).
Here, 𝜋∗ means the conjugate dual of the representation 𝜋.

• 𝑈 ′-regular if for each 1 � 𝑖 � 𝑟 ′ and 1 � 𝑗 � 𝑟 ′′ such that 𝑛′𝑖 = 𝑛′′𝑗 , the representations (𝜋′
𝑖)
∨ (the

contragredient of 𝜋′
𝑖) and 𝜋′′

𝑗 are neither isomorphic nor conjugate dual;
• (𝑈,𝑈 ′)-regular if it is both U-regular and 𝑈 ′-regular.

3.5.3.
Let 𝜑 ∈ A𝑃,𝜋,cusp (𝑈). Let 𝜆 ∈ 𝔞∗𝑃,C such that the Eisenstein series 𝐸 (𝜑, 𝜆) on [𝑈] is regular at 𝜆.
For 𝑇 ∈ 𝔞′0, we denote by Λ𝑇𝑢 𝐸 (𝜑, 𝜆) the function on [𝑈 ′] obtained from 𝐸 (𝜑, 𝜆) by truncation by the
operator defined in (3.3.2.1). The following proposition is basic to our calculation.

Proposition 3.5.3.1. Let 𝑇 ∈ 𝔞′0 sufficiently positive.

1. The integral ∫
[𝑈 ′ ]

Λ𝑇𝑢 𝐸 (𝑥, 𝜑, 𝜆) 𝑑𝑥 (3.5.3.1)

is absolutely convergent.
2. If the spectral datum 𝜒 defined by (𝑀, 𝜋) is 𝑈 ′-regular, then the integral (3.5.3.1) does not depend

on T.
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3. Write 𝑃 = 𝑃′ × 𝑃′′. If 𝑃′ = 𝑈 ′ or 𝑃′′ = 𝑈 ′′, then we have∫
[𝑈 ′ ]

Λ𝑇𝑢 𝐸 (𝑥, 𝜑, 𝜆) 𝑑𝑥 =
∫
[𝑈 ′ ]

𝐸 (𝑥, 𝜑, 𝜆) 𝑑𝑥, (3.5.3.2)

where the left-hand side is absolutely convergent.

Proof. 1. The absolute convergence follows from the uniform moderate growth of Eisenstein series and
the basic properties of the truncation operator Λ𝑇𝑢 recalled in Proposition 3.3.3.1.

2. To analyse the dependence on T, we shall use the following formula (adapted from [IY19, eq.
(2.2)]): for any 𝑇 ′ ∈ 𝔞′0 and any smooth function 𝜑 on [𝑈], we have for any 𝑥 ∈ 𝑈 ′(A),

(Λ𝑇 +𝑇
′

𝑢 𝜑) (𝑥) =
∑
𝑅′ ∈F ′

0

∑
𝛿∈𝑅′ (𝐹 )\𝑈 ′ (𝐹 )

Γ𝑅′ (𝐻𝑅′ (𝛿𝑥) − 𝑇𝑅′ , 𝑇 ′) (Λ𝑇 ,𝑅
′

𝑢 𝜑) (𝛿𝑥), (3.5.3.3)

where the function Γ𝑅′ (·, 𝑇 ′) is compactly supported on𝔞𝑅′ (for the precise definition, see p.9 of [IY19]);
moreover, we set for any 𝑥 ∈ 𝑈 ′(A),

(Λ𝑇 ,𝑅
′

𝑢 𝜑) (𝑥) =
∑
𝑄′ ⊂𝑅′

(−1)dim(𝔞𝑅′

𝑄′ )
∑

𝛿∈𝑄′ (𝐹 )\𝑅′ (𝐹 )

𝜏𝑅
′

𝑄′ (𝐻𝑄′ (𝛿𝑥) − 𝑇)𝜑𝑈 ′×𝑄′′ (𝛿𝑥),

where the sum is over the set of standard parabolic subgroups 𝑄 ′ of 𝑅′ and 𝜑𝑈 ′×𝑄′′ is the constant term
along 𝑈 ′ × 𝑄 ′′, where 𝑄 ′ × 𝑄 ′′ is the image of 𝑄 ′ by the map (3.1.4.1). For 𝑅′ = 𝑈 ′, we recover the
operator Λ𝑇𝑢 .

Using (3.5.3.3) and some Iwasawa decomposition, we see that assertion 2 follows from the following
vanishing statement: for any proper standard parabolic subgroups 𝑅′ of 𝑈 ′, we have for some Haar
measure on K,∫

[𝑀𝑅′ ]

∫
𝐾

exp(−〈2𝜌𝑅′ , 𝐻𝑅′ (𝑥)〉)Γ𝑅′ (𝐻𝑅′ (𝑥) − 𝑇,𝑇 ′)Λ𝑇 ,𝑅
′

𝑢 𝐸𝑅 (𝑥, 𝜑, 𝜆) 𝑑𝑥 = 0,

where 𝐸𝑅 (𝜑, 𝜆) is the constant term of 𝐸 (𝜑, 𝜆) along the parabolic subgroup R, the image of 𝑅′ by the
map (3.1.4.1).

Using the usual computation of the constant term of (cuspidal) Eisenstein series, we are reduced to
prove that ∫

[𝑀𝑅′ ]1
Λ
𝑇 ,𝑀 ′

𝑅
𝑢 𝐸𝑅 (𝑥, 𝜑, 𝜆) 𝑑𝑥 = 0 (3.5.3.4)

for all parabolic subgroup 𝑃 ⊂ 𝑅, all 𝜑 ∈ A𝑃,𝜋,cusp (𝑈) such that the class of (𝑀𝑃 , 𝜋) is 𝑈 ′-regular.
Here, 𝐸𝑅 (𝜑, 𝜆) denotes the Eisenstein series relative to R.

Let us prove this last claim. The reasoning here is very similar to that of [BPCZ22, proof of proposition
5.1.4.1], so we will be quite brief. There exist a hermitian form ℎ′ of rank m and integers 𝑛1, . . . , 𝑛𝑟
such that 𝑚 + 2(𝑛1 + . . . + 𝑛𝑟 ) = 𝑛

𝑀𝑅 � (𝐺𝑛1 × . . . × 𝐺𝑛𝑟 ) ×𝑈 (ℎ′) × (𝐺𝑛1 × . . . × 𝐺𝑛𝑟 ) ×𝑈 (ℎ′ ⊕ ℎ0)

𝑀𝑅′ � (𝐺𝑛1 × . . . × 𝐺𝑛𝑟 ) ×𝑈 (ℎ′).

The embedding 𝑀𝑅′ ⊂ 𝑀𝑅 is given by the product of the diagonal embeddings 𝐺𝑛1 × . . . × 𝐺𝑛𝑟 ⊂

(𝐺𝑛1 × . . . × 𝐺𝑛𝑟 )
2 and 𝑈 (ℎ′) ⊂ 𝑈 (ℎ′) ×𝑈 (ℎ′ ⊕ ℎ0). Then the operator Λ𝑇 ,𝑀

′
𝑅

𝑢 is the product of
• the usual Arthur operator attached to 𝐺𝑛1 × . . . × 𝐺𝑛𝑟 viewed as an operator on functions on

[𝐺𝑛1 × . . . × 𝐺𝑛𝑟 ] × [𝐺𝑛1 × . . . × 𝐺𝑛𝑟 ] acting on the second factor;
• the operator Λ𝑇 ,𝑈 (ℎ′)

𝑢 defined relatively to the embedding 𝑈 (ℎ′) ⊂ 𝑈 (ℎ′) ×𝑈 (ℎ′ ⊕ ℎ0).
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We see that in (3.5.3.4), each integral over 𝐺𝑛𝑖 can be interpreted as a scalar product of an Eisenstein
series and a truncated Eisenstein series. By Langlands’ computation of this scalar product and our
𝑈 ′-regularity assumption, we get the expected vanishing.

3. If 𝑃′ = 𝑈 ′ or 𝑃′′ = 𝑈 ′′, then on the one hand, the cuspidal datum defined by (𝑀, 𝜋) is automatically
𝑈 ′-regular. Thus, the left-hand side of (3.5.3.2) does not depend on T. On the other hand, the restriction
of 𝐸 (𝜑, 𝜆) to [𝑈 ′] is rapidly decreasing. So the right-hand side of (3.5.3.2) is absolutely convergent.
Now the equality (3.5.3.2) is a straightforward consequence of assertion 2 of Proposition 3.3.3.1 and
the dominated convergence theorem. �

3.5.4. Ichino-Yamana regularized period
Assume that the cuspidal datum defined by (𝑀, 𝜋) is 𝑈 ′-regular. Following [IY19], we define the
regularized period of 𝐸 (𝜑, 𝜆) for 𝜑 ∈ A𝑃,𝜋,cusp (𝑈) and 𝜆 ∈ 𝔞∗𝑃,C by

P𝑈 ′ (𝜑, 𝜆) =
∫
[𝑈 ′ ]

Λ𝑇𝑢 𝐸 (𝑥, 𝜑, 𝜆) 𝑑𝑥, (3.5.4.1)

where the right-hand side is the absolutely convergent integral (3.5.3.1) attached to the Eisenstein series
𝐸 (𝜑, 𝜆) for any 𝑇 ∈ 𝔞′0 sufficiently positive. It does not depend on T by Proposition 3.5.3.1 assertion
2. It is meromorphic in 𝜆 and holomorphic when 𝐸 (𝜑, 𝜆) is regular, in particular on 𝑖𝔞∗𝑃 . The map
𝜑 ↦→ P𝑈 ′ (𝜑, 𝜆) is continuous.

3.5.5. Relative character
We keep our assumption on (𝑀, 𝜋). Let 𝜆 ∈ 𝔞∗𝑃,C. We define the relative character 𝐽𝑈𝑃,𝜋 (𝜆, 𝑓 ) by

𝐽𝑈𝑃,𝜋 (𝜆, 𝑓 ) =
∑

𝜑∈B𝑃,𝜋

P𝑈 ′ (𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)P𝑈 ′ (𝜑, 𝜆), (3.5.5.1)

where 𝑓 ∈ S (𝑈 (A)) and B𝑃,𝜋 is a K-basis of A𝑃,𝜋,cusp (𝑈) in the sense of §2.2.4. Outside the
singularities of the involved Eisenstein series, the sum is absolutely convergent. It is holomorphic on
𝑖𝔞∗𝑃 . It does not depend on the choice of B𝑃,𝜋 and it defines a continuous linear form on S (𝑈 (A)) (see
[BPCZ22, proposition 2.8.4.1])). For further use, we observe the following simple functional equation.

Proposition 3.5.5.1. Let P and 𝑃1 be standard parabolic subgroup of U of respective standard Levi
factors M and 𝑀1. Assume that the pairs (𝑀, 𝜋) and (𝑀1, 𝜋1) define the same 𝑈 ′-regular cuspidal
datum. Then for 𝑤 ∈ 𝑊 (𝑀, 𝑀1) such that 𝜋1 = 𝑤𝜋 and 𝜆 ∈ 𝑖𝔞∗𝑃 , we have

𝐽𝑈𝑃,𝜋 (𝜆, 𝑓 ) = 𝐽𝑈𝑃1 , 𝜋1
(𝑤 · 𝜆, 𝑓 ).

Proof. This is an immediate consequence of the functional equation 𝐸 (𝜑, 𝜆) = 𝐸 (𝑀 (𝑤, 𝜆)𝜑, 𝑤𝜆) of
Eisenstein series and the fact that for 𝜆 ∈ 𝑖𝔞∗𝑃 , the intertwining operator sends a K-basis of A𝑃,𝜋,cusp (𝑈)

to a K-basis of A𝑃,𝜋1 ,cusp (𝑈). �

3.5.6. Some auxiliary results
For further use, we state and prove some useful results.

Lemma 3.5.6.1. Let 𝜒 ∈ 𝔛(𝑈) be a U-regular cuspidal datum. For any standard parabolic subgroup
P of U and any representative (𝑀𝑃 , 𝜋) of 𝜒, we have for all 𝑓 ∈ S (𝑈 (A)) and 𝑥, 𝑦 ∈ [𝑈],

𝐾 𝑓 ,𝜒 (𝑥, 𝑦) =
∫
𝑖𝔞∗𝑃

∑
𝜑∈B𝑃,𝜋

𝐸 (𝑥, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)𝐸 (𝑦, 𝜑, 𝜆) 𝑑𝜆, (3.5.6.1)

where B𝑃,𝜋 is a K-basis as above.
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Proof. Let 𝜒 ∈ 𝔛(𝑈) and 𝑥, 𝑦 ∈ [𝑈]. We start from the general spectral expansion (see [BPCZ22,
lemma 2.10.2.1])

𝐾 𝑓 ,𝜒 (𝑥, 𝑦) =
∑
𝑄

𝑛−1
𝑄

∫
𝑖𝔞∗

𝑄

∑
𝜑∈B𝑄,𝜒

𝐸 (𝑥, 𝐼𝑄 (𝜆, 𝑓 )𝜑, 𝜆)𝐸 (𝑦, 𝜑, 𝜆) 𝑑𝜆, (3.5.6.2)

where the sum is over the set of standard parabolic subgroups Q of U; the integer 𝑛𝑄 is the number of
semi-standard parabolic subgroups of U which admits the same semi-standard Levi component as Q.
The set B𝑄,𝜒 is a K-basis of the space A0

𝑄,𝜒,disc(𝑈) (we refer the reader to [BPCZ22, §2.10.2] for the
notation). From now on, we assume moreover that 𝜒 is U-regular. Let (𝑀𝑃 , 𝜋) be a representative of
𝜒 with P a standard parabolic subgroup of G. Let Q be a standard parabolic subgroup of G. Then the
space A0

𝑄,𝜒,disc(𝑈) has the following simple description:

A0
𝑄,𝜒,disc(𝑈) = ⊕̂𝑤 ∈𝑊 (𝑃,𝑄)A𝑄,𝑤 𝜋,cusp (𝑈). (3.5.6.3)

In particular, this space is zero unless Q and P are associated, which we assume from now on. As a
consequence, we may and shall assume that B𝑄,𝜒 is a union over 𝑤 ∈ 𝑊 (𝑃,𝑄) of K-bases B𝑄,𝑤 𝜋 of
A𝑄,𝑤 𝜋,cusp (𝑈). In this way, by the same argument as in the proof of Proposition 3.5.5.1, we see that we
have for all 𝑤 ∈ 𝑊 (𝑃,𝑄) and 𝜆 ∈ 𝑖𝔞∗𝑄,∑

𝜑∈B𝑄,𝑤 𝜋

𝐸 (𝑥, 𝐼𝑄 (𝜆, 𝑓 )𝜑, 𝜆)𝐸 (𝑦, 𝜑, 𝜆) =
∑

𝜑∈B𝑃,𝜋

𝐸 (𝑥, 𝐼𝑃 (𝑤
−1𝜆, 𝑓 )𝜑, 𝑤−1𝜆)𝐸 (𝑦, 𝜑, 𝑤−1𝜆),

where B𝑃,𝜋 is a K-basis of A𝑃,𝜋,cusp (𝑈). So we get by the change of variables 𝜆 ↦→ 𝑤−1𝜆,∫
𝑖𝔞∗

𝑄

∑
𝜑∈B𝑄,𝜒

𝐸 (𝑥, 𝐼𝑄 (𝜆, 𝑓 )𝜑, 𝜆)𝐸 (𝑦, 𝜑, 𝜆) 𝑑𝜆

=
∑

𝑤 ∈𝑊 (𝑃,𝑄)

∫
𝑖𝔞∗

𝑄

∑
𝜑∈B𝑄,𝑤 𝜋

𝐸 (𝑥, 𝐼𝑄 (𝜆, 𝑓 )𝜑, 𝜆)𝐸 (𝑦, 𝜑, 𝜆) 𝑑𝜆

= |𝑊 (𝑃,𝑄) |

∫
𝑖𝔞∗𝑃

∑
𝜑∈B𝑃,𝜋

𝐸 (𝑥, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)𝐸 (𝑦, 𝜑, 𝜆) 𝑑𝜆.

This gives the result since we have
∑
𝑄 |𝑊 (𝑃,𝑄) |𝑛−1

𝑄 = 1 where the sum is taken over standard parabolic
subgroups Q. Note that in the second line above the integral over 𝑖𝔞∗𝑄 is absolutely convergent. Let us
check this. By Dixmier-Malliavin theorem, we may and shall assume that we have 𝑓 = 𝑓1 ∗ 𝑓 ∗2 for some
𝑓1, 𝑓2 ∈ S (𝑈 (A)), where ∗ denotes the convolution product and we have set 𝑓 ∗2 (𝑔) = 𝑓2(𝑔−1). By a
standard change of basis argument, we have for all 𝑥1, 𝑥2 ∈ 𝑈 (A),∑

𝜑∈B𝑄,𝑤 𝜋

𝐸 (𝑥1, 𝐼𝑄 (𝜆, 𝑓 )𝜑, 𝜆)𝐸 (𝑥2, 𝜑, 𝜆) =
∑

𝜑∈B𝑄,𝑤 𝜋

𝐸 (𝑥1, 𝐼𝑄 (𝜆, 𝑓1)𝜑, 𝜆)𝐸 (𝑥2, 𝐼𝑄 (𝜆, 𝑓2)𝜑, 𝜆).

By Cauchy-Schwarz inequality, the expression∫
𝑖𝔞∗

𝑄

�� ∑
𝜑∈B𝑄,𝑤 𝜋

𝐸 (𝑥1, 𝐼𝑄 (𝜆, 𝑓 )𝜑, 𝜆)𝐸 (𝑥2, 𝜑, 𝜆)
�� 𝑑𝜆

is bounded above by the square-root of the product over 𝑖 = 1, 2 of∫
𝑖𝔞∗

𝑄

∑
𝜑∈B𝑄,𝑤 𝜋

|𝐸 (𝑥𝑖 , 𝐼𝑄 (𝜆, 𝑓𝑖)𝜑, 𝜆) |
2 𝑑𝜆 =

∫
𝑖𝔞∗

𝑄

∑
𝜑∈B𝑄,𝑤 𝜋

𝐸 (𝑥𝑖 , 𝐼𝑄 (𝜆, 𝑔𝑖)𝜑, 𝜆)𝐸 (𝑥𝑖 , 𝜑, 𝜆) 𝑑𝜆,
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where we have set 𝑔𝑖 = 𝑓𝑖 ∗ 𝑓 ∗𝑖 . By the same argument, we see that the spectral expansion of 𝐾𝑔𝑖 (𝑥, 𝑥)
deduced from (3.5.6.2) is a sum of non-negative terms, and thus, the last expression above is bounded
above by 𝐾𝑔𝑖 (𝑥𝑖 , 𝑥𝑖) times 𝑛𝑄. �

Let 𝑇1, 𝑇2 be two sufficiently positive points in 𝔞′0. Let Λ𝑇1
𝑢 𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 be the function of two variables

we get when we apply on 𝐾 𝑓 ,𝜒 the truncation operators Λ𝑇1
𝑢 and Λ𝑇2

𝑢 , respectively, on the left and right
variables.

Lemma 3.5.6.2. Let 𝜒 ∈ 𝔛(𝑈) be a U-regular cuspidal datum. For any standard parabolic subgroup
P of U and any representative (𝑀𝑃 , 𝜋) of 𝜒, we have for all 𝑓 ∈ S (𝑈 (A)) and 𝑥, 𝑦 ∈ [𝑈 ′],

(Λ𝑇1
𝑢 𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 ) (𝑥, 𝑦) =

∫
𝑖𝔞∗𝑃

∑
𝜑∈B𝑃,𝜋

(Λ𝑇1
𝑢 𝐸) (𝑥, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)Λ

𝑇2
𝑢 𝐸 (𝑦, 𝜑, 𝜆) 𝑑𝜆, (3.5.6.4)

where B𝑃,𝜋 is a K-basis as above.

Proof. This is a variant of the proof of Lemma 3.5.6.1. Simply instead of (3.5.6.2), we start from the
spectral expansion for any 𝜒 ∈ 𝔛(𝑈):

(Λ𝑇1
𝑢 𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 ) (𝑥, 𝑦) =

∑
𝑄

𝑛−1
𝑄

∫
𝑖𝔞∗

𝑄

∑
𝜑∈B𝑄,𝜒

Λ𝑇1
𝑢 𝐸 (𝑥, 𝐼𝑄 (𝜆, 𝑓 )𝜑, 𝜆)Λ

𝑇2
𝑢 𝐸 (𝑦, 𝜑, 𝜆) 𝑑𝜆. (3.5.6.5)

The proof of this expansion is similar to that of [BPCZ22, proof of lemma 4.2.3.1] and thus is left to
the reader. �

Remark 3.5.6.3. Assume we have 𝑓 = 𝑓1 ∗ 𝑓 ∗2 as in the proof of Lemma 3.5.6.1; one has the following
bound (proved by the same method as in the proof of Lemma 3.5.6.1): there exists 𝑐 > 0 (independent
of 𝑓1 and 𝑓2) such that for all 𝑥1, 𝑥2 ∈ [𝑈 ′],

∑
(𝑀,𝜋)

∫
𝑖𝔞∗𝑃

������ ∑
𝜑∈B𝑃,𝜋

Λ𝑇1
𝑢 𝐸 (𝑥1, 𝐼𝑄 (𝜆, 𝑓 )𝜑, 𝜆)Λ

𝑇2
𝑢 𝐸 (𝑥2, 𝜑, 𝜆)

������ 𝑑𝜆 (3.5.6.6)

� 𝑐
(
(Λ𝑇1
𝑢 𝐾𝑔1Λ

𝑇1
𝑢 ) (𝑥1, 𝑥1)

)1/2 (
(Λ𝑇2
𝑢 𝐾𝑔2Λ

𝑇2
𝑢 ) (𝑥2, 𝑥2)

)1/2
,

where the first sum is over a set of representatives (𝑀, 𝜋) of U-regular cuspidal data of U and we have
set 𝑔𝑖 = 𝑓𝑖 ∗ 𝑓 ∗𝑖 .

Proposition 3.5.6.4. There exists a semi-norm on S (𝑈 (A)) such that for all 𝑓 ∈ S (𝑈 (A)),∑
(𝑀,𝜋)

∫
𝑖𝔞∗𝑃

|𝐽𝑈𝑃,𝜋 (𝜆, 𝑓 ) | 𝑑𝜆 � ‖ 𝑓 ‖, (3.5.6.7)

where the sum is over a set of representatives (𝑀, 𝜋) of (𝑈,𝑈 ′)-regular cuspidal data of U and P is the
standard parabolic subgroup of which M is the standard Levi factor.

Proof. By uniform boundedness principle, it suffices to prove that the expression (3.5.6.7) is finite for
each f. Let T be a sufficiently positive point in 𝔞′0 such that for all representatives (𝑀𝑃 , 𝜋) of (𝑈,𝑈 ′)-
regular cuspidal data of U with P a standard parabolic subgroup of U and for all 𝜑 ∈ A𝑃,𝜋,cusp (𝑈), we
have

P𝑈 ′ (𝜑, 𝜆) =
∫
[𝑈 ′ ]

Λ𝑇𝑢 𝐸 (𝑥, 𝜑, 𝜆) 𝑑𝑥. (3.5.6.8)
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Recall that the map 𝜑 ↦→ P𝑈 ′ (𝜑, 𝜆) is continuous. It follows from [BPCZ22, Proposition 2.8.41] that
we have for 𝜆 ∈ 𝑖𝔞∗𝑃 ,

𝐽𝑈𝑃,𝜋 (𝜆, 𝑓 ) =
∫
[𝑈 ′ ]×[𝑈 ′ ]

∑
𝜑∈B𝑃,𝜋

Λ𝑇𝑢 𝐸 (ℎ1, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)Λ𝑇𝑢 𝐸 (ℎ2, 𝜑, 𝜆)𝑑ℎ1𝑑ℎ2.

Now it suffices to show that we have

∑
(𝑀,𝜋)

∫
𝑖𝔞∗𝑃

∫
[𝑈 ′ ]×[𝑈 ′ ]

������ ∑
𝜑∈B𝑃,𝜋

Λ𝑇𝑢 𝐸 (ℎ1, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)Λ𝑇𝑢 𝐸 (ℎ2, 𝜑, 𝜆)

������ 𝑑ℎ1𝑑ℎ2𝑑𝜆 < ∞, (3.5.6.9)

where the outer sum is as in (3.5.6.7). To show the convergence of (3.5.6.9) for a fixed function
𝑓 ∈ S (𝑈 (A)), we may and shall assume, by Dixmier-Malliavin theorem, that 𝑓 = 𝑓1 ∗ 𝑓 ∗2 (the notations
are those used in the proof of lemma 3.5.6.1). But then we can apply the bound (3.5.6.6). In this way,
we see that the left-hand side of (3.5.6.9) is bounded above by (up to some irrelevant constant) by

vol([𝑈 ′])

( 2∏
𝑖=1

∫
[𝑈 ′ ]

(Λ𝑇𝑢 𝐾𝑔𝑖Λ
𝑇
𝑢 ) (𝑥, 𝑥) 𝑑𝑥

)1/2

.

The volume of [𝑈 ′] is finite, and the integral∫
[𝑈 ′ ]

(Λ𝑇𝑢 𝐾𝑔𝑖Λ
𝑇
𝑢 ) (𝑥, 𝑥) 𝑑𝑥

is absolutely convergent by properties of truncation operator (see Proposition 3.3.3.1) and the fact that
the kernel is slowly increasing; see [BPCZ22, Lemma 2.10.1.1]. Note that the derivatives of the kernel
𝐾𝑔𝑖 are related to the kernel associated to derivatives of 𝑔𝑖; see also the proof of Theorem 3.5.7.1 where
this fact is used. So we can conclude. �

3.5.7.
We can now state and prove the main result of this section.

Theorem 3.5.7.1. Let 𝜒 ∈ 𝔛(𝑈) be a (𝑈,𝑈 ′)-regular cuspidal datum. For any standard parabolic
subgroup P of U and any representative (𝑀𝑃 , 𝜋) of 𝜒, we have

𝐽𝑈𝜒 ( 𝑓 ) =
∫
𝑖𝔞∗𝑃

𝐽𝑈𝑃,𝜋 (𝜆, 𝑓 ) 𝑑𝜆,

where the integral in the right-hand side is absolutely convergent.

Proof. Let (𝑀𝑃 , 𝜋) be a representative of a (𝑈,𝑈 ′)-regular cuspidal datum 𝜒 with P a standard parabolic
subgroup of U. Let 𝑇1, 𝑇2 be two sufficiently positive points in 𝔞′0 such that (3.5.6.8) holds for 𝑇 = 𝑇1, 𝑇2.
We shall use the spectral expansion given by Lemma 3.5.6.2. Using (3.5.6.6), we get (as in the proof of
Proposition 3.5.6.4)∫

𝑖𝔞∗𝑃

∫
[𝑈 ′ ]×[𝑈 ′ ]

|
∑

𝜑∈B𝑃,𝜋

Λ𝑇1
𝑢 𝐸 (𝑥, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)Λ

𝑇1
𝑢 𝐸 (𝑦, 𝜑, 𝜆) | 𝑑𝑥𝑑𝑦 < ∞.

Using this and Fubini theorem, we see that we can integrate the spectral expansion (3.5.6.4) over
[𝑈 ′] × [𝑈 ′] and permute the adelic and the complex integrals. Using the definition of the relative
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character (3.5.5.1) built upon the periods (3.5.4.1), we have by [BPCZ22, Proposition 2.8.41],

𝐽𝑈𝑃,𝜋 (𝜆, 𝑓 ) =
∫
[𝑈 ′ ]×[𝑈 ′ ]

∑
𝜑∈B𝑃,𝜋

Λ𝑇1
𝑢 𝐸 (ℎ1, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)Λ

𝑇2
𝑢 𝐸 (ℎ2, 𝜑, 𝜆)𝑑ℎ1𝑑ℎ2.

So we can conclude that we have∫
[𝑈 ′ ]×[𝑈 ′ ]

(Λ𝑇1
𝑢 𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 ) (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =

∫
𝑖𝔞∗𝑃

𝐽𝑈𝑃,𝜋 (𝜆, 𝑓 ) 𝑑𝜆, (3.5.7.1)

where both sides are absolutely convergent. Note that the right-hand side of (3.5.7.1), and hence the
left-hand side, depend neither on 𝑇1 nor on 𝑇2.

We fix 𝑇2 ∈ 𝔞′0 sufficiently positive. By Proposition 3.3.3.1 assertion 2, Λ𝑇1
𝑢 𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 converges to

𝐾 𝑓 ,𝜒Λ
𝑇2
𝑢 pointwise when 𝑑 (𝑇1) → +∞ (see §3.1.6). We want to apply the dominated convergence

theorem. Let 𝑁, 𝑁 ′ > 0. By Proposition 3.3.3.1 assertion 2, there exists a continuous semi-norm ‖ · ‖𝑁 ′

on T𝑁 ′ ( [𝑈]) (which does not depend on 𝑇1) such that we have for all 𝑥, 𝑦 ∈ [𝑈 ′] and all 𝑓 ∈ S (𝑈),

| (Λ𝑇1
𝑢 𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 ) (𝑥, 𝑦) | � ‖𝑥‖−𝑁𝑈 ′ ‖ (𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 ) (·, 𝑦)‖𝑁 ′ + |(𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 ) (𝑥, 𝑦) |.

Let 𝐽 ⊂ 𝑈 (A 𝑓 ) be a compact open subgroup and 𝑆(𝑈 (A))𝐽 ⊂ 𝑆(𝑈 (A)) be the subspace of right-J-
invariant functions. There are finite families (𝑁𝑖)𝑖∈𝐼 of integers and (𝑋𝑖)𝑖∈𝐼 of elements of U (𝔲∞) such
that we have for all 𝑥, 𝑦 ∈ [𝑈 ′] and 𝑓 ∈ 𝑆(𝑈 (A))𝐽 , we have

‖(𝐾 𝑓 ,𝜒Λ
𝑇2
𝑢 ) (·, 𝑦)‖𝑁 ′ �

∑
𝑖∈𝐼

sup
ℎ∈[𝑈 ]

(‖ℎ‖−𝑁𝑖

𝑈 | (𝑅(𝑋𝑖)𝐾 𝑓 ,𝜒Λ
𝑇2
𝑢 ) (ℎ, 𝑦) |)

=
∑
𝑖∈𝐼

sup
ℎ∈[𝑈 ]

(‖ℎ‖−𝑁𝑖

𝑈 | (𝐾𝐿 (𝑋𝑖 ) 𝑓 ,𝜒Λ
𝑇2
𝑢 ) (ℎ, 𝑦) |).

Here, 𝑅(𝑋𝑖)𝐾 𝑓 ,𝜒 means that we apply the differential operator 𝑅(𝑋𝑖) on the left variable of 𝐾 𝑓 ,𝜒. We
also use the fact that we have 𝑅(𝑋𝑖)𝐾 𝑓 ,𝜒 = 𝐾𝐿 (𝑋𝑖) 𝑓 ,𝜒 for some right-invariant differential operator
𝐿(𝑋𝑖). Now we can use (3.2.2.3) and Proposition 3.3.3.1 assertion 1 applied to the operator Λ𝑇2

𝑢 to see
that for all 𝑛1 > 0, there exists a continuous semi-norm ‖ · ‖S on S (𝑈 (A)) such that for all 𝑥 ∈ [𝑈],
𝑦 ∈ [𝑈 ′] and all 𝑓 ∈ S (𝑈 (A)), we have

| (𝐾 𝑓 ,𝜒Λ
𝑇2
𝑢 ) (𝑥, 𝑦) | � ‖ 𝑓 ‖S ‖𝑥‖

−𝑛1
𝑈 ‖𝑦‖−𝑛1

𝑈 ′ .

We deduce that for any 𝑛2 > 0, there exists 𝑐 > 0 (which depends on 𝑇2, 𝑛2 and 𝑓 ∈ S (𝑈 (A)) but
not on 𝑇1) such that for all 𝑥, 𝑦 ∈ [𝑈 ′],

| (Λ𝑇1
𝑢 𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 ) (𝑥, 𝑦) | � 𝑐‖𝑥‖−𝑛2

𝑈 ′ ‖𝑦‖−𝑛2
𝑈 ′ .

By choosing 𝑛2 large enough so that (𝑥, 𝑦) ↦→ ‖𝑥‖−𝑛2
𝑈 ′ ‖𝑦‖−𝑛2

𝑈 ′ is integrable over [𝑈 ′] × [𝑈 ′], we can
apply the dominated convergence theorem to get

lim
𝑑 (𝑇1)→+∞

∫
[𝑈 ′ ]×[𝑈 ′ ]

(Λ𝑇1
𝑢 𝐾 𝑓 ,𝜒Λ

𝑇2
𝑢 ) (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =

∫
[𝑈 ′ ]×[𝑈 ′ ]

(𝐾 𝑓 ,𝜒Λ
𝑇2
𝑢 ) (𝑥, 𝑦) 𝑑𝑥𝑑𝑦.

We have seen that the left-hand side depends neither on 𝑇1 nor on 𝑇2. So the right-hand side is also
independent of 𝑇2. We can conclude from Corollary 3.3.5.2 that the right-hand side is in fact equal to
𝐽𝑈𝜒 ( 𝑓 ). �
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4. The (𝑮, 𝑯)-regular contribution in the Jacquet-Rallis trace formula

4.1. Statement and proof

4.1.1.
Let 𝐸/𝐹 be a quadratic extension of number fields. Let A be the ring of adèles of F and 𝜂 = 𝜂𝐸/𝐹 be
the quadratic character of the group A× attached to 𝐸/𝐹. Let 𝑛 � 1 and 𝐺 ′

𝑛 = GL𝑛,𝐹 be the algebraic
group of F-linear automorphisms of 𝐹𝑛. We view as an F-subgroup of 𝐺𝑛 = Res𝐸/𝐹 (𝐺 ′

𝑛 ×𝐹 𝐸). We
denote by c the Galois involution of 𝐺𝑛. Let 𝜂𝐺′

𝑛
be the character of 𝐺 ′

𝑛 (A) given by

𝜂𝐺′
𝑛
(ℎ) = 𝜂(det(ℎ))𝑛+1

for all ℎ ∈ 𝐺 ′
𝑛 (A). Let (𝐵′

𝑛, 𝑇
′
𝑛) be a pair where 𝐵′

𝑛 is the Borel subgroup 𝐺 ′
𝑛 of upper triangular

matrices and 𝑇 ′
𝑛 is the maximal torus of 𝐺 ′

𝑛 of diagonal matrices. Let (𝐵𝑛, 𝑇𝑛) be the pair deduced from
(𝐵′
𝑛, 𝑇

′
𝑛) by extension of scalars to E and restriction to F: it is a pair of a minimal parabolic subgroup

of 𝐺𝑛 and its Levi factor. Let 𝐾𝑛 ⊂ 𝐺𝑛 (A) and 𝐾 ′
𝑛 = 𝐾𝑛 ∩𝐺 ′

𝑛 (A) ⊂ 𝐺 ′
𝑛 (A) be the ‘standard’ maximal

compact subgroups. We set

𝔞+𝑛+1 = 𝔞𝐺𝑛+1+
𝐵𝑛+1

,

where the right-hand side is defined in §2.1.4.
We set 𝐺 = 𝐺𝑛 ×𝐺𝑛+1 and 𝐺 ′ = 𝐺 ′

𝑛 ×𝐺 ′
𝑛+1 (see §4.1.1). Let c be the Galois involution of G whose

fixed points set if 𝐺 ′. The reductive groups G and 𝐺 ′ are equipped with the pairs (𝐵𝑛 × 𝐵𝑛+1, 𝑇𝑛 ×𝑇𝑛+1)
and (𝐵′

𝑛 × 𝐵′
𝑛+1, 𝑇

′
𝑛 × 𝑇 ′

𝑛+1). Let 𝐾 = 𝐾𝑛 × 𝐾𝑛+1 ⊂ 𝐺 (A) and 𝐾 ′ = 𝐾 ∩ 𝐺 ′(A). We denote by 𝜂𝐺′ the
character 𝜂𝐺′

𝑛
� 𝜂𝐺′

𝑛+1
of 𝐺 ′(A). Let H be the image of the diagonal embedding

𝐺𝑛 ↩→ 𝐺𝑛 × 𝐺𝑛+1.

Let 𝜋 be a cuspidal automorphic representation of 𝐺 (A) with central character trivial on 𝐴∞
𝐺 . As in

§3.5.2, we denote by 𝜋∗ the conjugate-dual representation of 𝐺 (A). We shall say that 𝜋 is self conjugate-
dual if 𝜋 � 𝜋∗ and that 𝜋 is 𝐺 ′-distinguished, resp. (𝐺 ′, 𝜂)-distinguished, if the linear form (called the
Flicker-Rallis period)

𝜑 ↦→

∫
[𝐺′ ]0

𝜑(ℎ) 𝑑ℎ, resp.
∫
[𝐺′ ]0

𝜑(ℎ)𝜂(det(ℎ)) 𝑑ℎ (4.1.1.1)

does not vanish identically on A𝜋,cusp (𝐺). Then 𝜋 is self conjugate-dual if and only if 𝜋 is either
𝐺 ′-distinguished or (𝐺 ′, 𝜂)-distinguished and it cannot be both (see [Fli88]). Note that since we are
working with general linear groups, we shall omit the subscript cusp and we shall write simply A𝜋 (𝐺)

for the space A𝜋,cusp (𝐺). The same rule is applied to the space A𝑃,𝜋 (𝐺) if 𝜋 is a cuspidal automorphic
representation of 𝑀𝑃 (A).

4.1.2. Caution
Since it is easy to get confused, we want to emphasize some consequences of our choices of measures.
Let P be a standard parabolic subgroup of G and let 𝑃′ = 𝑃∩𝐺 ′. The restriction map 𝑋∗(𝑃) → 𝑋∗(𝑃′)

identifies 𝑋∗(𝑃) with a subgroup of 𝑋∗(𝑃′) of index 2dim(𝔞𝑃) . It induces an isomorphism 𝔞𝑃′ → 𝔞𝑃
which does not preserve the Haar measures: the pullback to 𝔞𝑃′ of the Haar measure on 𝔞𝑃 is 2dim(𝔞𝑃)

times the Haar measure on 𝔞𝑃′ . In the same way, the groups 𝐴∞
𝑃 and 𝐴∞

𝑃′ are canonically identified, but
the Haar measure on 𝐴∞

𝑃 is 2dim(𝔞𝑃) times the Haar measure on 𝐴∞
𝑃′ .

Note also that for all 𝑥 ∈ 𝐺 ′(A), we have

〈𝜌𝑄𝑃 , 𝐻𝑃 (𝑥)〉 = 2〈𝜌𝑄
′

𝑃′ , 𝐻𝑃′ (𝑥)〉. (4.1.2.1)
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4.1.3. The (𝑮, 𝑯)-regular and Hermitian cuspidal data
Let 𝜒 = (𝜒𝑛, 𝜒𝑛+1) ∈ 𝔛(𝐺) = 𝔛(𝐺𝑛) × 𝔛(𝐺𝑛+1) be a cuspidal datum. Let (𝑀, 𝜋) be a representative
in the class of 𝜒 with 𝑀 = 𝑀𝑃 for a standard parabolic subgroup P of G. We write 𝑀 = 𝑀𝑛 × 𝑀𝑛+1
and 𝜋 = 𝜋𝑛 � 𝜋𝑛+1 accordingly. Let 𝑗 ∈ {𝑛, 𝑛 + 1}. We write 𝑀 𝑗 = 𝐺𝑛1, 𝑗 × . . . ×𝐺𝑛𝑟 𝑗 , 𝑗

for some integer
𝑟 𝑗 � 1 and 𝜋 𝑗 = 𝜎1, 𝑗 � . . . � 𝜎𝑟 𝑗 , 𝑗 accordingly.

We shall say that 𝜒 is

• G-regular (or simply regular) if for all 𝑗 ∈ {𝑛, 𝑛 + 1} and 1 � 𝑖, 𝑖′ � 𝑟 𝑗 such that 𝑛𝑖, 𝑗 = 𝑛𝑖′, 𝑗 and
𝜎𝑖, 𝑗 = 𝜎𝑖′, 𝑗 , we have 𝑖′ = 𝑖.

• H-regular if for 1 � 𝑖 � 𝑟𝑛 and all 1 � 𝑗 � 𝑟𝑛+1, if 𝑛𝑖,𝑛 = 𝑛 𝑗 ,𝑛+1, the representation 𝜎𝑖,𝑛 is not
isomorphic to the contragredient of 𝜎𝑗 ,𝑛+1;

• (𝐺, 𝐻)-regular if it is both G-regular and H-regular;
• Hermitian if 𝜋 = 𝜋∗ and if the representation 𝜎𝑖, 𝑗 is 𝜂𝐺′

𝑗
-distinguished for all 1 � 𝑖 � 𝑟 𝑗 and

𝑗 ∈ {𝑛, 𝑛 + 1} such that 𝜎𝑖, 𝑗 = 𝜎∗
𝑖, 𝑗 .

4.1.4.
We fix a (𝐺, 𝐻)-regular and Hermitian cuspidal datum 𝜒. With the notations as above, we may and
shall choose the representative (𝑀, 𝜋) such that for all 𝑗 ∈ {𝑛, 𝑛+ 1}, there exists an integer 𝑠 𝑗 � 0 such
that the following conditions are satisfied:

1. 2𝑠 𝑗 � 𝑟 𝑗 and for all odd i such that 1 � 𝑖 < 2𝑠 𝑗 , we have 𝜎𝑖+1, 𝑗 = 𝜎∗
𝑖, 𝑗 (in particular, 𝜎𝑖, 𝑗 ≠ 𝜎∗

𝑖, 𝑗 );
2. for all 𝑖 > 2𝑠 𝑗 , we have 𝜎𝑖, 𝑗 = 𝜎∗

𝑖, 𝑗 .

