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Abstract

We state and prove an extension of the global Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture to
the case of some Eisenstein series on unitary groups U, X U,,;1. Our theorems are based on a comparison of the
Jacquet-Rallis trace formulas. A new point is the expression of some interesting spectral contributions in these
formulas in terms of integrals of relative characters. As an application of our main theorems, we prove the global
Gan-Gross-Prasad and the Ichino-Ikeda conjecture for Bessel periods of unitary groups.
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1. Introduction
1.1. Arthur parameters and weak base change

1.1.1.

In some sense, this paper is a sequel of [BPCZ22], where we proved the global Gan-Gross-Prasad (see
[GGP12, section 24]) and the Ichino-Tkeda conjectures for a product of unitary groups U(n) X U(n + 1)
(see [1110] and [Har14]). The goal of the present paper is two-fold: first, we state and prove an extension
of these two conjectures to the case of some Eisenstein series. Second, we show that this extension,
when applied to some specific Eisenstein series, implies the global Gan-Gross-Prasad conjecture and
its refinement a la Ichino-Ikeda for general Bessel periods of unitary groups. To state our results, we
first review the notion of Arthur parameter.

1.1.2. Hermitian Arthur parameter.

Let E/F be a quadratic extension of number fields and ¢ be the nontrivial element of the Galois
group Gal(E/F). Let A be the ring of adeles of F. Let n > 1 be an integer. Let G, be the group
of automorphims of the E-vector space E". We view G, as an F-group by Weil restriction. For an
automorphic representation IT of G, (A), we denote by IT* its conjugate-dual. Let us introduce some
definitions. A discrete Hermitian Arthur parameter of G, is an irreducible automorphic representation
IT of G,,(A) such that

e IT is isomorphic to the full induced representation Indg" (I ® ... ®II,), where Q is a parabolic
subgroup of G, with Levi factor G,,, X ... X G, whereni +...+n, =n;

o II; is a conjugate self-dual cuspidal automorphic representation of G, (A), and the Asai L-function
L(s,Hi,As(’l)n”) hasapoleats=1forl <i<r.

o the representations I1; are mutually non-isomorphic for 1 <i < r;

The integer r and the representations (I1;);<;<, are unique (up to a permutation). We set Sy = (Z/2Z)".
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For our purpose, we need more general Arthur parameters of G,, which we call regular Hermitian
Arthur parameters and which are by definition the automorphic representations IT of G,, such that

o [1 is isomorphic to the full induced representation Indg" MIe... xlrHrIix... ® 1'[1*), where
Q is a parabolic subgroup of G, with Levi factor Mp = G,, X ... X Gp, X Gy X Gy, X ... X Gy,
where ng +2(n; +...+n,) =n;

e Iy is a discrete Hermitian Arthur parameter of G,;

o II; is a cuspidal automorphic representation of G, (A) (with character central trivial on Agﬂ_) for
1<i<r '

e the representations Iy, ..., I, Hi‘, ..., II are mutually non-isomorphic .

The representation Iy is uniquely determined by IT and is called the discrete component of I1. We set
St = St

The parabolic subgroup Q depends on the ordering on the representations Iy, ..., IL, I}, . .., IT;::
we fix one.

Let “*Q,c be the complex vector space of unramified characters of Q (A). We have the real subspaces
a’, and ia*Q, respectively, of real and unitary characters. Let w be the permutation that exchanges the
two blocks G, corresponding to IT; and IT; for all 1 < i < r. We set

apc={1€ayclwd=-1}.

*

For any 4 € ap oo

we define I, as the full induced representation

Indg" (M.l lrlx... &) 1.
If A eiaf = al*_l cN ia*Q, then I, is irreducible.