Let 𝐿 = 𝐿𝑛 × 𝐿𝑛+1 be the standard Levi subgroup of G such that for all 𝑗 ∈ {𝑛, 𝑛 + 1}, we have

𝐿 𝑗 = 𝐺𝑛1, 𝑗+𝑛2, 𝑗 × . . . × 𝐺𝑛2𝑠 𝑗−1, 𝑗+𝑛2𝑠 𝑗 , 𝑗
× 𝐺𝑛2𝑠 𝑗+1, 𝑗 × . . . × 𝐺𝑛𝑟, 𝑗 . (4.1.4.1)

Let 𝜉 ∈ 𝑊 (𝑀) such that 𝜉2 = 1 and 𝔞𝐿𝑀 is the kernel of 𝜉 + Id for the natural action of 𝑊 (𝑀) on 𝔞𝑀 .
We denote by Q the standard parabolic subgroup of Levi L.

4.1.5. Intertwining period
We identify the Weyl group of G with the group of permutation matrix. In this way, we identify 𝜉 with
an element of 𝐿(𝐹). Let 𝜉 ∈ 𝐿(𝐹) such that 𝜉𝑐(𝜉)−1 = 𝜉, where c is the Galois involution of G. We
define the F-subgroups 𝑃𝜉 , 𝑀𝜉 and 𝑁𝜉 of 𝐺 ′, respectively, by

𝑃𝜉 = 𝐺 ′ ∩ 𝜉−1𝑃𝜉. (4.1.5.1)

𝑀𝜉 = 𝐺 ′ ∩ 𝜉−1𝑀𝜉. (4.1.5.2)

𝑁𝜉 = 𝐺 ′ ∩ 𝜉−1𝑁𝜉. (4.1.5.3)

We have the Levi decomposition 𝑃𝜉 = 𝑀𝜉𝑁𝜉 , where 𝑀𝜉 is reductive and 𝑁𝜉 is unipotent. Let
𝑄 ′ = 𝑄 ∩ 𝐺 ′: this is a standard parabolic subgroup of 𝐺 ′ of Levi factor 𝐿 ′ = 𝐿 ∩ 𝐺. Observe that we
have 𝐴∞

𝑀𝜉
= 𝐴∞

𝐿 , 𝑀𝜉 ⊂ 𝐿 ′ and 𝑁𝜉 = 𝑁𝑄′ .
The map 𝑎 ↦→ 𝐻𝑃 (𝜉𝑎𝜉

−1) identifies 𝐴∞
𝑀𝜉

with the subspace 𝔞𝐿 . In particular, we have

〈𝜆, 𝐻𝑃 (𝜉𝑎𝜉
−1)〉 = 0 for any 𝑎 ∈ 𝐴∞

𝑀𝜉
and 𝜆 ∈ 𝔞𝐿,∗

𝑀,C
. We define the intertwining period for all

𝜑 ∈ A𝑃,𝜋 (𝐺) and 𝜆 ∈ 𝔞𝐿,∗
𝑀,C

by

𝐽 (𝜉, 𝜑, 𝜆) =
∫
𝐴∞𝑀𝜉

𝑀𝜉 (𝐹 )𝑁𝜉 (A)\𝐺
′ (A)

exp(〈𝜆, 𝐻𝑃 (𝜉ℎ)〉)𝜑(𝜉ℎ)𝜂𝐺′ (ℎ) 𝑑ℎ. (4.1.5.4)
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Here, the group 𝑁𝜉 (A)𝐴
∞
𝑀𝜉

𝑀𝜉 (𝐹) is equipped with a right-invariant Haar measure. However, this
measure is not left-invariant: the modular character is given by

𝛿𝑃, 𝜉 : 𝑥 ↦→ exp(〈𝜌𝑃 , 𝐻𝑃 (𝜉𝑥𝜉−1)〉);

see [JLR99, VII p.221]. The integral in (4.1.5.4) is understood as a right-𝐺 ′(A)-invariant linear form
on the space of (𝑁𝜉 (A)𝐴∞

𝑀𝜉
𝑀𝜉 (𝐹), 𝛿𝑃, 𝜉 )-equivariant functions. This space contains

exp(〈𝜆, 𝐻𝑃 (𝜉 ·)〉)𝜑(𝜉·)

for 𝜆 ∈ 𝔞𝐿,∗
𝑀,C

. The integral (4.1.5.4) makes sense at least formally. It is, in fact, absolutely convergent
for 𝜆 such that 〈𝜆, 𝛼∨〉 is large enough for any 𝛼∨ ∈ Δ𝑄,∨𝑃 and it admits a meromorphic continuation
to 𝔞𝐿,∗

𝑀,C
. It does not depend on a specific choice of 𝜉. For all these properties, we refer the reader to

[JLR99, theorem 23 and (proof of) lemma 32]. In the same way, for any 𝜙 ∈ A𝐿∩𝑃,𝜋 (𝐿), one defines
the intertwining period 𝐽𝐿 (𝜉, 𝜙, 𝜆) by analytic continuation of the integral∫

𝐴∞𝑀𝜉
𝑀𝜉 (𝐹 )\𝐿

′ (A)

exp(〈𝜆, 𝐻𝑃 (𝜉ℎ)〉)𝜙(𝜉ℎ)𝜂𝐺′ (ℎ) 𝑑ℎ,

which is convergent for 𝜆 in some cone in 𝔞𝐿,∗
𝑀,C

. Let 𝑑𝑘 ′ be the Haar measure on 𝐾 ′ such that the
Iwasawa decomposition 𝐺 ′(A) = 𝐿 ′(A)𝑁𝑄′ (A)𝐾 ′ is compatible with the various choices of measures.
The following ‘parabolic descent’ will be useful:

Lemma 4.1.5.1. For all 𝜑 ∈ A𝑃,𝜋 (𝐺) and 𝜆 ∈ 𝔞𝐿,∗
𝑀,C

, we have

𝐽 (𝜉, 𝜑, 𝜆) = 𝐽𝐿 (𝜉, 𝜑𝐾
′

, 𝜆),

where we set

𝜑𝐾
′

(𝑔) = exp(−〈𝜌𝑄, 𝐻𝑄 (𝑔)〉)
∫
𝐾 ′

𝜑(𝑔𝑘 ′)𝜂𝐺′ (𝑘 ′) 𝑑𝑘 ′. (4.1.5.5)

Proof. We refer the reader to [JLR99, (proof of) lemma 32]. �

However, by [Lap06, lemma 8.1 case 2], we have in our situation

𝐽 (𝜉, 𝜑, 𝜆) = 𝐽𝐿 (𝜉, 𝜑𝐾
′

, 𝜆)

=
∫
[𝐿′ ]0

Λ𝑇𝑚𝐸
𝑄 (𝑥, 𝜑𝐾

′

, 𝜆)𝜂𝐺′ (𝑥) 𝑑𝑥, (4.1.5.6)

where the truncation operator Λ𝑇𝑚 is essentially that introduced in [JLR99]. More precisely, we decom-
pose 𝐿 = 𝐿𝑛 × 𝐿𝑛+1 as in (4.1.4.1): on a factor 𝐺𝑛𝑟+𝑛𝑟+1 , 𝑗 with 𝑗 = 𝑛, 𝑛 + 1 and r an odd integer such
that 1 � 𝑟 < 2𝑠 𝑗 , the truncation operator is exactly that of [JLR99, IV] and it is trivial on a factor 𝐺𝑛𝑟 , 𝑗

with 𝑟 𝑗 � 𝑟 > 2𝑠 𝑗 . The Eisenstein series 𝐸𝑄 (𝑥, 𝜑𝐾 ′
, 𝜆) is holomorphic on 𝑖𝔞𝐿,∗𝑀 . The basic properties of

the truncation operator Λ𝑇𝑚 (see [JLR99, IV]) implies that the integral of the truncated Eisenstein series
(4.1.5.6) is meromorphic on 𝔞𝐿,∗

𝑀,C
and even holomorphic on 𝑖𝔞𝐿,∗𝑀 . We deduce that the meromorphic

continuation of 𝐽 (𝜉, 𝜑, 𝜆) is holomorphic on 𝑖𝔞𝐿,∗𝑀 and that, for 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , the map 𝜑 ↦→ 𝐽 (𝜉, 𝜑, 𝜆) is
continuous on A𝑃,𝜋 (𝐺).

4.1.6. Rankin-Selberg period
Let 𝑇 ∈ 𝔞+𝑛+1 be a sufficiently positive parameter. Let 𝜑 ∈ A𝑃,𝜋 (𝐺) and 𝜆 ∈ 𝔞∗𝑀 . Let P(𝐸 (𝜑, 𝜆)) be the
regularized Rankin-Selberg period of the Eisenstein series 𝐸 (𝜑, 𝜆) defined by Ichino-Yamana in [IY15].
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Because we assume that (𝑀, 𝜋) is H-regular, the period is given by the truncated integral

P(𝐸 (𝜑, 𝜆)) =
∫
[𝐻 ]

Λ𝑇𝑟 𝐸 (ℎ, 𝜑, 𝜆) 𝑑ℎ, (4.1.6.1)

where Λ𝑇𝑟 is the Ichino-Yamana truncation operator (whose definition is recalled in [BPCZ22, eq.
(3.3.2.1)]). In fact, as the notation suggests, the right-hand side of (4.1.6.1) does not depend on T
(the proof of this property is the same as the proof of [BPCZ22, proposition 5.1.4.1]). In particular,
P(𝐸 (𝜑, 𝜆)) inherits analytic properties of the Eisenstein series 𝐸 (𝜑, 𝜆). Thus, it is holomorphic on 𝑖𝔞∗𝑀
and the map 𝜑 ↦→ P(𝐸 (𝜑, 𝜆)) is continuous.

4.1.7. The relative character
For any 𝜓 and 𝜑 ∈ A𝑃,𝜋 (𝐺), the expression

P(𝐸 (𝜓, 𝜆)) · 𝐽 (𝜉, �̄�,−𝜆)

is holomorphic on 𝑖𝔞𝐿,∗𝑀 and gives a continuous pairing on A𝑃,𝜋 (𝐺). By [BPCZ22, proposition 2.8.4.1],
for any 𝑓 ∈ S (𝐺 (A)) and any 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , we can define the relative character

𝐼𝑃,𝜋 (𝜆, 𝑓 ) =
∑

𝜑∈B𝑃,𝜋

P(𝐸 (𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)) · 𝐽 (𝜉, �̄�,−𝜆).

where the sum is over a K-basis B𝑃,𝜋 . We get a continuous map 𝑓 ↦→ (𝜆 ↦→ 𝐼𝑃,𝜋 (𝜆, 𝑓 )) from S (𝐺 (A))

to the space of Schwartz functions on 𝑖𝔞𝐿,∗𝑀 : this is a slight extension of [BPCZ22, proposition 4.1.10.1]
which basically relies on bounds of Eisenstein series due to Lapid in [Lap06, proposition 6.1]. Note also
that this is also an easy consequence of the inequality given in [Cha22, proof of proposition 7.2.3.2].

4.1.8. The (𝑮, 𝑯)-regular contribution to the Jacquet-Rallis trace formula
The contribution to the Jacquet-Rallis trace formula of a cuspidal datum 𝜒 is a distribution denoted
by 𝐼𝜒 and defined in [BPCZ22, theorem 3.2.4.1]. In the case of a Hermitian (𝐺, 𝐻)-regular cuspidal
datum, the next theorem relates this contribution to the relative character defined above.

Theorem 4.1.8.1. Let 𝜒 ∈ 𝔛(𝐺) be a (𝐺, 𝐻)-regular cuspidal datum.

1. If 𝜒 is not Hermitian, we have 𝐼𝜒 = 0.
2. Assume that 𝜒 is, moreover, Hermitian and let (𝑀𝑃 , 𝜋) and L be as in §4.1.4. For all 𝑓 ∈ S (𝐺 (A)),

we have

𝐼𝜒 ( 𝑓 ) = 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

𝐼𝑃,𝜋 (𝜆, 𝑓 ) 𝑑𝜆, (4.1.8.1)

where the integral in the right-hand side is absolutely convergent.

4.1.9. Proof of Theorem 4.1.8.1
Let 𝜒 ∈ 𝔛(𝐺) be a (𝐺, 𝐻)-regular cuspidal datum. Let 𝑓 ∈ S (𝐺 (A)) and let𝐾𝜒 be the kernel of the right
convolution by f on 𝐿2

𝜒 ([𝐺]). By [BPCZ22, proposition 3.3.8.1 and theorem 3.3.9.1], the contribution
𝐼𝜒 ( 𝑓 ) is the constant term in the asymptotic expansion in 𝑇 ∈ 𝔞+𝑛+1 of the absolutely convergent integral∫

[𝐻 ]

∫
[𝐺′ ]

Λ𝑇𝑟 𝐾𝜒 (ℎ, 𝑔) 𝜂𝐺′ (𝑔)𝑑𝑔𝑑ℎ. (4.1.9.1)

https://doi.org/10.1017/fmp.2025.8 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.8


Forum of Mathematics, Pi 41

By [BPCZ22, lemma 5.2.2.1], we have for all ℎ ∈ [𝐻],∫
[𝐺′ ]

(Λ𝑇𝑟 𝐾𝜒) (ℎ, 𝑔)𝜂𝐺′ (𝑔) 𝑑𝑔 = Λ𝑇𝑟

(∫
[𝐺′ ]

𝐾𝜒 (·, 𝑔)𝜂𝐺′ (𝑔) 𝑑𝑔

)
(ℎ). (4.1.9.2)

Then we have the following lemma:
Lemma 4.1.9.1. Let 𝜒 ∈ 𝔛(𝐺) be a (𝐺, 𝐻)-regular cuspidal datum. For all 𝑥 ∈ 𝐺 (A), the absolutely
convergent integral ∫

[𝐺′ ]

𝐾𝜒 (𝑥, 𝑔)𝜂𝐺′ (𝑔) 𝑑𝑔 (4.1.9.3)

vanishes unless 𝜒 is Hermitian. If 𝜒 is Hermitian and represented by (𝑀𝑃 , 𝜋), we have∫
[𝐺′ ]

𝐾𝜒 (𝑥, 𝑔) 𝜂𝐺′ (𝑔)𝑑𝑔 = 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

(
∑

𝜑∈B𝑃,𝜋

𝐸 (𝑥, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆) · 𝐽 (𝜉, �̄�,−𝜆) 𝑑𝜆, (4.1.9.4)

where the Levi subgroup L is that defined in §4.1.4 and B𝑃,𝜋 is a K-basis.
Proof. For brevity reasons, we shall get the lemma as a simple application of a much more difficult
result – namely, [Cha22, Theorem 7.2.4.1]. Our situation is essentially that of [Cha22, Theorem 7.2.4.1]
except that we are working here with a product of two general linear groups and our Flicker-Rallis
periods are twisted by the caracter 𝜂𝐺′ . Note that the absolute convergence of (4.1.9.3) results from
[BPCZ22, Lemma 2.10.1.1]. Let (𝑀, 𝜋) be a representative of the (𝐺, 𝐻)-regular cuspidal datum 𝜒 with
P a standard parabolic subgroup of G and 𝑀 = 𝑀𝑃 . Let 𝑃1 be standard parabolic subgroup of G and set
𝑀1 = 𝑀𝑃1 . There is a finite set Π𝜒 (𝑀1) used in the statement of [Cha22, theorem 7.2.4.1]. There is no
need to recall the general definition given in [Cha22, §7.1.1]: indeed, because 𝜒 is G-regular, either 𝑃1
and P are not associated in which case Π𝜒 (𝑀1) is empty or Π𝜒 (𝑀1) is the set of 𝑤𝜋 with 𝑤 ∈ 𝑊 (𝑃, 𝑃1).

We can extract from [Cha22, theorem 7.2.4.1] that (4.1.9.3) is equal to the absolutely convergent
expression∑

𝑃1

|P (𝑀1) |
−1

∑
𝐿1∈L2 (𝑀1)

2− dim(𝔞𝐿1 )
∑

𝑤 ∈𝑊 (𝑃,𝑃1)

∫
𝑖𝔞

𝐿1 ,∗

𝑀1

I𝐿1 ,𝑤 𝜋 (𝑥, 𝑓 , 𝜆) 𝑑𝜆, (4.1.9.5)

where the sum is over the set of standard parabolic sugroups 𝑃1 of G and 𝑀1 = 𝑀𝑃1 , the number of
parabolic subgroups of Levi M is denoted by |P (𝑀) |, the set L2 (𝑀1) is a subset of the set of Levi
subgroups of G containing 𝑀1 (see [Cha22, §2.2.3]) and I𝐿1 ,𝑤 𝜋 (𝑥, 𝑓 , 𝜆) is mutatis mutandis the relative
character that essentially appears in the statement of [Cha22, theorem 7.2.4.1]. The main difference is
that we are working here on a product of two linear groups and that the relative character is built upon
Eisenstein series and the intertwining periods defined in [Cha22, §5.1.4] but twisted by the character
𝜂𝐺′ . Let 𝑀1, 𝐿1 and 𝑤 ∈ 𝑊 (𝑃, 𝑃1) be as in (4.1.9.5) and let 𝑥 ∈ 𝐺 (A) and 𝜆 ∈ 𝑖𝔞𝐿1 ,∗

𝑀1
. Rather than spell

out the exact definition of I𝐿1 ,𝑤 𝜋 (𝑥, 𝑓 , 𝜆), we will explain it in the particular case that concerns us.
Before doing that, we owe a detailed explanation to the careful reader who will certainly have noticed
the apparent discrepancy of a factor 2dim(𝔞𝐺 ) . The reason is the following: [Cha22, theorem 7.2.4.1]
gives in fact the spectral expansion of∫

[𝐺′ ]0

∫
𝐴∞

𝐺

𝐾𝜒 (𝑎𝑥, 𝑔)𝜂𝐺′ (𝑔) 𝑑𝑎𝑑𝑔,

whereas we are working with∫
[𝐺′ ]

𝐾𝜒 (𝑥, 𝑔)𝜂𝐺′ (𝑔) 𝑑𝑔 = 2− dim(𝔞𝐺 )

∫
[𝐺′ ]0

∫
𝐴∞

𝐺

𝐾𝜒 (𝑎𝑥, 𝑔)𝜂𝐺′ (𝑔) 𝑑𝑎𝑑𝑔.
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The equality above comes from the difference between the respective measures on 𝐴∞
𝐺 and 𝐴∞

𝐺′; see
§4.1.2.

By the fact that 𝜒 is G-regular and by the basic properties of the cuspidal intertwining periods (see
[JLR99, theorem 23]), we see that the relative character I𝐿1 ,𝑤 𝜋 (𝑥, 𝑓 , 𝜆) vanishes unless 𝜒 is Hermitian.
So we get the first assertion, and we assume from now on that 𝜒 is moreover Hermitian. Note that, by
definition, we have for all 𝜇 ∈ 𝑖𝔞𝐿,∗𝑀 ,

I𝐿,𝜋 (𝑥, 𝑓 , 𝜇) =
∑

𝜑∈B𝑃,𝜋

𝐸 (𝑥, 𝐼𝑃 (𝜇, 𝑓 )𝜑, 𝜇) · 𝐽 (𝜉, �̄�,−𝜇). (4.1.9.6)

We claim that we have

∀𝜆 ∈ 𝑖𝔞𝐿1 ,∗
𝑀1

I𝐿1 ,𝑤 𝜋 (𝑥, 𝑓 , 𝜆) = I𝑤−1𝐿1𝑤,𝜋 (𝑥, 𝑓 , 𝑤
−1𝜆). (4.1.9.7)

Moreover, it follows from the fact that 𝜒 is G-regular and Hermitian that for all Levi subgroup 𝐿1 ∈

L2 (𝑀) and all 𝜇 ∈ 𝔞𝐿1 ,∗
𝑀 , we have

I𝐿1 ,𝑤 𝜋 (𝑥, 𝑓 , 𝜆) = 0 if 𝐿1 ≠ 𝑤𝐿𝑤−1. (4.1.9.8)

Let us assume (4.1.9.7) for the moment, and let us finish the proof of (4.1.9.4). By (4.1.9.7) and
(4.1.9.8) and the change of variables 𝜆 ↦→ 𝑤−1𝜆, we see that (4.1.9.5) is equal to

2− dim(𝔞𝐿 )
∑
𝑃1

|P (𝑀1) |
−1

∑
𝑤 ∈𝑊 (𝑃,𝑃1)

∫
𝑖𝔞𝑤𝐿𝑤−1 ,∗

𝑀1

I𝐿,𝜋 (𝑥, 𝑓 , 𝑤−1𝜆) 𝑑𝜆

= 2− dim(𝔞𝐿 )
(∑
𝑃1

|P (𝑀1) |
−1 |𝑊 (𝑃, 𝑃1) |

) ∫
𝑖𝔞𝐿,∗

𝑀

I𝐿,𝜋 (𝑥, 𝑓 , 𝜆) 𝑑𝜆

= 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

I𝐿,𝜋 (𝑥, 𝑓 , 𝜆) 𝑑𝜆

since
∑
𝑃1 |P (𝑀1) |

−1 |𝑊 (𝑃, 𝑃1) | = 1 where the various sums are over standard parabolic subgroups 𝑃1.
Let us prove the claim (4.1.9.7). We start from 𝑀1, 𝐿1, 𝜆, 𝑤 as in (4.1.9.5). By (4.1.9.8), we may and

shall assume that we have 𝐿1 = 𝑤𝐿𝑤−1. Let 𝑄1 be a parabolic subgroup of Levi 𝐿1. Let 𝑃2 be a standard
parabolic subgroup of G and let 𝑤1 ∈ 𝑊 (𝑃1, 𝑃2) such that 𝑃2 ⊂ 𝑤1𝑄1𝑤

−1
1 . Using the definition of

intertwining periods given in [Cha22, §5.1.4], the functional equation of Eisenstein series and a standard
basis change relying on the fact that the intertwining operator 𝑀 (𝑤1, 𝜆) induces a unitary isomorphism
from A𝑃1 ,𝑤 𝜋 (𝐺) onto A𝑃1 ,𝑤1𝑤𝜋 (𝐺), we see that we have

I𝐿1 ,𝑤 𝜋 (𝑥, 𝑓 , 𝜆) = I𝐿2 ,𝑤1𝑤𝜋 (𝑥, 𝑓 , 𝑤1𝜆)

with 𝐿2 = 𝑤1𝐿1𝑤
−1
1 . Thus, we are reduced to prove (4.1.9.7) in the special case where the Levi subgroup

𝐿1 = 𝑤𝐿𝑤−1 is standard. But then (4.1.9.7) follows from the same arguments as before, namely the
functional equation of Eisenstein series and a standard basis change and the functional equation of
intertwining periods, namely [JLR99, theorem 31] completed with [Lap06, lemma 8.1]. For a similar
statement, see [Lap06, proposition 8.2]. This finishes the proof. �

It follows from Lemma 4.1.9.1 that, for ℎ ∈ [𝐻], we have

Λ𝑇𝑟

(∫
[𝐺′ ]

𝐾𝜒 (·, 𝑔)𝜂𝐺′ (𝑔) 𝑑𝑔

)
(ℎ) = 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

∑
𝜑∈B𝑃,𝜋

(Λ𝑇𝑟 𝐸 (ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆) · 𝐽 (𝜉, �̄�,−𝜆) 𝑑𝜆.

(4.1.9.9)
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To get this, we have to permute the truncation operator with the sum and the integral. However, one
observes that for a fixed ℎ ∈ [𝐻], the truncation operator is a finite sum of constant terms. So to get
(4.1.9.9), one has basically to permute the integral over 𝑖𝔞𝐿,∗𝑀 and the integral that gives a constant term.
So, by Fubini theorem, it suffices to show that for any parabolic subgroup Q of G, the sum∑

𝜑∈B𝑃,𝜋

∫
𝑁𝑄

|𝐸 (𝑛ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆) | 𝑑𝑛 · |𝐽 (𝜉, �̄�,−𝜆) |

is a Schwartz function in the variable 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 . But this is a variant of [Lap06, Lemma 7.4]; it is also
an easy consequence of [Cha22, proposition 7.2.3.2]. The last step is to observe that∫

[𝐻 ]

∫
𝑖𝔞𝐿,∗

𝑀

∑
𝜑∈B𝑃,𝜋

Λ𝑇𝑟 𝐸 (ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆) · 𝐽 (𝜉, �̄�,−𝜆) 𝑑𝜆𝑑ℎ (4.1.9.10)

=
∫
𝑖𝔞𝐿,∗

𝑀

∑
𝜑∈B𝑃,𝜋

∫
[𝐻 ]

Λ𝑇𝑟 𝐸 (ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆) 𝑑ℎ · 𝐽 (𝜉, �̄�,−𝜆) 𝑑𝜆

and to use (4.1.6.1) to recognize the relative character 𝐼𝑃,𝜋 (𝜆, 𝑓 ) in the inner sum. Once again by a
variant of [Lap06, Lemma 7.4] (or by [Cha22, proposition 7.2.3.2]) and the basic properties of truncation
operator (see [BPCZ22, proposition 3.3.2.1]), we have∫

𝑖𝔞𝐿,∗
𝑀

∑
𝜑∈B𝑃,𝜋

∫
[𝐻 ]

|Λ𝑇𝑟 𝐸 (ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆) | 𝑑ℎ · |𝐽 (𝜉, �̄�,−𝜆) |𝑑𝜆 < ∞.

We can again conclude with Fubini’s theorem.

4.2. The relative character in terms of Whittaker functions

4.2.1.
We keep the notations of the previous subsection. Let 𝑁 = 𝑁𝑛 × 𝑁𝑛+1 and 𝑁𝐻 = 𝑁𝑛 be viewed as a
diagonal subgroup of N. Let 𝑁 ′ = 𝑁 ∩ 𝐺 ′.

4.2.2.
We fix a nontrivial additive character 𝜓 ′ : A/𝐹 → C×. We deduce a character 𝜓 : A𝐸/𝐸 → C× trivial
on A by 𝜓(𝑧) = 𝜓 ′(Tr𝐸/𝐹 (𝜏𝑧)), where 𝜏 ∈ 𝐸× is such that 𝑐(𝜏) = −𝜏. We define a regular character
𝜓𝑛 : [𝑁𝑛] → C× by

𝜓𝑛 (𝑢) = 𝜓

(
(−1)𝑛

𝑛−1∑
𝑖=1

𝑢𝑖,𝑖+1

)
for any 𝑢 ∈ [𝑁𝑛]. In the same way, we get a character 𝜓𝑛+1 of [𝑁𝑛+1]. Thus, we have a character
𝜓𝑁 = 𝜓𝑛 � 𝜓𝑛+1 of [𝑁]. By construction, 𝜓𝑁 is trivial on the subgroups 𝑁 ′ and 𝑁𝐻 .

4.2.3.
Recall that we have fixed a pair (𝑀, 𝜋) with 𝑀 = 𝑀𝑃 (see §§4.1.3 and 4.1.4). Let 𝜆 ∈ 𝑖𝔞𝐺,∗𝑃 . Let 𝜋𝜆 be
the representation 𝜋 twisted by the character 𝑚 ↦→ exp(〈𝜆, 𝐻𝑀 (𝑚〉) and let Π𝜆 = Ind𝐺 (A)

𝑃 (A)
(𝜋𝜆) be the

induced representation. The representation Π𝜆 is irreducible, unitary and generic. Let W (Π𝜆, 𝜓𝑁 ) be
its Whittaker model with respect to the character 𝜓𝑁 .
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For any 𝜑 ∈ A𝑃,𝜋 (𝐺) and 𝑔 ∈ 𝐺 (A), let

𝑊 (𝑔, 𝜑, 𝜆) =
∫
[𝑁 ]

𝐸 (𝑢𝑔, 𝜑, 𝜆)𝜓−1
𝑁 (𝑢) 𝑑𝑢.

We may and shall identify 𝑔 ↦→ 𝑊 (𝑔, 𝜑, 𝜆) with an element of W (Π𝜆, 𝜓𝑁 ).

4.2.4.
Let 𝑊 ∈ W (Π𝜆, 𝜓𝑁 ). By [JPSS83] and [Jac09], the integral

𝑍RS (𝑠,𝑊) =
∫
𝑁𝐻 (A)\𝐻 (A)

𝑊 (ℎ) |det ℎ|𝑠
A𝐸

𝑑ℎ

converges for �(𝑠) � 0 and extends to a meromorphic function on C which is holomorphic at 𝑠 = 0.
Let P = P𝑛 ×P𝑛+1 be the product of the respective mirabolic subgroups P𝑛 and P𝑛+1 of 𝐺𝑛 and 𝐺𝑛+1.
Let P ′ = P ∩ 𝐺 ′. We put As𝐺 = As(−1)𝑛+1

� As(−1)𝑛 . For any finite set 𝑆 ⊂ 𝑉𝐹 , we set

𝛽𝜂 (𝑊) = (Δ𝑆,∗𝐺′ )
−1𝐿𝑆,∗ (1,Π𝜆,As𝐺)

∫
𝑁 ′ (𝐹𝑆 )\P′ (𝐹𝑆 )

𝑊 (𝑝𝑆)𝜂𝐺′ (𝑝𝑆)𝑑𝑝𝑆

and

〈𝑊,𝑊〉Whitt = (Δ𝑆,∗𝐺 )−1𝐿𝑆,∗ (1,Π𝜆,Ad)
∫
𝑁 (𝐹𝑆 )\P (𝐹𝑆 )

|𝑊 (𝑝𝑆) |
2𝑑𝑝𝑆 .

Here and hereafter, 𝐿∗(1) means the leading coefficient in the Laurent expansion of the meromorphic
function 𝐿(𝑠) at 𝑠 = 1. The above expressions converge and are independent of S as soon as it is chosen
sufficiently large according to the level of W (see [Fli88] and [JS81b]).

4.2.5.
Proposition 4.2.5.1. For any 𝜑 ∈ A𝑃,𝜋 (𝐺), we have

𝑍RS (0,𝑊 (𝜑, 𝜆)) = P(𝐸 (𝜑, 𝜆)).

Proof. This is a straightforward application of results of Ichino-Yamana and the fact that (𝑀, 𝜋) is
H-regular. First, for any 𝑇 ∈ 𝔞+𝑛+1 and any 𝑠 ∈ C, the integral∫

[𝐻 ]

Λ𝑇𝑟 𝐸 (ℎ, 𝜑, 𝜆) | det(ℎ) |𝑠 𝑑ℎ (4.2.5.1)

converges and defines a holomorphic function in the variable s. Moreover, since (𝑀, 𝜋) is H-regular,
it does not depend on T (see [BPCZ22, proof of proposition 5.1.4.1]). Because of this, (4.2.5.1) is the
regularized Rankin-Selberg period of ℎ ↦→ 𝐸 (ℎ, 𝜑, 𝜆) | det(ℎ) |𝑠 defined in [IY15]. By [IY15, theorem
1.1], we deduce that (4.2.5.1) is equal to 𝑍RS (𝑠,𝑊 (𝜑, 𝜆)). It suffices to take 𝑠 = 0 to get the result. �

4.2.6.
Proposition 4.2.6.1. For any 𝜑 ∈ A𝑃,𝜋 (𝐺), we have

〈𝜙, 𝜙〉Pet = 〈𝑊 (𝜑, 𝜆),𝑊 (𝜑, 𝜆)〉Whitt.

Proof. This is the proof of [BPCZ22, proposition 8.1.2.1]), the main assumption there being that (𝑀, 𝜋)
is regular. �
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4.2.7.
Proposition 4.2.7.1. For any 𝜑 ∈ A𝑃,𝜋 (𝐺), we have

𝐽 (𝜉, 𝜑, 𝜆) = 𝛽𝜂 (𝑊 (𝜑, 𝜆)). (4.2.7.1)

Proof. We shall follow the notations of §§4.1.4 and 4.1.5. Let 𝜆 ∈ 𝔞𝐿,∗
𝑀,C

. For all 𝜑 ∈ A𝑃,cusp(𝐺), we
have the Eisenstein series 𝐸𝑄 (𝜑, 𝜆) defined in (2.2.4.1), and we set for all 𝑔 ∈ 𝐺 (A),

𝑊𝐿 (𝑔, 𝜑, 𝜆) =
∫
[𝑁∩𝐿 ]

𝐸𝑄 (𝑢𝑔, 𝜑, 𝜆)𝜓−1
𝑁 (𝑢) 𝑑𝑢.

Let P𝐿 the mirabolic subgroup of L (defined as the product of the mirabolic subgroups of its factors
in the decomposition into a product of general linear groups). We set P𝐿′ = P𝐿 ∩ 𝐿 ′. Let As𝐿𝑛 (resp.
As𝐿𝑛+1 ) be the tensor product of As(−1)𝑛+1 (resp. As(−1)𝑛 ) for each factor in the decomposition of 𝐿𝑛,
resp. 𝐿𝑛+1, into a product of general linear groups. Let As𝐿 = As𝐿𝑛 �As𝐿𝑛+1 . Let Π𝑄𝜆 = Ind𝑄 (A)

𝑃 (A)
(𝜋𝜆) be

the induced representation. It follows from our hypothesis on 𝜋 and from [Fli92, proposition 2.6] that
Π𝑄𝜆 is (𝐿 ′, 𝜂𝐺′ )-distinguished.

Let 𝜑 ∈ A𝑃,𝜋 (𝐺). First, by Lemma 4.1.5.1, we have

𝐽 (𝜉, 𝜑, 𝜆) = 𝐽𝐿 (𝜉, 𝜑𝐾
′

, 𝜆),

where 𝜑𝐾
′ is defined in (4.1.5.5). Then using [Zha14a, proposition 3.2], [Fli88] and Theorem 5.5.1.1 in

section 5 below, we can compute the intertwining period 𝐽𝐿 (𝜉, 𝜑𝐾
′
, 𝜆) in terms of 𝑊𝐿 : we deduce that,

for S a large enough set of places, 𝐽 (𝜉, 𝜑, 𝜆) is equal to

(Δ𝑆,∗𝐿′ )
−1𝐿𝑆,∗ (1,Π𝑄𝜆 ,As𝐿)

∫
(𝑁 ′∩𝐿) (𝐹𝑆 )\P′

𝐿 (𝐹𝑆 )

𝑊𝐿 (𝑞𝑆 , 𝜑
𝐾 ′

𝜆)𝜂𝐺′ (𝑞𝑆) 𝑑𝑞𝑆

= (Δ𝑆,∗𝐿′ )
−1𝐿𝑆,∗(1,Π𝑄𝜆 ,As𝐿)

∫
𝐾 ′

∫
(𝑁 ′∩𝐿) (𝐹𝑆 )\P′

𝐿 (𝐹𝑆 )

𝑊𝐿 (𝑞𝑆𝑘
′, 𝜑−𝜌𝑄 , 𝜆)𝜂𝐺′ (𝑞𝑆𝑘

′) 𝑑𝑞𝑆𝑑𝑘
′,

where 𝜑(𝑔) = exp(−𝜌𝑄, 𝐻𝑄 (𝑔)〉)𝜑(𝑔). For 𝑔 ∈ 𝐺 (𝐹𝑆), set

Φ(𝑔) =
∫
(𝑁 ′∩𝐿) (𝐹𝑆 )\P′

𝐿 (𝐹𝑆 )

𝑊𝐿 (𝑞𝑆𝑔, 𝜑−𝜌𝑄 , 𝜆)𝜂𝐺′ (𝑞𝑆𝑔) 𝑑𝑞𝑆 .

The map Φ is left-invariant by 𝐿 ′(𝐹𝑆) as follows from the first assertion of [BPCZ22, theorem 9.1.7.1].
We deduce that it is also left-invariant by 𝑄 ′(𝐹𝑆). Using the equality (4.1.2.1), we get that 𝐽 (𝜉, 𝜑, 𝜆) is
equal to

(Δ𝑆,∗𝐺′ )
−1𝐿𝑆,∗ (1,Π𝑄𝜆 ,As𝐿)

∫
𝑄′ (𝐹𝑆 )\𝐺′ (𝐹𝑆 )

exp(𝜌𝑄, 𝐻𝑄 (𝑔𝑆)〉)Φ(𝑔𝑆)𝑑𝑔𝑆 .

Now we can appeal to the equality of [BPCZ22, theorem 9.1.7.1] to get that the last line is equal to

(Δ𝑆,∗𝐺′ )
−1𝐿𝑆,∗ (1,Π𝑄𝜆 ,As𝐿)

∫
𝑁 ′ (𝐹𝑆 )\P′ (𝐹𝑆 )

W𝑆 (𝑝𝑆 , 𝜆, 𝜑)𝜂𝐺′ (𝑝𝑆) 𝑑𝑝𝑆 ,

where W𝑆 (𝑔𝑆 , 𝜆, 𝜑) stands for the Jacquet integral given by the value at 𝑠 = 0 of the holomorphic
continuation of the integral:∫

(𝑤−1
𝐿 𝐿𝑤𝐿∩𝑁 ) (𝐹𝑆 )\𝑁 (𝐹𝑆 )

𝛿𝑄 (𝑤𝐿𝑢𝑔𝑆)
𝑠𝑊𝐿 (𝑤𝐿𝑢𝑔𝑆 , 𝜑, 𝜆)𝜓𝑁 (𝑢)

−1 𝑑𝑢, �(𝑠) � 1,
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where 𝑤𝐿 is the permutation matrix that represents the product of the longest elements respectively of
the Weyl groups of L and of G. To conclude, it suffices to observe that for any 𝑔𝑆 ∈ 𝐺 (A𝑆),

𝐿𝑆,∗ (1,Π𝑄𝜆 ,As𝐿)W𝑆 (𝑔𝑆 , 𝜆, 𝜑) = 𝐿𝑆,∗(1,Π𝜆,As)𝑊 (𝑔𝑆 , 𝜆, 𝜑).

Indeed, this follows from computations of [Sha81, section 4] and the fact that the functions
𝐿𝑆 (𝑠,Π𝑄𝜆 ,As𝐿) and 𝐿𝑆 (𝑠,Π𝜆,As) have a pole of same order at 𝑠 = 1 since the cuspidal datum associ-
ated to (𝑀, 𝜋) is G-regular and Hermitian. �

4.2.8.
Let B𝑃,𝜋 be a K-basis of A𝑃,𝜋 (𝐺). For any 𝑓 ∈ S (𝐺 (A)), we define

𝐼Π𝜆 ( 𝑓 ) =
∑

𝜑∈B𝑃,𝜋

𝑍𝑅𝑆 (0,𝑊 (𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆))𝛽𝜂 (𝑊 (𝜑, 𝜆))

〈𝑊 (𝜑, 𝜆),𝑊 (𝜑, 𝜆)〉Pet
. (4.2.8.1)

Theorem 4.2.8.1.

1. The series (4.2.8.1) converges, does not depend on the choice of B𝑃,𝜋 and defines a continuous
distribution on S (𝐺 (A)).

2. We have 𝐼Π𝜆 ( 𝑓 ) = 𝐼𝑃,𝜋 (𝜆, 𝑓 ).

Proof. The two assertions follow from the fact that the relative characters 𝐼Π𝜆 and 𝐼𝜋,𝜆 can be identified
term by term by the combination of Propositions 4.2.5.1, 4.2.6.1 and 4.2.7.1. �

5. Intertwining periods and Whittaker functions

5.1. Notations

5.1.1.
We follow the notations of §4.1.1. However, in this section, we set 𝐺 = 𝐺2𝑛 and 𝐺 ′ = 𝐺 ′

2𝑛. Let 𝑃 = 𝑀𝑁
be the maximal standard parabolic subgroup of G where its standard Levi factor M is 𝐺𝑛 × 𝐺𝑛. Let 𝜎
be an irreducible cuspidal automorphic representation of 𝐺𝑛 with central character trivial on 𝐴∞

𝐺𝑛
. Let

𝜋 = 𝜎 � 𝜎∗: this a cuspidal representation of M.

5.1.2.
We set

𝑃𝑊𝑃 = {𝑤 ∈ 𝑊 | 𝑀 ∩ 𝑤−1𝐵2𝑛𝑤 = 𝑀 ∩ 𝐵2𝑛 = 𝑀 ∩ 𝑤𝐵2𝑛𝑤
−1}

and the subset of involutions

𝑃𝑊𝑃,2 = {𝑤 ∈ 𝑃𝑊𝑃 | 𝑤2 = 1}.

We have the following lemma:

Lemma 5.1.2.1. (Jacquet-Lapid-Rogawski, see [JLR99, proposition 20]). Any double coset in
𝑃(𝐹)\𝐺 (𝐹)/𝐺 ′(𝐹) has a representative 𝜉 such that 𝜉 = 𝜉𝑐(𝜉)−1 belongs to 𝑃𝑊𝑃,2. The map
𝑃(𝐹)𝜉𝐺 ′(𝐹) ↦→ 𝜉 is well defined and induces a bijection from 𝑃(𝐹)\𝐺 (𝐹)/𝐺 ′(𝐹) onto 𝑃𝑊𝑃,2.

For any 𝜉 ∈ 𝐺 (𝐹) such that 𝜉𝑐(𝜉)−1 belongs to 𝑃𝑊𝑃,2, we set 𝑃𝜉 = 𝐺 ′ ∩ 𝜉−1𝑃𝜉 and 𝑀𝜉 =
𝐺 ′ ∩ 𝜉−1𝑀𝜉. Note that 𝑀𝜉 is a Levi factor of 𝑃𝜉 .
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5.1.3.
We fix 𝜏 ∈ 𝐸 such that 𝑐(𝜏) = −𝜏. Let

𝜉0 =

(
𝐼𝑛 𝜏𝐼𝑛
𝐼𝑛 −𝜏𝐼𝑛

)
and 𝜉0 = 𝜉0𝑐(𝜉0)

−1.

We have 𝜉0 ∈ 𝑃𝑊𝑃,2 and 𝑃𝜉0
= 𝑀𝜉0

.
Let 𝜑 ∈ A𝑃,𝜋 (𝐺). For any 𝜆 ∈ 𝔞𝐺,∗

𝑃,C
, we consider the intertwining period (due to Jacquet-Lapid-

Rogawski; see [JLR99])

𝐽 (𝜉0, 𝜑, 𝜆) =
∫
𝐴∞𝑀𝜉0

𝑀𝜉0
(𝐹 )\𝐺′ (A)

exp(〈𝜆, 𝐻𝑃 (𝜉ℎ)〉)𝜑(𝜉ℎ) 𝑑ℎ. (5.1.3.1)

Note that we have 𝐴∞
𝑀𝜉0

= 𝐴∞
𝐺′ . Let 𝛼 be the unique root in Δ𝑃 . The integral above is absolutely

convergent if �(〈𝛼, 𝜆〉) � 0. Moreover, it admits a meromorphic continuation to 𝔞𝐺,∗
𝑃,C

; see [JLR99,
theorem 23].

5.2. Epstein series and intertwining periods

5.2.1.
The group G acts on the right on the space of rows of size 2𝑛 (identified to 𝐸2𝑛). Let P be the stabilizer
of 𝑒2𝑛 = (0, . . . , 0, 1). Let P ′ = P ∩ 𝐺 ′.

Let Φ ∈ S (A2𝑛). For any 𝑠 ∈ C such that �(𝑠) > 1 and any ℎ ∈ [𝐺 ′], the Epstein series is defined
by the following absolutely convergent integral:

𝐸 (ℎ,Φ, 𝑠) =
∫
𝐴∞

𝐺′

∑
𝛾∈P′ (𝐹 )\𝐺′ (𝐹 )

Φ(𝑒2𝑛𝛾𝑎ℎ) | det(𝑎ℎ) |𝑠𝑑𝑎.

Here, | · | is the product over all places v of F of normalized absolute values of the completions 𝐹𝑣 . The
map 𝑠 ↦→ 𝐸 (Φ, 𝑠) extends to a meromorphic function valued in T ([𝐺 ′]) with simple poles at 𝑠 = 0, 1
of respective residues Φ(0) and Φ̂(0) (cf. [JS81b, Lemma 4.2]).

5.2.2.
Let 𝜉 ∈ 𝐺 (𝐹) such that 𝜉 = 𝜉𝑐(𝜉)−1 belongs to 𝑃𝑊𝑃,2. We assume also 𝜉 ≠ 1. Let 𝜑 ∈ A𝑃,𝜋 (𝐺). We
define

𝐽 (𝜉, 𝜑, 𝜆,Φ, 𝑠) =
∫
𝐴∞

𝐺′𝑃𝜉 (𝐹 )\𝐺
′ (A)

exp(〈𝜆, 𝐻𝑃 (𝜉ℎ)〉)𝜑(𝜉ℎ)𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ. (5.2.2.1)

If it is well defined, this integral does not depend on 𝜉 provided that we have 𝜉 = 𝜉𝑐(𝜉)−1, hence the
notation.

Proposition 5.2.2.1. Assume 𝜉 ≠ 1.

1. There exists 𝑟 > 0 such that for each for any 𝜆 in the domain,

D𝑟 = {𝜆 ∈ 𝔞𝐺,∗
𝑃,C

| �(〈𝜆, 𝛼∨〉) > 𝑟},

and any 𝑠 ∈ C \ {0, 1} the integral (5.2.2.1) converges absolutely. It also converges uniformly for
�(𝜆) in a compact subset of D𝑟 and s in a compact subset of C \ {0, 1}.

2. The map (𝜆, 𝑠) ↦→ 𝐽 (𝜉, 𝜑, 𝜆,Φ, 𝑠) is holomorphic on D𝑟 × C \ {0, 1}.
3. If 𝜉 ≠ 𝜉0, the map has a holomorphic extension to D𝑟 × C.
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4. If 𝜉 = 𝜉0, the map has simple poles at 𝑠 = 0, 1 with respective residues:

Φ(0)𝐽 (𝜉0, 𝜑, 𝜆) and Φ̂(0)𝐽 (𝜉0, 𝜑, 𝜆).

Proof. We fix a compact subset Ω of C. We can write

𝐽 (𝜉, 𝜑, 𝜆,Φ, 𝑠) =
∫
[𝐺′ ]0

���
∑

𝛿∈𝑃𝜉 (𝐹 )\𝐺
′ (𝐹 )

exp(〈𝜆, 𝐻𝑃 (𝜉𝛿ℎ)〉)𝜑(𝜉𝛿ℎ)
��� 𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ.

We shall use the following two facts:

• there exist 𝐶, 𝑡 > 0 such that for all ℎ ∈ 𝐺 ′(A)1 and 𝑠 ∈ Ω,

|𝑠(𝑠 − 1)𝐸 (ℎ,Φ, 𝑠) | � 𝐶‖ℎ‖𝑡𝐺′ . (5.2.2.2)

• there exists 𝑟 > 0 such that for any 𝑡 > 0 and any 𝜆 ∈ D𝑟 , there exists 𝐶 > 0 such that for all
ℎ ∈ 𝐺 ′(A)1, ∑

𝛿∈𝑃𝜉 (𝐹 )\𝐺
′ (𝐹 )

| exp(〈𝜆, 𝐻𝑃 (𝜉𝛿ℎ)〉)𝜑(𝜉𝛿ℎ) | � 𝐶‖ℎ‖−𝑡𝐺′ . (5.2.2.3)

Moreover, in (5.2.2.3), the constant C may be chosen uniformly for 𝜆 such that �(𝜆) belongs to a
compact subset of D𝑟 . This can be extracted from the proof of [JLR99, theorem 23], more precisely
from the combination of proposition 24 and the lines following (58) of [JLR99].

We get the holomorphic continuation with at most simple poles at 𝑠 = 0, 1. Up to a factor Φ(0) or
Φ̂(0), the residue is given by∫

𝐴∞
𝐺′𝑃𝜉 (𝐹 )\𝐺

′ (A)

exp(〈𝜆, 𝐻𝑃 (𝜉ℎ)〉)𝜑(𝜉ℎ) 𝑑ℎ.

This integral converges absolutely thanks to the majorization (5.2.2.3). According to the proof of
[JLR99, theorem 23], the integral vanishes unless 𝜉 = 𝜉0. In this case, the integral is nothing else but
𝐽 (𝜉0, 𝜑, 𝜆). �

5.3. Period of a pseudo-Eisenstein series: first computation

5.3.1.
Let 𝜔 be the central character of 𝜋. By restriction, it induces a unitary character of 𝑍 ′

𝐺 (A). Let

Φ̃(ℎ, 𝜔, 𝑠) =
∫
𝑍𝐺′ (A)

Φ(𝑒2𝑛𝑧ℎ)𝜔(𝑧) | det(𝑧ℎ) |𝑠𝑑𝑧.

The integral is convergent for �(𝑠) > 1
𝑛 . Let 𝑃′

1 = P ′𝑍𝐺′ . This is a parabolic subgroup of 𝐺 ′ of type
(2𝑛 − 1, 1). Then we have∫

𝐴∞
𝐺′𝑍𝐺′ (𝐹 )\𝑍𝐺′ (A)

𝐸 (𝑧ℎ,Φ, 𝑠)𝜔(𝑧) 𝑑𝑧 = 𝐸 (ℎ, Φ̃(𝜔, 𝑠)),

where

𝐸 (ℎ, Φ̃(𝜔, 𝑠)) =
∑

𝛾∈𝑃′
1 (𝐹 )\𝐺

′ (𝐹 )

Φ̃(𝛾ℎ, 𝜔, 𝑠)
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is a usual Eisenstein series, which is convergent for �(𝑠) > 1. By the classical computation of the
constant term of an Eisenstein series, there exist a finite set I and families (𝜑𝑖,𝑠)𝑖∈𝐼 ∈ A𝑃′ (𝐺 ′)𝐼 and
(𝜇𝑖,𝑠)𝑖∈𝐼 ∈ 𝔞𝐺,∗

𝑃,C
for any 𝑠 ∈ C such that the following conditions are satisfied for any 𝑖 ∈ 𝐼:

• the map 𝑠 ↦→ 𝜇𝑖,𝑠 is affine;
• the map 𝑠 ↦→ 𝜑𝑖,𝑠 is a meromorphic function;
• we have 𝜑𝑖,𝑠 (𝑎ℎ) = 𝜑𝑖,𝑠 (ℎ) for any ℎ ∈ 𝐺 ′(A) and 𝑎 ∈ 𝐴∞

𝑀 ′ ;
• we have for any 𝑎 ∈ 𝐴∞

𝑀 ′ , 𝑚 ∈ 𝑀 ′(A)1 and 𝑘 ∈ 𝐾 ′,∫
[𝑁𝑃′ ]

𝐸 (𝑛𝑎𝑚𝑘, Φ̃(𝜔, 𝑠))𝑑𝑛 =
∑
𝑖∈𝐼

𝜑𝑖,𝑠 (𝑚𝑘) exp(〈𝜇𝑖,𝑠 , 𝐻𝑃 (𝑎)〉). (5.3.1.1)

5.3.2.
We shall simply say that a map 𝛽 : 𝔞𝐺,∗

𝑃,C
→ C is a Paley-Wiener function if it is given by the Fourier-

Laplace transform of a compactly supported smooth function on 𝔞𝐺,∗𝑃 .

5.3.3.
In the following, we consider the following objects:

• 𝛽 a Paley-Wiener function;
• 𝑓 ∈ 𝐶∞

𝑐 (𝐺 (𝐹∞)) a decomposable function;
• 𝜅 ∈ 𝔞∗𝑃;
• 𝜑 ∈ A𝑃,𝜋 (𝐺).

From these, one defines the pseudo-Eisenstein series

𝜃 (𝑔) =
∑

𝛿∈𝑃 (𝐹 )\𝐺 (𝐹 )

𝐵(𝛿𝑔),

where B is the function on 𝐴∞
𝐺𝑁 (A)𝑀 (𝐹)\𝐺 (A) given by

𝐵(𝑔) =
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

exp(〈𝜆, 𝐻𝑃 (𝑔)〉)(𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑔)𝛽(𝜆) 𝑑𝜆.

In the following, we shall assume that 𝜅 is in the region of convergence of the Eisenstein series
𝐸 (𝜑, 𝜆). Then we have

𝜃 (𝑔) =
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

𝐸 (𝑔, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)𝛽(𝜆) 𝑑𝜆

for any 𝑔 ∈ 𝐺 (A).
We fix 𝑟 > 2 that satisfies the conditions of Proposition 5.2.2.1. In the following, we assume moreover

that 𝜅 is such that 〈𝜅, 𝛼∨〉 > 𝑟 .

5.3.4.

Proposition 5.3.4.1. Let 𝑠 ∈ C \ {0, 1}. Assume that 𝛽 vanishes at the points −𝜇𝑖,𝑠 for 𝑖 ∈ 𝐼. Then we
have ∫

[𝐺′ ]0

𝜃 (ℎ)𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ =
∑

𝜉 ∈ 𝑃𝑊𝑃,2 , 𝜉≠1

∫
𝜅+𝑖𝔞𝐺,∗

𝑃

𝐽 (𝜉, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆,Φ, 𝑠)𝛽(𝜆) 𝑑𝜆, (5.3.4.1)

where both sides are absolutely convergent.
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Proof. Because 𝜃 (ℎ) is rapidly decreasing, the left-hand side is absolutely convergent. Using the
majorizations (5.2.2.2) and (5.2.2.3) given in the proof of Proposition 5.2.2.1, we see that the right-hand
side of (5.3.4.1) is also absolutely convergent.

By the Lemma 5.1.2.1, the left-hand side of (5.3.4.1) is given by∑
𝜉 ∈ 𝑃𝑊𝑃,2

∫
𝐴∞

𝐺′𝑃𝜉 (𝐹 )\𝐺
′ (A)

𝐵(𝜉ℎ)𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ, (5.3.4.2)

where 𝜉 ∈ 𝐺 (𝐹) is any element such that 𝜉 = 𝜉𝑐(𝜉)−1.
Assume 𝜉 ≠ 1. Using the definition of B and permuting the adelic and the complex integrals, we get

that ∫
𝐴∞

𝐺′𝑃𝜉 (𝐹 )\𝐺
′ (A)

𝐵(𝜉ℎ)𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ =
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

𝐽 (𝜉, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆,Φ, 𝑠)𝛽(𝜆) 𝑑𝜆.

This permutation is easily justified by the majorization (5.2.2.3) and the fact that 𝛽 is a Paley-Wiener
function. We have to compute the term corresponding to 𝜉 = 1 (for which we take 𝜉 = 1), namely∫

𝐴∞
𝐺′𝑃

′ (𝐹 )\𝐺′ (A)

𝐵(ℎ)𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ.

We will show that this integral vanishes. Using Iwasawa decomposition, we can write it as follows:∫
𝐾 ′

∫
𝑀 ′ (𝐹 )𝑍𝐺′ (A)1\𝑀 ′ (A)1

∫
𝐴∞

𝐺′ \𝐴
∞
𝑀′

exp(〈−𝜌𝑃 , 𝐻𝑃 (𝑎)〉)𝐵(𝑎𝑚𝑘)

∫
[𝑁𝑃′ ]

𝐸 (𝑛𝑎𝑚𝑘, Φ̃(𝜔, 𝑠))𝑑𝑛𝑑𝑚𝑑𝑘.

(5.3.4.3)

According to the shape of the constant term in (5.3.1.1), we are reduced to fix 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀 ′(A)1,
𝑘 ∈ 𝐾 ′ and to show the vanishing of∫

𝐴∞
𝐺′ \𝐴

∞
𝑀′

exp(〈𝜇𝑖,𝑠 , 𝐻𝑃 (𝑎)〉)
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

(𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑚𝑘)𝛽(𝜆) exp(〈𝜆, 𝐻𝑃 (𝑎)〉) 𝑑𝜆𝑑𝑎

for any 𝑚 ∈ 𝑀 ′(A)1 and 𝑘 ∈ 𝐾 ′. By Fourier inversion, this is, up to a constant,

(𝐼𝑃 (−𝜇𝑖,𝑠 , 𝑓 )𝜑) (𝑚𝑘)𝛽(−𝜇𝑖,𝑠),

and we are done. �

5.4. Period of a pseudo-Eisenstein series: computation in terms of the Whittaker functional

5.4.1.
We fix a nontrivial character 𝜓 ′ : A/𝐹 → C×. We define 𝜓 : [𝑁2𝑛] → C

× by

𝜓(𝑢) = 𝜓 ′(Tr𝐸/𝐹 (𝜏
2𝑛−1∑
𝑖=1

𝑢𝑖,𝑖+1))

for 𝑢 = (𝑢𝑖, 𝑗 ) ∈ 𝑁2𝑛 (A). Note that 𝜓 is trivial on 𝑁 ′
2𝑛 (A), where 𝑁 ′

2𝑛 = 𝑁2𝑛 ∩ 𝐺 ′.
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5.4.2. A variant of mirabolic subgroups
For all 1 � 𝑖 � 2𝑛, we define the following subgroup of 𝐺2𝑛:

P𝑖 = {

(
𝑔 ∗

0 𝑢

)
| 𝑔 ∈ 𝐺2𝑛−𝑖 , 𝑢 ∈ 𝑁𝑖}.

Note that P1 is the mirabolic subgroup P defined in §5.2.1 and P2𝑛 = 𝐵2𝑛. We denote by 𝑁P𝑖 the
unipotent radical of P𝑖 . Let 𝑃𝑖 be the standard parabolic subgroup of G of type (2𝑛 − 𝑖, 𝑖). We have
P𝑖 ⊂ 𝑃𝑖 and 𝑃𝑛 is the parabolic subgroup P defined in §5.1.1. We denote by an upper script ′ the
subgroups obtained by intersection with 𝐺 ′ that is P ′

𝑖 = P𝑖 ∩ 𝐺 ′.
For any smooth function 𝜙 on P𝑖 (𝐹)\𝐺 (A), we put for 𝑔 ∈ 𝐺 (A),

𝑊𝑖 (𝑔, 𝜙) =
∫
[𝑁P𝑖 ]

𝜙(𝑢𝑔)𝜓(𝑢)−1 𝑑𝑢.

When 𝑖 = 2𝑛, we have 𝑁P𝑖 = 𝑁2𝑛 and we omit the subscript: we set 𝑊 = 𝑊2𝑛.

5.4.3.
For any 𝜑 ∈ A𝑃,𝜋 (𝐺) and 𝜆 ∈ 𝔞𝐺,∗

𝑃,C
such that �(〈𝜆, 𝛼∨〉) is large enough, we define

W(𝑔, 𝜑, 𝜆) =
∫
(𝑁2𝑛∩𝑀 ) (𝐹 )\𝑁2𝑛 (A)

exp(〈𝜆, 𝐻𝑃 (𝜉0𝑢𝑔)〉)𝜑(𝜉0𝑢𝑔)𝜓(𝑢)
−1 𝑑𝑢.

One has in the convergence region

W(𝑔, 𝜑, 𝜆) = 𝑊 (𝑔, 𝐸 (𝜑, 𝜆)), (5.4.3.1)

and so the integral has a meromorphic continuation to 𝔞𝐺,∗
𝑃,C

. It factors through the Fourier coefficient

𝑊
𝜓
𝑀 (𝑔, 𝜑) =

∫
[𝑁2𝑛∩𝑀 ]

𝜑(𝑢𝑔)𝜓(𝑢)−1 𝑑𝑢.

5.4.4.
We view 𝑊

𝜓
𝑀 (1, ·) as a Whittaker functional on 𝜋. Let 𝜋 = ⊗′

𝑣 ∈𝑉𝐹
𝜋𝑣 be a decomposition of 𝜋 as a

restricted tensor product of representations 𝜋𝑣 of 𝑀 (𝐹𝑣 ). According to this decomposition, we fix a
Whittaker functionnal 𝑊𝜓

𝑀,𝑣 on 𝜋𝑣 such that 𝑊𝜓
𝑀 (1, ·) = ⊗𝑣 ∈𝑉𝐹𝑊

𝜓
𝑀,𝑣 . Let 𝑉𝐹,∞ ⊂ 𝑆 ⊂ 𝑉𝐹 be a finite

set such that all objects 𝜋, Φ, 𝜓, 𝐸/𝐹 are unramified outside S. We put 𝑊𝜓
𝑀,𝑆 = ⊗𝑣 ∈𝑆𝑊

𝜓
𝑀,𝑣 . For any

𝜆 ∈ 𝑖𝔞𝐺,∗
𝑃,C

, let 𝜋𝑣,𝜆 be the representation of 𝑀 (𝐹𝑣 ) given by 𝜋𝑣,𝜆(𝑚) = exp(〈𝜆, 𝐻𝑀 (𝑚)〉)𝜋𝑣 (𝑚) for
𝑚 ∈ 𝑀 (𝐹𝑣 ). Let Π𝑣,𝜆 = Ind𝐺 (𝐹𝑣 )

𝑃 (𝐹𝑣 )
(𝜋𝑣,𝜆) and Π𝑣 = Π𝑣,𝜆=0. We put Π𝑆 = ⊗𝑣 ∈𝑆Π𝑣 .

For any 𝑔𝑆 ∈ 𝐺 (𝐹𝑆) and 𝜙 ∈ Π𝑆 , we define the Jacquet integral by the analytic continuation of

W𝑆 (𝑔𝑆 , 𝜙, 𝜆) =
∫
(𝑁2𝑛∩𝑀 ) (𝐹𝑆 )\𝑁2𝑛 (𝐹𝑆 )

𝑊
𝜓
𝑀,𝑆 (Π𝜆 (𝜉0𝑢𝑔𝑆)𝜙) 𝑑𝑢. (5.4.4.1)

For any 𝑣 ∉ 𝑆, let 𝑊𝜓
𝑣 (·, 𝜋𝜆) be the 𝐾𝑣 -invariant Whittaker function such that 𝑊𝜓

𝑣 (1, 𝜋𝜆) = 1. We
shall identify 𝜑 with 𝜑𝑆 ⊗ 𝜑𝑆 , where 𝜑𝑆 ∈ Π𝑆 and 𝜑𝑆 ∈ ⊗′

𝑣∉𝑆Π𝑣 is 𝐾𝑆-invariant. Then we have

W(𝑔, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆) =
1

𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎 × 𝜎𝑐)
W𝑆 (𝑔𝑆 , 𝐼𝑃 (𝜆, 𝑓 )𝜑𝑆 , 𝜆)

∏
𝑣∉𝑆

𝑊
𝜓
𝑣 (𝑔𝑣 , 𝜋𝜆) (5.4.4.2)

for all 𝑔 = (𝑔𝑆 , (𝑔𝑣 )𝑣∉𝑆) ∈ 𝐺 (A).
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Proposition 5.4.4.1. There is 𝑠0 ∈ R such that for any 𝜆 ∈ 𝜅 + 𝑖𝔞𝐺,∗𝑃 and any 𝑠 ∈ H>𝑠0 , the integral∫
𝑁 ′

2𝑛 (A)\𝐺
′ (A)

|W(ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 | 𝑑ℎ

is absolutely convergent and uniformly bounded on compact subsets of H>𝑠0 .

Proof. We shall use (5.4.4.2). First, the factor 𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎 × 𝜎𝑐)
−1 is bounded uniformy for 𝜆

such 〈�(𝜆), 𝛼∨〉 � 2. We have Φ = Φ𝑆 ⊗Φ𝑆 , where Φ𝑆 is the characteristic function of (O𝑆)2𝑛. By (the
proof of) [BP18, proposition 2.6.1 and lemma 3.3.1], there exists 𝑠0 ∈ R such that for any 𝜆 ∈ 𝜅 + 𝑖𝔞𝐺,∗𝑃
and any 𝑠 ∈ H>𝑠0 , the integral∫

𝑁 ′
2𝑛 (𝐹𝑆 )\𝐺′ (𝐹𝑆 )

|W𝑆 (ℎ𝑆 , 𝐼𝑃 (𝜆, 𝑓 )𝜑𝑆 , 𝜆)Φ𝑆 (𝑒2𝑛ℎ𝑆) | det(ℎ𝑆) |𝑠 | 𝑑ℎ𝑆

is convergent and uniformly bounded on compact subsets of H>𝑠0 . So we are left with∏
𝑣∉𝑆

∫
𝑁 ′

2𝑛 (𝐹𝑣 )\𝐺′ (𝐹𝑣 )

|𝑊
𝜓
𝑣 (ℎ𝑣 , 𝜋𝜆) |1O2𝑛

𝑣
(𝑒2𝑛ℎ𝑣 ) | det(ℎ𝑣 ) |𝑠𝑣 | 𝑑ℎ𝑣 .

Then we can use the Iwasawa decomposition and the bound of [JPSS79, proposition 2.4.1] since we
may assume that S is large enough so that for 𝑣 ∉ 𝑆 the cardinality of the residue field of 𝐹𝑣 is bigger
than n. The details are left to the reader (see also [IY15, proof of lemma 4.5]). �

5.4.5.
We consider the situation of §5.3.3.

Proposition 5.4.5.1. There is 𝑠0 ∈ R such that for any 𝑠 ∈ H>𝑠0 and any Paley-Wiener function 𝛽 that
vanishes at the points ±𝑠𝛼/2, we have∫

[𝐺′ ]0

𝜃 (ℎ)𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ =
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

(∫
𝑁 ′

2𝑛 (A)\𝐺
′ (A)

W(ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ

)
𝛽(𝜆) 𝑑𝜆,

(5.4.5.1)

where the two sides are given by absolutely convergent integrals.

Before giving the proof (which is to find in §§5.4.6-5.4.8 below), we shall give a corollary.

Corollary 5.4.5.2. There is 𝑠0 ∈ R such that for any 𝜆 ∈ 𝜅 + 𝑖𝔞𝐺,∗𝑃 and 𝑠 ∈ H>𝑠0 , we have∑
𝜉 ∈ 𝑃𝑊𝑃,2 , 𝜉≠1

𝐽 (𝜉, 𝜑, 𝜆,Φ, 𝑠) =
∫
𝑁 ′

2𝑛 (A)\𝐺
′ (A)

W(ℎ, 𝜑, 𝜆)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ,

where the right-hand side is given by an absolutely and uniformly convergent integral on compact
subsets of H>𝑠0 .

Proof. The combination of Propositions 5.3.4.1 and 5.4.5.1 implies (see [LR03, lemma 9.1.2] for a
simple argument)∑

𝜉 ∈ 𝑃𝑊𝑃,2 , 𝜉≠1
𝐽 (𝜉, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆,Φ, 𝑠) =

∫
𝑁 ′

2𝑛 (A)\𝐺
′ (A)

W(ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ

for any 𝜆 ∈ 𝜅 + 𝑖𝔞𝐺,∗𝑃 . Since we can find f such that 𝐼𝑃 (𝜆, 𝑓 )𝜑 = 𝜑, we get the result. �
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5.4.6. Proof of Proposition 5.4.5.1
We first recall the well-known computation of the constant term of a pseudo Eisenstein series.

Lemma 5.4.6.1. For 1 � 𝑖 � 2𝑛, the constant term of 𝜃 along 𝑃𝑖 , defined by

∀𝑔 ∈ 𝐺 (A) 𝜃𝑃𝑖 (𝑔) =
∫
[𝑁𝑃𝑖 ]

𝜃 (𝑛𝑔) 𝑑𝑛,

vanishes unless 𝑖 ∈ {𝑛, 2𝑛}. Moreover, we have

𝜃𝑃 (𝑔) =
∑

𝑤 ∈𝑊 (𝑀 )

∫
𝜅+𝑖𝔞𝐺,∗

𝑃

exp(𝑤𝜆, 𝐻𝑃 (𝑔)〉(𝑀 (𝑤, 𝜆)𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑔)𝛽(𝜆) 𝑑𝜆.

Unfolding the Epstein series, we get∫
[𝐺′ ]0

𝜃 (ℎ)𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ =
∫
P′

1 (𝐹 )\𝐺
′ (A)

𝜃 (ℎ)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ

=
∫
P′

1 (𝐹 )𝑁
′
P1

(A)\𝐺′ (A)

(∫
[𝑁 ′

P1
]

𝜃 (𝑛ℎ) 𝑑𝑛

)
Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ.

The Fourier expansion of the map 𝑛 ∈ [𝑁P1 ] ↦→ 𝜃 (𝑛ℎ) gives

𝜃 (ℎ) = 𝜃𝑃1 (ℎ) +
∑

𝛾∈P2 (𝐹 )\P1 (𝐹 )

𝑊1 (𝛾ℎ, 𝜃)

from which we deduce ∫
[𝑁 ′

P1
]

𝜃 (𝑛ℎ) 𝑑𝑛 = 𝜃𝑃1 (ℎ) +
∑

𝛾∈P′
2 (𝐹 )\P

′
1 (𝐹 )

𝑊1(𝛾ℎ, 𝜃).

If 𝑛 > 1, then 𝜃𝑃1 = 0 (see Lemma 5.4.6.1). In particular, we get∫
[𝐺′ ]0

𝜃 (ℎ)𝐸 (ℎ,Φ, 𝑠) 𝑑ℎ =
∫
P′

2 (𝐹 )𝑁
′
P1

(A)\𝐺′ (A)

𝑊1 (ℎ, 𝜃)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ

=
∫
P′

2 (𝐹 )𝑁
′
P2

(A)\𝐺′ (A)

(∫
[𝑁 ′

P1
\𝑁 ′

P2
]

𝑊1(𝑛ℎ, 𝜃) 𝑑𝑛

)
Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ.

Next, using the Fourier expansion of 𝑛 ∈ [𝑁P2 ∩ 𝑀𝑃1 ] ↦→ 𝑊1(𝑛ℎ, 𝜃), we get∫
[𝑁 ′

P1
\𝑁 ′

P2
]

𝑊1 (𝑛ℎ, 𝜃) 𝑑𝑛 = 𝑊1 (ℎ, 𝜃𝑃2) +
∑

𝛾∈P′
3 (𝐹 )\P

′
2 (𝐹 )

𝑊2 (𝛾ℎ, 𝜃).

If 𝑛 > 2, we have 𝜃𝑃2 = 0 (see Lemma 5.4.6.1). By recursion, we get that the left-hand side of (5.4.5.1)
is the sum of ∫

P′
𝑛 (𝐹 )𝑁

′
P𝑛

(A)\𝐺′ (A)

𝑊𝑛−1 (ℎ, 𝜃𝑃𝑛 )Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ (5.4.6.1)

and ∫
P′

𝑛+1 (𝐹 )𝑁
′
P𝑛

(A)\𝐺′ (A)

𝑊𝑛 (ℎ, 𝜃)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ. (5.4.6.2)
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The manipulation is justified as in [IY15, corollary 4.3 and bottom of p. 697]. The next step is to
compute both expressions. Let us start with the second.

5.4.7. Computation of (5.4.6.2)
We can continue the process. Since 𝜃𝑃𝑘 = 0 for 𝑘 > 𝑛, 𝑊 = 𝑊2𝑛 and P ′

2𝑛 (𝐹)𝑁
′
P2𝑛

(A) = 𝑁 ′
2𝑛 (A), we

get that (5.4.6.2) is equal to ∫
𝑁2𝑛 (A)\𝐺′ (A)

𝑊 (ℎ, 𝜃)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ.

Using (5.4.3.1), we also have

𝑊2𝑛 (ℎ, 𝜃) =
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

W(ℎ, 𝐼𝑃 (𝜆, 𝑓 )𝜑, 𝜆)𝛽(𝜆) 𝑑𝜆.

To get the right-hand side of (5.4.5.1),we just need to permute the adelic integral and the integral over
𝜆. This is justified by Proposition 5.4.4.1. To conclude, it suffices to show that (5.4.6.1) vanishes: this is
done in the next §.

5.4.8. Vanishing of (5.4.6.1)
Recall that 𝑃𝑛 = 𝑃. Using the Iwasawa decomposition, we get that the expression (5.4.6.1) is equal to∫

𝐴∞
𝑀′

exp(−〈𝜌𝑃 , 𝐻𝑃 (𝑎)〉)
∫
𝑀 ′ (A)∩(P′

𝑛 (𝐹 )𝑁
′
P𝑛

(A))\𝑀 ′ (A)

∫
𝐾 ′

𝑊𝑛−1 (𝑎𝑚𝑘, 𝜃𝑃)Φ(𝑒2𝑛𝑎𝑘) | det(𝑎) |𝑠 𝑑ℎ.

(5.4.8.1)

By Lemma 5.4.6.1, we see that the expression 𝑊𝑛−1 (𝑎𝑚𝑘, 𝜃𝑃) is the sum over 𝑤 ∈ 𝑊 (𝑀) of∫
𝜅+𝑖𝔞𝐺,∗

𝑃

exp(〈𝑤𝜆, 𝐻𝑃 (𝑎)〉)
∫
[𝑁P𝑛−1 ]

(𝑀 (𝑤, 𝜆)𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑢𝑎𝑚𝑘)𝜓(𝑢)−1 𝑑𝑢𝛽(𝜆)𝑑𝜆.

Writing 𝑢 = 𝑢𝑃𝑢𝑀 with 𝑢𝑀 ∈ (𝑁P𝑛−1 ∩ 𝑀) and 𝑢𝑃 ∈ (𝑁P𝑛−1 ∩ 𝑁𝑃), we see that

(𝑀 (𝑤, 𝜆)𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑢𝑎𝑚𝑘) = exp(〈𝜌𝑃 , 𝐻𝑃 (𝑎)〉)(𝑀 (𝑤, 𝜆)𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑢𝑀𝑚𝑘).

Let 𝐴∞
P′

𝑛
be the stabilizer of 𝑒2𝑛 in 𝐴∞

𝑀 ′ . We have | det(𝑎) |𝑠 = exp(𝑠〈𝛼, 𝐻𝑃 (𝑎)〉/2). The contribution in
(5.4.8.1) corresponding to 𝑤 ∈ 𝑊 (𝑀) factors through the integral:∫

𝐴∞P′
𝑛

exp(𝑠〈𝛼, 𝐻𝑃 (𝑎)〉/2)
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

(𝑀 (𝑤, 𝜆)𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑢𝑚𝑘) exp(〈𝑤𝜆, 𝐻𝑃 (𝑎)〉)𝛽(𝜆) 𝑑𝜆𝑑𝑎

(5.4.8.2)

for some Haar measure on 𝐴∞
P′ . If 𝑤 = 1, the expression (5.4.8.2) is simply∫

𝐴∞P′
𝑛

exp(𝑠〈𝛼, 𝐻𝑃 (𝑎)〉/2)
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

(𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑢𝑚𝑘) exp(〈𝜆, 𝐻𝑃 (𝑎)〉)𝛽(𝜆) 𝑑𝜆𝑑𝑎.

By Fourier inversion, it is, up to a constant, (𝐼𝑃 (−𝑠𝛼/2, 𝑓 )𝜑) (𝑢𝑚𝑘)𝛽(−𝑠𝛼/2) and thus vanishes.
If 𝑤 ≠ 1, then 𝑤𝜆 = −𝜆 and the expression (5.4.8.2) can be written as∫

𝐴∞P′
𝑛

exp(𝑠〈𝛼, 𝐻𝑃 (𝑎)〉/2)
∫
𝜅+𝑖𝔞𝐺,∗

𝑃

(𝑀 (𝑤, 𝜆)𝐼𝑃 (𝜆, 𝑓 )𝜑) (𝑢𝑚𝑘) exp(−〈𝜆, 𝐻𝑃 (𝑎)〉)𝛽(𝜆) 𝑑𝜆𝑑𝑎.
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Assume that �(𝑠) is large enough so that �(𝑠)〈𝛼, 𝛼∨〉 > 2〈𝜅, 𝛼∨〉. One can check that there exists c
such that the inner integral vanishes unless 〈𝛼, 𝐻𝑃 (𝑎)〉 � 𝑐. Thus, one can restrict the outer integral
to this ‘half-line’. Then we can permute the two integrals. By Cauchy formula, we get that it is, up to
a constant, (𝑀 (𝑤, 𝑠𝛼/2)𝐼𝑃 (𝑠𝛼/2, 𝑓 )𝜑) (𝑢𝑚𝑘)𝛽(𝑠𝛼/2), and thus, it also vanishes. This concludes the
proof of Proposition 5.4.5.1.

5.5. Final result

5.5.1.
We keep the notations of previous sections. Let 𝜆 ∈ 𝔞𝐺,∗

𝑃,C
. For 𝑠 ∈ C, let 𝐿𝑆 (𝑠,Π𝜆,As) be the Asai

L-function ‘outside S’. We have

𝐿𝑆 (𝑠,Π𝜆,As) = 𝐿𝑆 (𝑠 + 〈𝜆, 𝛼∨〉, 𝜎,As)𝐿𝑆 (𝑠 − 〈𝜆, 𝛼∨〉, 𝜎∗,As)𝐿𝑆 (𝑠, 𝜎 × 𝜎∨).

The factor 𝐿𝑆 (𝑠, 𝜎 × 𝜎∨) has a simple pole at 𝑠 = 1 and we set

𝐿𝑆,∗ (1, 𝜎 × 𝜎∨) = lim
𝑠→1

(𝑠 − 1)𝐿𝑆 (𝑠, 𝜎 × 𝜎∨).

Then we get an analytic function in 𝜆 by setting

𝐿𝑆,∗ (1,Π𝜆,As) = 𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎,As)𝐿𝑆 (1 − 〈𝜆, 𝛼∨〉, 𝜎∗,As)𝐿𝑆,∗(1, 𝜎 × 𝜎∨).

Theorem 5.5.1.1. We have the following equality of meromorphic functions on 𝑖𝔞𝐺,∗
𝑃,C

:

𝐽 (𝜉0, 𝜑, 𝜆) = (Δ𝑆,∗𝐺′ )
−1𝐿𝑆,∗ (1,Π𝜆,As)

∫
𝑁 ′

2𝑛 (𝐹𝑆 )\P′ (𝐹𝑆 )

W(𝑝𝑆 , 𝜑, 𝜆) 𝑑𝑝𝑆 ,

where the integral is absolutely convergent, and the left-hand side and the integrand in the right-
hand side are respectively defined in (5.1.3.1) and (5.4.3.1). Moreover, both sides of the equality are
holomorphic at 𝜆 ∈ 𝑖𝔞𝐺,∗𝑃 in the following cases:
• 𝜎 is not 𝐺 ′

𝑛-distinguished;
• 𝜎 is 𝐺 ′

𝑛-distinguished and 𝜆 ≠ 0.

5.5.2. Proof of Theorem 5.5.1.1
By (5.4.4.2), we have for all 𝑔𝑆 ∈ 𝐺 (𝐹𝑆),

W(𝑔𝑆 , 𝜑, 𝜆) =
1

𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎 × 𝜎𝑐)
W𝑆 (𝑔𝑆 , 𝜑𝑆 , 𝜆).

Let Φ𝑆 a test function in the Schwartz space S (𝐹2𝑛
𝑆 ). Let us consider the following integrals:∫

𝑁 ′
2𝑛 (𝐹𝑆 )\P′ (𝐹𝑆 )

W𝑆 (ℎ𝑆 , 𝜑𝑆 , 𝜆) 𝑑ℎ𝑆 (5.5.2.1)

and ∫
𝑁 ′

2𝑛 (𝐹𝑆 )\𝐺′ (𝐹𝑆 )

W𝑆 (ℎ𝑆 , 𝜑𝑆 , 𝜆)Φ𝑆 (𝑒2𝑛ℎ𝑆) | det(ℎ𝑆) |𝑠 𝑑ℎ𝑆 . (5.5.2.2)

Lemma 5.5.2.1.
1. There exists 𝜂 > 0 (resp. and 𝜀 > 0) such that the integral (5.5.2.1), resp. (5.5.2.2), is absolutely

convergent and holomorphic on the subset of 𝜆 ∈ 𝔞𝐺,∗𝑃 such that |〈�(𝜆), 𝛼∨〉| < 𝜂, resp. and
𝑠 ∈ H1−𝜀 .
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2. The integral (5.5.2.2) admits a meromorphic continuation to C × 𝔞𝐺,∗
𝑃,C

denoted by 𝑍𝑆 (𝑠, 𝜆,Φ𝑆).
3. For any 𝑐 > 0, there exists 𝑠1 ∈ R such that for 𝑠 ∈ H𝑠1 and |〈�(𝜆), 𝛼∨〉| < 𝑐, the integral (5.5.2.2)

is absolutely convergent and coincides with 𝑍𝑆 (𝑠, 𝜆,Φ𝑆).

Proof. All the results are slight variations on [BP18, lemma 3.3.1, lemma 3.3.2 and section 3.10]. To
get the convergence of (5.5.2.1) or the precise lower bound 1− 𝜀, we need to observe that 𝜑𝑆 belongs to
the induced representation of the S-component of an irreducible automorphic cuspidal representation of
𝑀 (A). As such, it is an irreducible, generic and unitary representation. We can now use the classification
of local irreductible generic and unitary representations as fully induced from essentially discrete series
with exponents in ] − 1/2; 1/2[ (see, for example, [Tad09], [Zel80] and [BR10, Theorem 8.2.]). �

Let Φ = Φ𝑆 ⊗ Φ𝑆 , where Φ𝑆 is the Schwartz space S (𝐹2𝑛
𝑆 ) and Φ𝑆 is the characteristic function

of (O𝑆)2𝑛. Let 𝑐 > 〈𝜅, 𝛼∨〉. By Lemma 5.5.2.1 assertion 3, there exists 𝑠1 ∈ R such that for 𝑠 ∈ H𝑠1
and |〈�(𝜆), 𝛼∨〉| < 𝑐, the integral (5.5.2.2) is absolutely convergent. We may and shall assume that 𝑠1
is large enough so that Proposition 5.4.4.1 holds for 𝑠1. Then by the factorization (5.4.4.2), some local
computations [Fli88] and Lemma 5.5.2.1 assertion 2, we have∫

𝑁 ′
2𝑛 (A)\𝐺

′ (A)

W(ℎ, 𝜑, 𝜆)Φ(𝑒2𝑛ℎ) | det(ℎ) |𝑠 𝑑ℎ = (Δ𝑆,∗𝐺′ )
−1 𝐿𝑆 (𝑠,Π𝜆,As)

𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎 × 𝜎𝑐)
𝑍𝑆 (𝑠, 𝜆,Φ𝑆)

for any 𝜆 ∈ 𝜅+𝑖𝔞𝐺,∗𝑃 and 𝑠 ∈ H>𝑠1 . By analytic continuation of the equality of Corollary 5.4.5.2, we have∑
𝜉 ∈ 𝑃𝑊𝑃,2 , 𝜉≠1

𝐽 (𝜉, 𝜑, 𝜆,Φ, 𝑠) = (Δ𝑆,∗𝐺′ )
−1 𝐿𝑆 (𝑠,Π𝜆,As)

𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎 × 𝜎𝑐)
𝑍𝑆 (𝑠, 𝜆,Φ𝑆)

for all 𝑠 ∈ C and 𝜆 ∈ D𝑟 given by Proposition 5.2.2.1. We can compute the residue of the left-hand side
at 𝑠 = 1 following Proposition 5.2.2.1. We get

Φ̂(0)𝐽 (𝜉0, 𝜑, 𝜆) = (Δ𝑆,∗𝐺′ )
−1𝑍𝑆 (1, 𝜆,Φ𝑆)

𝐿𝑆,∗(1,Π𝜆,As)
𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎 × 𝜎𝑐)

. (5.5.2.3)

Both sides are analytic in 𝜆. Thus, the equality for 𝜆 ∈ 𝑖𝔞𝐺,∗𝑃 . But by Lemma 5.5.2.1 assertion 1 and
assertion 2, one has

𝑍𝑆 (1, 𝜆,Φ𝑆) =
∫
𝑁 ′

2𝑛 (𝐹𝑆 )\𝐺′ (𝐹𝑆 )

W𝑆 (ℎ𝑆 , 𝜑𝑆 , 𝜆)Φ𝑆 (𝑒2𝑛ℎ𝑆) | det(ℎ𝑆) | 𝑑ℎ𝑆 .