1.1.3. Unitary groups and (weak) base change
For any integer n > 1, let H,, be the set of isomorphism classes of nondegenerate c-Hermitian spaces
h over E of rank n. We identify any 4 € #, with a representative, and we denote by U(h) its
automorphism group. Let & € H and P c U(h) be a parabolic subgroup with Levi factor Mp.
There exist a decomposition ng + 2(ny + ...+ n,) = n and h,, € H,, such that Mp is identified
with G, X ... X G,, X U(hy,). Let o be a cuspidal automorphic subrepresentation of Mp(A) (with
central character trivial on the central subgroup A defined in §2.1.6). Accordingly, we have o =
I ®...®II, ®og with I1; a cuspidal automorphic representation of G, (with central character trivial
on Agn_ ).

We shall say that a regular Hermitian Arthur parameter I1 of G, is a weak base-change of (P, o) if
there exist a parabolic subgroup Q of G,, with Levi factor Mg = G, X...XGp, XGpy XG,, X. .. X Gy,
and a discrete Hermitian Arthur parameter Iy of G, such that

1. IT is isomorphic to the full induced representation IndS" (Mzr.. =l xldr[=... =)
2. for almost all places of F that split in E, the local component Iy , is the split local base change of
go,v-

Note that this implies that the representations Iy, . . ., I1,, Hi‘, ..., I} are mutually non-isomorphic and
that Iy is in fact the discrete component of I1. If condition 2 above is satisfied, we shall also say that ITj
is the weak base change of oy.

If I is a weak base-change of (P, o), we can naturally identify the space a*;,,c of unramified characters

of P(A) with af} ., and so we will not distinguish between the two spaces. Thus, for 4 € af} -, we can

consider the full induced representation X, = Indg” (c®A).
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1.1.4.
We can extend the notions above to the case of a product. Let n,n” > 1 be integers. A regular Hermitian
Arthur parameter of G,, X G,y is then an automorphic representation of the form IT = I1,, ® I1,,, where
Iy is a regular Hermitian Arthur parameter of Gy for k = n,n’. Then we set Sy = Sp,, X Sr,, and
aﬁ’c = al’flmc X aFI,,/,C etc. For A = (1,,4,) € al’fLC, we set I1; = I1,, 4, ® 1, 4 ,. A parameter I is
discrete if both I1,, and II,,, are discrete.

Leth € H, and b’ € H,. Let P = P, X P, be a parabolic subgroup of U (h) x U(h’). We say that a
regular Hermitian Arthur parameter IT = I1,, ® IT,» of G,, X G, is a weak base-change of (P, o) if I,
and IT,, are, respectively, weak base-changes of (P,,, 0,) and (P, o), Where o = 0, R 07y

1.2. An extension of the Gan-Gross-Prasad conjecture to some Eisenstein series

1.2.1. Corank 1 and regular Hermitian Arthur parameter

Letn > 1. Consider the ‘corank 1’ case G = G, XG 4. LetIl = I1,®I1,,; be aregular Hermitian Arthur
parameter of G. We can write I1; = Indgi (Il 4 ®...xII,, ;) for some parabolic subgroup Qi C Gy
for k = n,n+1 and some cuspidal automorphic representations of G, , (A) withny g +...+n, 1 = k.
We shall say that the parameter I1 is H-regular ifforall 1 <i < r,and 1 < j < rp41, the representation
I1; ,, is not isomorphic to the contragredient of I1; ;,41.

Remark 1.2.1.1. In the core of the paper, H will stand for the diagonal subgroup G,, of G, and the term
H-regular refers to the fact that H-regular Hermitian Arthur parameter features some particularly nice
properties with respect to the (regularized) Rankin-Selberg period over that subgroup (roughly stemming
from the fact that the Rankin-Selberg L-function of II has no poles). A discrete Hermitian Arthur
parameter is necessarily H-regular. Otherwise, we would get a self-conjugate cuspidal representation
I1; of G, for some n; > 1 such that both Asai L-functions L(s, I1;, As*) and L(s, I1;, As™) have a pole
at s = 1: this is not possible.

On the unitary side, let hyp € H be the element of rank 1 given by the norm Ng,r. Then we attach
to any i € H, the following algebraic groups over F:

e the product of unitary groups Uy, = U(h) X U(h @ hg), where h & hg denotes the orthogonal sum;
o the unitary group U, of automorphisms of /4 viewed as a subgroup of Uj, by the obvious diagonal
embedding.