Let �̄�1 be the unipotent radical of the opposite of the parabolic subgroup 𝑃1 defined in §5.4.2. The
standard Levi factor of 𝑃1 decomposes as 𝐺2𝑛−1 × 𝐺1. Thus, we have 𝑁 ′

2𝑛\𝑃
′
1 � 𝑁 ′

2𝑛\P ′ × 𝐺 ′
1. By a

usual decomposition of measures, we get

𝑍𝑆 (1, 𝜆,Φ𝑆) =
∫
�̄�1 (𝐹𝑆 )

∫
𝐺′

1 (𝐹𝑆 )

(∫
𝑁 ′

2𝑛 (𝐹𝑆 )\P′ (𝐹𝑆 )

W𝑆 (ℎ𝑡𝑛, 𝜑𝑆 , 𝜆) 𝑑ℎ

)
Φ𝑆 (𝑒2𝑛𝑡𝑛) |𝑡 |

2𝑛 𝑑𝑡𝑑𝑛.

However, we have also

Φ̂𝑆 (0) =
∫
𝐹2𝑛

𝑆

Φ𝑆 (𝑋) 𝑑𝑋

=
∫
�̄�1 (𝐹𝑆 )

∫
𝐺′

1 (𝐹𝑆 )

Φ𝑆 (𝑒2𝑛𝑡𝑛) |𝑡 |
2𝑛 𝑑𝑡𝑑𝑛.
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Since (5.5.2.3) holds for any Schwartz function Φ𝑆 , we get that 𝐽 (𝜉0, 𝜑, 𝜆) is equal to

𝐿𝑆,∗ (1,Π𝜆,As)
𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎 × 𝜎𝑐)

∫
𝑁 ′

2𝑛 (𝐹𝑆 )\P′ (𝐹𝑆 )

W𝑆 (𝑔𝑆 , 𝜑𝑆 , 𝜆)

= 𝐿𝑆,∗(1,Π𝜆,As)
∫
𝑁 ′

2𝑛 (𝐹𝑆 )\P′ (𝐹𝑆 )

W(𝑝𝑆 , 𝜑, 𝜆) 𝑑𝑝𝑆 ,

where we have used the factorization (5.4.4.2). In the first expression above, the integral is holomorphic
on 𝑖𝔞𝐺,∗𝑃 ; see Lemma 5.5.2.1. Using the factorization of 𝐿𝑆 (𝑠, 𝜎 × 𝜎𝑐) in terms of Asai L-functions
𝐿(𝑠, 𝜎, 𝐴𝑠±), we get

𝐿𝑆,∗(1,Π𝜆,As)
𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎 × 𝜎𝑐)

= 𝐿𝑆,∗(1, 𝜎 × 𝜎∨)
𝐿𝑆 (1 − 〈𝜆, 𝛼∨〉, 𝜎∗,As)
𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎,As−)

.

On 𝑖𝔞𝐺,∗𝑃 , the L-function 𝐿𝑆 (1 + 〈𝜆, 𝛼∨〉, 𝜎,As−) does not vanish by [Sha81, theorem 5.1] and 𝐿𝑆 (1 −

〈𝜆, 𝛼∨〉, 𝜎∗,As) is holomorphic unless 𝜆 = 0 and 𝜎∗ (thus 𝜎) is 𝐺 ′
𝑛-distinguished (see [Fli88]). On the

other hand, if 𝜎 is not 𝐺 ′
𝑛-distinguished, then 𝐽 (𝜉0, 𝜑, 𝜆) is known to be holomorphic on 𝑖𝔞𝐺,∗𝑃 ; see

[Lap06, lemma 8.1]. Otherwise, 𝐽 (𝜉0, 𝜑, 𝜆) is holomorphic on 𝑖𝔞𝐺,∗𝑃 \ {0}, but it may have a simple pole
at 𝜆 = 0.

6. The (𝑮, 𝑯)-regular contribution to the Jacquet-Rallis trace formula: alternative proof

6.1. Statement

6.1.1.
The goal of this section is to provide an alternative proof of the following combination of Theorem 4.1.8.1
and Theorem 4.2.8.1.

Theorem 6.1.1.1. Let 𝜒 ∈ 𝔛(𝐺) be a (𝐺, 𝐻)-regular cuspidal datum and let 𝑓 ∈ S (𝐺 (A)). Then,

1. If 𝜒 is not Hermitian, we have 𝐼𝜒 ( 𝑓 ) = 0.
2. If 𝜒 is Hermitian, we have

𝐼𝜒 ( 𝑓 ) = 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

𝐼Π𝜆 ( 𝑓 )𝑑𝜆, (6.1.1.1)

where we recall that (𝑀, 𝜋) is a pair representing 𝜒, 𝐿 ⊃ 𝑀 is the Levi subgroup defined by (4.1.4.1),
Π𝜆 stands for the induced representation Ind𝐺 (A)

𝑃 (A)
(𝜋𝜆), for P a chosen parabolic subgroup with Levi

factor M, and 𝐼Π𝜆 is the relative character defined by (4.2.8.1).

More precisely, the proof will be very similar to that given in [BPCZ22, Section 8] and is based on
two ingredients of independent interests. The first one is that the Rankin-Selberg period (over H) admits
a continuous extension to the space T𝜒 ([𝐺]) of functions of uniform moderate growth supported on a
H-regular cuspidal datum 𝜒 and that this extension can moreover be described in terms of the analytic
continuation of Zeta integrals of Rankin Selberg type. This was already established in [BPCZ22, Section
7]. The second ingredient is an explicit spectral decomposition of the Flicker-Rallis period (over 𝐺 ′)
restricted to S𝜒 ([𝐺 ′]) when the cuspidal datum 𝜒 is (G-)regular. This was already done in [BPCZ22,
Section 6] under the stronger assumption that 𝜒 is ∗-regular. The aim of the subsection 6.2 is to state
and prove the extension of this result to the regular case. Once established, we will be able to give a
proof of Theorem 6.1.1.1 in subsection 6.3 in much the same lines as [BPCZ22, §8.2].
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6.2. Spectral decomposition of the Flicker-Rallis period for regular cuspidal data

6.2.1. Zeta integrals
Let 𝑛 � 0 be an integer. We will freely use the notation introduced in Section 4. For every 𝑓 ∈ T ([𝐺𝑛]),
we denote by

𝑊 𝑓 (𝑔) =
∫
[𝑁𝑛 ]

𝑓 (𝑢𝑔)𝜓𝑛 (𝑢)
−1𝑑𝑢, 𝑔 ∈ 𝐺𝑛 (A)

its Whittaker function and, for 𝜙 ∈ S (A𝑛), we set

𝑍FR
𝜓 (𝑠, 𝑓 , 𝜙) :=

∫
𝑁 ′

𝑛 (A)\𝐺
′
𝑛 (A)

𝑊 𝑓 (ℎ)𝜙(𝑒𝑛ℎ) |det ℎ|𝑠𝜂𝐺′
𝑛
(ℎ)𝑑ℎ.

This expression is absolutely convergent for �(𝑠) sufficiently large. More precisely, for every 𝑁 > 0,
there exists 𝑐 > 0 such that 𝑍FR

𝜓 (𝑠, 𝑓 , 𝜙) converges for 𝑠 ∈ H>𝑐 (see [BPCZ22, Theorem 6.2.5.1]).

6.2.2. Flicker-Rallis period
Recall that for every 𝑓 ∈ C ([𝐺𝑛]), the period integral

𝑃𝐺′
𝑛
( 𝑓 ) =

∫
[𝐺′

𝑛 ]

𝑓 (ℎ)𝜂𝐺′
𝑛
(ℎ)𝑑ℎ

is convergent [BPCZ22, Theorem 6.2.6.1].

6.2.3. Hermitian cuspidal data
Let 𝜒 ∈ 𝔛(𝐺𝑛) be a cuspidal datum. Then, we can find a pair (𝑀, 𝜋) representing 𝜒 with

𝑀 =
∏
𝑖∈𝐼

𝐺×𝑑𝑖
𝑛𝑖

×
∏
𝑗∈𝐽

𝐺
×𝑑 𝑗
𝑛 𝑗

×
∏
𝑘∈𝐾

𝐺×𝑑𝑘
𝑛𝑘

and

𝜋 =
⊗
𝑖∈𝐼

𝜋�𝑑𝑖

𝑖 �
⊗
𝑗∈𝐽

𝜋
�𝑑 𝑗

𝑗 �
⊗
𝑘∈𝐾

𝜋�𝑑𝑘

𝑘

for some disjoint finite sets I, J, K, families of positive integers (𝑛𝑙)𝑙∈𝐼∪𝐽∪𝐾 , (𝑑𝑙)𝑙∈𝐼∪𝐽∪𝐾 and a family
of distinct cuspidal automorphic representations (𝜋𝑙)𝑙∈𝐼∪𝐽∪𝐾 satisfying

• For every 𝑖 ∈ 𝐼, 𝜋𝑖 � 𝜋∗𝑖 ;
• For every 𝑗 ∈ 𝐽, 𝜋 𝑗 � 𝜋∗𝑗 and 𝐿(𝑠, 𝜋 𝑗 ,As(−1)𝑛+1

) has no pole at 𝑠 = 1;
• For every 𝑘 ∈ 𝐾 , 𝜋𝑘 � 𝜋∗𝑘 and 𝐿(𝑠, 𝜋𝑘 ,As(−1)𝑛+1

) has a pole at 𝑠 = 1.

Fixing data as above (which are unique up to reordering), we recall that 𝜒 is said Hermitian (see
§4.1.3) if the following condition is satisfied:

(6.2.3.1) For every 𝑖 ∈ 𝐼, there exists 𝑖∗ ∈ 𝐼 such that 𝜋𝑖∗ � 𝜋∗𝑖 and for every 𝑗 ∈ 𝐽, 𝑑 𝑗 is even.

6.2.4.
Assume furthermore that 𝜒 is regular in the sense of §4.1.3 or [BPCZ22, §2.9.7] and fix a pair (𝑀, 𝜋)
representing 𝜒 together with data I, J, K, (𝑛𝑙)𝑙∈𝐼∪𝐽∪𝐾 , (𝑑𝑙)𝑙∈𝐼∪𝐽∪𝐾 , (𝜋𝑙)𝑙∈𝐼∪𝐽∪𝐾 as in the previous
paragraph. By the regularity assumption, we have 𝑑𝑙 = 1 for every 𝑙 ∈ 𝐼 ∪ 𝐽 ∪ 𝐾 . Moreover, 𝜒 is
Hermitian if and only if 𝐽 = ∅ and there exists an involution 𝑖 ↦→ 𝑖∗ of I without fixed point such that
𝜋𝑖∗ = 𝜋∗𝑖 for every 𝑖 ∈ 𝐼. If this is the case, we choose a subset 𝐼 ′ ⊂ 𝐼 such that I is the disjoint union of
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𝐼 ′ and (𝐼 ′)∗ = {𝑖∗ | 𝑖 ∈ 𝐼 ′}, and we define a Levi subgroup 𝐿 ⊃ 𝑀 by

𝐿 :=
∏
𝑖∈𝐼 ′

𝐺𝑛𝑖+𝑛𝑖∗
×
∏
𝑘∈𝐾

𝐺𝑛𝑘 .

6.2.5.
Let P be a parabolic subgroup with Levi factor M. For every 𝜆 ∈ 𝔞∗𝑀,C and 𝑓 ∈ C ([𝐺𝑛]), we set

Π𝜆 := Ind𝐺𝑛 (A)

𝑃 (A)
(𝜋𝜆)

and

𝑊 𝑓 ,Π𝜆 := 𝑊 𝑓Π𝜆
,

where 𝑓Π𝜆 ∈ T ([𝐺𝑛]) is defined as in [BPCZ22, Eq. (2.9.8.14)].
Assuming that 𝜒 is Hermitian, we define for every 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 a linear form 𝛽𝑛 onW (Π𝜆, 𝜓𝑛) by setting

𝛽𝑛 (𝑊) = (Δ𝑆,∗
𝐺′

𝑛
)−1𝐿𝑆,∗(1,Π,As(−1)𝑛+1

)

∫
𝑁 ′

𝑛 (𝐹𝑆 )\P′
𝑛 (𝐹𝑆 )

𝑊 (𝑝𝑆)𝜂𝐺′
𝑛
(𝑝𝑆)𝑑𝑝𝑆

for every 𝑊 ∈ W (Π𝜆, 𝜓𝑛), where S is a sufficiently large finite set of places of F (depending on W).
That the above integral is convergent follows from [BP18, Proposition 2.6.1, Lemma 3.3.1], [JS81b],
and moreover, the product stabilizes for S sufficiently large by the unramified computation of [Fli88,
Proposition 3].

6.2.6.
Theorem 6.2.6.1. Let 𝜒 ∈ 𝔛reg (𝐺𝑛) for which we adopt the notation introduced in the previous three
paragraphs. Then, for every 𝑓 ∈ C𝜒 ([𝐺𝑛]) and 𝜙 ∈ S (A𝑛), we have

1. If 𝜒 is Hermitian, the function 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 ↦→ 𝛽𝑛 (𝑊 𝑓 ,Π𝜆 ) is Schwartz and the resulting map

C𝜒 ([𝐺𝑛]) → S (𝑖𝔞𝐿,∗𝑀 ), 𝑓 ↦→
(
𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 ↦→ 𝛽𝑛 (𝑊 𝑓 ,Π𝜆 )

)
(6.2.6.1)

is continuous.
2. The function 𝑠 ↦→ (𝑠 − 1)𝑍FR

𝜓 (𝑠, 0 𝑓 , 𝜙) admits an analytic continuation to H>1 with a limit at 𝑠 = 1,
and setting 𝑍FR,∗

𝜓 (1, 0 𝑓 , 𝜙) := lim
𝑠→1+

(𝑠 − 1)𝑍FR
𝜓 (𝑠, 0 𝑓 , 𝜙), we have

𝑍FR,∗
𝜓 (1, 0 𝑓 , 𝜙) =

⎧⎪⎪⎨⎪⎪⎩
21−dim(𝔞𝐿 )𝜙(0)

∫
𝑖𝔞𝐿,∗

𝑀
𝛽𝑛 (𝑊 𝑓 ,Π𝜆 )𝑑𝜆 if 𝜒 is Hermitian,

0 otherwise.
(6.2.6.2)

3. The equality

𝜙(0)𝑃𝐺′
𝑛
( 𝑓 ) =

1
2
𝑍FR,∗
𝜓 (1, 0 𝑓 , 𝜙). (6.2.6.3)

6.2.7.
We note the following immediate corollary of Theorem 6.2.6.1.
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Corollary 6.2.7.1. Let 𝜒 ∈ 𝔛reg (𝐺𝑛) for which we adopt the notation introduced in the paragraphs 6.2.4
and 6.2.5. Then, for every 𝑓 ∈ C𝜒 ([𝐺𝑛]), we have

𝑃𝐺′
𝑛
( 𝑓 ) =

⎧⎪⎪⎨⎪⎪⎩
2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀
𝛽𝑛 (𝑊 𝑓 ,Π𝜆 )𝑑𝜆 if 𝜒 is Hermitian,

0 otherwise.
(6.2.7.1)

6.2.8. Proof of Theorem 6.2.6.1 1. and 2.
Here, we prove parts 1 and 2 of Theorem 6.2.6.1. We will explain how to deduce the last part in the next
subsection. The proof is actually along the same lines as that of [BPCZ22, Theorem 6.2.5.1]. Therefore,
we will be brief on the parts that are similar.

Set

A := (𝑖R)𝐼∪𝐽∪𝐾

and let A0 be the subspace of vectors 𝑥 = (𝑥ℓ)ℓ∈𝐼∪𝐽∪𝐾 ∈ A such that
∑
ℓ∈𝐼∪𝐽∪𝐾 𝑥ℓ = 0. We equip A

with the product of Lebesgue measures and A0 with the unique measure inducing on A/A0 � 𝑖R the
Lebesgue measure via the map 𝑥 ↦→

∑
ℓ∈𝐼∪𝐽∪𝐾 𝑥ℓ . We identify A with 𝑖𝔞∗𝑀 by sending 𝑥 ∈ A to the

unramified character

𝑔 = (𝑔ℓ)ℓ∈𝐼∪𝐽∪𝐾 ∈ 𝑀 (A) =
∏

ℓ∈𝐼∪𝐽∪𝐾

𝐺𝑛ℓ (A) ↦→
∏

ℓ∈𝐼∪𝐽∪𝐾

|det 𝑔ℓ |𝑥ℓ/𝑛ℓ

A𝐸
.

We note that this isomorphism sends A0 onto 𝑖𝔞𝐺𝑟 ,∗
𝑀 . Furthermore, by our choice of measure on 𝑖𝔞∗𝑀

(see §2.1.8 as well as [BPCZ22, Eq. (2.3.1.1)]), this isomorphism sends the Haar measure just described
on A to (2𝜋)𝑟𝑃 times the Haar measure on 𝑖𝔞∗𝑀 , where we have set

𝑟 = dim(𝐴𝑀 ) = |𝐼 ∪ 𝐽 ∪ 𝐾 |, 𝑃 =
∏

ℓ∈𝐼∪𝐽∪𝐾

𝑛ℓ .

Set 𝑓𝑥 = 𝑓Π𝑥 for every 𝑥 ∈ A. Then, by a computation completely similar to that leading to [BPCZ22,
Eq. (6.3.0.3)] (using one of the main results of [Lap13]), we have

𝑍FR
𝜓 (𝑠, 0 𝑓 , 𝜙) =

𝑛

𝑃
(2𝜋)−𝑟+1

∫
A0

𝑍FR
𝜓 (𝑠, 𝑓𝑥 , 𝜙)𝑑𝑥

for �(𝑠) � 1.
Let 𝑆0 be a finite set of places of F including the Archimedean ones and outside of which 𝜋 is

unramified and let 𝑆0, 𝑓 ⊂ 𝑆0 be the subset of finite places. We fix, for every 𝑙 ∈ 𝐼 ∪ 𝐽 ∪𝐾 and 𝑣 ∈ 𝑆0, 𝑓 ,
polynomials 𝑄𝑙 (𝑇), 𝑄𝑙,𝑣 (𝑇) ∈ C[𝑇] with all their roots in H]0,1[ and H]𝑞−1

𝑣 ,1[, respectively, such that
the products 𝑠 ↦→ 𝑄𝑙 (𝑠)𝐿∞(𝑠, 𝜋𝑙 ,As(−1)𝑛+1

) and 𝑠 ↦→ 𝑄𝑙,𝑣 (𝑞
−𝑠
𝑣 )𝐿𝑣 (𝑠, 𝜋𝑙 ,As(−1)𝑛+1

) have no pole in
H]0,1[. Let 𝐼0 be the set of 𝑖 ∈ 𝐼 for which there exists 𝑖∗ ∈ 𝐼 (necessarily unique by regularity of 𝜒)
satisfying 𝜋𝑖∗ = 𝜋∗𝑖 and fix a subset 𝐼 ′ ⊂ 𝐼0 such that 𝐼0 is the disjoint union of 𝐼 ′ and (𝐼 ′)∗. Set

𝑃(𝑠, 𝑥) =
∏
𝑖∈𝐼 ′

(
𝑠 +

𝑥𝑖 + 𝑥𝑖∗

𝑛𝑖

) (
𝑠 +

𝑥𝑖 + 𝑥𝑖∗

𝑛𝑖
− 1

) ∏
𝑘∈𝐾

(
𝑠 +

2𝑥𝑘
𝑛𝑘

) (
𝑠 − 1 +

2𝑥𝑘
𝑛𝑘

)
×

∏
𝑙∈𝐼∪𝐽∪𝐾

𝑄𝑙

(
𝑠 +

2𝑥𝑙
𝑛𝑙

) ∏
𝑙∈𝐼∪𝐽∪𝐾
𝑣 ∈𝑆0, 𝑓

𝑄𝑙,𝑣

(
𝑞
−𝑠−

2𝑥𝑙
𝑛𝑙

𝑣

)
.
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Then, we can prove exactly as in [BPCZ22, §6.3] that the two functions

(𝑠, 𝑥) ∈ C ×A0 ↦→ 𝑃

(
𝑠 +

1
2
, 𝑥

)
𝑍FR
𝜓

(
𝑠 +

1
2
, 𝑓𝑥 , 𝜙

)
and

(𝑠, 𝑥) ∈ C ×A0 ↦→ 𝑃

(
1
2
− 𝑠, 𝑥

)
𝑍FR
𝜓−1

(
𝑠 +

1
2
, �̃�𝑥 , 𝜙

)
,

where �̃�𝑥 (𝑔) = 𝑓𝑥 (
𝑡𝑔−1), satisfy the conditions of [BPCZ22, Corollary A.0.11.1]. Therefore, by the

conclusion of this corollary, the map

𝑠 ↦→ 𝐹𝑠 :=

(
𝑥 ↦→

∏
𝑖∈𝐼 ′

(
𝑠 +

𝑥𝑖 + 𝑥𝑖∗

𝑛𝑖
− 1

) ∏
𝑘∈𝐾

(
𝑠 +

2𝑥𝑘
𝑛𝑘

− 1
)
𝑍FR
𝜓 (𝑠, 𝑓𝑥 , 𝜙)

)
induces a holomorphic map H1−𝜖 → S (A0) for some 𝜖 > 0. This already implies that

𝑠 ↦→ 𝑍FR
𝜓 (𝑠, 0 𝑓 , 𝜙) =

𝑛

𝑃
(2𝜋)−𝑟+1

∫
A0

∏
𝑖∈𝐼 ′

(
𝑠 +

𝑥𝑖 + 𝑥𝑖∗

𝑛𝑖
− 1

)−1 ∏
𝑘∈𝐾

(
𝑠 +

2𝑥𝑘
𝑛𝑘

− 1
)−1

𝐹𝑠 (𝑥)𝑑𝑥

has an analytic continuation to H>1. Moreover, if 𝜒 is not Hermitian, the linear forms 𝑥 ∈ A0 ↦→ 𝑥𝑖 +𝑥𝑖∗ ,
𝑖 ∈ 𝐼 ′, and 𝑥 ∈ A0 ↦→ 𝑥𝑘 , 𝑘 ∈ 𝐾 , are linearly independent, and thus, by [BP21, Lemma 3.11],
𝑍FR
𝜓 (𝑠, 0 𝑓 , 𝜙) has a limit as 𝑠 → 1.

We assume from now on that 𝜒 is Hermitian so that 𝐼 = 𝐼 ′ ∪ (𝐼 ′)∗ and 𝐽 = ∅. Set A𝐿 = (𝑖R)𝐼
′ ,

A′ = (𝑖R)𝐼
′∪𝐾 and let A′

0 be the subspace of 𝑥 ∈ A′ such that
∑
𝑖∈𝐼 ′ 𝑥𝑖 +

∑
𝑘∈𝐾 𝑥𝑘 = 0. We have a short

exact sequence

0 → A𝐿 → A0 → A′
0 → 0,

where the first map sends 𝑥 ∈ A𝐿 to the vector 𝑦 ∈ A0 with coordinates 𝑦𝑖 = 𝑥𝑖 for 𝑖 ∈ 𝐼 ′, 𝑦𝑖 = −𝑥𝑖∗ for
𝑖 ∈ (𝐼 ′)∗ and 𝑦𝑘 = 0 for 𝑘 ∈ 𝐾 , whereas the second map is given by

𝑥 ∈ A0 ↦→ ((𝑥𝑖 + 𝑥𝑖∗ )𝑖∈𝐼 ′ , (𝑥𝑘 )𝑘∈𝐾 ) .

We equip A𝐿 and A′ with the products of Lebesgue measures and A′
0 as before with the unique measure

inducing on A′/A′
0 � 𝑖R the Lebesgue measure. Then, it is easy to see that the above exact sequence is

compatible with the different Haar measures. In particular, we have

𝑍FR
𝜓 (𝑠, 0 𝑓 , 𝜙) =

𝑛

𝑃
(2𝜋)−𝑟+1

∫
A′

0

∏
𝑖∈𝐼 ′

(
𝑠 +

𝑦𝑖
𝑛𝑖

− 1
)−1 ∏

𝑘∈𝐾

(
𝑠 +

2𝑦𝑘
𝑛𝑘

− 1
)−1 ∫

A𝐿
𝐹𝑠 (𝑥 + 𝑦)𝑑𝑥𝑑𝑦.

From this and [BP21, Proposition 3.12], we obtain

lim
𝑠→1+

(𝑠 − 1)𝑍FR
𝜓 (𝑠, 0 𝑓 , 𝜙) =

𝑛

𝑃
(2𝜋)−𝑟+1

∏
𝑖∈𝐼 ′ 𝑛𝑖

∏
𝑘∈𝐾

𝑛𝑘

2∑
𝑖∈𝐼 ′ 𝑛𝑖 +

∑
𝑘∈𝐾

𝑛𝑘

2
(2𝜋) |𝐼

′∪𝐾 |−1
∫
A𝐿

𝐹1 (𝑥)𝑑𝑥 (6.2.8.1)

=
(2𝜋)−|𝐼 ′ |

𝑃′
21−|𝐾 |

∫
A𝐿

𝐹1 (𝑥)𝑑𝑥,
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where we have set𝑃′ =
∏
𝑖∈𝐼 ′ 𝑛𝑖 . Furthermore, from the unramified computation of [Fli88, Proposition 3]

and [BP21, Lemma 2.16.3], we have

𝐹1 (𝑥) = lim
𝑠→1+

(𝑠 − 1) |𝐼
′∪𝐾 |𝑍𝐹𝑅𝜓 (𝑠, 𝑓𝑥 , 𝜙) = 𝜙(0)𝛽𝑛 (𝑊 𝑓𝑥 ) (6.2.8.2)

for 𝑥 ∈ A𝐿 . However, the isomorphism A � 𝑖𝔞∗𝑀 sends A𝐿 onto 𝑖𝔞𝐿,∗𝑀 and sends the measure on A𝐿 to
(2𝜋) |𝐼 ′ |𝑃′

2|𝐼 ′ | times the measure on 𝑖𝔞𝐿,∗𝑀 . As, by [BPCZ22, Corollary A.0.11.1], the function 𝐹1 is Schwartz,
so is the function 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 ↦→ 𝛽𝑛 (𝑊 𝑓 ,Π𝜆 ). Moreover, that the map (6.2.6.1) is continuous follows from
(6.2.8.2) together with [BPCZ22, Theorem 6.2.5.1 1., Eq. (A.0.4.3)] and the closed graph theorem.
Finally, combining (6.2.8.1) with (6.2.8.2) and the above comparison of measures readily gives the
identity (6.2.6.2) and ends the proof of Theorem 6.2.6.1 2.

6.2.9. Proof of Theorem 6.2.6.1 3.
The proof of [BPCZ22, Theorem 6.2.6.1] applies verbatim noting that in loc. cit. the condition that 𝜒 is
∗-regular is only used at the end of the proof to show that the family of bilinear forms denoted by

𝑠 ↦→ 𝑃𝐺′
𝑟
⊗̂Z𝐹𝑅𝑛−𝑟 (𝑠)

on C𝜒 ([𝑀𝑟 ]) × S (A𝑛−𝑟 ) extends holomorphically to H𝑠>1. However, thanks to the proof of part 2 of
Theorem 6.2.6.1 given in the previous subsection, we know that this property continues to hold for
cuspidal data that are only assumed to be regular.

6.3. Proof of Theorem 6.1.1.1

Since 𝜒 is H-regular, by [BPCZ22, Theorem 7.1.3.1], the period integral

𝑃𝐻 : 𝜙 ∈ S𝜒 ([𝐺]) ↦→

∫
[𝐻 ]

𝜙(ℎ)𝑑ℎ

extends continuously to a linear form on T𝜒 ([𝐺]) that we shall denote by 𝑃∗
𝐻 . Then, by the very same

argument as for [BPCZ22, Eq. (8.2.3.5)], we have

𝐼𝜒 ( 𝑓 ) = 𝑃∗
𝐻

(∫
[𝐺′ ]

𝐾 𝑓 ,𝜒 (., 𝑔
′)𝜂𝐺′ (𝑔′)𝑑𝑔′

)
, (6.3.0.1)

where the inner integral is taken in T𝑁 ([𝐺]) for N large enough. Furthermore, applying Corollary 6.2.7.1
instead of [BPCZ22, Corollary 6.2.7.1], the discussion of [BPCZ22, §8.2.4] shows that this inner integral
is identically zero if 𝜒 is not Hermitian, whereas otherwise, it leads to the following expansion:∫

[𝐺′ ]

𝐾 𝑓 ,𝜒 (., 𝑔
′)𝜂𝐺′ (𝑔′)𝑑𝑔′ = 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

∑
𝜙∈B𝑃,𝜋

𝐸 (., 𝐼𝑃 (𝜆, 𝑓 )𝜙, 𝜆)𝛽𝜂 (𝑊 (𝜙, 𝜆))𝑑𝜆 (6.3.0.2)

for B𝑃,𝜋 a K-basis of 𝐼𝐺 (A)

𝑃 (A)
(𝜋). We assume from now on that 𝜒 is Hermitian. We claim the following:

(6.3.0.3) There exists 𝑁 > 0 such that for every 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , the series∑
𝜙∈B𝑃,𝜋

𝐸 (., 𝐼𝑃 (𝜆, 𝑓 )𝜙, 𝜆)𝛽𝜂 (𝑊 (𝜙, 𝜆)) (6.3.0.4)

converges absolutely in T𝑁 ([𝐺]), and furthermore, the integral over 𝑖𝔞𝐿,∗𝑀 in the right-hand
side of (6.3.0.2) converges absolutely in T𝑁 ([𝐺]) .

https://doi.org/10.1017/fmp.2025.8 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.8


Forum of Mathematics, Pi 63

Indeed, that the series (6.3.0.4) converges absolutely in T𝑁 ([𝐺]) for large enough N (independent
of 𝜆) follows from [BPCZ22, Theorem 2.9.8.1]. Note that for every 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 and 𝑔 ∈ [𝐺], we have∑

𝜙∈B𝑃,𝜋

𝐸 (𝑔, 𝐼𝑃 (𝜆, 𝑓 )𝜙, 𝜆)𝛽𝜂 (𝑊 (𝜙, 𝜆)) = 𝛽𝜂 (𝐾 𝑓 (𝑔, .)Π𝜆),

where 𝐾 𝑓 (𝑔, .)Π𝜆 denotes the projection of the function 𝐾 𝑓 (𝑔, .) ∈ S ([𝐺]) to Π𝜆 as defined in
[BPCZ22, Eq. (2.9.8.14)]. Moreover, by [BPCZ22, Lemma 2.10.1.1], for every continuous semi-norm
𝜇 on S ([𝐺]), we can find 𝑁𝜇 > 0 such that for every 𝑓 ′ ∈ S (𝐺 (A)), we have

𝜇(𝐾 𝑓 ′ (𝑔, .)) �𝜇, 𝑓 ′ ‖𝑔‖
𝑁𝜇

𝐺 , for 𝑔 ∈ [𝐺] .

In particular, combining this estimate with the first part of Theorem 6.2.6.1, we deduce that for each
𝑑 > 0, we can find 𝑁𝑑 > 0 such that, for 𝑓 ′ ∈ S (𝐺 (A)), we have������ ∑

𝜙∈B𝑃,𝜋

𝐸 (𝑔, 𝐼𝑃 (𝜆, 𝑓
′)𝜙, 𝜆)𝛽𝜂 (𝑊 (𝜙, 𝜆))

������ = |𝛽𝜂 (𝐾 𝑓 ′ (𝑔, .)Π𝜆) | �𝑑, 𝑓 ′ ‖𝑔‖
𝑁𝑑

𝐺 (1 + ‖𝜆‖)−𝑑

for (𝜆, 𝑔) ∈ 𝑖𝔞𝐿,∗𝑀 × [𝐺]. Choosing d such that 𝜆 ↦→ (1 + ‖𝜆‖)−𝑑 is integrable on 𝑖𝔞𝐿,∗𝑀 and applying the
above inequality to 𝑓 ′ = 𝑅(𝑋) 𝑓 for 𝑋 ∈ U (𝔤) gives the second part of (6.3.0.3).

We now need to recall how the extension 𝑃∗
𝐻 is defined in [BPCZ22, Theorem 7.1.3.1]: for Φ ∈

T𝜒 ([𝐺]), the integral

𝑍𝑅𝑆𝜓 (𝑠,Φ) =
∫
𝑁𝐻 (A)\𝐻 (A)

𝑊Φ(ℎ) |det ℎ|𝑠
A𝐸

𝑑ℎ,

where 𝑊Φ(ℎ) :=
∫
[𝑁 ]

Φ(𝑢ℎ)𝜓𝑁 (𝑢)
−1𝑑𝑢, a priori only defined when �(𝑠) is sufficiently large, admits

an analytic continuation to C and we have

𝑃∗
𝐻 (Φ) = 𝑍𝑅𝑆𝜓 (0,Φ).

Therefore, by continuity of 𝑃∗
𝐻 , (6.3.0.2) and (6.3.0.3), we obtain

𝑃∗
𝐻

(∫
[𝐺′ ]

𝐾 𝑓 ,𝜒 (., 𝑔
′)𝜂𝐺′ (𝑔′)𝑑𝑔′

)
= 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

∑
𝜙∈B𝑃,𝜋

𝑃∗
𝐻 (𝐸 (., 𝐼𝑃 (𝜆, 𝑓 )𝜙, 𝜆))𝛽𝜂 (𝑊 (𝜙, 𝜆))𝑑𝜆

= 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

∑
𝜙∈B𝑃,𝜋

𝑍𝑅𝑆𝜓 (0,𝑊 (𝐼𝑃 (𝜆, 𝑓 )𝜙, 𝜆))𝛽𝜂 (𝑊 (𝜙, 𝜆))𝑑𝜆

= 2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

𝐼Π𝜆 ( 𝑓 )𝑑𝜆.

Together with (6.3.0.1), this ends the proof of the theorem.

7. Proof of Gan-Gross-Prasad conjecture: Eisenstein case

7.1. Global comparison of relative characters

7.1.1. Notations
We follow the notations of Sections 3 and 4. In particular, we fix an integer 𝑛 � 1. We consider the
group 𝐺 = 𝐺𝑛 × 𝐺𝑛+1 and, for ℎ ∈ H𝑛, the groups 𝑈 ′

ℎ ⊂ 𝑈ℎ . Since n is fixed, we drop it from the
notation: H = H𝑛. The various Haar measures are those considered in §2.1.8.
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7.1.2.
Let 𝑉𝐹,∞ ⊂ 𝑆0 ⊂ 𝑉𝐹 be a finite set of places containing all the places that are ramified in E. For every
𝑣 ∈ 𝑉𝐹 , we set 𝐸𝑣 = 𝐸 ⊗𝐹 𝐹𝑣 , and when 𝑣 ∉ 𝑉𝐹,∞, we denote by O𝐸𝑣 ⊂ 𝐸𝑣 its ring of integers. Let
H◦ ⊂ H be the (finite) subset of Hermitian spaces of rank n over E that admits a selfdual O𝐸𝑣 -lattice
for every 𝑣 ∉ 𝑆0. For each ℎ ∈ H◦, the group 𝑈ℎ is then defined over O𝑆0

𝐹 , and we fix a choice of
such a model. For 𝑣 ∉ 𝑆0, we define the open compact subgroups 𝐾ℎ,𝑣 = 𝑈ℎ (O𝑣 ) and 𝐾𝑣 = 𝐺 (O𝑣 ),
respectively, of 𝑈ℎ (𝐹𝑣 ) and 𝐺 (𝐹𝑣 ). We set

𝐾◦
ℎ =

∏
𝑣∉𝑆0

𝐾ℎ,𝑣 and 𝐾◦ =
∏
𝑣∉𝑆0

𝐾𝑣 .

We choose also for each 𝑣 ∈ 𝑆0 some maximal compact subgroup 𝐾ℎ,𝑣 ⊂ 𝑈ℎ (𝐹𝑣 ) and 𝐾𝑣 ⊂ 𝐺 (𝐹𝑣 )
(see §3.1.3).

Let 𝑣 ∉ 𝑆0. We denote by S◦(𝑈ℎ (𝐹𝑣 )), resp. S◦(𝐺 (𝐹𝑣 )), the corresponding spherical Hecke algebra.
We have the base change homomorphism

𝐵𝐶ℎ,𝑣 : S◦(𝐺 (𝐹𝑣 )) → S◦(𝑈ℎ (𝐹𝑣 )).

We denote by S◦(𝑈ℎ (A
𝑆0 )), resp. S◦(𝐺 (A𝑆0 )), the restricted tensor product of S◦(𝑈ℎ (𝐹𝑣 )), resp.

S◦(𝐺 (𝐹𝑣 )), for 𝑣 ∉ 𝑆0. We set 𝐵𝐶𝑆0
ℎ = ⊗𝑣∉𝑆0𝐵𝐶ℎ,𝑣 .

We also denote by S◦(𝐺 (A)) ⊂ S (𝐺 (A)) and S◦(𝑈ℎ (A)) ⊂ S (𝑈ℎ (A)), for ℎ ∈ H◦, the subspaces
of functions that are, respectively, bi-𝐾◦-invariant and bi-𝐾◦

ℎ-invariant.

7.1.3. Transfer
Let ℎ ∈ H◦. We shall say that 𝑓𝑆0 ∈ S (𝐺 (𝐹𝑆0 )) and 𝑓 ℎ𝑆0

∈ S (𝑈ℎ (𝐹𝑆0 )) are transfers if the functions 𝑓𝑆0

and 𝑓 ℎ𝑆0
have matching regular orbital integrals in the sense of [BLZZ21, Definition 4.4].

7.1.4. Cuspidal datum 𝝌0 and H-regular Hermitian Arthur parameter 𝚷
Let P be a standard parabolic subgroup of G and 𝜋 be a cuspidal automorphic representation of 𝑀 = 𝑀𝑃 .
Let 𝜒0 ∈ 𝔛(𝐺) be the class of the pair (𝑀𝑃 , 𝜋). We assume henceforth that 𝜒0 is a Hermitian (𝐺, 𝐻)-
regular cuspidal datum in the sense of §4.1.3. We assume also that (𝑀, 𝜋) satisfies the conditions of
§4.1.4 and that L is the standard Levi subgroup containing M defined in this §. Set Π = Ind𝐺𝑃 (𝜋): this
is a H-regular Hermitian Arthur parameter in the sense of §1.2.1. We assume that 𝑆0 is large enough so
that Π admits 𝐾◦-fixed vectors. Let Π0 be the discrete component of Π (see §1.1.2).

The group 𝑆Π = 𝑆Π0 is defined in §§1.1.2 and 1.1.4. Its order can be computed as follows:

|𝑆Π | = 2dim(𝔞𝐿 )−dim(𝔞𝐿
𝑀 ) . (7.1.4.1)

For any 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , we shall use the distribution 𝐼𝑃,𝜋 (𝜆, ·) on S (𝐺 (A)) defined in §4.1.7.

7.1.5.
Let 𝑆′0 be the union of 𝑆0 \ 𝑉𝐹,∞ and the set of all finite places of F that are inert in E. Let ℎ ∈ H◦ and
let 𝔛ℎΠ ⊂ 𝔛(𝑈ℎ) be the set of cuspidal data represented by pairs (𝑀ℎ , 𝜎) such that 𝑀ℎ is the standard
Levi factor of a standard parabolic sugroup 𝑃ℎ of 𝑈ℎ and 𝜎 is a cuspidal automorphic representation of
𝑀ℎ (A) such that

• Π is a weak base change of (𝑃ℎ , 𝜎) (in the sense of §§1.1.3 and 1.1.4);
• 𝜎 is

∏
𝑣∉𝑆0 (𝑀ℎ (𝐹𝑣 ) ∩ 𝐾ℎ,𝑣 )-unramified;
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• with the identifications 𝑀ℎ = 𝐺♯×𝑈 where 𝐺♯ is a product of linear groups and𝑈 = 𝑈 (ℎ𝑛0 )×𝑈 (ℎ𝑛′0 )

for some ℎ𝑛′0 ∈ H𝑛0 and ℎ𝑛0 ∈ H𝑛′0 and 𝜎 = 𝜎♯�𝜎0 accordingly (where 𝜎0 is a cuspidal automorphic
representation of 𝑈 (A)), for all 𝑣 ∉ 𝑆′0 ∪𝑉𝐹,∞, the representation Π0,𝑣 is the split base change of the
representation 𝜎0,𝑣 .

Since Π is a H-regular Hermitian Arthur parameter, the class of (𝑀ℎ , 𝜎) is (𝑈,𝑈 ′)-regular in the
sense of §3.5.2. Moreover, there is a natural isomorphism

𝑏𝑐 = 𝑏𝑐 (𝑀ℎ ,𝜎) : 𝔞𝐿,∗𝑀 → 𝔞∗𝑀ℎ
. (7.1.5.1)

More precisely, we wrote 𝑀ℎ = 𝐺♯ ×𝑈, where 𝐺♯ is a product of linear groups 𝐺𝑚𝑖 for some integers
𝑚𝑖 and 1 � 𝑖 � 𝑠 so that 𝔞∗𝑀ℎ

= ⊕𝑠𝑖=1𝔞
∗
𝐺𝑚𝑖

. But the product
∏𝑠
𝑖=1(𝐺𝑚𝑖 × 𝐺𝑚𝑖 ) is also a factor in the

decomposition of M into a product of linear groups. So the space 𝔞∗𝑀ℎ
⊕ 𝔞∗𝑀ℎ

= ⊕𝑠𝑖=1(𝔞
∗
𝐺𝑚𝑖

⊕ 𝔞∗𝐺𝑚𝑖
) is a

subspace of 𝔞∗𝑀 . The antidiagonal map 𝑥 ↦→ (𝑥,−𝑥) then identifies 𝔞∗𝑀ℎ
with a subspace of 𝔞∗𝑀ℎ

⊕ 𝔞∗𝑀ℎ

and thus of 𝔞∗𝑀 , and this subspace is precisely 𝔞𝐿,∗𝑀 .

Remarks 7.1.5.1. The base change map 𝑏𝑐 depends implicitly on the choice of the pair (𝑀ℎ , 𝜎). Indeed,
if (𝑀1,ℎ , 𝜎1) is a pair equivalent to (𝑀ℎ , 𝜎) and if 𝑤 ∈ 𝑊 (𝑀ℎ , 𝑀1,ℎ) is such that 𝜎1 = 𝑤 · 𝜎, then
𝑏𝑐 (𝑀1,ℎ ,𝜎1) = 𝑤 ◦ 𝑏𝑐 (𝑀ℎ ,𝜎) (where we view w as a map 𝔞∗𝑀ℎ

→ 𝔞∗𝑀1,ℎ
). In order to not burden the

notation, we shall omit the subscript (𝑀ℎ , 𝜎) from the notation 𝑏𝑐 in (7.1.5.1).
We warn also the reader that the map (7.1.5.1) does not preserve the various choices of Haar measures.

In fact, the pullback of the measure on 𝔞∗𝑀ℎ
is 2dim(𝔞𝐿

𝑀 ) times the measure on 𝔞𝐿,∗𝑀 .

For any 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , we set

𝐽ℎΠ (𝜆, 𝑓 ) =
∑

(𝑀ℎ ,𝜎)

𝐽ℎ𝑃ℎ ,𝜎
(𝑏𝑐(𝜆), 𝑓 ), (7.1.5.2)

where the sum is over a set of representatives (𝑀ℎ , 𝜎) of classes in 𝔛ℎΠ and 𝐽ℎ𝑃ℎ ,𝜎
(𝑏𝑐(𝜆), 𝑓 ) =

𝐽𝑈ℎ

𝑃ℎ ,𝜎
(𝑏𝑐(𝜆), 𝑓 ) is the distribution introduced in §3.5.5. By Proposition 3.5.5.1 and remarks 7.1.5.1,

the distribution does not depend on the choice of the representative.
The sum above is a priori absolutely convergent and the convergence is uniform on compact subset

of 𝑖𝔞𝐿,∗𝑀 (as follows from from a reinforcement of [BPCZ22, proposition 2.8.4.1] based on results of
Müller; see [Mül98, corollary 0.3]). In particular, the expression 𝐽ℎΠ (𝜆, 𝑓 ) is holomorphic for 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 .

7.1.6. A global relative characters identity
Theorem 7.1.6.1. Let 𝑓 ∈ S◦(𝐺 (A)) and 𝑓 ℎ ∈ S◦(𝑈ℎ (A)) for every ℎ ∈ H◦. Assume that the following
properties are satisfied for every ℎ ∈ H◦:

1. 𝑓 = (Δ𝑆0 ,∗
𝐻 Δ𝑆0 ,∗

𝐺′ ) 𝑓𝑆0 ⊗ 𝑓 𝑆0 with 𝑓𝑆0 ∈ S (𝐺 (𝐹𝑆0 )) and 𝑓 𝑆0 ∈ S◦(𝐺 (A𝑆0 )).
2. 𝑓 ℎ = (Δ𝑆0

𝑈 ′
ℎ
)2 𝑓 ℎ𝑆0

⊗ 𝑓 ℎ,𝑆0 with 𝑓 ℎ𝑆0
∈ S (𝑈ℎ (𝐹𝑆0 )) and 𝑓 ℎ,𝑆0 ∈ S◦(𝑈ℎ (A

𝑆0 )).
3. The functions 𝑓𝑆0 and 𝑓 ℎ𝑆0

are transfers.
4. 𝑓 ℎ,𝑆0 = 𝐵𝐶𝑆0

ℎ ( 𝑓 𝑆0)

5. The function 𝑓 𝑆0 is a product of a smooth compactly supported function on the restricted product∏′
𝑣∉𝑆′0∪𝑉𝐹,∞

𝐺 (𝐹𝑣 ) by the characteristic function of
∏
𝑣 ∈𝑆′0\𝑆0 𝐺 (O𝑣 ).

Then for any 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , we have∑
ℎ∈H◦

𝐽ℎΠ (𝜆, 𝑓
ℎ) = |𝑆Π |

−1𝐼𝑃,𝜋 (𝜆, 𝑓 ). (7.1.6.1)
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Remark 7.1.6.2. If Π is a discrete Arthur parameter (that is, 𝐿 = 𝑀), the statement reduces to [BPCZ22,
proposition 10.1.6.1]. As we observed in [BPCZ22], if the assumptions hold for the set 𝑆0, they also
hold for any large enough finite set containing 𝑆0.

7.1.7. Proof of Theorem 7.1.6.1
As in [BLZZ21] and [BPCZ22], our proof is based on the global comparison of Jacquet-Rallis trace
formulas and the use of multipliers to isolate some spectral contributions. However, the spectral contri-
butions we consider here are continuous in nature, and we need further considerations.

In [BPCZ22, Theorem 3.2.4.1], we defined a distribution I on S (𝐺 (A)): this is the ‘Jacquet-Rallis
trace formula’ for G. For unitary groups, we have an analogous distribution 𝐽ℎ = 𝐽𝑈ℎ on S (𝑈ℎ (A)) for
each ℎ ∈ H (see Theorem 3.2.3.1). By [CZ21, théorème 1.6.1.1], we have for functions f and 𝑓 ℎ as in
the statement

𝐼 ( 𝑓 ) =
∑
ℎ∈H◦

𝐽ℎ ( 𝑓 ℎ). (7.1.7.1)

In the following, for each finite place outside 𝑆0, we fix open compact subgroups 𝐾 ′
𝑣 ⊂ 𝐾𝑣 and

𝐾 ′
ℎ,𝑣 ⊂ 𝐾ℎ,𝑣 of finite index. We set

𝐾∞
1 =

∏
𝑣 ∈𝑆0\𝑉𝐹,∞

𝐾 ′
𝑣

∏
𝑣∉𝑆0

𝐾𝑣 and 𝐾∞
ℎ,1 =

∏
𝑣 ∈𝑆0\𝑉𝐹,∞

𝐾 ′
ℎ,𝑣

∏
𝑣∉𝑆0

𝐾ℎ,𝑣 .

We denote by S (𝐺 (A), 𝐾∞
1 ) ⊂ S◦(𝐺 (A)), resp. S (𝑈ℎ (A), 𝐾∞

ℎ,1) ⊂ S◦(𝑈ℎ (A)), the subalgebras of
bi-𝐾∞

1 (resp. bi-𝐾∞
ℎ,1) invariant functions. Since we can shrink 𝐾∞

1 and 𝐾∞
ℎ,1 if necessary, it suffices to

prove the theorem for functions in these subalgebras.
We denote by M𝑆′0 (𝐺 (A)), resp. M𝑆′0 (𝑈ℎ (A)), the algebra of 𝑆′0-multipliers defined in [BLZZ21,

definition 3.5] relatively to the subgroup
∏
𝑣∉𝑆′0

𝐾𝑣 , resp.
∏
𝑣∉𝑆′0

𝐾ℎ,𝑣 . Any multiplier 𝜇 ∈ M𝑆′0 (𝐺 (A)),
resp. 𝜇 ∈ M𝑆′0 (𝑈ℎ (A)), gives rise to a linear operator 𝜇∗ of the algebra S (𝐺 (A), 𝐾∞

1 ), resp.
S (𝑈ℎ (A), 𝐾∞

ℎ,1). For every admissible irreducible representation 𝜌 of 𝐺 (A), resp. of 𝑈ℎ (A), there
exists a complex number 𝜇(𝜌) such that 𝜌(𝜇 ∗ 𝑓 ) = 𝜇(𝜌)𝜌( 𝑓 ) for all 𝑓 ∈ S◦(𝐺 (A), 𝐾∞

1 ), resp.
𝑓 ∈ S◦(𝑈ℎ (A), 𝐾

∞
ℎ,1). Note that 𝜇(𝜌) depends only on the infinitesimal character of the archimedean

component of 𝜌 and on the components outside 𝑆′0. Moreover, if Q is a standard parabolic subgroup of
G, resp. 𝑈ℎ , and if 𝜌 is an admissible irreducible representation of the Levi component 𝑀𝑄 (A), then
we have for any 𝜆 ∈ 𝔞∗𝑄,C and 𝑅𝜆 = Ind𝐺𝑄 (𝜌𝜆), resp. Ind𝑈ℎ

𝑄 (𝜌𝜆),

𝑅𝜆(𝜇 ∗ 𝑓 ) = 𝜇(𝑅𝜆)𝑅𝜆( 𝑓 ),

where 𝜇(𝑅𝜆) ∈ C and the map 𝜆 ↦→ 𝜇(𝑅𝜆) is holomorphic.
The following two lemmas are based on [BLZZ21, theorem 3.17] and a strong multiplicity one

theorem of Ramakrishnan; see [Ram18].

Lemma 7.1.7.1. Let ℎ ∈ H◦ and 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 in general position. Then there exists a multiplier 𝜇ℎ ∈

M𝑆′0 (𝑈ℎ (A)) such that

1. For all 𝑓 ℎ ∈ S (𝑈ℎ (A), 𝐾∞
ℎ,1), the right convolution by 𝜇ℎ ∗ 𝑓 ℎ sends 𝐿2 ([𝑈ℎ]) into

⊕̂𝜒∈𝔛ℎ
Π
𝐿2
𝜒 ([𝑈ℎ]).

2. For (𝑀ℎ , 𝜎) ∈ 𝔛ℎΠ , we have 𝜇ℎ (Ind𝑈ℎ

𝑃ℎ
(𝜎𝑏𝑐 (𝜆) )) = 1.

Proof. By [GRS11], there exists at least one ℎ♭ ∈ H◦ such that the set 𝔛ℎ♭

Π is nonempty. We fix such
a form ℎ♭ and a pair (𝑀ℎ♭ , 𝜎♭). Let 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 in general position. Let ℎ ∈ H◦ and let 𝔛ℎ𝜆 be the set of
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cuspidal data of𝑈ℎ represented by pairs (𝑀𝑄, 𝜌) with 𝑄 ⊂ 𝑈ℎ a standard parabolic subgroup for which
there exists 𝜆′ ∈ 𝔞∗𝑄,C such that

(A) the Archimedean infinitesimal characters of Ind𝑈ℎ♭

𝑃
ℎ♭
(𝜎♭
𝑏𝑐 (𝜆)

) and Ind𝑈ℎ

𝑄 (𝜌𝜆′ ) are the same;

(B) for all finite places v outside 𝑆′0, the irreducible representation Ind𝑈ℎ♭ (𝐹𝑣 )

𝑃
ℎ♭ (𝐹𝑣 )

(𝜎♭
𝑏𝑐 (𝜆) ,𝑣

) is a constituent

of Ind𝑈ℎ (𝐹𝑣 )

𝑄 (𝐹𝑣 )
(𝜌𝜆′,𝑣 ).

By [BLZZ21, theorem 3.19], there exists a 𝑆′0-multiplier 𝜇ℎ such that

(C) For all 𝑓 ℎ ∈ S (𝑈ℎ (A), 𝐾∞
ℎ,1), the right convolution by 𝜇ℎ ∗ 𝑓 ℎ sends 𝐿2 ([𝑈ℎ]) into

⊕̂𝜒∈𝔛ℎ
𝜆
𝐿2
𝜒 ([𝑈ℎ]).

(D) 𝜇ℎ (Ind𝑈ℎ♭

𝑃
ℎ♭
(𝜎♭
𝑏𝑐 (𝜆)

)) = 1.

Let 𝜆′ ∈ 𝔞∗𝑄,C and (𝑀𝑄, 𝜌) be a representative of an element𝔛ℎ𝜆 such that conditions (A) and (B) hold.
We can write the Levi factor 𝑀𝑄 of Q as a product 𝐺♯ ×𝑈0, where 𝐺♯ is a product of linear groups and
𝑈0 is a product of two unitary groups. Accordingly, we write 𝜌 = 𝜌♯ × 𝜌0. Let 𝑄𝐸 = Res𝐸/𝐹 (𝑄 ×𝐹 𝐸)
and let 𝜆′

𝐸 ∈ 𝔞∗𝑄𝐸
be the base change of 𝜆′. Observe that Π𝑣 is generic for all places v and is the split base

of the representation Ind𝑈ℎ♭ (𝐹𝑣 )

𝑃
ℎ♭ (𝐹𝑣 )

(𝜎♭
𝑏𝑐 (𝜆) ,𝑣

) for finite 𝑣 ∉ 𝑆′0. So the representation Ind𝑈ℎ♭ (𝐹𝑣 )

𝑃
ℎ♭ (𝐹𝑣 )

(𝜎♭
𝑏𝑐 (𝜆) ,𝑣

)

is also generic, and thus, Ind𝑈ℎ (𝐹𝑣 )

𝑄 (𝐹𝑣 )
(𝜌𝜆′,𝑣 ) and 𝜌𝜆′,𝑣 are also generic for finite 𝑣 ∉ 𝑆′0. By [BLZZ21,

Theorem 4.14 (1)], there exists an isobaric automorphic representation 𝜌𝐸 of 𝑀𝑄𝐸 such that the split
base change of 𝜌 is 𝜌𝐸 at almost all split places. By the strong multiplicity one theorem of Ramakrishnan
(see [Ram18]), we deduce that the isobaric automorphic representations of𝐺 (A) associated to (𝑃, 𝜋⊗𝜆)
and (𝑄𝐸 , 𝜌𝐸 ⊗𝜆′

𝐸 ) are isomorphic. Using [JS81a, theorem 4.4] and the fact that 𝜆 is in general position,
we conclude that, up to a change of representative, we have 𝑃 ⊂ 𝑄𝐸 , the inclusion given by base change
𝔞∗𝑄 ⊂ 𝔞∗𝑄𝐸

induces an isomorphism of 𝔞∗𝑄 onto 𝔞𝐿,∗𝑀 which identifies 𝜆′ to 𝑏𝑐(𝜆), the representation Π0

is the weak base change of 𝜌0 and Ind𝐺𝑄𝐸
(𝜌♯ � Π0 � 𝜌♯,∗) = Π. Using condition (B), we deduce that

Π0,𝑣 is also the split base change of 𝜌0,𝑣 for all finite places v outside 𝑆′0. We get that 𝔛ℎ𝜆 ⊂ 𝔛ℎΠ , and so
(C) implies assertion 1.

Still, we have to check assertion 2. Let (𝑀𝑄, 𝜌) be a representative of an element in 𝔛ℎΠ . We claim
that Ind𝑈ℎ

𝑄 (𝜌) and Ind𝑈ℎ♭

𝑃
ℎ♭
(𝜎♭
𝑏𝑐 (𝜆)

) have the same Archimedean infinitesimal character and have the
same local component for all finite places v outside 𝑆′0. The latter condition follows directly from the
definition of the set 𝔛ℎΠ and the fact that the split base is injective. The former condition follows from
[BLZZ21, Theorem 4.14 (4)] (applied to 𝜌) and the fact that the base change map is injective at the
level of archimedean infinitesimal characters. Since condition 2 depends only on the components of
Ind𝑈ℎ

𝑄 (𝜌) on 𝑉𝐹 \ 𝑆′0, we see that (D) implies assertion 2. �

Lemma 7.1.7.2. Let 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 . Then there exists a multiplier 𝜇 ∈ M𝑆′0 (𝐺 (A)) such that

1. For all 𝑓 ∈ S (𝐺 (A), 𝐾∞
ℎ,1), the right convolution by 𝜇 ∗ 𝑓 sends 𝐿2 (𝐺 (𝐹)𝐴𝐺 (A)\𝐺 (A)) into

𝐿2
𝜒0 ([𝐺]).

2. We have 𝜇(Π𝜆) = 1.
Proof. The proof is similar to (but simpler than) that of Lemma 7.1.7.1 and is based on [BLZZ21,
Theorem 1.3]). �

Let 𝜆0 be an element of 𝑖𝔞𝐿,∗𝑀 in general position. Let 𝜇 ∈ M𝑆′0 (𝐺 (A)) and 𝜇ℎ ∈ M𝑆′0 (𝑈ℎ (A)) for
ℎ ∈ H◦ satisfying assertions of Lemmas 7.1.7.1 and 7.1.7.2 for 𝜆 = 𝜆0. We may and we shall also assume
that 𝜇ℎ is the ‘base change’ of 𝜇 (see [BLZZ21, Lemma 4.12]). Let 𝑓 ∈ S (𝐺 (A), 𝐾∞

1 ), and for ℎ ∈ H◦,
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let 𝑓 ℎ ∈ S (𝑈ℎ (A), 𝐾∞
ℎ,1) that satisfy the hypotheses of Theorem 7.1.6.1. Then 𝜇 ∗ 𝑓 and 𝜇ℎ ∗ 𝑓 ℎ , for

ℎ ∈ H◦ still satisfy the hypotheses (see [BLZZ21, Proposition 4.8]). Hence, by (7.1.7.1), we have

𝐼 (𝜇 ∗ 𝑓 ) =
∑
ℎ∈H◦

𝐽ℎ (𝜇ℎ ∗ 𝑓 ℎ). (7.1.7.2)

It follows from Lemma 7.1.7.2 and [BPCZ22, Proposition 3.3.3.1 and Theorem 3.3.9.1] that we have
𝐼 (𝜇 ∗ 𝑓 ) = 𝐼𝜒0 (𝜇 ∗ 𝑓 ). In the same way, Lemma 7.1.7.1 and Corollary 3.3.5.2 show that the right-hand
side of (7.1.7.2) reduces to ∑

ℎ∈H◦

∑
𝜒∈𝔛ℎ

Π

𝐽ℎ𝜒 (𝜇ℎ ∗ 𝑓 ℎ).

By Theorems 3.5.7.1 and 4.1.8.1 and by an elementary change of variables, we get

2− dim(𝔞𝐿 )

∫
𝑖𝔞𝐿,∗

𝑀

𝐼𝑃,𝜋 (𝜆, 𝜇 ∗ 𝑓 ) 𝑑𝜆 =
∑
ℎ∈H◦

∑
(𝑀ℎ ,𝜎) ∈𝔛ℎ

Π

∫
𝑖𝔞∗𝑀ℎ

𝐽ℎ𝑃ℎ ,𝜎
(𝑏𝑐(𝜆), 𝜇ℎ ∗ 𝑓 ℎ) 𝑑𝜆

= 2− dim(𝔞𝐿
𝑀 )

∑
ℎ∈H◦

∫
𝑖𝔞𝐿,∗

𝑀

𝐽ℎΠ (𝜆, 𝜇ℎ ∗ 𝑓 ℎ) 𝑑𝜆. (7.1.7.3)

Let 𝑣1, 𝑣2 two finite places outside 𝑆′0 with distinct residual characteristics. Let 𝑆1 ⊂ 𝑉𝐹 \ 𝑆′0 be
a finite set of finite places. We assume that 𝑆1 contains 𝑣1 and 𝑣2. Let A𝑆1 be the spherical algebra
⊗𝑣 ∈𝑆1S◦(𝐺 (𝐹𝑣 )). Let 𝑔 ∈ A𝑆1 . For all ℎ ∈ H◦, let 𝑔ℎ = (⊗𝑣 ∈𝑆1𝐵𝐶ℎ,𝑣 ) (𝑔) be its base change to
⊗𝑣 ∈𝑆1S◦(𝑈ℎ (𝐹𝑣 )). The assumptions of Theorem 7.1.6.1 still hold for the convolutions 𝑓 ∗𝑔 and 𝑓 ℎ ∗𝑔ℎ .
Note that we have for any 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 ,

𝐽ℎΠ (𝜆, 𝜇ℎ ∗ ( 𝑓
ℎ ∗ 𝑔ℎ)) = 𝐽ℎΠ (𝜆, 𝜇ℎ ∗ 𝑓 ℎ)�̂�(Π𝜆,𝑆1 ),

where �̂� is the Satake transform and �̂�(Π𝜆,𝑆1 ) is the scalar by which g acts on Π𝜆,𝑆1 = ⊗𝑣 ∈𝑆1Π𝜆,𝑣 . For
all 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , we set

ℎ(𝜆) = |𝑆Π |
−1𝐼𝑃,𝜋 (𝜆, 𝜇 ∗ 𝑓 ) −

∑
ℎ∈H◦

𝐽ℎΠ (𝜆, 𝜇ℎ ∗ 𝑓 ℎ).

The equality (7.1.7.3) implies that for all 𝑔 ∈ A𝑆1 , we have∫
𝑖𝔞𝐿,∗

𝑀

�̂�(Π𝜆,𝑆1 )ℎ(𝜆) 𝑑𝜆 = 0.

Let T𝑆1 : 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 ↦→ Π𝜆,𝑆1 . Because 𝑣1 and 𝑣2 have distinct residual characteristics, the morphism from
𝑖𝔞∗𝑀 to the group of unramified characters of 𝑀 (𝐹𝑣1 × 𝐹𝑣2) given by 𝜆 ∈ 𝑖𝔞∗𝑀 ↦→ (𝑥 ∈ 𝑀 (𝐹𝑣1 × 𝐹𝑣2) ↦→

exp(〈𝜆, 𝐻𝑃 (𝑥)〉) is injective. We deduce that the map T{𝑣1 ,𝑣2 } has finite fibers of uniformly bounded
cardinality. In particular, the map T𝑆1 has the same property with the same bound. By Stone-Weierstrass
theorem, the set {�̂� | 𝑔 ∈ A𝑆1 } is dense in the set of continuous fonctions on the unramified unitary dual
of
∏
𝑣 ∈𝑆1 𝐺 (𝐹𝑣 ).The push-forward of the measure ℎ(𝜆) 𝑑𝜆 by the map T𝑆1 is thus zero. In this way, we

get that for almost all 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , ∑
𝜆1∈T −1

𝑆1
(Π𝜆,𝑆1 )

ℎ(𝜆1) = 0 (7.1.7.4)

for all finite sets 𝑆1, as above. By continuity of h, this equality holds for all 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 and in particular
for 𝜆 = 𝜆0.
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Let us write T −1
𝑆1

(Π𝜆0 ,𝑆1 ) = {𝜆0, 𝜆1, . . . , 𝜆 𝑗 }, where 𝑗 + 1 is the cardinality of this set. Let 1 � 𝑖 � 𝑗 .
If Π𝜆𝑖 ≠ Π𝜆0 , by the strong multiplicity one theorem of Ramakrishnan (see [Ram18]), there exists a
finite place 𝑣𝑖 ∉ 𝑆′0 ∪ 𝑆1 such that Π𝜆𝑖 ,𝑣𝑖 ≠ Π𝜆0 ,𝑣𝑖 . Since we may enlarge 𝑆1 by adding such a place 𝑣𝑖 ,
we will assume without loss of generality that for any 𝜆 ∈ T −1

𝑆1
(Π𝜆0 ,𝑆1 ), we have Π𝜆 = Π𝜆0 . By [JS81a,

theorem 4.4] and the fact that the cuspidal datum (𝑀, 𝜋) is G-regular, we have even 𝜋𝜆 = 𝜋𝜆0 , and thus,
𝜆 = 𝜆0. So (7.1.7.4) reduces to ℎ(𝜆0) = 0. Because 𝜆0 is in general position, we may use Condition 2 of
Lemmas 7.1.7.1 and 7.1.7.2: we get

ℎ(𝜆0) = |𝑆Π |
−1𝐼𝑃,𝜋 (𝜆0, 𝑓 ) −

∑
ℎ∈H◦

𝐽ℎΠ (𝜆0, 𝑓
ℎ).

So we get (7.1.6.1) for 𝜆 in general position, and so for all 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 , since both members of (7.1.6.1)
are continuous (and even analytic).

7.2. Proof of Theorem 1.2.3.1

7.2.1.
Once we have Theorem 7.1.6.1, the proof of Theorem 1.2.3.1 is very similar to the proof of [BPCZ22,
theorem 1.1.5.1]. For the reader’s convenience, we recall some steps. We use notations of Section 7.1.
Let Π = Ind𝐺𝑃 (𝜋) be a H-regular Hermitian Arthur parameter of G and let 𝜆 ∈ 𝑖𝔞𝐿,∗𝑀 . The relative
character 𝐼Π𝜆 defined in (4.2.8.1) is built upon two linear forms – namely, 𝑍𝑅𝑆 (0) and 𝛽𝜂 . The linear
form 𝛽𝜂 is not identically zero (as a consequence of [GK72], [Jac10, Proposition 5] and [Kem15]) and
𝑍𝑅𝑆 (0) is nonzero if and only if 𝐿( 1

2 ,Π𝜆) ≠ 0 (as follows from the work Jacquet, Piatetski-Shapiro and
Shalika [JPSS83], [Jac04]). Since by Theorem 4.2.8.1, we have 𝐼Π𝜆 = 𝐼𝑃,𝜋 (𝜆), we deduce that 𝐼𝑃,𝜋 (𝜆)
is nonzero if and only if 𝐿( 1

2 ,Π𝜆) ≠ 0.
Let us consider ℎ ∈ H, a parabolic subgroup 𝑃ℎ = 𝑀ℎ𝑁𝑃ℎ of 𝑈ℎ and a cuspidal subrepresentation

𝜎 of 𝑀ℎ . Let A𝑃ℎ ,𝜎ℎ (𝑈ℎ) ⊂ A𝑃ℎ (𝑈ℎ) be the space of forms 𝜑 ∈ A𝑃 (𝐺) such that

𝑚 ∈ [𝑀𝑃] ↦→ exp(−〈𝜌𝑃 , 𝐻𝑃 (𝑚)〉)𝜑(𝑚𝑔)

belongs to the space of 𝜎 for every 𝑔 ∈ 𝐺 (A). By a variation on §3.5.5, we define for 𝜇 ∈ 𝔞∗𝑀ℎ
the

relative character

𝐽𝑈ℎ

𝑃ℎ ,𝜎
(𝜇, 𝑓 ) =

∑
𝜑∈B𝑃ℎ,𝜎

P𝑈 ′
ℎ
(𝐼𝑃ℎ (𝜇, 𝑓 )𝜑, 𝜇)P𝑈 ′

ℎ
(𝜑, 𝜇),

where B𝑃ℎ ,𝜎 is a K-basis of A𝑃ℎ ,𝜎ℎ (𝑈ℎ); that is, it is the union over of 𝜏 ∈ �̂�ℎ of orthonormal bases
B𝑃ℎ ,𝜎,𝜏 for the Petersson inner product of the finite dimensional subspaces A𝑃ℎ ,𝜎 (𝑈ℎ , 𝜏) of functions
in A𝑃ℎ ,𝜎 (𝑈ℎ) which transform under 𝐾ℎ according to 𝜏.

Let us assume that Π is the weak base change of (𝑃ℎ , 𝜎). Then we have the map 𝑏𝑐 : 𝑎𝐿,∗𝑀 → 𝔞∗𝑀ℎ
;

see (7.1.5.1). It is clear that the distribution 𝐽ℎ𝑃ℎ ,𝜎
(𝑏𝑐(𝜆)) is nonzero if and only if the period integral

P𝑈 ′
ℎ
(·, 𝑏𝑐(𝜆)) induces a nonzero linear form on the space of 𝜎. Then Theorem 1.2.3.1 reduces to the

equivalence between the two assertions:

(A) The distribution 𝐼𝑃,𝜋 (𝜆) is nonzero.
(B) There exist ℎ ∈ H, a parabolic subgroup 𝑃ℎ = 𝑀ℎ𝑁𝑃ℎ of 𝑈ℎ and a cuspidal subrepresentation 𝜎

of 𝑀ℎ such that Π is the weak base change of (𝑃ℎ , 𝜎) and 𝐽ℎ𝑃ℎ ,𝜎
(𝑏𝑐(𝜆), 𝑓 ) ≠ 0.

7.2.2. Proof of (𝑨) ⇒ (𝑩)
Let 𝑆0 be the finite set of §7.1.2 such that 𝐼Π is not identically zero on S◦(𝐺 (A)). Then by results of
[Xue19] towards the archimedean transfert and the existence of p-adic transfer of [Zha14b], we see that
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there exist functions f and 𝑓 ℎ for ℎ ∈ H◦ satisfying the hypotheses of Theorem 7.1.6.1 and such that
𝐼𝑃,𝜋 (𝜆, 𝑓 ) ≠ 0. Then (𝐵) follows from (7.1.6.1).

7.2.3. Proof of (𝑩) ⇒ (𝑨)
We may choose the set 𝑆0 so that there exist ℎ0 ∈ H◦, a parabolic subgroup 𝑃ℎ0 = 𝑀ℎ0𝑁𝑃ℎ0

⊂ 𝑈ℎ0 , a
cuspidal subrepresentation 𝜎0 of 𝑀ℎ0 (A) and a function 𝜉 ∈ S◦(𝑈ℎ0 (A)) such that

• the class of (𝑀ℎ0 , 𝜎0) belongs to 𝔛ℎ0
Π ;

• 𝐽ℎ0
𝑃ℎ0 ,𝜎0

(𝑏𝑐 (𝜆), 𝜉) ≠ 0.

We set 𝑓 ℎ0
0 = 𝜉∗𝜉∨, where 𝜉∨(𝑔) = 𝜉 (𝑔−1). Then (see [Zha14b, p. 993]) we have 𝐽ℎ0

𝑃,𝜎 (𝑏𝑐(𝜆), 𝑓
ℎ0

0 ) �

0 for all pairs (𝑃, 𝜎) whose class belongs to 𝔛ℎ0
Π . Moreover, 𝐽ℎ0

𝑃ℎ0 ,𝜎0
(𝑏𝑐ℎ0 (𝜆), 𝑓

ℎ0
0 ) > 0. For any ℎ ∈ H◦

such that ℎ ≠ ℎ0, we set 𝑓 ℎ0 = 0. Up to enlarging 𝑆0, we may and shall assume that the family ( 𝑓 ℎ0 )ℎ∈H◦

satisfies conditions 2 and 5 of Theorem 7.1.6.1. The left-hand side of (7.1.6.1) for the family ( 𝑓 ℎ0 )ℎ∈H◦

is nonzero. By the existence of transfer in [Zha14b] and the results towards archimedean transfer in
[Xue19], we can find test functions 𝑓 ∈ S◦(𝐺 (A)) and 𝑓 ℎ ∈ S◦(𝑈ℎ (A)), for ℎ ∈ H◦, satisfying all the
conditions of Theorem 7.1.6.1 and such that the left-hand side of (7.1.6.1) is nonzero. Assertion (A) is
then clear.

7.3. Proof of Theorem 1.2.4.1

7.3.1.
Let ℎ ∈ H. Let 𝑃 = 𝑀𝑃𝑁𝑃 be a parabolic subgroup of 𝑈ℎ and 𝜎 be a cuspidal automorphic subrep-
resentation of 𝑀𝑃 (A) which is tempered everywhere. Then the group Res𝐸/𝐹 (𝑃 ×𝐹 𝐸) obtained by
extension to E and restriction of scalars to F can be identified to a parabolic subgroup 𝑄 = 𝑀𝑄𝑁𝑄 of
G. Then by [Mok15], [KMSW], 𝜎 admits a strong base-change 𝜋 to 𝑀𝑄; namely, for every place v of F,
the local base-change of 𝜎𝑣 (defined in [Mok15] and [KMSW]) coincides with 𝜋𝑣 . Let Π = Ind𝐺𝑄 (𝜋). It
follows that 𝜋 and Π are also tempered everywhere. We assume that Π is a H-regular hermitian Arthur
parameter. As in §1.1.3, we shall not distinguish in the notation the spaces 𝔞∗Π and 𝔞∗𝑃 . Let 𝜆 ∈ 𝑖𝔞∗Π .

We choose a finite set of places 𝑆0 as in §7.1.2 such that ℎ ∈ H◦ and 𝜎 as well as the additive
character 𝜓 ′ used to normalize local Haar measures in §2.1.8 are unramified outside of 𝑆0.

We have a decomposition 𝜎 = ⊗𝑣 ∈𝑉𝐹𝜎𝑣 . Let Σ𝜆,𝑣 be the full induced representation Ind𝑈ℎ (𝐹𝑣 )

𝑃 (𝐹𝑣 )
(𝜎𝑣 ⊗

𝜆). Let 𝑣 ∈ 𝑉𝐹 . We define a distribution 𝐽Σ𝜆,𝑣 on S (𝑈ℎ (𝐹𝑣 )) by

𝐽Σ𝜆,𝑣 ( 𝑓
ℎ
𝑣 ) =

∫
𝑈 ′

ℎ
(𝐹𝑣 )

Trace(Σ𝜆,𝑣 (ℎ𝑣 )Σ𝜆,𝑣 ( 𝑓 ℎ𝑣 ))𝑑ℎ𝑣 , 𝑓 ℎ𝑣 ∈ S (𝑈ℎ (𝐹𝑣 )),

where

Σ𝜆,𝑣 ( 𝑓
ℎ
𝑣 ) =

∫
𝑈ℎ (𝐹𝑣 )

𝑓 ℎ𝑣 (𝑔𝑣 )Σ𝜆,𝑣 (𝑔𝑣 )𝑑𝑔𝑣 .

By [Har14], since the representations Σ𝜆,𝑣 are all tempered, the expression defining 𝐽Σ𝜆,𝑣 is absolutely
convergent, and for every 𝑣 ∉ 𝑆0, we have

𝐽Σ𝜆,𝑣 (1𝑈ℎ (O𝑣 ) ) = Δ−2
𝑈 ′

ℎ
,𝑣

𝐿
(

1
2 ,Π𝜆,𝑣

)
𝐿(1,Π𝜆,𝑣 ,As′)

.

If there exists a place 𝑣 ∈ 𝑆0 such that 𝜎𝑣 does not support any nonzero continuous 𝑈 ′
ℎ (𝐹𝑣 )-

invariant functional, both sides of (1.2.4.1) in Theorem 1.2.4.1 are clearly automatically zero. So
we shall assume that for every 𝑣 ∈ 𝑆0, the local representation 𝜎𝑣 supports a nonzero continuous
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𝑈 ′
ℎ (𝐹𝑣 )-invariant functional. Then the semi-local distribution

∏
𝑣 ∈𝑆0 𝐽Σ𝜆,𝑣 ( 𝑓

ℎ
𝑣 ) does not vanish iden-

tically by [BP20, theorem 8.2.1]. According to our choice of local measure, Theorem 1.2.4.1 is then
equivalent to the following assertion: for all factorizable test function 𝑓 ℎ ∈ S (𝑈ℎ0 (A)) of the form
𝑓 ℎ = (Δ𝑆0

𝑈 ′
ℎ
)2 ∏

𝑣 ∈𝑆0 𝑓 ℎ𝑣 ×
∏
𝑣∉𝑆0 1𝑈ℎ (O𝑣 ) , we have

𝐽ℎ𝑃,𝜎 (𝜆, 𝑓
ℎ) = |𝑆Π |

−1
𝐿𝑆0

(
1
2 ,Π𝜆

)
𝐿𝑆0 (1,Π𝜆,As′)

∏
𝑣 ∈𝑆0

𝐽Σ𝜆,𝑣 ( 𝑓
ℎ
𝑣 ). (7.3.1.1)

7.3.2.
By Theorem 4.2.8.1 and the definition of 𝐼Π𝜆 there, for every factorizable test function 𝑓 ∈ S (𝐺 (A))

of the form 𝑓 = Δ𝑆0 ,∗
𝐻 Δ𝑆0 ,∗

𝐺′

∏
𝑣 ∈𝑆0 𝑓𝑣 ×

∏
𝑣∉𝑆0 1𝐺 (O𝑣 ) , we have

𝐼𝑄,𝜋 (𝜆, 𝑓 ) =
𝐿𝑆0

(
1
2 ,Π𝜆

)
𝐿𝑆0 ,∗(1,Π𝜆,As′)

∏
𝑣 ∈𝑆0

𝐼Π𝜆,𝑣 ( 𝑓𝑣 ), (7.3.2.1)

where for for every place 𝑣 ∈ 𝑆0, we introduce the local relative character 𝐼Π𝜆,𝑣 defined by

𝐼Π𝜆,𝑣 ( 𝑓𝑣 ) =
∑
𝑊𝑣

𝛼𝑣 (Π𝑣 ( 𝑓𝑣 )𝑊𝑣 )𝛽𝜂,𝑣 (𝑊𝑣 )

〈𝑊𝑣 ,𝑊𝑣〉Whitt,𝑣
, 𝑓𝑣 ∈ S (𝐺 (𝐹𝑣 )).

Here, the sum runs over a 𝐾𝑣 -basis of the Whittaker model W (Π𝜆,𝑣 , 𝜓𝑁 ,𝑣 ), and 𝜆𝑣 , 𝛽𝜂,𝑣 , 〈., .〉Whitt,𝑣
are given by

𝛼𝑣 (𝑊𝑣 ) =
∫
𝑁𝐻 (𝐹𝑣 )\𝐻 (𝐹𝑣 )

𝑊𝑣 (ℎ𝑣 )𝑑ℎ𝑣

𝛽𝜂,𝑣 (𝑊𝑣 ) =
∫
𝑁 ′ (𝐹𝑣 )\P′ (𝐹𝑣 )

𝑊𝑣 (𝑝𝑣 )𝜂𝐺′,𝑣 (𝑝𝑣 )𝑑𝑝𝑣 ,

〈𝑊𝑣 ,𝑊𝑣〉Whitt,𝑣 =
∫
𝑁 (𝐹𝑣 )\P (𝐹𝑣 )

|𝑊𝑣 (𝑝𝑣 ) |
2𝑑𝑝𝑣 .

The above expressions, especially 𝛼𝑣 (𝑊𝑣 ), are all absolutely convergent due to the fact that Π𝜆,𝑣 is
tempered (see [JPSS83, Proposition 8.4]). The above definition implicitly depends on the choice of an
additive character 𝜓 of A𝐸/𝐸 trivial on A which, up to enlarging 𝑆0, we may assume to be unramified
outside of 𝑆0.

7.3.3.
Let 𝑓 ℎ be a test function as in (7.3.1.1). Since both sides of (7.3.1.1) are continuous functionals in 𝑓 ℎ𝑣
for 𝑣 ∈ 𝑆0, we may assume that the function 𝑓 ℎ𝑣 admits a transfer 𝑓𝑣 ∈ S (𝐺 (𝐹𝑣 )) for every 𝑣 ∈ 𝑆0 using
results of [Xue19] and [Zha14b]. Moreover, by the results of those references, we may also assume that
for every ℎ′ ∈ H◦ with ℎ′ ≠ ℎ, the zero function on 𝑈ℎ′ (𝐹𝑆0 ) is a transfer of 𝑓𝑆0 =

∏
𝑣 ∈𝑆0 𝑓𝑣 . We set

𝑓 = Δ𝑆0 ,∗
𝐻 Δ𝑆0 ,∗

𝐺′ 𝑓𝑆0 ×
∏
𝑣∉𝑆0 1𝐺 (O𝑣 ) . Then, setting 𝑓 ℎ

′
= 0 for every ℎ′ ∈ H◦ \ {ℎ}, the functions f and

( 𝑓 ℎ
′
)ℎ′ ∈H◦ satisfy the assumptions of Theorem 7.1.6.1. Therefore, we have

𝐽ℎΠ (𝜆, 𝑓
ℎ) = |𝑆Π |

−1𝐼𝑄,𝜋 (𝜆, 𝑓 ). (7.3.3.1)

7.3.4.
By the local Gan-Gross-Prasad Conjecture [BP20], the classification of cuspidal automorphic represen-
tations of𝑈ℎ in terms of local L-packets [Mok15], [KMSW], all the terms in the definition of 𝐽ℎΠ (𝜆, 𝑓

ℎ)
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(see (7.1.5.2)) vanish except possibly 𝐽ℎ𝑃,𝜎 (𝜆, 𝑓
ℎ). So (7.3.3.1) reduces to

𝐽ℎ𝑃,𝜎 (𝜆, 𝑓
ℎ) = |𝑆Π |

−1𝐼𝑄,𝜋 (𝜆, 𝑓 ). (7.3.4.1)

By [BP21, Theorem 5.4.1] and since Π𝑣 is the local base-change of 𝜎𝑣 , there are explicit constants
𝜅𝑣 ∈ C× for 𝑣 ∈ 𝑆0 satisfying

∏
𝑣 ∈𝑆0 𝜅𝑣 = 1 and such that

𝐼Π𝜆,𝑣 ( 𝑓𝑣 ) = 𝜅𝑣 𝐽Σ𝜆,𝑣 ( 𝑓
ℎ
𝑣 ) (7.3.4.2)

for every 𝑣 ∈ 𝑆0. Now (7.3.1.1) results from the combination of (7.3.4.1), the factorization (7.3.2.1) and
the local comparison (7.3.4.2).