1.2.2.

Let P = MpNp C Uy be a parabolic subgroup with Levi factor Mp and unipotent radical Np. Let
o be a cuspidal automorphic subrepresentation of Mp(A) with central character trivial on A7. Let
Ap,o(Up) be the space of automorphic forms on the quotient Ay Mp(F)Np(A)\Uj(A) such that for
all g € Up(A),

me Mp(A) — 5P(m)7%90(m8)

belongs to the space of o-. Here, Np is the unipotent radical of P and § p is the modular character of P(A).
The representation of Uy, (A) on Ap (Up) is isomorphic to the induced representation £ = Indg"’ (o).
Let ¢ € Ap »(Up). For A € al*]’c, we introduce the Eisenstein series E (¢, A1) and the Ichino-Yamana
regularized period

Pu;l(go,/l)z‘/ ATE(x, ¢, 1) dx, (122.1)
;]

h

where [U,] = U, (F)\U, (A) is equipped with the Tamagawa measure, AT is the truncation operator
introduced by Ichino-Yamana in [IY19] depending on an auxiliary parameter 7" whose definition is
recalled in §3.3.2. The integral is absolutely convergent. Moreover, if the base change of X is a H-
regular Arthur parameter (which will be our assumption), then the integral does not depend on T (see
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proposition 3.5.3.1 below). In this case, Py, (¢, A) is a meromorphic function, which is regular outside
the singularities of the Eisenstein series. In particular, it is holomorphic on iaj;.

1.2.3. The Gan-Gross-Prasad conjecture for some Eisenstein series
Theorem 1.2.3.1. Let I1 be a H-regular Hermitian Arthur parameter of G and let A € iag,. The following
two statements are equivalent:

1. The complete Rankin-Selberg L-function of I1, (including Archimedean places) satisfies

1

L{=,1I 0;

()

2. There exist h € H,, a parabolic subgroup P C Uy with Levi factor Mp and o an irreducible
cuspidal automorphic subrepresentation of Mp (A) such that 11 is a weak base change of (P, o) and
the period integral ¢ — Py (¢, A) induces a nonzero linear form on Ap_o(Up).

Remark 1.2.3.2. The Levi subgroup Mp is determined up to conjugation by the parameter I1. Moreover,
we have P = Uy, if I1 is discrete. In this case, the theorem is proved in [BLLZZ21, Theorem 1.8] if IT is
cuspidal and in [BPCZ22, Theorem 1.1.5.1] for a general discrete Hermitian parameter. The novelty of
the theorem is to consider non-discrete Arthur parameters and thus periods of proper Eisenstein series
on unitary groups.

1.2.4. Factorization of periods of some Eisenstein series a la Ichino-Ikeda

Let h € H,. Let P be a parabolic subgroup of U, with Levi factor Mp and let o be an irreducible
cuspidal automorphic subrepresentation of Mp (A) such that the weak base change of (P, o) is a regular
Hermitian Arthur parameter I1. We have a restricted tensor product decomposition o = ®:’€VF oy
over the set Vg of places of F. We assume that o is tempered — that is, for every place v, the local
representation o, is tempered. Let A € iaj;. We define I1; and X, as above. Let 2, , = Indg”' (oy ® )
and I, , be their local components.