8. Application to the Gan-Gross-Prasad and Ichino-Ikeda conjectures for Bessel periods

8.1. Groups

8.1.1. Notations
They are as in Sections 2, 3 and 4. In particular, 𝐸/𝐹 is a quadratic extension of number fields. For
every place v of F, we set 𝐸𝑣 = 𝐹𝑣 ⊗𝐹 𝐸 and we let O𝐸𝑣 be the ‘ring of integers’ in the quadratic étale
extension 𝐸𝑣 of 𝐹𝑣 . We denote by A𝐸 =

∏′
𝑣 𝐸𝑣 the ring of adeles of E. We fix a nontrivial character

𝜓 : A𝐸/𝐸 → C× that is trivial on A. We also set (see §2.1.7)

‖𝑥‖𝐺 = inf
𝛾∈𝐺 (𝐹 )

‖𝛾𝑥‖,

𝜎(𝑥) = 1 + log‖𝑥‖, for 𝑥 ∈ 𝐺 (A).

If V is a finite dimensional vector space over F, we also fix a height ‖.‖𝑉A : 𝑉A = 𝑉 ⊗𝐹 A → R�1
as in [BPCZ22, §2.4.2], and for every place v of F, we denote by ‖.‖𝑉𝑣 the restriction of ‖.‖𝑉A to
𝑉𝑣 := 𝑉 ⊗𝐹 𝐹𝑣 . We will also write S (𝑉𝑣 ) for the usual Schwartz-Bruhat space on the vector space 𝑉𝑣
(i.e., the usual Schwartz space if v is Archimedean or the space of compactly supported locally constant
functions when v is non-Archimedean).

Recall also, that for every integer 𝑛 � 0, H𝑛 stands for the set of isomorphism classes of Hermitian
forms of rank n for the extension 𝐸/𝐹. For each ℎ ∈ H𝑛, we denote by 𝑈 (ℎ) the corresponding unitary
group. We also fix, as in 3.1, some Hermitian form of rank one ℎ0 ∈ H1.

8.1.2. Linear groups
For every 𝑘 � 0, we set 𝐺𝑘 = Res𝐸/𝐹 GL𝑘,𝐸 equipped with the pair (𝐵𝑘 , 𝑇𝑘 ) as in §4.1.1. Let 𝑁𝑘 ⊂ 𝐵𝑘
be the unipotent radical of 𝐵𝑘 . We define two generic characters 𝜓𝑘 , 𝜓−𝑘 : [𝑁𝑘 ] → C× by

𝜓𝑘 (𝑢) = 𝜓

(
𝑘−1∑
𝑖=1

𝑢𝑖,𝑖+1

)
.

𝜓−𝑘 (𝑢) = 𝜓

(
−

𝑘−1∑
𝑖=1

𝑢𝑖,𝑖+1

)
, 𝑢 ∈ [𝑁𝑘 ] .

We also let 𝑃𝑘 ⊂ 𝐺𝑘 be the mirabolic subgroup consisting of matrices with last row (0, . . . , 0, 1) and
𝐾𝑘 =

∏
𝑣 𝐾𝑘,𝑣 be the standard maximal compact subgroup of 𝐺𝑘 (A).

8.1.3. Unitary groups
We define the Hermitian form ℎ𝑠 ∈ H2 by ℎ𝑠 = ℎ0 ⊕ −ℎ0. We also fix a basis (𝑥, 𝑦) of 𝐸2 consisting of
isotropic vectors for ℎ𝑠 (i.e. ℎ𝑠 (𝑥, 𝑥) = ℎ𝑠 (𝑦, 𝑦) = 0) such that ℎ𝑠 (𝑥, 𝑦) = 1, and we set 𝑋 = 𝐸𝑥,𝑌 = 𝐸𝑦.
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We fix once and for all two positive integers 𝑛 � 𝑚 of the same parity. Thus, 𝑛 = 𝑚 + 2𝑟 for some
𝑟 � 0. Let ℎ𝑚 ∈ H𝑚. We set ℎ𝑚+1 = ℎ𝑚 ⊕ ℎ0, ℎ𝑛 = ℎ⊕𝑟

𝑠 ⊕ ℎ𝑚, ℎ𝑛+1 = ℎ𝑛 ⊕ ℎ0 = ℎ⊕𝑟
𝑠 ⊕ ℎ𝑚+1 and

𝑈𝑚 = 𝑈 (ℎ𝑚), 𝑈𝑚+1 = 𝑈 (ℎ𝑚+1), 𝑈𝑛 = 𝑈 (ℎ𝑛), 𝑈𝑛+1 = 𝑈 (ℎ𝑛+1).

Note that we have natural inclusions 𝑈𝑚 ↩→ 𝑈𝑚+1 ↩→ 𝑈𝑛 ↩→ 𝑈𝑛+1. We also define the following
products:

G = 𝑈𝑚 ×𝑈𝑛+1, 𝑈 = 𝑈𝑛 ×𝑈𝑛+1, 𝑈 = 𝑈𝑚 ×𝑈𝑚+1. (8.1.3.1)

For every 0 � 𝑖 � 𝑟 , we set

𝑥𝑖 = (0, . . . , 0︸���︷︷���︸
2𝑖−2

, 𝑥, 0, . . . , 0︸���︷︷���︸
1+𝑚+2𝑟−2𝑖

), 𝑦𝑖 = (0, . . . , 0︸���︷︷���︸
2𝑖−2

, 𝑦, 0, . . . , 0︸���︷︷���︸
1+𝑚+2𝑟−2𝑖

), 𝑣0 = (0, . . . , 0︸���︷︷���︸
2𝑟+𝑚

, 1) ∈ 𝐸𝑛+1,

and we define the subvector spaces 𝑋𝑖 = 〈𝑥1, . . . , 𝑥𝑖〉 and 𝑌𝑖 = 〈𝑦1, . . . , 𝑦𝑖〉 of 𝐸𝑛+1 spanned by
(𝑥1, . . . , 𝑥𝑖) and (𝑦1, . . . , 𝑦𝑖), respectively. Then, 0 = 𝑋0 � 𝑋1 . . . � 𝑋𝑟 is a flag of ℎ𝑛+1-isotropic
subspaces, and we let 𝑃 ⊂ 𝑈𝑛+1 be the parabolic subgroup stabilizing it. Let N be the unipotent radical
of P. We define a character 𝜓𝑁 : [𝑁] → C× by

𝜓𝑁 (𝑢) = 𝜓

(
𝑟−1∑
𝑖=1

ℎ𝑛+1 (𝑢𝑥𝑖+1, 𝑦𝑖) + ℎ𝑛+1 (𝑢𝑣0, 𝑦𝑟 )

)
, 𝑢 ∈ [𝑁] .

The subgroup 𝑈𝑚 ⊂ 𝑈𝑛+1 normalizes N, and 𝜓𝑁 is invariant by 𝑈𝑚(A)-conjugation. We define the
following three subgroups of the respective groups in (8.1.3.1):

B = 𝑈𝑚 � 𝑁, 𝑈 ′ = 𝑈𝑛, ,𝑈 ′ = 𝑈𝑚, (8.1.3.2)

where the embedding B ⊂ G is the product of the inclusion B ⊂ 𝑈𝑛+1 and the natural projection
B → 𝑈𝑚, whereas the embeddings 𝑈 ′ ⊂ 𝑈, 𝑈 ′ ⊂ 𝑈 are the diagonal ones. We also let 𝜓B : [B] → C×
be the character that coincides with 𝜓𝑁 on [𝑁] and is trivial on [𝑈𝑚].

We will also need some auxiliary parabolic subgroups. First, we let 𝑃′ = 𝑃 ∩𝑈𝑛 be the stabilizer of
the flag 𝑋0 � . . . � 𝑋𝑟 in 𝑈𝑛. We also let 𝑄𝑛+1 ⊂ 𝑈𝑛+1 (resp. 𝑄𝑛 ⊂ 𝑈𝑛) be the parabolic subgroup
stabilizing the ℎ𝑛+1-isotropic (resp. ℎ𝑛-isotropic) subspace 𝑋𝑟 and we denote by 𝑉𝑛+1 (resp. 𝑉𝑛) its
unipotent radical.

Using the basis (𝑥1, . . . , 𝑥𝑟 ) of 𝑋𝑟 , we will identify 𝐺𝑟 as the subgroup of elements in both 𝑈𝑛 and
𝑈𝑛+1 that stabilize the two isotropic subspaces 𝑋𝑟 , 𝑌𝑟 and act trivially on the orthogonal complement
(𝑋𝑟 ⊕ 𝑌𝑟 )

⊥. We then have a semi-direct decomposition

𝑁 = 𝑁𝑟 �𝑉𝑛+1.

We also let 𝐿𝑛 ⊂ 𝑄𝑛 be the Levi factor of 𝑄𝑛 stabilizing 𝑌𝑟 . We have

𝐿𝑛 = 𝑅𝐸/𝐹𝐺𝐿(𝑋𝑟 ) ×𝑈 (ℎ𝑚) = 𝐺𝑟 ×𝑈𝑚. (8.1.3.3)

We will also use the natural identification 𝑎∗𝑄𝑛
� 𝑎∗𝐺𝑟

� C sending 𝑠 ∈ C to the unramified character
(𝑔𝑟 , ℎ) ∈ 𝐿𝑛 (A) ↦→ |det(𝑔𝑟 ) |𝑠A𝐸

. Similarly, for any representation 𝜏 of 𝐿𝑛 (A), we will denote by 𝜏𝑠 the
twist of 𝜏 by this character. Also, once we have fixed suitable maximal compact subgroups below giving
rise to a Harish-Chandra map 𝐻𝑄𝑛 : 𝑈𝑛 (A) → 𝑎𝑄𝑛 , for each 𝜙𝑛 ∈ 𝐼𝑈𝑛

𝑄𝑛
(𝜏) and 𝑠 ∈ C, we will denote

by 𝜙𝑛,𝑠 ∈ 𝐼𝑈𝑛

𝑄𝑛
(𝜏𝑠) the section given by 𝑔 ↦→ exp(𝑠〈det, 𝐻𝑄𝑛 (𝑔)〉)𝜙𝑛 (𝑔). This applies in particular to
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𝜙𝑛 ∈ A𝑄𝑛 (𝑈𝑛), and we will write 𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) for the Eisenstein series

𝐸𝑈𝑛

𝑄𝑛
(𝑔, 𝜙𝑛, 𝑠) :=

∑
𝛾∈𝑄𝑛 (𝐹 )\𝑈𝑛 (𝐹 )

𝜙𝑛,𝑠 (𝛾𝑔),

which converges absolutely when �(𝑠) is large enough.
We also set 𝑄 = 𝑄𝑛 ×𝑈𝑛+1 (a maximal parabolic subgroup of U) and

𝐿 = 𝐿𝑛 ×𝑈𝑛+1 = 𝐺𝑟 × G

(a Levi factor of Q). We define the following subgroup of L:

B𝐿 = 𝑁𝑟 × B

as well as the character 𝜓𝐿B = 𝜓−𝑟 � 𝜓B of [B𝐿]. We also set

B′ = 𝑈 ′ ∩ B = (𝑁𝑟 ×𝑈𝑚) �𝑉𝑛.

We fix a finite set S of places of F containing the Archimedean places as well a the places dividing 2
and such that the character 𝜓 and the Hermitian form ℎ𝑚 are both unramified outside S (i.e., there exists
a lattice Λ𝑚 ⊂ 𝐸𝑚 such that Λ𝑚,𝑣 := Λ𝑚 ⊗O𝐸 O𝐸𝑣 is self-dual with respect to ℎ𝑚 for every 𝑣 ∉ 𝑆).
Then, the same holds for the lattices Λ𝑚+1 = Λ𝑚 ⊕ O𝐸 , Λ𝑛 = O⊕2𝑟

𝐸 ⊕ Λ𝑚 and Λ𝑛+1 = Λ𝑛 ⊕ O𝐸 with
respect to the Hermitian forms ℎ𝑚+1, ℎ𝑛 and ℎ𝑛+1, respectively.

For ℓ ∈ {𝑚, 𝑚 + 1, 𝑛, 𝑛 + 1}, we fix a maximal compact subgroup 𝐾𝑈ℓ =
∏
𝑣 𝐾

𝑈
ℓ,𝑣 ⊂ 𝑈ℓ (A) such that

for every 𝑣 ∉ 𝑆, 𝐾𝑈ℓ,𝑣 is the stabilizer of the lattice Λℓ ⊗O𝐸 O𝐸𝑣 .

8.2. Measures

8.2.1.
For every linear algebraic group G defined over F, we have equipped G(A) with its (left) Tamagawa
measure 𝑑𝑔; see §2.1.8. Also, for each G ∈ {𝑈𝑚,𝑈𝑛,𝑈𝑛+1,𝑈𝑛+2, 𝐺𝑟 , 𝑉𝑛}, we fix a factorization 𝑑𝑔 =∏
𝑣 𝑑𝑔𝑣 into local Haar measures givingG(O𝑣 ) measure one for almost all v. In the case whereG = 𝑁𝑘 ,

it will be convenient to fix more precisely the local measures as follows: for every place v of F, let 𝑑𝜓𝑣 𝑥𝑣
be the Haar measure on 𝐸𝑣 that is self-dual with respect to 𝜓𝑣 . Then we equip 𝑁𝑘 (𝐹𝑣 ) with the product
measure

𝑑𝑢𝑣 =
∏

1�𝑖< 𝑗�𝑘
𝑑𝜓𝑣𝑢𝑣,𝑖, 𝑗 .

It is well known, and easy to check, that 𝑑𝑢 =
∏
𝑣 𝑑𝑢𝑣 is indeed the global Tamagawa measure on

𝑁𝑘 (A) (i.e., it gives [𝑁𝑘 ] volume one).
Similarly, for every v, there is another natural measure on 𝐺𝑘 (𝐹𝑣 ) = GL𝑘 (𝐸𝑣 ) defined by

𝑑𝜓𝑣𝑔𝑣 =

∏
1�𝑖, 𝑗�𝑘 𝑑𝜓𝑣𝑔𝑣,𝑖, 𝑗

|det(𝑔𝑣 ) |𝑘𝐸𝑣

.

We will denote by 𝜈(𝐺𝑘,𝑣 ) ∈ R>0 the quotient 𝑑𝑔𝑣 (𝑑𝜓𝑣𝑔𝑣 )
−1 between the Haar measure we have fixed

on 𝐺𝑟 (𝐹𝑣 ) and the above one. Set

Δ∗
𝐺𝑘

= 𝜁∗𝐸 (1)
𝑘∏
𝑖=2

𝜁𝐸 (𝑖),
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where 𝜁𝐸 (𝑠) denotes the completed Dedekind Zeta function of E and 𝜁∗𝐸 (1) its residue at 𝑠 = 1. Similarly
for every place v (resp. every finite set T of places), we set

Δ𝐺𝑘 ,𝑣 =
𝑘∏
𝑖=1

𝜁𝐸𝑣 (𝑖) (resp. Δ𝑇 ,∗𝐺𝑘
= 𝜁𝑇 ,∗𝐸 (1)

𝑘∏
𝑖=2

𝜁𝑇𝐸 (𝑖)),

where 𝜁𝐸𝑣 denotes the local Eulerian factor1 of 𝜁𝐸 at v (resp. 𝜁𝑇𝐸 (𝑠) denotes the corresponding partial
Dedekind zeta function and 𝜁𝑇 ,∗𝐸 (1) is its residue at 𝑠 = 1). Then, for every non-Archimedean v where
𝜓𝑣 is unramified, we have

vol(𝐾𝑘,𝑣 , 𝑑𝜓𝑣𝑔𝑣 ) = Δ−1
𝐺𝑘 ,𝑣

,

and the global Tamagawa measure on 𝐺𝑘 (A) is, by definition,

𝑑𝑔 = (Δ∗
𝐺𝑘

)−1
∏
𝑣

Δ𝐺𝑘 ,𝑣𝑑𝜓𝑣𝑔𝑣 .

In particular, it follows that if T is a sufficiently large finite set of places, we have 𝜈(𝐺𝑘,𝑣 ) = Δ𝐺𝑘 ,𝑣 for
𝑣 ∉ 𝑇 and ∏

𝑣 ∈𝑇

𝜈(𝐺𝑘,𝑣 ) = (Δ𝑇 ,∗𝐺𝑘
)−1. (8.2.1.1)

8.2.2.
Finally, we record the following Fourier inversion formula: for every 𝑓 ∈ 𝐶∞

𝑐 (𝑃𝑘+1 (𝐹𝑣 )) setting

𝑊 𝑓 (𝑔1, 𝑔2) =
∫
𝑁𝑘+1 (𝐹𝑣 )

𝑓 (𝑔−1
1 𝑢𝑣𝑔2)𝜓𝑘+1(𝑢𝑣 )𝑑𝑢𝑣 , 𝑔1, 𝑔2 ∈ 𝑃𝑘+1(𝐹𝑣 ),

we have

𝑓 (𝑝) =
∫
𝑁𝑘 (𝐹𝑣 )\𝐺𝑘 (𝐹𝑣 )

𝑊 𝑓 (𝛾, 𝛾𝑝)𝑑𝜓𝑣 𝛾

for every 𝑝 ∈ 𝑃𝑘+1 (𝐹𝑣 ), where 𝑑𝜓𝑣 𝛾 denotes the quotient of the Haar measure 𝑑𝜓𝑣𝑔𝑣 on 𝐺𝑘 (𝐹𝑣 ) by
the Haar measure 𝑑𝑢𝑣 = 𝑑𝜓𝑣𝑢𝑣 on 𝑁𝑘 (𝐹𝑣 ). In particular, replacing 𝑑𝜓𝑣 𝛾 by the quotient measure 𝑑𝛾
of 𝑑𝑔𝑣 by 𝑑𝑢𝑣 , we obtain the following renormalized inversion formula:

𝑓 (𝑝) = 𝜈(𝐺𝑘,𝑣 )
−1
∫
𝑁𝑘 (𝐹𝑣 )\𝐺𝑘 (𝐹𝑣 )

𝑊 𝑓 (𝛾, 𝛾𝑝)𝑑𝛾. (8.2.2.1)

8.3. Global periods

8.3.1.
We define the Whittaker period on 𝐺𝑟 as the linear form

P𝑁𝑟 ,𝜓−𝑟 : A([𝐺𝑟 ]) � 𝜙 ↦→

∫
[𝑁𝑟 ]

𝜙(𝑢)𝜓−𝑟 (𝑢)𝑑𝑢.

(Note the minus sign.)

1More precisely, this is really a product of two such factors when v splits in E.
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8.3.2.
Under extra assumptions ensuring absolute convergence (e.g., cuspidality), we will consider the follow-
ing global Bessel period for 𝜙 ∈ A([G]) (resp. 𝜙 ∈ A([𝑈])):

PB,𝜓B (𝜙) =
∫
[B]

𝜙(𝑠)𝜓B (𝑠)𝑑𝑠.

(resp. P𝑈 ′ (𝜙) =
∫
[𝑈 ′ ]

𝜙(ℎ)𝑑ℎ.)

For example, it is readily seen that the period P𝑈 ′ (𝜙) is absolutely convergent for 𝜙 = 𝜙𝑛 ⊗ 𝜙𝑛+1, where
𝜙𝑛 ∈ A([𝑈𝑛]) and 𝜙𝑛+1 ∈ A𝑐𝑢𝑠𝑝 ([𝑈𝑛+1]).

8.3.3.
Again provided it is convergent, for 𝜙 ∈ A([𝐿]), we define the mixed Whittaker-Bessel period

PB𝐿 ,𝜓𝐿
B
(𝜙) =

∫
[B𝐿 ]

𝜙(𝑠)𝜓𝐿B (𝑠)𝑑𝑠.

For example, this period is absolutely convergent when 𝜙 = 𝜙𝑟 ⊗ 𝜙′ where 𝜙𝑟 ∈ A([𝐺𝑟 ]) and
𝜙′ ∈ A𝑐𝑢𝑠𝑝 ([G]), in which case we have

PB𝐿 ,𝜓𝐿
B
(𝜙) = P𝑁𝑟 ,𝜓−𝑟 (𝜙𝑟 )PB,𝜓B (𝜙

′).

8.4. Local Bessel periods

8.4.1.
Let v be a place of F. For every connected reductive group G defined over 𝐹𝑣 , we let C𝑤 (G(𝐹𝑣 ))
be the space of tempered functions on G(𝐹𝑣 ) as defined in [BP20, §1.5] (where it is called the weak
Harish-Chandra Schwartz space). Since we will need it, let us recall quickly its definition. Let ΞG
Harish-Chandra special spherical function on G(𝐹𝑣 ), which, strictly speaking, depends on the choice
of a maximal compact subgroup K𝑣 ⊂ G(𝐹𝑣 ) (such a choice has already been made for all the groups
we will have to consider). For each 𝑑 > 0, we let C𝑤𝑑 (G(𝐹𝑣 )) be the space of functions 𝑓 : G(𝐹𝑣 ) → C
such that:

• If v is non-Archimedean, f is biinvariant by a compact-open subgroup and we have

| 𝑓 (𝑔) | � ΞG(𝑔)𝜎(𝑔)𝑑 , for 𝑔 ∈ G(𝐹𝑣 );

• If v is Archimedean, f is 𝐶∞ and for every 𝑋,𝑌 ∈ U (Lie(G(𝐹𝑣 ))),

| (𝐿(𝑋)𝑅(𝑌 ) 𝑓 ) (𝑔) | �𝑋,𝑌 ΞG(𝑔)𝜎(𝑔)𝑑 , for 𝑔 ∈ G(𝐹𝑣 ).

When v is Archimedean, C𝑤𝑑 (G(𝐹𝑣 )) is naturally a Fréchet space, whereas if v is non-Archimedean,
C𝑤𝑑 (G(𝐹𝑣 )) is a strict LF space. By definition, the space of tempered functions is C𝑤 (G(𝐹𝑣 )) =⋃
𝑑>0 C𝑤𝑑 (G(𝐹𝑣 )). It is equipped with the direct limit locally convex topology, and it contains

𝐶∞
𝑐 (G(𝐹𝑣 )) as a dense subspace. (However, note that 𝐶∞

𝑐 (G(𝐹𝑣 )) is not dense in C𝑤𝑑 (G(𝐹𝑣 )) for any
𝑑 > 0.)
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8.4.2.
By definition, the local period P𝑈 ′,𝑣 is the linear form

P𝑈 ′,𝑣 : C𝑤 (𝑈 (𝐹𝑣 )) � 𝑓 ↦→

∫
𝑈 ′ (𝐹𝑣 )

𝑓 (ℎ)𝑑ℎ,

the integral being absolutely convergent by [BP20, Lemma 6.5.1(i)].
Moreover, it is shown in [BP20, Proposition 7.1.1] that the linear form

𝐶∞
𝑐 (G (𝐹𝑣 )) � 𝑓𝑣 ↦→

∫
B (𝐹𝑣 )

𝑓𝑣 (𝑠)𝜓B,𝑣 (𝑠)𝑑𝑠

extends by continuity to C𝑤 (G (𝐹𝑣 )). We denote this unique continuous extension by PB,𝜓B ,𝑣 and call
it the local Bessel period.

A similar argument shows that the linear forms

𝐶∞
𝑐 (𝐺𝑟 (𝐹𝑣 )) � 𝑓𝑣 ↦→

∫
𝑁𝑟 (𝐹𝑣 )

𝑓𝑣 (𝑢)𝜓−𝑟 ,𝑣 (𝑢)𝑑𝑢,

𝐶∞
𝑐 (𝐿(𝐹𝑣 )) � 𝑓𝑣 ↦→

∫
B𝐿 (𝐹𝑣 )

𝑓𝑣 (𝑠)𝜓
𝐿
B,𝑣 (𝑠)𝑑𝑠

extend by continuity to C𝑤 (𝐺𝑟 (𝐹𝑣 )) and C𝑤 (𝐿(𝐹𝑣 )), respectively. We denote these unique continuous
extensions by P𝑁𝑟 ,𝜓−𝑟 ,𝑣 , PB𝐿 ,𝜓𝐿

B ,𝑣
and call them the local Whittaker period and Whittaker-Bessel

period, respectively.

8.4.3.
Let (G,H) ∈ {(𝑈,𝑈 ′), (G, (B, 𝜓B)), (𝐿, (B𝐿 , 𝜓𝐿B)), (𝐺𝑟 , (𝑁𝑟 , 𝜓−𝑟 ))}. Then, for any tempered irre-
ducible representation 𝜎𝑣 of G(𝐹𝑣 ) equipped with an invariant inner product (·, ·)𝑣 and vectors
𝜙𝑣 , 𝜙

′
𝑣 ∈ 𝜎𝑣 , the matrix coefficient

𝑓𝜙𝑣 ,𝜙
′
𝑣

: 𝑔 ∈ G(𝐹𝑣 ) ↦→ (𝜎𝑣 (𝑔)𝜙𝑣 , 𝜙
′
𝑣 )𝑣

belongs to C𝑤 (G(𝐹𝑣 )). We set

PH,𝑣 (𝜙𝑣 , 𝜙′
𝑣 ) := PH,𝑣 ( 𝑓𝜙𝑣 ,𝜙

′
𝑣
).

8.5. Relation between global periods

8.5.1.

Proposition 8.5.1.1. Let 𝜙𝑛 ∈ A𝑄𝑛 (𝑈𝑛) and 𝜙𝑛+1 ∈ A𝑐𝑢𝑠𝑝 (𝑈𝑛+1). Then, there exists 𝑐 > 0 such that
for 𝑠 ∈ H>𝑐 , we have the identity

P𝑈 ′ (𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) ⊗ 𝜙𝑛+1) =

∫
B′ (A)\𝑈 ′ (A)

PB𝐿 ,𝜓𝐿
B

(
𝑅(ℎ) (𝜙𝑛,𝑠 ⊗ 𝜙𝑛+1)

)
𝑑ℎ,

where the right expression is absolutely convergent.

Proof. For �(𝑠) sufficiently large, we have

𝐸𝑈𝑛

𝑄𝑛
(ℎ, 𝜙𝑛, 𝑠) =

∑
𝛾∈𝑄𝑛 (𝐹 )\𝑈𝑛 (𝐹 )

𝜙𝑛,𝑠 (𝛾ℎ), ℎ ∈ [𝑈𝑛],
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so that (the resulting expression being absolutely convergent by cuspidality of 𝜙𝑛+1)

P𝑈 ′ (𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) ⊗ 𝜙𝑛+1) =

∫
[𝑈𝑛 ]

∑
𝛾∈𝑄𝑛 (𝐹 )\𝑈𝑛 (𝐹 )

𝜙𝑛,𝑠 (𝛾ℎ)𝜙𝑛+1 (ℎ)𝑑ℎ (8.5.1.1)

=
∫
𝑄𝑛 (𝐹 )\𝑈𝑛 (A)

𝜙𝑛,𝑠 (ℎ)𝜙𝑛+1(ℎ)𝑑ℎ

=
∫
𝐿𝑛 (𝐹 )𝑉𝑛 (A)\𝑈𝑛 (A)

𝜙𝑛,𝑠 (ℎ)𝜙𝑛+1,𝑉𝑛 (ℎ)𝑑ℎ,

where

𝜙𝑛+1,𝑉𝑛 (ℎ) :=
∫
[𝑉𝑛 ]

𝜙𝑛+1(𝑣ℎ)𝑑𝑣.

We claim that we have a Fourier expansion

𝜙𝑛+1,𝑉𝑛 (ℎ) =
∑

𝛿∈𝑁𝑟 (𝐹 )\𝐺𝑟 (𝐹 )

𝜙𝑛+1,𝑁 ,𝜓𝑁 (𝛿ℎ) (8.5.1.2)

for every ℎ ∈ 𝑈𝑛+1 (A) where we have set

𝜙𝑛+1,𝑁 ,𝜓𝑁 (ℎ) :=
∫
[𝑁𝑟+1 ]

𝜙𝑛+1,𝑉𝑛 (𝑢ℎ)𝜓𝑟+1(𝑢)𝑑𝑢 =
∫
[𝑁 ]

𝜙𝑛+1(𝑢ℎ)𝜓𝑁 (𝑢)𝑑𝑢.

Indeed, the subgroup 𝐺𝑟𝑁 of 𝑈𝑛+1 contains 𝑉𝑛 as a normal subgroup, and the quotient 𝐺𝑟𝑁/𝑉𝑛 can be
identified with the mirabolic subgroup 𝑃𝑟+1 of 𝐺𝑟+1 via restriction to the subspace 〈𝑥1, . . . , 𝑥𝑟 , 𝑥𝑟+1〉,
where we have set 𝑥𝑟+1 = 𝑣0. It readily follows from the cuspidality of 𝜙𝑛+1 that for any ℎ ∈ 𝑈𝑛+1 (A),
the function 𝑝 ∈ [𝑃𝑟+1] ↦→ 𝜙𝑛+1,𝑉𝑛 (𝑝ℎ) is cuspidal in the sense of [Cog08, §1.1] and therefore by loc.
cit. that we have the Fourier expansion (8.5.1.2).

Replacing 𝜙𝑛+1,𝑉𝑛 by its Fourier expansion (8.5.1.2) in (8.5.1.1), we formally obtain (remembering
the decomposition (8.1.3.3) for 𝐿𝑛)

P𝑈 ′ (𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) ⊗ 𝜙𝑛+1) =

∫
𝑁𝑟 (𝐹 )𝑈𝑚 (𝐹 )𝑉𝑛 (A)\𝑈𝑛 (A)

𝜙𝑛,𝑠 (ℎ)𝜙𝑛+1,𝑁 ,𝜓𝑁 (ℎ)𝑑ℎ

=
∫
B′ (A)\𝑈 ′ (A)

PB𝐿 ,𝜓𝐿
B

(
𝑅(ℎ) (𝜙𝑛,𝑠 ⊗ 𝜙𝑛+1)

)
𝑑ℎ.

To justify this formal computation, it remains to check that the integral∫
𝑁𝑟 (𝐹 )𝑈𝑚 (𝐹 )𝑉𝑛 (A)\𝑈𝑛 (A)

��𝜙𝑛,𝑠 (ℎ)𝜙𝑛+1,𝑁 ,𝜓𝑁 (ℎ)
�� 𝑑ℎ

converges for �(𝑠) sufficiently large. This can be rewritten as∫
𝑃′ (A)\𝑈 ′ (A)

∫
[𝑈𝑚 ]×𝑇𝑟 (A)×[𝑁𝑟 ]

��𝜙𝑛,𝑠 (𝑢𝑎𝑔ℎ)𝜙𝑛+1,𝑁 ,𝜓𝑁 (𝑎𝑔ℎ)
�� 𝛿𝑄𝑛 (𝑎)

−1𝛿𝐵𝑟 (𝑎)
−1𝑑𝑢𝑑𝑎𝑑𝑔𝑑ℎ.

Thus, as 𝑃′(A)\𝑈 ′(A) is compact, it suffices to check the convergence of∫
[𝑈𝑚 ]×𝑇𝑟 (A)×[𝑁𝑟 ]

��𝜙𝑛,𝑠 (𝑢𝑎𝑔)𝜙𝑛+1,𝑁 ,𝜓𝑁 (𝑎𝑔)
�� 𝛿𝑄𝑛 (𝑎)

−1𝛿𝐵𝑟 (𝑎)
−1𝑑𝑢𝑑𝑎𝑑𝑔 =∫

[𝑈𝑚 ]×𝑇𝑟 (A)×[𝑁𝑟 ]

��𝜙𝑛 (𝑢𝑎𝑔)𝜙𝑛+1,𝑁 ,𝜓𝑁 (𝑎𝑔)
�� 𝛿𝑄𝑛 (𝑎)

−1𝛿𝐵𝑟 (𝑎)
−1 |det 𝑎 |𝑠

A𝐸
𝑑𝑢𝑑𝑎𝑑𝑔.
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Let us embed 𝑇𝑟 (A) into A𝑟𝐸 in the natural way. Then, by [BPCZ22, Lemma 2.6.1.1] and since 𝜙𝑛+1 is
cuspidal, for every 𝑅 > 0, we have��𝜙𝑛+1,𝑁 ,𝜓𝑁 (𝑎𝑔)

�� �𝑅 ‖𝑎‖−𝑅A𝑟
𝐸
‖𝑔‖−𝑅𝑈𝑚

, (𝑎, 𝑔) ∈ 𝑇𝑟 (A) × [𝑈𝑚] . (8.5.1.3)

Moreover, since 𝜙𝑛 is of moderate growth, we can find 𝐷 > 0 such that

|𝜙𝑛 (𝑢𝑎𝑔) | � ‖𝑎‖𝐷 ‖𝑔‖𝐷𝑈𝑚
, (𝑢, 𝑎, 𝑔) ∈ [𝑁𝑟 ] × 𝑇𝑟 (A) × [𝑈𝑚] . (8.5.1.4)

Combining (8.5.1.3) with (8.5.1.4), we are eventually reduced to the following readily checked property:
for every s large enough, there exists 𝑅 > 0 such that the integral∫

𝑇𝑟 (A)
‖𝑎‖𝐷 ‖𝑎‖−𝑅A𝑟

𝐸
𝛿𝑄𝑛 (𝑎)

−1𝛿𝐵𝑟 (𝑎)
−1 |det 𝑎 |𝑠

A𝐸
𝑑𝑎

converges. �

8.6. Relations between local periods

8.6.1.
Let v be a place of F and let 𝜏,𝜎𝑚,𝜎𝑛+1 be irreducible representations of𝐺𝑟 (𝐹𝑣 ),𝑈𝑚(𝐹𝑣 ) and𝑈𝑛+1 (𝐹𝑣 ),
respectively. We set 𝜎 = 𝜎𝑚�𝜎𝑛+1 (an irreducible representation of G (𝐹𝑣 ) = 𝑈𝑚 (𝐹𝑣 ) ×𝑈𝑛+1 (𝐹𝑣 )). Let

L ∈ HomB𝐿 (𝐹𝑣 ) (𝜏 � 𝜎, 𝜓𝐿B,𝑣 ).

By multiplicity one results [ARS10], [GGP12, Corollary 15.3], [JSZ10], L factors as L = L𝑊 ⊗ L𝐵,
where L𝑊 ∈ Hom𝑁𝑟 (𝐹𝑣 ) (𝜏, 𝜓−𝑟 ,𝑣 ) and L𝐵 ∈ HomB (𝐹𝑣 ) (𝜎, 𝜓B,𝑣 ).

For every 𝑠 ∈ C, we set 𝜏𝑠 = 𝜏 |det|𝑠𝐸𝑣
and we denote by 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏𝑠 � 𝜎𝑚) the normalized parabolic

induction of 𝜏𝑠 � 𝜎𝑚 to 𝑈𝑛 (𝐹𝑣 ).

Proposition 8.6.1.1. There exists 𝑐 ∈ R such that the functional

L𝑈 ′

𝑠 : 𝜙𝑛,𝑠 ⊗ 𝜙𝑛+1 ∈ 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏𝑠 � 𝜎𝑚) ⊗ 𝜎𝑛+1 ↦→

∫
B′ (𝐹𝑣 )\𝑈 ′ (𝐹𝑣 )

L(𝜙𝑛,𝑠 (ℎ) ⊗ 𝜎𝑛+1(ℎ)𝜙𝑛+1)𝑑ℎ

converges absolutely for 𝑠 ∈ H>𝑐 . If, moreover, both 𝜎 and 𝜏 are tempered, we may take 𝑐 = −1/2.
Furthermore, for s with sufficiently large real part, the following assertions are equivalent:

1. There exist 𝜙𝜏 ∈ 𝜏, 𝜙𝑚 ∈ 𝜎𝑚 and 𝜙𝑛+1 ∈ 𝜎𝑛+1 such that L(𝜙𝜏 ⊗ 𝜙𝑚 ⊗ 𝜙𝑛+1) ≠ 0;
2. There exist 𝜙𝑛,𝑠 ∈ 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏𝑠 � 𝜎𝑚) and 𝜙𝑛+1 ∈ 𝜎𝑛+1 such that L𝑈 ′

𝑠 (𝜙𝑛,𝑠 ⊗ 𝜙𝑛+1) ≠ 0.

Proof. Since 𝑃′ = 𝑇𝑟B′ is a parabolic subgroup of𝑈 ′, it suffices to check the convergence of the integral∫
𝑇𝑟 (𝐹𝑣 )

L(𝜙𝑛,𝑠 (𝑎) ⊗ 𝜎𝑛+1,𝑣 (𝑎)𝜙𝑛+1)𝛿𝑃′ (𝑎)−1𝑑𝑎 =∫
𝑇𝑟 (𝐹𝑣 )

L((𝜏(𝑎) ⊗ 𝜎(𝑎))𝜙𝑛,𝑠 (1) ⊗ 𝜙𝑛+1) |det 𝑎 |𝑠𝐸𝑣
𝛿𝑄𝑛 (𝑎)

1/2𝛿𝑃′ (𝑎)−1𝑑𝑎

for �(𝑠) � 0.

Lemma 8.6.1.2. There exists 𝐷 > 0 such that for every 𝜙 ∈ 𝜏 � 𝜎 and 𝑅 > 0, we have

|L((𝜏(𝑎) ⊗ 𝜎(𝑎))𝜙) | �𝑅 ‖𝑎‖−𝑅𝐸𝑟
𝑣
‖𝑎‖𝐷 , for 𝑎 ∈ 𝑇𝑟 (𝐹𝑣 ). (8.6.1.1)
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If, moreover, 𝜎 and 𝜏 are tempered, for every 𝜙 ∈ 𝜏 � 𝜎 and 𝑅 > 0, we have

|L((𝜏(𝑎) ⊗ 𝜎(𝑎))𝜙) | �𝑅 ‖𝑎‖−𝑅𝐸𝑟
𝑣
Ξ𝐺𝑟,𝑣 (𝑎)Ξ𝑈𝑛+1,𝑣 (𝑎), for 𝑎 ∈ 𝑇𝑟 (𝐹𝑣 ). (8.6.1.2)

Proof. It suffices to prove the lemma when 𝜙 is a pure tensor (i.e., it is of the form 𝜙 = 𝜙𝜏 ⊗ 𝜙𝑚 ⊗ 𝜙𝑛+1,
where 𝜙𝜏 ∈ 𝜏, 𝜙𝑚 ∈ 𝜎𝑚 and 𝜙𝑛+1 ∈ 𝜎𝑛+1). Indeed, in the case where v is non-Archimedean, every
vector in 𝜏 � 𝜎 is a sum of pure tensors, whereas if v is Archimedean, the claimed inequalities would
automatically extend from the algebraic tensor product to the completed tensor product by the Banach-
Steinhaus theorem (see, for example, [Trè67, Theorem 34.1]).

Using the equality L = L𝑊 ⊗L𝐵, we are therefore reduced to show the existence of 𝐷 > 0 such that
for every 𝑅 > 0 (resp. that when 𝜏, 𝜎 are tempered for every 𝑅 > 0), we have��L𝑊 (𝜏(𝑎)𝜙𝜏)

�� � ‖𝑎‖𝐷 (resp.
��L𝑊 (𝜏(𝑎)𝜙𝜏)

�� � Ξ𝐺𝑟,𝑣 (𝑎) ) (8.6.1.3)

and ��L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1 (𝑎)𝜙𝑛+1)
�� �𝑅 ‖𝑎‖−𝑅𝐸𝑟

𝑣
‖𝑎‖𝐷 (8.6.1.4)

(resp.
��L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑎)𝜙𝑛+1)

�� �𝑅 ‖𝑎‖−𝑅𝐸𝑟
𝑣
Ξ𝑈𝑛+1,𝑣 (𝑎) )

for 𝑎 ∈ 𝑇𝑟 (𝐹𝑣 ).
The estimates (8.6.1.3) and (8.6.1.4) can be established along the same lines as Lemma B.2.1 and

Lemma 7.3.1 (i) of [BP20], respectively. More precisely, in the tempered case, (8.6.1.3) is a direct
application of Lemma B.2.1 of loc.cit. The same inequality for general representations (and for a suitable
D) is a consequence of the continuity ofL𝑊 when v is Archimedean, whereas, for v non-Archimedean, by
the same argument as in [BP20, Lemma B.2.1], we can bound the function 𝑎 ∈ 𝑇𝑟 (𝐹𝑣 ) ↦→

��L𝑊 (𝜏(𝑎)𝜙𝜏)
��

by a matrix coefficient of 𝜏𝑣 which is in turn essentially bounded by ‖𝑎‖𝐷 for some 𝐷 > 0.
As for (8.6.1.4), we first note that

𝜓B,𝑣 (𝑒
Ad(𝑎)𝑋 )L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑎)𝜙𝑛+1) = L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑎𝑒

𝑋 )𝜙𝑛+1) (8.6.1.5)

for every (𝑎, 𝑋) ∈ 𝑇𝑟 (𝐹𝑣 ) ×Lie(B(𝐹𝑣 )). Furthermore, when v is Archimedean, differentiating the above
identities yields

𝑑𝜓B,𝑣 (Ad(𝑎)𝑋)L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑎)𝜙𝑛+1) = L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑎)𝜎𝑛+1 (𝑋)𝜙𝑛+1), (8.6.1.6)

where 𝑑𝜓B,𝑣 : 𝐿𝑖𝑒(B(𝐹𝑣 )) → C denotes the differential of 𝜓B,𝑣 at 1. From (8.6.1.6), we deduce that
for every linear form 𝜆 : 𝐸𝑟𝑣 → 𝐹𝑣 , there exists 𝑋𝜆 ∈ 𝐿𝑖𝑒(B(𝐹𝑣 )) such that

𝜆(𝑎)L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑎)𝜙𝑛+1) = L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑎)𝜎𝑛+1(𝑋𝜆)𝜙𝑛+1)

for every 𝑎 ∈ 𝑇𝑟 (𝐹𝑣 ). Similarly, when v is non-Archimedean, we deduce from (8.6.1.5) and the
smoothness of 𝜙𝑛+1 the existence of 𝐶 > 0 such that L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1 (𝑎)𝜙𝑛+1) = 0 unless ‖𝑎‖𝐸𝑟

𝑣
� 𝐶.

Combining these two facts, we are now reduced to show the existence of 𝐷 > 0 such that (resp. that for
𝜎 tempered we have)��L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑎)𝜙𝑛+1)

�� � ‖𝑎‖𝐷 (resp.
��L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1 (𝑎)𝜙𝑛+1)

�� � Ξ𝑈𝑛+1,𝑣 (𝑎))

for 𝑎 ∈ 𝑇𝑟 (𝐹𝑣 ). The case where 𝜎 is tempered is a direct application of [BP20, Lemma 7.3.1(i)],
whereas the case of a general representation follows from continuity of L𝐵 in the Archimedean case or
an argument similar to that of loc. cit. to show that 𝑎 ↦→ L𝐵 (𝜙𝑚 ⊗𝜎𝑛+1(𝑎)𝜙𝑛+1) is bounded by a matrix
coefficient of 𝜎 in the non-Archimedean case. �
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By the lemma, and since there exists 𝑑 > 0 such that (see [Wal03, Lemme II.1.1])

Ξ𝐺𝑟,𝑣 (𝑎)Ξ𝑈𝑛+1,𝑣 (𝑎) � 𝛿𝐵𝑟 (𝑎)
1/2𝛿𝑃 (𝑎)

1/2𝜎(𝑎)𝑑 , for 𝑎 ∈ 𝑇𝑟 (𝐹𝑣 ),

the convergence part of the proposition reduces to the two following readily checked facts:

• Let 𝐷 > 0. Then, we can find 𝑐 > 0 such that for every 𝑠 > 𝑐 and for suitable 𝑅 > 0, the integral∫
𝑇𝑟 (𝐹𝑣 )

‖𝑎‖𝐷 ‖𝑎‖−𝑅𝐸𝑟
𝑣
|det 𝑎 |𝑠𝐸𝑣

𝛿𝑄𝑛 (𝑎)
1/2𝛿𝑃′ (𝑎)−1𝑑𝑎

converges;
• For every 𝑠 > −1/2, we can find 𝑅 > 0 such that the integral∫

𝑇𝑟 (𝐹𝑣 )

‖𝑎‖−𝑅𝐸𝑟
𝑣
|det 𝑎 |𝑠𝐸𝑣

𝛿𝐵𝑟 (𝑎)
1/2𝛿𝑃 (𝑎)

1/2𝛿𝑄𝑛 (𝑎)
1/2𝛿𝑃′ (𝑎)−1𝜎(𝑎)𝑑𝑑𝑎 =∫

𝑇𝑟 (𝐹𝑣 )

‖𝑎‖−𝑅𝐸𝑟
𝑣
|det 𝑎 |𝑠+1/2

𝐸𝑣
𝜎(𝑎)𝑑𝑑𝑎

converges.

The implication 2. ⇒ 1. is clear from the definition of L𝑈 ′

𝑠 . Let us show the converse. Thus, we
assume that L is not identically zero, and we aim to prove that the same holds for L𝑈 ′

𝑠 for �(𝑠) � 0.
First, by the equality

L𝑈 ′

𝑠 (𝜙𝑛,𝑠 ⊗ 𝜙𝑛+1)

=
∫
𝑄𝑛 (𝐹𝑣 )\𝑈𝑛 (𝐹𝑣 )

∫
𝑁𝑟 (𝐹𝑣 )\𝐺𝑟 (𝐹𝑣 )

L((𝜏(𝑔) ⊗ 𝜎(𝑔ℎ))𝜙𝑛,𝑠 (ℎ) ⊗ 𝜙𝑛+1) |det(𝑔) |𝑠𝐸𝑣
𝛿𝑄𝑛 (𝑔)

−1/2𝑑𝑔𝑑ℎ

and since the space of 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏𝑠�𝜎𝑚) is stable by multiplication by functions in𝐶∞(𝑄𝑛 (𝐹𝑣 )\𝑈𝑛 (𝐹𝑣 )),

it suffices to show the existence 𝜙𝜏 ∈ 𝜏, 𝜙𝑚 ∈ 𝜎𝑚 and 𝜙𝑛+1 ∈ 𝜎𝑛+1 such that∫
𝑁𝑟 (𝐹𝑣 )\𝐺𝑟 (𝐹𝑣 )

L(𝜏(𝑔)𝜙𝜏 ⊗ 𝜙𝑚 ⊗ 𝜎𝑛+1(𝑔)𝜙𝑛+1) |det(𝑔) |𝑠𝐸𝑣
𝛿𝑄𝑛 (𝑔)

−1/2𝑑𝑔 ≠ 0.

Let 𝑓 ∈ S (𝑉𝑛+1 (𝐹𝑣 )), 𝑔 ∈ 𝐺𝑟 (𝐹𝑣 ), 𝜙𝑚 ∈ 𝜎𝑚 and 𝜙𝑛+1 ∈ 𝜎𝑛+1. From the equivariance property of L𝐵,
we deduce

L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1 (𝑔)𝜎𝑛+1( 𝑓 )𝜙𝑛+1) = 𝑓 (𝑔∗𝑦𝑟 )L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑔)𝜙𝑛+1),

where for 𝑦 ∈ 𝑌𝑟 (𝐹𝑣 ), we have set

𝑓 (𝑦) =
∫
𝑉𝑛+1 (𝐹𝑣 )

𝑓 (𝑢)𝜓𝑣 (ℎ𝑛+1 (𝑢𝑣0, 𝑦))𝑑𝑢.

By the theory of Fourier transform, 𝑓 ↦→ 𝑓 induces a surjective map S (𝑉𝑛+1 (𝐹𝑣 )) → S (𝑌𝑟 (𝐹𝑣 )),
whereas the map 𝑔 ↦→ 𝑔∗𝑦𝑟 induces an embedding S (𝑃𝑟 (𝐹𝑣 )\𝐺𝑟 (𝐹𝑣 )) ↩→ S (𝑌𝑟 (𝐹𝑣 )) (where we
recall that 𝑃𝑟 denotes the mirabolic subgroup of 𝐺𝑟 ). Consequently, it suffices to prove the existence of
𝜙𝜏 ∈ 𝜏, 𝜙𝑚 ∈ 𝜎𝑚, 𝜙𝑛+1 ∈ 𝜎𝑛+1 and 𝑓 ∈ S (𝑃𝑟 (𝐹𝑣 )\𝐺𝑟 (𝐹𝑣 )) such that∫

𝑃𝑟 (𝐹𝑣 )\𝐺𝑟 (𝐹𝑣 )

𝑓 (𝑔)

∫
𝑁𝑟 (𝐹𝑣 )\𝑃𝑟 (𝐹𝑣 )

L𝑊 (𝜏(𝑝𝑔)𝜙𝜏)

L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1(𝑝𝑔)𝜙𝑛+1) |det(𝑝𝑔) |𝑠𝐸𝑣
𝛿𝑄𝑛 (𝑝𝑔)

−1/2 |det(𝑝) |−1
𝐸𝑣

𝑑𝑝𝑑𝑔 ≠ 0
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or, equivalently, the existence of 𝜙𝜏 ∈ 𝜏, 𝜙𝑚 ∈ 𝜎𝑚, 𝜙𝑛+1 ∈ 𝜎𝑛+1 such that

∫
𝑁𝑟−1 (𝐹𝑣 )\𝐺𝑟−1 (𝐹𝑣 )

L𝑊 (𝜏(ℎ)𝜙𝜏)L𝐵 (𝜙𝑚 ⊗ 𝜎𝑛+1 (ℎ)𝜙𝑛+1) |det(ℎ) |𝑠−1
𝐸𝑣

𝛿𝑄𝑛 (ℎ)
−1/2𝑑ℎ ≠ 0.

By [GK75, Theorem 6] and [Kem15, Theorem 1], for every 𝑓 ∈ 𝐶∞
𝑐 (𝑁𝑟−1 (𝐹𝑣 )\𝐺𝑟−1(𝐹𝑣 )), we can find

𝜙𝜏 ∈ 𝜏 such that L𝑊 (𝜏(ℎ)𝜙𝜏) = 𝑓 (ℎ) for ℎ ∈ 𝐺𝑟−1(𝐹𝑣 ), and from this, the claim follows readily from
the nonvanishing of L𝐵. �

8.6.2.

Proposition 8.6.2.1. Assume that 𝜎 and 𝜏 are tempered. Then, for every 𝜙𝑛, 𝜙
′
𝑛 ∈ 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏 �𝜎𝑚) and

𝜙𝑛+1, 𝜙
′
𝑛+1 ∈ 𝜎𝑛+1, we have

P𝑈 ′,𝑣 (𝜙𝑛 ⊗ 𝜙𝑛+1, 𝜙
′
𝑛 ⊗ 𝜙′

𝑛+1) (8.6.2.1)

= 𝜈(𝐺𝑟 ,𝑣 )
−1
∫
(B′ (𝐹𝑣 )\𝑈 ′ (𝐹𝑣 ))2

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝑛 (ℎ1) ⊗ 𝜎𝑛+1(ℎ1)𝜙𝑛+1, 𝜙
′
𝑛 (ℎ2) ⊗ 𝜎𝑛+1 (ℎ2)𝜙

′
𝑛+1)𝑑ℎ1𝑑ℎ2.

Proof. By definition of the local period P𝑈 ′,𝑣 and of the invariant inner product on 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏 � 𝜎𝑚),

we have

P𝑈 ′
𝑣
(𝜙𝑛 ⊗ 𝜙𝑛+1, 𝜙

′
𝑛 ⊗ 𝜙′

𝑛+1) (8.6.2.2)

=
∫
𝑈 ′ (𝐹𝑣 )

∫
𝑄𝑛 (𝐹𝑣 )\𝑈𝑛 (𝐹𝑣 )

(𝜙𝑛 (ℎ2ℎ1), 𝜙
′
𝑛 (ℎ2))𝑑ℎ2(𝜎𝑛+1(ℎ1)𝜙𝑛+1, 𝜙

′
𝑛+1)𝑑ℎ1.

The above double integral is absolutely convergent. Indeed, from [CHH88, Theorem 2] and [Wal03,
Lemme II.1.6], we have

∫
𝑄𝑛 (𝐹𝑣 )\𝑈𝑛 (𝐹𝑣 )

��(𝜙𝑛 (ℎ2ℎ1), 𝜙
′
𝑛 (ℎ2))

�� 𝑑ℎ2 � Ξ𝑈𝑛,𝑣 (ℎ1), ℎ1 ∈ 𝑈𝑛 (𝐹𝑣 ),

and (𝜎𝑛+1(ℎ1)𝜙𝑛+1, 𝜙
′
𝑛+1) � Ξ𝑈𝑛+1,𝑣 (ℎ1), whereas Ξ𝑈𝑣 = Ξ𝑈𝑛,𝑣Ξ𝑈𝑛+1,𝑣 is integrable on𝑈 ′(𝐹𝑣 ) ([BP20,

Lemme 6.5.1(i)]).
For the next lemma, we set 𝑄 ′ := 𝑄𝑛 that we consider as a subgroup of 𝐺𝑟 × G = 𝐿𝑛 ×𝑈𝑛+1 via the

product of the natural surjection 𝑄𝑛 � 𝐿𝑛 and inclusion 𝑄𝑛 ⊂ 𝑈𝑛+1.

Lemma 8.6.2.2. For every 𝑓 ∈ C𝑤 (𝐺𝑟 (𝐹𝑣 ) × G (𝐹𝑣 )), we have the identity

∫
𝑄′ (𝐹𝑣 )

𝑓 (𝑞)𝛿𝑄′ (𝑞)1/2𝑑𝐿𝑞 = 𝜈(𝐺𝑟 ,𝑣 )
−1
∫
(𝑁𝑟 (𝐹𝑣 )\𝐺𝑟 (𝐹𝑣 ))2

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝐿 (𝑔1)𝑅(𝑔2) 𝑓 )𝛿𝑄𝑛 (𝑔1𝑔2)
−1/2𝑑𝑔1𝑑𝑔2,

(8.6.2.3)

where both sides are absolutely convergent.
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Indeed, assuming the lemma for the moment, from (8.6.2.2), we obtain

𝜈(𝐺𝑟 ,𝑣 )P𝑈 ′
𝑣
(𝜙𝑛 ⊗ 𝜙𝑛+1, 𝜙

′
𝑛 ⊗ 𝜙′

𝑛+1)

= 𝜈(𝐺𝑟 ,𝑣 )

∫
(𝑄𝑛 (𝐹𝑣 )\𝑈𝑛 (𝐹𝑣 ))2

∫
𝑄𝑛 (𝐹𝑣 )

(𝜙𝑛 (𝑞ℎ1), 𝜙
′
𝑛 (ℎ2)) (𝜎𝑛+1(𝑞ℎ1)𝜙𝑛+1, 𝜎𝑛+1(ℎ2)𝜙

′
𝑛+1)𝑑𝐿𝑞𝑑ℎ1𝑑ℎ2

=
∫
(𝑄𝑛 (𝐹𝑣 )\𝑈𝑛 (𝐹𝑣 ))2

∫
(𝑁𝑟 (𝐹𝑣 )\𝐺𝑟 (𝐹𝑣 ))2

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝑛 (𝑔1ℎ1) ⊗ 𝜎𝑛+1(𝑔1ℎ1)𝜙𝑛+1, 𝜙
′
𝑛 (𝑔2ℎ2) ⊗ 𝜎𝑛+1(𝑔2ℎ2)𝜙

′
𝑛+1)𝛿𝑄𝑛 (𝑔1𝑔2)

−1𝑑𝑔1𝑑𝑔2𝑑ℎ1𝑑ℎ2

=
∫
(B′ (𝐹𝑣 )\𝑈 ′ (𝐹𝑣 ))2

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝑛 (ℎ1) ⊗ 𝜎𝑛+1(ℎ1)𝜙𝑛+1, 𝜙
′
𝑛 (ℎ2) ⊗ 𝜎𝑛+1(ℎ2)𝜙

′
𝑛+1)𝑑ℎ1𝑑ℎ2,

where in the second equality, we have applied the lemma thanks to the fact that the function

(𝑔𝑟 , 𝑔𝑚, 𝑔𝑛+1) ↦→
(
(𝜏(𝑔𝑟 ) ⊗ 𝜎𝑚(𝑔𝑚))𝜙𝑛 (ℎ1), 𝜙

′
𝑛 (ℎ2)

) (
𝜎𝑛+1(𝑔𝑛+1)𝜎𝑛+1(ℎ1)𝜙𝑛+1, 𝜎𝑛+1(ℎ2)𝜙

′
𝑛+1

)
belongs to C𝑤 (𝐺𝑟 (𝐹𝑣 ) × G (𝐹𝑣 )) and the proposition is therefore established.

Proof. (of Lemma 8.6.2.2). First, we check that both sides are convergent and define continuous
functionals on C𝑤 (𝐺𝑟 (𝐹𝑣 ) × G (𝐹𝑣 )).

For the left-hand side, we can use the identity ([Wal03, Lemme II.1.6])

Ξ𝑈𝑣 (𝑔) =
∫
𝐾𝑈′

𝑣

Ξ𝐺𝑟,𝑣×G𝑣 (𝑙 (𝑘𝑔))𝛿𝑄 (𝑙 (𝑘𝑔))
1/2𝑑𝑘, for 𝑔 ∈ 𝑈 (𝐹𝑣 ),

where, for 𝑔 ∈ 𝑈 (𝐹𝑣 ), 𝑙 (𝑔) denotes any element in 𝐿(𝐹𝑣 ) = 𝐺𝑟 (𝐹𝑣 ) × G (𝐹𝑣 ) such that 𝑙 (𝑔)−1𝑔 ∈

(𝑉𝑛 (𝐹𝑣 ) × 1)𝐾𝑈𝑣 , which in turn implies∫
𝑄′ (𝐹𝑣 )

Ξ𝐺𝑟,𝑣×G𝑣 (𝑞)𝜎(𝑞)𝑑𝛿𝑄′ (𝑞)1/2𝑑𝐿𝑞 =
∫
𝑈 ′ (𝐹𝑣 )

Ξ𝐺𝑟,𝑣×G𝑣 (𝑙 (ℎ))𝜎(𝑙 (ℎ))𝑑𝛿𝑄 (𝑙 (ℎ))
1/2𝑑ℎ

�

∫
𝑈 ′ (𝐹𝑣 )

Ξ𝑈𝑣 (ℎ)𝜎(ℎ)𝑑𝑑ℎ < ∞

for every 𝑑 > 0.
For the right-hand side, as in the proof of Proposition 8.6.1.1, it suffices to show for every 𝑑 > 0 the

existence of 𝑑 ′ > 0 as well as a continuous semi-norm 𝜈𝑑 on C𝑤𝑑 (𝐺𝑟 (𝐹𝑣 ) × G (𝐹𝑣 )) such that���PB𝐿 ,𝜓𝐿
B ,𝑣

(𝐿(𝑎1)𝑅(𝑎2) 𝑓 )
��� � Ξ𝐺𝑟,𝑣×𝑈𝑛+1,𝑣 (𝑎1)Ξ

𝐺𝑟,𝑣×𝑈𝑛+1,𝑣 (𝑎2)𝜎(𝑎1)
𝑑′𝜎(𝑎2)

𝑑′𝜈𝑑 ( 𝑓 ) (8.6.2.4)

for 𝑓 ∈ C𝑤𝑑 (𝐺𝑟 (𝐹𝑣 ) × G (𝐹𝑣 )) and 𝑎1, 𝑎2 ∈ 𝑇𝑟 (𝐹𝑣 ). Such an inequality can be proved along the same
lines as [BP20, Lemma 7.3.1(ii)].

Now that we know that both sides of (8.6.2.3) define continuous functionals on C𝑤 (𝐺𝑟 (𝐹𝑣 )×G (𝐹𝑣 )),
by density it suffices to check the claimed identity for 𝑓 = 𝑓1 ⊗ 𝑓2 ∈ 𝐶∞

𝑐 (𝐺𝑟 (𝐹𝑣 )) ⊗ 𝐶∞
𝑐 (G (𝐹𝑣 )).

The subgroup 𝐺𝑟B of 𝑈𝑛+1 contains 𝑈𝑚 � 𝑉𝑛 as a normal subgroup, and we may define a function
𝑓3 ∈ 𝐶∞

𝑐 (𝐺𝑟 (𝐹𝑣 )B(𝐹𝑣 )/𝑈𝑚(𝐹𝑣 )𝑉𝑛 (𝐹𝑣 )) by

𝑓3(𝑝) = 𝛿𝑄𝑛 (𝑝)
1/2

∫
𝑈𝑚 (𝐹𝑣 )×𝑉𝑛 (𝐹𝑣 )

𝑓2(𝑝ℎ𝑢)𝑑𝑢𝑑ℎ, 𝑝 ∈ 𝐺𝑟 (𝐹𝑣 )B(𝐹𝑣 ).

Moreover, restriction to the susbpace 〈𝑥1, . . . , 𝑥𝑟+1〉, where we have again set 𝑥𝑟+1 = 𝑣0, induces an
identification 𝐺𝑟B/𝑈𝑚𝑉𝑛 � 𝑃𝑟+1. Seeing 𝑓3 as a test function on 𝑃𝑟+1(𝐹𝑣 ) in this way, the identity of
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the lemma becomes∫
𝐺𝑟 (𝐹𝑣 )

𝑓1(𝑔) 𝑓3(𝑔)𝑑𝑔 = 𝜈(𝐺𝑘,𝑣 )
−1
∫
(𝑁𝑟 (𝐹𝑣 )\𝐺𝑟 (𝐹𝑣 ))2

𝑊 𝑓1 (𝑔1, 𝑔2)𝑊 𝑓3 (𝑔1, 𝑔2)𝑑𝑔2𝑑𝑔1, (8.6.2.5)

where we have set

𝑊 𝑓1 (𝑔1, 𝑔2) =
∫
𝑁𝑟 (𝐹𝑣 )

𝑓1(𝑔
−1
1 𝑢𝑔2)𝜓𝑟 (𝑢)

−1𝑑𝑢, 𝑊 𝑓3 (𝑔1, 𝑔2) =
∫
𝑁𝑟+1 (𝐹𝑣 )

𝑓3(𝑔
−1
1 𝑢𝑔2)𝜓𝑟+1(𝑢)𝑑𝑢.

But (8.6.2.5) is now a direct consequence of the Fourier inversion formula (8.2.2.1). �

�

8.7. Unramified computation

8.7.1.
We continue with the setting of the previous subsection assuming, moreover, that 𝑣 ∉ 𝑆 and the
representations 𝜏, 𝜎𝑚, 𝜎𝑛+1 are unramified in the sense that 𝜏𝐾𝑟,𝑣 ≠ 0, 𝜎𝐾

𝑈
𝑚,𝑣

𝑚 ≠ 0 and 𝜎
𝐾𝑈

𝑛+1,𝑣
𝑛+1 ≠ 0. Note

that this implies 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏𝑠 � 𝜎𝑚)

𝐾𝑈
𝑛,𝑣 ≠ 0 (i.e., 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏𝑠 � 𝜎𝑚) is also unramified).

8.7.2.

Proposition 8.7.2.1. For �(𝑠) sufficiently large, 𝜙◦𝑛,𝑠 ∈ 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏𝑠 � 𝜎𝑚)

𝐾𝑈
𝑛,𝑣 and 𝜙◦𝑛+1 ∈ 𝜎

𝐾𝑈
𝑛+1,𝑣

𝑛+1 , we
have

L𝑈 ′

𝑠 (𝜙◦𝑛,𝑠 ⊗ 𝜙◦𝑛+1) =
vol(𝐾𝑈𝑛,𝑣 )

vol(𝐾𝑈𝑛,𝑣 ∩ B′(𝐹𝑣 ))

𝐿
(

1
2 + 𝑠, 𝜏 × 𝜎𝑛+1

)
𝐿(1 + 𝑠, 𝜏𝑐 × 𝜎𝑚)𝐿(1 + 2𝑠, 𝜏,As(−1)𝑚 )

L(𝜙◦𝑛,𝑠 (1) ⊗ 𝜙◦𝑛+1).

(8.7.2.1)

Proof. Let 𝜙◦𝜏 ∈ 𝜏𝐾𝑟,𝑣 and 𝜙◦𝑚 ∈ 𝜎
𝐾𝑈

𝑚,𝑣
𝑚 be such that 𝜙◦𝑛 (1) = 𝜙◦𝜏 ⊗ 𝜙◦𝑚. Recall the factorization

L = L𝑊 ⊗ L𝐵. Up to scaling, we may assume, without loss of generality, that

L𝑊 (𝜙◦𝜏) = 1 and L𝐵 (𝜙◦𝑚 ⊗ 𝜙◦𝑛+1) = 1.

Let 𝑃′ = 𝑃 ∩𝑈 ′ ⊂ 𝑈 ′ be the parabolic subgroup stabilizing the flag

0 = 𝑋0 ⊂ 𝑋1 ⊂ . . . ⊂ 𝑋𝑟 .

Then, we have 𝑃′ = B′ � 𝑇𝑟 and from the Iwasawa decomposition 𝑈 ′(𝐹𝑣 ) = 𝑃′(𝐹𝑣 )𝐾
𝑈
𝑛,𝑣 , we obtain

L𝑈 ′

𝑠 (𝜙◦𝑛,𝑠 ⊗ 𝜙◦𝑛+1) =
𝑣𝑜𝑙 (𝐾𝑈𝑛,𝑣 )

𝑣𝑜𝑙 (𝐾𝑈𝑛,𝑣 ∩ B′(𝐹𝑣 ))

∑
𝑡 ∈Λ𝑟

L(𝜙◦𝑛,𝑠 (𝑡) ⊗ 𝜎𝑛+1(𝑡)𝜙
◦
𝑛+1)𝛿𝑃′ (𝑡)−1 (8.7.2.2)

=
𝑣𝑜𝑙 (𝐾𝑈𝑛,𝑣 )

𝑣𝑜𝑙 (𝐾𝑈𝑛,𝑣 ∩ B′(𝐹𝑣 ))

∑
𝑡 ∈Λ𝑟

L𝑊 (𝜏(𝑡)𝜙◦𝜏)L𝐵 (𝜙◦𝑚 ⊗ 𝜎𝑛+1(𝑡)𝜙
◦
𝑛+1) |det 𝑡 |𝑠𝐸𝑣

𝛿𝑄𝑛 (𝑡)
1/2𝛿𝑃′ (𝑡)−1,

where we have set Λ𝑟 = 𝑇𝑟 (𝐹𝑣 )/𝑇𝑟 (O𝑣 ), which we will identify with the cocharacter lattice 𝑋∗(𝑇𝑟 ,𝑣 )
via the map 𝜆 ↦→ 𝜆(𝜛𝐹 ). Let Λ+

𝑟 ⊂ Λ𝑟 be the cone of dominant cocharacters with respect to 𝐵𝑟 and
Λ++
𝑟 ⊂ Λ+

𝑟 the subcone of cocharacters that are moreover dominant with respect to 𝐵𝑟+1 through the

embedding 𝑔 ∈ 𝐺𝑟 ↦→

(
𝑔

1

)
∈ 𝐺𝑟+1. To lighten the computations a bit, we will assume from now on

that the local measures at v have been chosen such that 𝑣𝑜𝑙 (𝐾𝑈𝑛,𝑣 ) = 𝑣𝑜𝑙 (𝐾𝑈𝑛,𝑣 ∩ B′(𝐹𝑣 )) = 1.
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Before proceeding, it will be convenient to introduce some notation pertaining to complex dual
groups:

• For ℓ ∈ {𝑚, 𝑚 + 1, 𝑛 + 1}, we identify the dual group 𝑈ℓ of 𝑈ℓ (resp. 𝐺𝑟 of 𝐺𝑟 ) with GLℓ (C) (resp.
GL𝑟 (C) × GL𝑟 (C)) equipped with its standard pinning. Its L-group can be written

𝐿𝑈ℓ = GLℓ (C) � Gal(𝐸/𝐹) (resp. 𝐿𝐺𝑟 = (GL𝑟 (C) × GL𝑟 (C)) � Gal(𝐸/𝐹)),

where the Galois action is given by 𝑐(𝑔) = 𝑔★ (resp. 𝑐(𝑔1, 𝑔2) = (𝑔2, 𝑔1)), where the involution
𝑔 ∈ GLℓ (C) ↦→ 𝑔★ is

𝑔★ = 𝐽ℓ
𝑡𝑔−1𝐽−1

ℓ , 𝐽ℓ =
����

1

. .
.

(−1)ℓ−1

���� .
We will also denote by 𝑆 ↦→ 𝑆★ the automorphism of 𝐿𝐺𝑟 which is the identity on Gal(𝐸/𝐹) and
given by (𝑔1, 𝑔2) ↦→ (𝑔★2 , 𝑔

★
1 ) on 𝐺𝑟 .

• We will write (𝑇𝑟 , 𝐵𝑟 ) for the standard Borel pair in𝐺𝑟 and (𝑇𝑈ℓ , 𝐵𝑈ℓ ) for that in𝑈ℓ . The corresponding
semi-direct products with Gal(𝐸/𝐹) will be denoted

𝐿𝑇𝑟 = 𝑇𝑟 � Gal(𝐸/𝐹), 𝐿𝐵𝑟 = 𝐵𝑟 � Gal(𝐸/𝐹), 𝐿𝑇𝑈ℓ = 𝑇𝑈ℓ � Gal(𝐸/𝐹), 𝐿𝐵𝑈ℓ = 𝐵𝑈ℓ � Gal(𝐸/𝐹).

• The dual groups of G, 𝑈 are

Ĝ = 𝑈𝑚 ×𝑈𝑛+1,
̂̃𝑈 = 𝑈𝑚 ×𝑈𝑚+1,

and writing ×Γ for the fibered products over Gal(𝐸/𝐹), their L-groups are

𝐿G = 𝐿𝑈𝑚 ×Γ
𝐿𝑈𝑛+1,

𝐿𝑈 = 𝐿𝑈𝑚 ×Γ
𝐿𝑈𝑚+1,

respectively. We let 𝐵 = 𝐵𝑈𝑚 × 𝐵𝑈𝑛+1, 𝑇 = 𝑇𝑈𝑚 × 𝑇𝑈𝑛+1 (resp. ̂̃𝐵 = 𝐵𝑈𝑚 × 𝐵𝑈𝑚+1, ̂̃𝑇 = 𝑇𝑈𝑚 × 𝑇𝑈𝑚+1) be the

standard Borel and maximal torus in Ĝ (resp. in ̂̃𝑈). We also write

𝐿𝑇 = 𝑇 � Gal(𝐸/𝐹), 𝐿𝑇 = ̂̃𝑇 � Gal(𝐸/𝐹).

• The parabolic subgroup 𝑄𝑛+1 ⊂ 𝑈𝑛+1 stabilizing the isotropic subspace 𝑋𝑟 corresponds to a standard
parabolic subgroup 𝑄𝑛+1 of 𝑈𝑛+1 with standard Levi

�̂�𝑛+1 =
���
GL𝑟 (C)

GL𝑚+1(C)
GL𝑟 (C)

��� .
The corresponding L-group 𝐿𝐿𝑛+1 = �̂�𝑛+1 � Gal(𝐸/𝐹) is isomorphic to 𝐿𝐺𝑟 ×Γ

𝐿𝑈𝑚+1 via the map
which is the identity on Gal(𝐸/𝐹) and

����
𝑔 (1)
𝑟

𝑔𝑚+1

𝑔 (2)
𝑟

���� ↦→ ((𝑔 (1)
𝑟 , 𝑔 (2)★

𝑟 ), 𝑔𝑚+1)

on �̂�𝑛+1. For 𝑆 ∈ 𝐿𝐿𝑛+1, we denote by (𝑆 (𝑟 ) , 𝑆 (𝑚+1) ) ∈ 𝐿𝐺𝑟 ×Γ
𝐿𝑈𝑚+1 its image by this isomorphism.
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• It will also be convenient to use the parabolic subgroup Q = 𝑈𝑚 ×𝑄𝑛+1 of G. We set Q̂ = 𝑈𝑚 ×𝑄𝑛+1,
L̂ = 𝑈𝑚 × �̂�𝑛+1 and 𝐿L = L̂ � Gal(𝐸/𝐹). There are two natural decompositions

𝐿L = 𝐿𝑈𝑚 ×Γ
𝐿𝐿𝑛+1 and 𝐿L = 𝐿𝑈 ×Γ

𝐿𝐺𝑟 ,

and for 𝑆 ∈ 𝐿L, we will denote by (𝑆𝑚, 𝑆𝑛+1) and (𝑆, 𝑆 (𝑟 )
𝑛+1) the corresponding respective decompo-

sitions of S.
• For every complex Lie group 𝐿Gwith a subgroup 𝐿Q and respective identity components Ĝ, Q̂, we set

𝐷
Ĝ/Q̂

(𝑆) = det(1 − 𝐴𝑑 (𝑆) | 𝐿𝑖𝑒(Ĝ)/𝐿𝑖𝑒(Q̂)), for 𝑆 ∈ 𝐿Q.

• For G ∈ {𝐺𝑟 ,𝑈ℓ ,G,L, 𝐿𝑛+1, 𝑇𝑟 , 𝑇
𝑈
ℓ , 𝑇}, we denote by 𝐿G𝑣 the L-group of G𝑣 = G ×𝐹 𝐹𝑣 that is

𝐿G𝑣 =

{ 𝐿G if 𝑣 is inert in 𝐸 ;
Ĝ if 𝑣 splits in 𝐸.

Also, for G ∈ {𝐺𝑟 ,𝑈ℓ , G,L, 𝐿𝑛+1}, we write 𝑊 (G𝑣 ) for the Weyl group 𝑁𝑜𝑟𝑚
Ĝ
(𝐿T𝑣 )/T̂, where

T̂ ⊂ Ĝ is the standard maximal torus.
• The choice of the Borel pair (𝑇𝑟 , 𝐵𝑟 ) allows to identify Λ𝑟 with the group of characters of 𝐿𝑇𝑟 ,𝑣 that

are trivial on Gal(𝐸/𝐹), and we will denote by Λ𝑟 � 𝑡 ↦→ 𝜒𝑡 this identification. For 𝑡 ∈ Λ+
𝑟 , we write

𝑐ℎ𝑡 for the character of the irreducible representation of 𝐿𝐺𝑟 with highest weight 𝜒𝑡 (see Appendix A).
• For 𝑘, ℓ ∈ N, we define the representation

𝐿 (𝐺𝑘 × 𝐺ℓ) =
𝐿𝐺𝑘 ×Γ

𝐿𝐺ℓ → GL(C𝑘 ⊗ Cℓ ⊕ C𝑘 ⊗ Cℓ)

(𝑆𝑘 , 𝑆ℓ) ↦→ 𝑆𝑘
I
⊗ 𝑆ℓ ,

which sends ((𝑔 (1)
𝑘 , 𝑔 (2)

𝑘 ), (𝑔 (1)
ℓ , 𝑔 (2)

ℓ )) ∈ 𝐺𝑘 × 𝐺ℓ to 𝑔 (1)
𝑘 ⊗ 𝑔 (1)

ℓ ⊕ 𝑔 (2)
𝑘 ⊗ 𝑔 (2)

ℓ and 𝑐 ∈ Gal(𝐸/𝐹) to
the operator 𝜄 that swaps the two copies of C𝑘 ⊗ Cℓ .

• Composing this representation with the embeddings 𝐿𝑈𝑖 → 𝐿𝐺𝑖 , 𝑔 ∈ 𝑈𝑖 ↦→ (𝑔, 𝑔★), (𝑖 = 𝑘, ℓ), we
obtain representations

𝐿 (𝑈𝑘 × 𝐺ℓ) → GL(C𝑘 ⊗ Cℓ ⊕ C𝑘 ⊗ Cℓ)

and

𝐿 (𝑈𝑘 ×𝑈ℓ) → GL(C𝑘 ⊗ Cℓ ⊕ C𝑘 ⊗ Cℓ)

that for simplicity we will also denote by the symbol
I
⊗.

• In particular, we have two representations

R : 𝐿G = 𝐿 (𝑈𝑚 ×𝑈𝑛+1) → GL(C𝑚 ⊗ C𝑛+1 ⊕ C𝑚 ⊗ C𝑛+1), (𝑆𝑚, 𝑆𝑛+1) ↦→ 𝑆𝑚
I
⊗ 𝑆𝑛+1

R̃ : 𝐿𝑈 = 𝐿 (𝑈𝑚 ×𝑈𝑚+1) → GL(C𝑚 ⊗ C𝑚+1 ⊕ C𝑚 ⊗ C𝑚+1), (𝑆𝑚, 𝑆𝑚+1) ↦→ 𝑆𝑚
I
⊗ 𝑆𝑚+1

that we will denote by R and R̃, respectively. The subspace

𝑉− :=
〈
(𝑒𝑖 ⊗ 𝑒 𝑗 , 0) |

1�𝑖�𝑚
1� 𝑗�𝑛+1
𝑖+ 𝑗>𝑚+𝑟+1

〉
⊕

〈
(0, 𝑒𝑖 ⊗ 𝑒 𝑗 ) |

1�𝑖�𝑚
1� 𝑗�𝑛+1
𝑖+ 𝑗>𝑚+𝑟+1

〉
(
resp. 𝑉− :=

〈
(𝑒𝑖 ⊗ 𝑒 𝑗 , 0) |

1�𝑖�𝑚
1� 𝑗�𝑚+1
𝑖+ 𝑗>𝑚+1

〉
⊕

〈
(0, 𝑒𝑖 ⊗ 𝑒 𝑗 ) |

1�𝑖�𝑚
1� 𝑗�𝑚+1
𝑖+ 𝑗>𝑚+1

〉)
,
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where we denote by (𝑒𝑖)
𝑘
𝑖=1 the standard basis of C𝑘 for any k, is stable by 𝐿𝑇 (resp. by 𝐿𝑇), and we

set R−(𝑆) := R(𝑆) |𝑉− (resp. R̃−(𝑆) := R̃(𝑆)|𝑉− ) for 𝑆 ∈ 𝐿𝑇 (resp. 𝑆 ∈ 𝐿𝑇).
• We will also denote by As𝑚 the representation

As𝑚 : 𝐿𝐺𝑟 → GL(C𝑟 ⊗ C𝑟 )

given by As𝑚(𝑔 (1) , 𝑔 (2) ) = 𝑔 (1) ⊗ 𝑔 (2) for (𝑔 (1) , 𝑔 (2) ) ∈ 𝐺𝑟 and As𝑚(𝑐) = (−1)𝑚𝑠, where 𝑠 :
C𝑟 ⊗ C𝑟 → C𝑟 ⊗ C𝑟 is defined by 𝑠(𝑢 ⊗ 𝑣) = 𝑣 ⊗ 𝑢 for 𝑢, 𝑣 ∈ C𝑟 .

• The Satake parameters of the unramified representations 𝜏, 𝜎𝑚, 𝜎𝑛+1 will be denoted by 𝑆𝜏 , 𝑆𝑚 and
𝑆𝑛+1, respectively. These are semisimple conjugacy classes in 𝐿𝐺𝑟 , 𝐿𝑈𝑚 and 𝐿𝑈𝑛+1, and to simplify
some arguments, we will choose representatives of them in 𝐿𝑇𝑟 , 𝐿𝑇𝑈𝑚 and 𝐿𝑇𝑈𝑛+1, respectively. Thus,
denoting by 𝐹𝑟𝑜𝑏𝑣 ∈ Gal(𝐸/𝐹) the Frobenius at v, we have

𝑆𝜏 ∈ 𝑇𝑟𝐹𝑟𝑜𝑏𝑣 , 𝑆𝑚 ∈ 𝑇𝑈𝑚 𝐹𝑟𝑜𝑏𝑣 and 𝑆𝑛+1 ∈ 𝑇𝑈𝑛+1𝐹𝑟𝑜𝑏𝑣 .

We will also write 𝑆 = (𝑆𝑚, 𝑆𝑛+1) ∈
𝐿𝑇 for the Satake parameter of 𝜎 = 𝜎𝑚 � 𝜎𝑛+1.

By Shintani and Casselman-Shalika’s formula [Shi76] [CS80], we have

L𝑊 (𝜏(𝑡)𝜙◦𝜏) =

{
𝛿𝐵𝑟 (𝑡)

1/2𝑐ℎ𝑡 (𝑆𝜏) if 𝑡 ∈ Λ+
𝑟 ,

0 otherwise. (8.7.2.3)

Moreover, according to the formulas given in [Kho08, Theorem 11.4], [Liu16, Proposition 6.4] and
[Zha18], when 𝑆 ∈ 𝐿𝑇 is regular, we have

L𝐵 (𝜙◦𝑚 ⊗ 𝜎𝑛+1(𝑡)𝜙
◦
𝑛+1) (8.7.2.4)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Δ𝑈𝑚,𝑣 )

−1 ∑
𝑤 ∈𝑊 (G𝑣 )

det(1−𝑞−1/2R− (𝑤𝑆))
𝐷Ĝ/𝐵 (𝑤𝑆) 𝜒𝑡 ((𝑤𝑆𝑛+1)

(𝑟 ) )𝛿𝑃 (𝑡)
1/2 if 𝑡 ∈ Λ++

𝑟

0 otherwise.

Moreover, the above sum over 𝑊 (G𝑣 ) extends to a regular function on 𝐿𝑇 , and the formula is still valid
when we interpret the right-hand side in terms of this extension. We will now prove the formula of the
proposition assuming that S is regular but, as it is an identity between rational functions, the extension
to the non-regular case will follow.

Lemma 8.7.2.2. For 𝑡 ∈ Λ++
𝑟 , we have

L𝐵 (𝜙◦𝑚 ⊗ 𝜎𝑛+1 (𝑡)𝜙
◦
𝑛+1) =

∑
𝑤 ∈𝑊 (𝑈𝑛+1,𝑣 )

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★)

𝐷𝑈𝑛+1/𝐵
𝑈
𝑛+1

(𝑤𝑆𝑛+1)
𝑐ℎ𝑡 ((𝑤𝑆𝑛+1)

(𝑟 ) )𝛿𝑃 (𝑡)
1/2.

(8.7.2.5)

Proof. First, we note that the function

𝑆𝑛+1 ∈ 𝑇𝑈𝑛+1𝐹𝑟𝑜𝑏𝑣 ↦→ det(1 − 𝑞−1/2𝑆𝑚
I
⊗ 𝑆 (𝑟 )★

𝑛+1 )𝑐ℎ𝑡 (𝑆
(𝑟 )
𝑛+1)

is invariant under the action of 𝑊 (𝐿𝑛+1,𝑣 ). Combining this with the identity (see Corollary A.0.2.2)∑
𝑤 ∈𝑊 (𝐿𝑛+1,𝑣 )

𝐷𝑈𝑛+1/𝐵
𝑈
𝑛+1

(𝑤𝑆𝑛+1)
−1 = 𝐷𝑈𝑛+1/𝑄𝑛+1

(𝑆𝑛+1)
−1,
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we see that the right-hand side of (8.7.2.5) can be rewritten as

∑
𝑤 ∈𝑊 (𝐿𝑛+1,𝑣 )\𝑊 (𝑈𝑛+1,𝑣 )

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★)

𝐷𝑈𝑛+1/𝑄𝑛+1
(𝑤𝑆𝑛+1)

𝑐ℎ𝑡 ((𝑤𝑆𝑛+1)
(𝑟 ) )𝛿𝑃 (𝑡)

1/2.