We set

1 )dim(aiil) n+l L(S, H/l)

R P L(s+i-1/2,7'
L(s,Z) (s > 1_1[ (s+i /’”)L(Hl/z,m,As’)’

where n denotes the quadratic idele class character associated to the extension E/F, L(s,n') is the
completed Hecke L-function associated to i’ and L(s, I1;, As’) is the L-function associated to AsV" R
AsD"™" Note that with our hypothesis, the function L(s, T4, As’) has a pole of order dim(aj;) at s = 1.
Thus, the function (s — 1)~ 9™ (5, IT;, As’) is holomorphic and nonvanishing at s = 1. In particular,
the function L(s, X)) is holomorphic at s = %

We denote by L(s,Z,,,) the corresponding quotient of local L-factors; namely, for s in some half-
space, we have

1)dim(a1’i[)

L(s, X)) = (s - =

> [] 6200,

veVr

For each place v of F, we define a local normalized period 772 o 2, X X, — C as follows:

-1

’ 1 ’ ’

P]Ij ™, (SDV7§DV) :E(zvzl,v) / (Z/l,v(hv)‘;DV7(pv)vth7 Dy, Py, €X,.
Y U (Fy)

It depends on the choice of a Haar measure dh,, on U, (F,) as well as an invariant inner product on
o, which gives in the usual way an invariant product on X, denoted by (-, -),. By the temperedness
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assumption, the integral is absolutely convergent [Har 14, Proposition 2.1] and the local factor £(s, 2, )
has neither zero nor pole at s = %
We introduce on Ap_(Uj) the Petersson inner product given by

R / lo(g)Pds, €0
AFZMp (F)Np(A\UL(A)

Recall that we have normalized the period integral Py, (1) by choosing the invariant Tamagawa measures
on [U,]. We also normalize the Petersson product by using the quotient of Tamagawa measures. We
assume that the local Haar measures dh, on U, (F,) are such that the product [], dh, gives the
Tamagawa measure on U; (A).

Theorem 1.2.4.1. Let I1 and (P, o) as above. For A € iaf; and every nonzero factorizable vector
¢ =QLp, € Ap - (Up) = ®’v€VFZV, we have

b
[Pu; (¢, DI 1 Pps.. (@v.ov)
U;T = |Sn| lﬁ(z,zﬂ) | | (;T (1.2.4.1)
s et vs ¥v)v

v

Remark 1.2.4.2. By [Har14, Theorem 2.12] and our choice of measures, almost all factors in the right-
hand side are equal to 1. As in remark 1.2.3.2, the statement reduces to [BPCZ22, Theorem 1.1.6.1] for
a discrete Hermitian Arthur parameter IT and even to [BLZZ21, Theorem 1.10] if IT is moreover simple.

1.3. The case of Bessel periods

1.3.1.

Let n > m > 0 be two integers of the same parity. We have n = m + 2r for some r > 0. Recall that
we denote by hg the 1-dimensional Hermitian space given by the norm Ng,r. Let hy € H; be the
orthogonal sum of kg and —hg. For any h € H,,, we define i € H, to be the orthogonal sum of &
and r copies of hg denoted by hi, ....h5. Foreach 1 <i <r,let (x;,y;) be a hyperbolic basis of hf;;
that is, we have hi(x;,x;) = hi(y;,y;) = 0 and hi(x;,y;) = 1. We consider also the orthogonal sum
hps1 = h ® hy € Hpe1. We denote by v the vector of g corresponding to 1 € E. We have a diagonal
embedding

U(h) == G = U(h) X U(hps1)

for which the image of U (%) in U(h,41) is the subgroup which acts by the identity on hg @ hl ... @ h%.
Let B C U(hy+1) be the stabilizer of the isotropic flag

(0) ¢ vect(xy) € vect(xy,x2) € ... C vect(xy,...,x,). (1.3.1.1)

Let N be the unipotent radical of B. Then the group U(h) normalizes N. Let B, = U(h) =< ({1} X N):
this is the so-called Bessel subgroup of Gj,.

1.3.2. Bessel periods
Lety : A/F — C* be a nontrivial continuous character. We define a character yyy : [N] — C* by

r—1

Un(u) =y Z Npet (UXig1, Yi) + B (uvo, y») |, u € [N].
i=1

This character extends uniquely to a character g, : [B5] — C* that coincides with ¥ on [N] and is
trivial on [U(h)]. Let o be a cuspidal automorphic subrepresentation of Gy, (A). We define the global
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Bessel period for ¢ € o by the absolute convergent integral
Py, (@) = /[B | ¢(8)¥s5,(g)dg.
h

1.3.3. The Gan-Gross-Prasad conjecture for Bessel periods
Let G’ = G X Gony1- We can now state our first theorem about Bessel periods.