The natural projection 𝑊 (G𝑣 ) → 𝑊 (𝑈𝑛+1,𝑣 ) induces a bijection

𝑊 (L𝑣 )\𝑊 (G𝑣 ) � 𝑊 (𝐿𝑛+1,𝑣 )\𝑊 (𝑈𝑛+1,𝑣 ),

and thus by (8.7.2.4), we just need to establish, for every regular 𝑆 = (𝑆𝑚, 𝑆𝑛+1) ∈
𝐿𝑇 and 𝑡 ∈ Λ𝑟 , the

identity

(Δ𝑈𝑚,𝑣 )
−1

∑
𝑤 ∈𝑊 (L𝑣 )

det(1 − 𝑞−1/2R−(𝑤𝑆))

𝐷Ĝ/𝐵 (𝑤𝑆)
𝜒𝑡 ((𝑤𝑆𝑛+1)

(𝑟 ) ) =
det(1 − 𝑞−1/2𝑆𝑚

I
⊗ 𝑆 (𝑟 )★

𝑛+1 )

𝐷𝑈𝑛+1/𝑄𝑛+1
(𝑆𝑛+1)

𝑐ℎ𝑡 (𝑆
(𝑟 )
𝑛+1).

(8.7.2.6)

We have decompositions

𝐷Ĝ/𝐵 (𝑆) = 𝐷Ĝ/Q̂(𝑆)𝐷L̂/𝐵L
(𝑆) = 𝐷𝑈𝑛+1/𝑄𝑛+1

(𝑆𝑛+1)𝐷 ̂̃𝑈/
̂̃𝐵 (𝑆)𝐷𝐺𝑟 /𝐵𝑟

(𝑆 (𝑟 )
𝑛+1),

R−(𝑆) = 𝑆𝑚
I
⊗ 𝑆 (𝑟 )★

𝑛+1 ⊕ R̃−(𝑆).

and

𝑊 (L𝑣 ) = 𝑊 (𝑈𝑣 ) ×𝑊 (𝐺𝑟 ,𝑣 ).

This leads to the following expression for the left-hand side of (8.7.2.6):

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ 𝑆 (𝑟 )★

𝑛+1 )

𝐷𝑈𝑛+1/𝑄𝑛+1
(𝑆𝑛+1)

× (Δ𝑈𝑚,𝑣 )
−1

∑
𝑤 ∈𝑊 (𝑈𝑣 )

det(1 − 𝑞−1/2R̃−(𝑤𝑆))

𝐷 ̂̃𝑈/
̂̃𝐵 (𝑤𝑆)

∑
𝑤𝑟 ∈𝑊 (𝐺𝑟,𝑣 )

𝜒𝑡 (𝑤𝑟𝑆
(𝑟 )
𝑛+1)

𝐷𝐺𝑟 /𝐵𝑟
(𝑤𝑟𝑆

(𝑟 )
𝑛+1)

.

Furthermore, Weyl’s character formula implies (see Proposition A.0.2.1)∑
𝑤𝑟 ∈𝑊 (𝐺𝑟,𝑣 )

𝜒𝑡 (𝑤𝑟𝑆
(𝑟 )
𝑛+1)

𝐷𝐺𝑟 /𝐵𝑟
(𝑤𝑟𝑆

(𝑟 )
𝑛+1)

= 𝑐ℎ𝑡 (𝑆
(𝑟 )
𝑛+1),

while, according to [Liu16, Proposition 6.4], we have

(Δ𝑈𝑚,𝑣 )
−1

∑
𝑤 ∈𝑊 (𝑈𝑣 )

det(1 − 𝑞−1/2R̃−(𝑤𝑆))

𝐷 ̂̃𝑈/
̂̃𝐵 (𝑤𝑆) = 1.

This shows the formula (8.7.2.6) and ends the proof of the lemma. �

The next lemma is a consequence of the Cauchy identity [Bum04, Theorem 43.3].
Lemma 8.7.2.3. Let 𝑆1, 𝑆2 ∈ 𝑇𝑟𝐹𝑟𝑜𝑏𝑣 . Then, for �(𝑠) sufficiently large, we have∑

𝑡 ∈Λ++
𝑟

|det 𝑡 |1/2+𝑠
𝐸𝑣

𝑐ℎ𝑡 (𝑆1)𝑐ℎ𝑡 (𝑆2) = det(1 − 𝑞−1/2𝑆1,𝑠
I
⊗ 𝑆2)

−1,

where we have set 𝑆1,𝑠 := 𝑞−𝑠𝑆1

https://doi.org/10.1017/fmp.2025.8 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.8


Forum of Mathematics, Pi 89

Combining the two above lemmas with (8.7.2.2), (8.7.2.3) as well as the identity

𝛿𝑃 (𝑡)
1/2𝛿𝐵𝑟 (𝑡)

1/2𝛿𝑄𝑛 (𝑡)
1/2𝛿𝑃′ (𝑡)−1 = |det 𝑡 |1/2

𝐸𝑣
, 𝑡 ∈ Λ𝑟 ,

we obtain

L𝑈 ′

𝑠 (𝜙◦𝑛,𝑠 ⊗ 𝜙◦𝑛+1) =
∑

𝑤 ∈𝑊 (𝑈𝑛+1,𝑣 )

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★)

𝐷𝑈𝑛+1/𝐵
𝑈
𝑛+1

(𝑤𝑆𝑛+1)
det(1 − 𝑞−1/2𝑆𝜏,𝑠

I
⊗ (𝑤𝑆𝑛+1)

(𝑟 ) )−1.

(8.7.2.7)

For every 𝑤 ∈ 𝑊 (𝑈𝑛+1,𝑣 ), we have the identity

𝑆𝜏,𝑠
I
⊗ 𝑤𝑆𝑛+1 = 𝑆𝜏,𝑠

I
⊗ (𝑤𝑆𝑛+1)

(𝑟 ) ⊕ 𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑚+1) ⊗ 𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★.

It follows that

𝐿

(
1
2
, 𝜏𝑠 × 𝜎𝑛+1

)−1
= det(1 − 𝑞−1/2𝑆𝜏,𝑠

I
⊗ 𝑆𝑛+1)

= det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 ) ) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑚+1) ) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★).

Thus, (8.7.2.7) can be rewritten as

L𝑈 ′

𝑠 (𝜙◦𝑛,𝑠 ⊗ 𝜙◦𝑛+1) = 𝐿

(
1
2
, 𝜏𝑠 × 𝜎𝑛+1

) ∑
𝑤 ∈𝑊 (𝑈𝑛+1,𝑣 )

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★)

𝐷𝑈𝑛+1/𝐵
𝑈
𝑛+1

(𝑤𝑆𝑛+1)
det(1 − 𝑞−1/2𝑆𝜏,𝑠

I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑚+1) ).

Since we have

𝐿(1, 𝜏𝑐𝑠 × 𝜎𝑚) = det(1 − 𝑞−1𝑆𝑐𝜏,𝑠
I
⊗ 𝑆𝑚)

−1, 𝐿(1, 𝜏𝑠 ,As(−1)𝑚 ) = det(1 − 𝑞−1As𝑚(𝑆𝜏,𝑠))−1,

we see that the proposition is now reduced to the equality

det(1 − 𝑞−1𝑆𝑐𝜏,𝑠
I
⊗ 𝑆𝑚) det(1 − 𝑞−1As𝑚 (𝑆𝜏,𝑠)) =

∑
𝑤 ∈𝑊 (𝑈𝑛+1,𝑣 )

(8.7.2.8)

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★)

𝐷𝑈𝑛+1/𝐵
𝑈
𝑛+1

(𝑤𝑆𝑛+1)
det(1 − 𝑞−1/2𝑆𝜏,𝑠

I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑚+1) ).

To prove the above identity, we first show that the right-hand side of (8.7.2.8) considered as a function
of the regular element 𝑆𝑛+1 ∈ 𝑇𝑈𝑛+1𝐹𝑟𝑜𝑏𝑣 is constant. For this, we first note that the function

𝑆𝑛+1 ∈ 𝑇𝑈𝑛+1𝐹𝑟𝑜𝑏𝑣 ↦→

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑚+1) )
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is (the restriction of) a linear combination of characters of 𝐿𝑇𝑈𝑛+1. Thus, by Proposition A.0.2.1, it
suffices to check that for every character 𝜒 appearing in this linear combination the sum 𝜌 + 𝜒 |𝑇𝑈

𝑛+1
,

where 𝜌 ∈ 𝑋∗(𝑇𝑈𝑛+1) stands for the half-sum of positive roots (with respect to 𝐵𝑈𝑛+1), is either singular or
conjugate, under the full Weyl group of (𝑈𝑛+1, 𝑇

𝑈
𝑛+1), to 𝜌. Let 𝜒 be such a character. Using the natural

isomorphism 𝑋∗(𝑇𝑈𝑛+1) � Z
𝑛+1, we have 𝜒 |𝑇𝑈

𝑛+1
= (𝜆1, . . . , 𝜆𝑛+1), where the 𝜆𝑖’s are integers satisfying

−𝑚 − 𝑟 � 𝜆𝑖 � 0 for 0 � 𝑖 � 𝑟,

−𝑟 � 𝜆𝑖 � 𝑟 for 𝑟 + 1 � 𝑖 � 𝑟 + 𝑚 + 1,
0 � 𝜆𝑖 � 𝑚 + 𝑟 for 𝑟 + 𝑚 + 2 � 𝑖 � 𝑛 + 1.

Furthermore, we have 𝜌 = ( 𝑛2 ,
𝑛−2

2 , . . . ,− 𝑛2 ), and from the above inequality, we see that the coordinates
of 𝜌 + 𝜒 |𝑇𝑈

𝑛+1
are all integers or half-integers between − 𝑛2 and 𝑛

2 . The claim about 𝜒 |𝑇𝑈
𝑛+1

+𝜌 readily
follows, and we therefore deduce that the right-hand side of (8.7.2.8) is indeed independent of 𝑆𝑛+1.

Let 𝐴, 𝐵 ∈ GL𝑟 (C) be such that 𝑆𝜏,𝑠 = (𝐴, 𝐵)𝐹𝑟𝑜𝑏𝑣 . Then, plugging

𝑆𝑛+1 =
���
𝑞1/2𝐴★

𝐴𝑚+1
𝑞−1/2𝐵

��� 𝐹𝑟𝑜𝑏𝑣 ∈ 𝑇𝑈𝑛+1𝐹𝑟𝑜𝑏𝑣

in the right-hand side of (8.7.2.8), where the matrix 𝐴𝑚+1 ∈ GL𝑚+1(C) is chosen such that 𝑆𝑛+1 is
regular, the term indexed by 𝑤 ∈ 𝑊 (𝑈𝑛+1,𝑣 ) is nonzero only when 𝑤 ∈ 𝑊 (𝐿𝑛+1,𝑣 ). It follows that this
sum equals

∑
𝑤 ∈𝑊 (𝐿𝑛+1,𝑣 )

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★)

𝐷𝑈𝑛+1/𝐵
𝑈
𝑛+1

(𝑤𝑆𝑛+1)
det(1 − 𝑞−1/2𝑆𝜏,𝑠

I
⊗ (𝑤𝑆𝑛+1)

(𝑟 )★)×

det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ (𝑤𝑆𝑛+1)

(𝑚+1) )

= det(1 − 𝑞−1/2𝑆𝑚
I
⊗ 𝑆 (𝑟 )★

𝑛+1 ) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ 𝑆 (𝑟 )★

𝑛+1 ) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ 𝑆 (𝑚+1)

𝑛+1 )×∑
𝑤 ∈𝑊 (𝐿𝑛+1,𝑣 )

𝐷𝑈𝑛+1/𝐵
𝑈
𝑛+1

(𝑤𝑆𝑛+1)
−1

= det(1 − 𝑞−1/2𝑆𝑚
I
⊗ 𝑆 (𝑟 )★

𝑛+1 ) det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ 𝑆 (𝑟 )★

𝑛+1 )×

det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ 𝑆 (𝑚+1)

𝑛+1 )𝐷𝑈𝑛+1/𝑄𝑛+1
(𝑆𝑛+1)

−1,

where the last equality follows from Corollary A.0.2.2. By direct computation, we have

det(1 − 𝑞−1/2𝑆𝑚
I
⊗ 𝑆 (𝑟 )★

𝑛+1 ) = det(1 − 𝑞−1𝑆𝑚
I
⊗ 𝑆𝑐𝜏,𝑠),

det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ 𝑆 (𝑟 )★

𝑛+1 ) = det(1 − 𝑞−1𝑆𝜏,𝑠
I
⊗ 𝑆𝑐𝜏,𝑠),

det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ 𝑆 (𝑚+1)

𝑛+1 ) = det(1 − 𝑞−1/2𝑆𝜏,𝑠
I
⊗ 𝑆𝑚+1),

𝐷𝑈𝑛+1/𝑄𝑛+1
(𝑆𝑛+1) = det(1 − 𝑞−1𝐴𝑠𝑚+1(𝑆𝜏,𝑠)) det(1 − 𝑞−1/2𝑆𝜏,𝑠

I
⊗ 𝑆𝑚+1),

where we have set 𝑆𝑚+1 = 𝐴𝑚+1𝐹𝑟𝑜𝑏𝑣 ∈ 𝑇𝑈𝑚+1𝐹𝑟𝑜𝑏𝑣 . Since 𝑆𝜏,𝑠
I
⊗ 𝑆𝑐𝜏,𝑠 = As𝑚 (𝑆𝜏,𝑠) ⊕ As𝑚+1(𝑆𝜏,𝑠),

this concludes the proof of (8.7.2.8) and therefore of the proposition. �
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8.8. Reduction to the corank one case

8.8.1.
In this subsection, we let

• 𝜎𝑚 and 𝜎𝑛+1 be cuspidal automorphic representations of 𝑈𝑚 (A) and 𝑈𝑛+1 (A), respectively;
• 𝜏 be an irreducible automorphic representation of 𝐺𝑟 (A) that is induced from a unitary cuspidal

representation, meaning that there exist a parabolic subgroup 𝑅 = 𝑀𝑁𝑅 ⊂ 𝐺𝑟 as well as a unitary
cuspidal automorphic representation 𝜅 of 𝑀 (A) such that

𝜏 = {𝐸𝐺𝑟

𝑅 (𝜙, 0) | 𝜙 ∈ 𝐼𝐺𝑟 (A)

𝑅 (A)
(𝜅)}.

Moreover, we henceforth identify A𝑄𝑛 ,𝜏�𝜎𝑚 (𝑈𝑛) with the parabolic induction 𝜎𝑛 := 𝐼𝑈𝑛 (A)

𝑄𝑛 (A)
(𝜏�𝜎𝑚) so

that for 𝜙𝑛 ∈ 𝜎𝑛 and any 𝑠 ∈ C, we have 𝜙𝑛,𝑠 ∈ 𝜎𝑛,𝑠 := 𝐼𝑈𝑛 (A)

𝑄𝑛 (A)
(𝜏𝑠 � 𝜎𝑚). Then, by Proposition 8.5.1.1

and Proposition 8.7.2.1, for 𝜙𝑛 ∈ 𝜎𝑛 and 𝜙𝑛+1 ∈ 𝜎𝑛+1, we have

P𝑈 ′ (𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) ⊗ 𝜙𝑛+1) =

vol(𝐾𝑈,𝑇𝑛 )

vol(𝐾𝑈,𝑇𝑛 ∩ B′(A𝑇 ))

𝐿𝑇
(

1
2 + 𝑠, 𝜏 × 𝜎𝑛+1

)
𝐿𝑇 (1 + 𝑠, 𝜏𝑐 × 𝜎𝑚)𝐿𝑇 (1 + 2𝑠, 𝜏,As(−1)𝑚 )

(8.8.1.1)

×

∫
B′ (𝐹𝑇 )\𝑈 ′ (𝐹𝑇 )

PB𝐿 ,𝜓𝐿
B
(𝜙𝑛,𝑠 (ℎ) ⊗ 𝜎𝑛+1 (ℎ)𝜙𝑛+1)𝑑ℎ

for �(𝑠) � 0 and where𝑇 ⊃ 𝑆 is any sufficiently large finite set of places such that 𝜙𝑛 is 𝐾𝑈,𝑇𝑛 -invariant
and 𝜙𝑛+1 is 𝐾𝑈,𝑇𝑛+1 -invariant.

8.8.2.

Proposition 8.8.2.1. The following are equivalent:

1. There exist 𝜙𝑚 ∈ 𝜎𝑚 and 𝜙𝑛+1 ∈ 𝜎𝑛+1 such that PB,𝜓B (𝜙𝑚 ⊗ 𝜙𝑛+1) ≠ 0;
2. There exist 𝜙𝑛 ∈ 𝜎𝑛, 𝜙𝑛+1 ∈ 𝜎𝑛+1 and 𝑠 ∈ C such that 𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, .) has no pole at s and

P𝑈 ′ (𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) ⊗ 𝜙𝑛+1) ≠ 0.

Proof. First, we remark that since there exists 𝜙𝜏 ∈ 𝜏 whose Whittaker period
∫
[𝑁𝑟 ]

𝜙𝜏 (𝑢)𝜓−𝑟 (𝑢)𝑑𝑢 is
nonzero, assertion 1 is equivalent to the nonvanishing ofPB𝐿 ,𝜓𝐿

B
on 𝜏�𝜎𝑚�𝜎𝑛+1. Then, the equivalence

2. ⇔ 1. follows from (8.8.1.1) and the last part of Proposition 8.6.1.1. �

8.8.3.
Choose isomorphisms 𝜏 �

⊗′
𝑣 𝜏𝑣 , 𝜎𝑚 �

⊗′
𝑣 𝜎𝑚,𝑣 and 𝜎𝑛+1 �

⊗′
𝑣 𝜎𝑛+1,𝑣 . This induces an iso-

morphism 𝜎𝑛 �
⊗′

𝑣 𝜎𝑛,𝑣 , where 𝜎𝑛,𝑣 := 𝐼𝑈𝑛 (𝐹𝑣 )

𝑄𝑛 (𝐹𝑣 )
(𝜏𝑣 � 𝜎𝑚,𝑣 ). We assume henceforth that for every

place v, the representations 𝜏𝑣 , 𝜎𝑚,𝑣 and 𝜎𝑛+1,𝑣 are all tempered. Let 𝜙𝜏 ∈ 𝜏, 𝜙𝑚 ∈ 𝜎𝑚, 𝜙𝑛 ∈ 𝜎𝑛 and
𝜙𝑛+1 ∈ 𝜎𝑛+1 be factorizable vectors – that is,

𝜙𝜏 =
′⊗
𝑣

𝜙𝜏,𝑣 , 𝜙𝑚 =
′⊗
𝑣

𝜙𝑚,𝑣 , 𝜙𝑛 =
′⊗
𝑣

𝜙𝑛,𝑣 , 𝜙𝑛+1 =
′⊗
𝑣

𝜙𝑛+1,𝑣 ,

where 𝜙𝜏,𝑣 ∈ 𝜏𝑣 , 𝜙𝑚,𝑣 ∈ 𝜎𝑚,𝑣 , 𝜙𝑛,𝑣 ∈ 𝜎𝑛,𝑣 and 𝜙𝑛+1,𝑣 ∈ 𝜎𝑛+1,𝑣 .
We equip 𝜎𝑚, 𝜎𝑛+1, 𝜏 and 𝜎𝑛 with invariant inner products as follows:

• We endow 𝜎𝑚, 𝜎𝑛+1 with the Petersson inner products 〈., .〉𝑃𝑒𝑡 (i.e., the 𝐿2 inner products with respect
to the Tamagawa measures on [𝑈𝑚] and [𝑈𝑛+1], respectively).
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• On 𝜏, we put the inner product defined by

〈𝐸𝐺𝑟

𝑅 (𝜙, 0), 𝐸𝐺𝑟

𝑅 (𝜙′, 0)〉𝜏 =
∫
𝑅 (A)\𝐺𝑟 (A)

∫
[𝑀 ]1

𝜙(𝑚𝑔)𝜙′(𝑚𝑔)𝑑𝑚𝑑𝑔

for 𝜙, 𝜙′ ∈ 𝐼𝐺𝑟 (A)

𝑅 (A)
(𝜅).

• 𝜎𝑛 is equipped with the inner product induced from that on 𝜏 � 𝜎𝑚, here denoted 〈., .〉𝜏�𝜎𝑚 ; that is,

〈𝜙, 𝜙′〉𝜎𝑛 =
∫
𝑄𝑛 (A)\𝑈𝑛 (A)

〈𝜙(𝑔), 𝜙′(𝑔)〉𝜏�𝜎𝑚𝑑𝑔, for 𝜙, 𝜙′ ∈ 𝜎𝑛.

We also fix factorizations of these inner products on 𝜎𝑚, 𝜎𝑛+1, 𝜏 and 𝜎𝑛 into local invariant inner
products. Following Section 8.4, this allows to define, for every place v of F, local periods P𝑈 ′,𝑣 ,
PB,𝜓B ,𝑣 , P𝑁𝑟 ,𝜓−𝑟 ,𝑣 and PB𝐿 ,𝜓𝐿

B ,𝑣
on 𝜎𝑛,𝑣 �𝜎𝑛+1,𝑣 , 𝜎𝑚,𝑣 �𝜎𝑛,𝑣 , 𝜏𝑣 and 𝜏𝑣 �𝜎𝑚,𝑣 �𝜎𝑛+1,𝑣 , respectively.

Furthermore, for almost all v, we have

P𝑈 ′,𝑣 (𝜙𝑛,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑛,𝑣 ⊗ 𝜙𝑛+1,𝑣 ) = Δ𝑈𝑛+1 ,𝑣

𝐿
(

1
2 , 𝜎𝑛,𝑣 × 𝜎𝑛+1,𝑣

)
𝐿(1, 𝜎𝑛,𝑣 ,Ad)𝐿(1, 𝜎𝑛+1,𝑣 ,Ad)

PB,𝜓B ,𝑣 (𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 ) = Δ𝑈𝑛+1 ,𝑣

𝐿
(

1
2 , 𝜎𝑚,𝑣 × 𝜎𝑛+1,𝑣

)
𝐿(1, 𝜎𝑚,𝑣 ,Ad)𝐿(1, 𝜎𝑛+1,𝑣 ,Ad)

P𝑁𝑟 ,𝜓−𝑟 ,𝑣 (𝜙𝜏,𝑣 , 𝜙𝜏,𝑣 ) =
Δ𝐺𝑟 ,𝑣

𝐿(1, 𝜏𝑣 ,Ad)
,

where we have set Δ𝑈𝑛+1 ,𝑣 =
∏𝑛+1
𝑖=1 𝐿(𝑖, 𝜂𝑖

𝐸/𝐹,𝑣
) and Δ𝐺𝑟 ,𝑣 =

∏𝑟
𝑖=1 𝜁𝐸𝑣 (𝑖). Note that the last two

equalities above imply that

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝜏,𝑣 ⊗ 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝜏,𝑣 ⊗ 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 ) =

Δ𝑈𝑛+1 ,𝑣Δ𝐺𝑟 ,𝑣

𝐿
(

1
2 , 𝜎𝑚,𝑣 × 𝜎𝑛+1,𝑣

)
𝐿(1, 𝜎𝑚,𝑣 ,Ad)𝐿(1, 𝜎𝑛+1,𝑣 ,Ad)𝐿(1, 𝜏𝑣 ,Ad)

for almost all v. Given all these identities, it makes sense to define

′∏
𝑣

P𝑈 ′,𝑣 (𝜙𝑛,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑛,𝑣 ⊗ 𝜙𝑛+1,𝑣 ) :=

Δ𝑇𝑈𝑛+1

𝐿𝑇
(

1
2 , 𝜎𝑛 × 𝜎𝑛+1

)
𝐿𝑇 ,∗(1, 𝜎𝑛,Ad)𝐿𝑇 (1, 𝜎𝑛+1,Ad)

∏
𝑣 ∈𝑇

P𝑈 ′,𝑣 (𝜙𝑛,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑛,𝑣 ⊗ 𝜙𝑛+1,𝑣 ),

′∏
𝑣

PB,𝜓B ,𝑣 (𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 ) :=

Δ𝑇𝑈𝑛+1

𝐿𝑇
(

1
2 , 𝜎𝑚 × 𝜎𝑛+1

)
𝐿𝑇 (1, 𝜎𝑚,Ad)𝐿𝑇 (1, 𝜎𝑛+1,Ad)

∏
𝑣 ∈𝑇

PB,𝜓B ,𝑣 (𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 ),

′∏
𝑣

P𝑁𝑟 ,𝜓−𝑟 ,𝑣 (𝜙𝜏,𝑣 , 𝜙𝜏,𝑣 ) :=
Δ𝑇 ,∗𝐺𝑟

𝐿𝑇 ,∗(1, 𝜏,Ad)

∏
𝑣 ∈𝑇

P𝑁𝑟 ,𝜓−𝑟 ,𝑣 (𝜙𝜏,𝑣 , 𝜙𝜏,𝑣 )
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for any sufficiently large finite set T of places where we have set

Δ𝑇𝑈𝑛+1
=
𝑛+1∏
𝑖=1

𝐿𝑇 (𝑖, 𝜂𝑖𝐸/𝐹 ), Δ𝑇 ,∗𝐺𝑟
= 𝜁𝑇 ,∗𝐸 (1)

𝑟∏
𝑖=2

𝜁𝑇𝐸 (𝑖)

and 𝐿𝑇 ,∗(1, 𝜎𝑛,Ad), 𝐿𝑇 ,∗(1, 𝜏,Ad) stand for the regularized values

𝐿𝑇 ,∗(1, 𝜎𝑛,Ad) :=
(
(𝑠 − 1)𝑎𝐿𝑇 (𝑠, 𝜎𝑛,Ad)

)
𝑠=1

, 𝐿𝑇 ,∗(1, 𝜏,Ad) :=
(
(𝑠 − 1)𝑎𝐿𝑇 (𝑠, 𝜏,Ad)

)
𝑠=1

with 𝑎 = dim(𝐴𝑀 ), respectively. We define similarly

′∏
𝑣

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝜏,𝑣 ⊗ 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝜏,𝑣 ⊗ 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 ).

Of course, the previous discussion applies verbatim when we replace 𝜏 and 𝜎𝑛 by 𝜏𝑠 and 𝜎𝑛,𝑠 for
every 𝑠 ∈ 𝑖R.

Proposition 8.8.3.1. Let 𝑐 ∈ C and assume that for every factorizable vectors 𝜙𝑛 ∈ 𝜎𝑛, 𝜙𝑛+1 ∈ 𝜎𝑛+1
and every 𝑠 ∈ 𝑖R, we have���P𝑈 ′ (𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) ⊗ 𝜙𝑛+1)

���2 = 𝑐
′∏
𝑣

P𝑈 ′,𝑣 (𝜙𝑛,𝑠,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑛,𝑠,𝑣 ⊗ 𝜙𝑛+1,𝑣 ).

Then, for every factorizable vectors 𝜙𝑚 ∈ 𝜎𝑚 and 𝜙𝑛+1 ∈ 𝜎𝑛+1, we have��PB,𝜓B (𝜙𝑚 ⊗ 𝜙𝑛+1)
��2 = 𝑐

′∏
𝑣

PB,𝜓B ,𝑣 (𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 ).

Proof. Let 𝜙𝑛 ∈ 𝜎𝑛 and 𝜙𝑛+1 ∈ 𝜎𝑛+1 be factorizable vectors and let T be a finite set of places of F that
we will assume throughout to be sufficiently large. By (8.8.1.1), we have

���P𝑈 ′ (𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) ⊗ 𝜙𝑛+1)

���2 =

�������
𝐿𝑇

(
1
2 + 𝑠, 𝜏 × 𝜎𝑛+1

)
𝐿𝑇 (1 + 𝑠, 𝜏𝑐 × 𝜎𝑚)𝐿𝑇 (1 + 2𝑠, 𝜏,As(−1)𝑚 )

�������
2

(8.8.3.1)

∫
(B′ (𝐹𝑇 )\𝑈 ′ (𝐹𝑇 ))2

PB𝐿 ,𝜓𝐿
B
(𝜙𝑛,𝑠 (ℎ1) ⊗ 𝜎𝑛+1(ℎ1)𝜙𝑛+1)PB𝐿 ,𝜓𝐿

B
(𝜙𝑛,𝑠 (ℎ2) ⊗ 𝜎𝑛+1(ℎ2)𝜙𝑛+1)𝑑ℎ2𝑑ℎ1

for 𝑠 ∈ 𝑖R. However, from the hypothesis, Proposition 8.6.2.1 and (8.2.1.1), we obtain

���P𝑈 ′ (𝐸𝑈𝑛

𝑄𝑛
(𝜙𝑛, 𝑠) ⊗ 𝜙𝑛+1)

���2 = 𝑐Δ𝑇 ,∗𝐺𝑟
Δ𝑇𝑈𝑛+1

𝐿𝑇
(

1
2 , 𝜎𝑛,𝑠 × 𝜎𝑛+1

)
𝐿𝑇 ,∗(1, 𝜎𝑛,𝑠 ,Ad)𝐿𝑇 (1, 𝜎𝑛+1,Ad)

(8.8.3.2)∏
𝑣 ∈𝑇

∫
(B′ (𝐹𝑣 )\𝑈 ′ (𝐹𝑣 ))2

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝑛,𝑠,𝑣 (ℎ1) ⊗ 𝜎𝑛+1,𝑣 (ℎ2)𝜙𝑛+1,𝑣 , 𝜙𝑛,𝑠,𝑣 (ℎ1) ⊗ 𝜎𝑛+1,𝑣 (ℎ2)𝜙𝑛+1,𝑣 )𝑑ℎ2𝑑ℎ1

for 𝑠 ∈ 𝑖R. From (8.8.3.1), (8.8.3.2), the last part of Proposition 8.6.1.1 as well as the identity of partial
L-functions for 𝑠 ∈ 𝑖R

𝐿𝑇
(

1
2 , 𝜎𝑛,𝑠 × 𝜎𝑛+1

)
𝐿𝑇 ,∗(1, 𝜎𝑛,𝑠 ,Ad)

=
𝐿𝑇

(
1
2 , 𝜎𝑚 × 𝜎𝑛+1

)
𝐿𝑇 ,∗(1, 𝜏,Ad)𝐿𝑇 (1, 𝜎𝑚,Ad)

�������
𝐿𝑇

(
1
2 + 𝑠, 𝜏 × 𝜎𝑛+1

)
𝐿𝑇 (1 + 𝑠, 𝜏𝑐 × 𝜎𝑚)𝐿𝑇 (1 + 2𝑠, 𝜏,As(−1)𝑚 )

�������
2

,
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we deduce the equality

���PB𝐿 ,𝜓𝐿
B
(𝜙 ⊗ 𝜙𝑛+1)

���2 = 𝑐Δ𝑇 ,∗𝐺𝑟
Δ𝑇𝑈𝑛+1

𝐿𝑇
(

1
2 , 𝜎𝑚 × 𝜎𝑛+1

)
𝐿𝑇 ,∗(1, 𝜏,Ad)𝐿𝑇 (1, 𝜎𝑚,Ad)𝐿𝑇 (1, 𝜎𝑛+1,Ad)

(8.8.3.3)

×
∏
𝑣 ∈𝑇

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑣 ⊗ 𝜙𝑛+1,𝑣 )

= 𝑐
′∏
𝑣

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑣 ⊗ 𝜙𝑛+1,𝑣 )

for every factorizable vector 𝜙 =
⊗′

𝑣 𝜙𝑣 ∈ 𝜏 � 𝜎𝑚. Furthermore, for 𝜙𝜏 ∈ 𝜏 and 𝜙𝑚 ∈ 𝜎𝑚 two
factorizable vectors, we have

PB𝐿 ,𝜓𝐿
B
(𝜙𝜏 ⊗ 𝜙𝑚 ⊗ 𝜙𝑛+1) = P𝑁𝑟 ,𝜓−𝑟 (𝜙𝜏)PB,𝜓B (𝜙𝑚 ⊗ 𝜙𝑛+1)

and

PB𝐿 ,𝜓𝐿
B ,𝑣

(𝜙𝜏,𝑣 ⊗ 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝜏,𝑣 ⊗ 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 )

= P𝑁𝑟 ,𝜓−𝑟 ,𝑣 (𝜙𝜏,𝑣 , 𝜙𝜏,𝑣 )PB,𝜓B ,𝑣 (𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 , 𝜙𝑚,𝑣 ⊗ 𝜙𝑛+1,𝑣 )

for every place v as well as the identity (cf. [FLO12, Eq. (11.3)])��P𝑁𝑟 ,𝜓−𝑟 (𝜙𝜏)
��2 =

′∏
𝑣

P𝑁𝑟 ,𝜓−𝑟 ,𝑣 (𝜙𝜏,𝑣 , 𝜙𝜏,𝑣 ). (8.8.3.4)

The proposition can now be deduced by dividing the identity (8.8.3.4) by (8.8.3.3). Note that such a
deduction is valid as the Whittaker period P𝑁𝑟 ,𝜓−𝑟 is known to be nonzero on 𝜏. �

A. Weyl character formula for non-connected groups

A.0.1.
Let 𝐺 be a connected complex reductive group, 𝐵 ⊂ 𝐺 be a Borel subgroup and 𝑇 ⊂ 𝐵 be a maximal
torus. Let Γ be a cyclic finite group acting on 𝐺 by holomorphic automorphisms preserving the Borel
pair (𝐵,𝑇). Set 𝐿𝐺 = 𝐺 � Γ, 𝐿𝑇 = 𝑇 � Γ and 𝐿𝐵 = 𝐵 � Γ. We say that an element 𝑆 ∈ 𝐿𝑇 is regular if
the neutral component of its centralizer is contained in 𝑇 .

Let 𝑋∗(𝑇) be the group of algebraic characters of 𝑇 and 𝑋∗(𝑇)+ ⊂ 𝑋∗(𝑇) be the subset of dominant
elements (with respect to the chosen Borel 𝐵). For every 𝜒 ∈ 𝑋∗(𝑇)+, we denote by (𝜋𝜒, 𝑉𝜒) an
algebraic irreducible representation of 𝐺 with highest weight 𝜒 (it is unique up to isomorphism).
Note that the subgroup of Γ-invariant characters 𝑋∗(𝑇)Γ can be identified with the set of algebraic
characters 𝐿𝑇 → C× that are trivial on Γ. Moreover, for every 𝜒 ∈ 𝑋∗(𝑇)+ ∩ 𝑋∗(𝑇)Γ, the representation
(𝜋𝜒, 𝑉𝜒) can be extended in a unique way to a representation of 𝐿𝐺 such that Γ acts trivially on the
line of highest weight vectors. We shall denote by 𝑐ℎ𝜒 the character of that representation of 𝐿𝐺 (i.e.,
𝑐ℎ𝜒 (𝑆) = Tr𝜋𝜒 (𝑆) for 𝑆 ∈ 𝐿𝐺).

A.0.2.
Let𝑊 = Norm𝐺 (𝑇)/𝑇 be the Weyl group of𝑇 in𝐺. Then, Γ acts in a natural way on𝑊 and the subgroup
of fixed points 𝑊Γ can be identified with 𝑊 = Norm𝐺 (

𝐿𝑇)/𝑇 . Let 𝜌 ∈ 1
2 𝑋

∗(𝑇) be the half-sum of the
positive roots with respect to 𝐵. The dot action of 𝑊 on 𝑋∗(𝑇) is defined by

𝑤 · 𝜒 = 𝑤(𝜒 + 𝜌) − 𝜌, (𝑤, 𝜒) ∈ 𝑊 × 𝑋∗(𝑇).
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For 𝜒 ∈ 𝑋∗(𝑇), we recall the following alternative. Either

• 𝜒 + 𝜌 is singular (i.e., there exists a coroot 𝛼∨ such that 〈𝛼∨, 𝜒 + 𝜌〉 = 0);
• or there exists a unique 𝑤𝜒 ∈ 𝑊 such that 𝑤𝜒 · 𝜒 ∈ 𝑋∗(𝑇)+.

Note that, by unicity, for 𝜒 ∈ 𝑋∗(𝑇)Γ such that 𝜒 + 𝜌 is nonsingular, we have 𝑤𝜒 ∈ 𝑊 .
For every standard parabolic subgroup 𝐵 ⊂ 𝑄 ⊂ 𝐺 that is Γ-stable, we set

𝐷𝐺/𝑄 (𝑆) = det(1 − 𝐴𝑑 (𝑆)) | 𝐿𝑖𝑒(𝐺)/𝐿𝑖𝑒(𝑄)

for 𝑆 ∈ 𝐿𝑇 .

Proposition A.0.2.1. Let 𝐹 ∈ Γ be a generator and 𝜒 ∈ 𝑋∗(𝑇)Γ. Then

1. If 𝜒 + 𝜌 is singular, we have ∑
𝑤 ∈𝑊

𝜒(𝑤𝑆)

𝐷𝐺/𝐵 (𝑤𝑆)
= 0

for every regular 𝑆 ∈ 𝐿𝑇 .
2. If 𝜒 + 𝜌 is nonsingular, setting 𝜒+ = 𝑤𝜒 · 𝜒, there exists a root of unity 𝜖𝜒 ∈ C× such that∑

𝑤 ∈𝑊

𝜒(𝑤𝑆)

𝐷𝐺/𝐵 (𝑤𝑆)
= 𝜖𝜒𝑐ℎ𝜒+ (𝑆)

for every regular 𝑆 ∈ 𝑇𝐹. Moreover, if 𝜒 is dominant, we have 𝜖𝜒 = 1.

Proof. Let 𝑋 = 𝐺/𝐵 be the flag variety of 𝐺. The action of 𝐺 on X naturally extends to 𝐿𝐺 (e.g.,
because we can also write 𝑋 = 𝐿𝐺/𝐿𝐵). Let L𝜒 be the 𝐿𝐺-equivariant line bundle on X such that the
action of 𝐿𝐵 on the fiber above 1 ∈ 𝑋 is given by 𝜒. Then, by the Borel-Weil-Bott theorem, we have

• If 𝜒 + 𝜌 is singular, 𝐻𝑖 (𝑋,L𝜒) = 0 for 𝑖 � 0,
• otherwise (i.e., if 𝜒 + 𝜌 is nonsingular), there exists a unique 𝑖 � 0 such that 𝐻𝑖 (𝑋,L𝜒) ≠ 0 and,

moreover, 𝐻𝑖 (𝑋,L𝜒) � 𝑉𝜒+ as 𝐺-modules.

Let 𝑆 ∈ 𝑇𝐹 be regular. We apply Atiyah-Bott fixed point theorem [AB68, Theorem 4.12] to the action
of S on the pair (𝑋,L𝜒). First, note that the set of fixed points of S in X is precisely the image of the
natural embedding𝑊 ⊂ 𝑋 . Moreover, for 𝑤 ∈ 𝑊 , the action of S on the fiber (L𝜒)𝑤 (resp. on the tangent
space 𝑇𝑤𝑋 identified in a natural way with 𝐿𝑖𝑒(𝐺)/𝐿𝑖𝑒(𝐵)) is the multiplication by 𝜒(𝑤−1𝑆) (resp. the
adjoint operator 𝐴𝑑 (𝑤−1𝑆)). Given this as well as the above description of the cohomology groups of
L𝜒, the Atiyah-Bott fixed point theorem implies directly the proposition when 𝜒+ 𝜌 is singular, whereas
in the nonsingular, case it gives ∑

𝑤 ∈𝑊

𝜒(𝑤𝑆)

𝐷𝐺/𝐵 (𝑤𝑆)
= Tr(𝑆 | 𝐻𝑖 (𝑋,L𝜒)).

However, since 𝐻𝑖 (𝑋,L𝜒) � 𝑉𝜒+ as 𝐺-modules and 𝑉𝜒+ is irreducible, we see that 𝐻𝑖 (𝑋,L𝜒) is
isomorphic as a 𝐿𝐺-representation to a twist of 𝑉𝜒+ by a character of Γ. Denoting by 𝜖𝜒 the value of
this character on F, we obtain the second formula of the proposition. �

Corollary A.0.2.2. Let 𝑄 ⊂ 𝐺 be a Γ-stable standard parabolic subgroup. Let �̂� ⊂ 𝑄 be the unique
Levi component containing 𝑇 and set 𝑊𝐿 = Norm𝐿𝐿 (𝑇)/𝑇 ⊂ 𝑊 , where we have set 𝐿𝐿 = �̂� � Γ. Then,
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we have ∑
𝑤 ∈𝑊 𝐿

𝐷𝐺/𝐵 (𝑤𝑆)
−1 = 𝐷𝐺/𝑄 (𝑆)

−1

for every regular 𝑆 ∈ 𝐿𝑇 .
Proof. Note that

𝐷𝐺/𝐵 (𝑆) = 𝐷𝐺/𝑄 (𝑆)𝐷𝐿/𝐵𝐿
(𝑆)

for 𝑆 ∈ 𝐿𝑇 , where we have set 𝐵𝐿 = 𝐵 ∩ �̂�. The corollary now follows readily from the previous
proposition applied to the trivial character and 𝐿𝐿 instead of 𝐿𝐺. �
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