Theorem 1.3.3.1. Let I1 be a discrete Hermitian Arthur parameter of G°. The following assertions are
equivalent:

1. The complete Rankin-Selberg L-function of 11 satisfies

1
L|=,II 0;
()¢
2. There exist a Hermitian form h € H,, and an automorphic cuspidal subrepresentation o of G (A)
such that its weak base to G is T1 and the Bessel period

("2 = PBh,lﬁ(‘p)

does not vanish identically on o .
Remarks 1.3.3.2.

e The case = 0 is just a particular case of Theorem 1.3.3.1.

e Assume m = 0. Then the L-function is the constant function of value 1. So the assertion 1 is
automatically satisfied. However, the group Gy, is the quasi-split unitary group Uy,+; of rank 2r + 1.
Moreover, the Bessel subgroup is a maximal unipotent subgroup of Uy,+;. Then the Bessel period is
the so-called Fourier-Whittaker coefficient. The theorem is proved in the work of Ginzburg-Rallis-
Soudry; see [GRS11].

e The direction 2 = 1 is also proved by D. Jiang-L. Zhang; see [JZ20, Theorem 5.7].

1.34.

In our approach, Theorem 1.3.3.1 is a consequence of Theorem 1.2.3.1. To explain this, we may and
shall assume r > 0. We start with a discrete Hermitian Arthur parameter IT of G°. It can be written
IT =I1,,, ® I1,,4;, where I1,,, and I1,,; are respective discrete parameters of G, and G,4. Letay, ..., o,
be r characters of £ X\A}E such that the characters ay,...,a,, a’f, ...,y are two by two distinct (we
recall that «; denotes the conjugate-dual of «;). Let @, C G, be a parabolic subgroup of Levi factor
G X Gy X GY. Then

ﬁzlndgz(alx...xarxnmxafx...xaj)xnnﬂ

is a regular Hermitian Arthur parameter of G = G, X G4;. Even if I1 is not discrete, it is at least H-
regular in the sense of §1.2.1: this is an obvious consequence of remark 1.2.1.1 and the assumption on
the characters ;. We have an identification C" =~ al’il c such that if A5 € al"il c is the image of (s,...,s)

with s € C, we have
. G ‘ _ s
H/ls=IndQZ(al|‘|gx...xar|~|gxnmxa’l‘|- FR...Ra ) ’ILa.

For simplicity, we set [T = I1,,. By elementary properties of Rankin-Selberg L-function, it is clear that
assertion 1 of 1.3.3.1 is equivalent to 1”:

I’. There exists s € iR such that L(%, Il) # 0.
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Let h € H,, and o be an automorphic cuspidal subrepresentation of G;, whose weak base to G is
I1. Let P, c U(h) be the parabolic subgroup stabilizing the isotropic flag

0 ¢ vect(x,) € vect(x,,x,—1) ... € vect(x,,...,x1).

(Note that this flag is opposite position to (1.3.1.1).) and set P = P,, X U(h,+1); a parabolic subgroup
of U; = U(h) X U(hps1). Then G X G, is a Levi factor Mp of P. Set & = a1 ® ... ® @, ® 0. This
is an automorphic cuspidal representation of Mp(A), and II is the weak base change of (P, o). Let
¢ € Ap,5(Uj;). As in subsection 1.2, we denote by U}Cl the ‘diagonal’ subgroup of Uj;. In the case at
hand, the restriction of the Eisenstein series E (¢, 1) to [U }il] is rapidly decreasing for any 4 € ap ¢,
where the Eisenstein series is regular, and for any such A, we have

PU;.[(QOa/l) :/ E(x7 ‘P’/l) dx
(U]

where the left-hand side is defined according to (1.2.2.1) and the right-hand side is absolutely conver-
gent (see Proposition 3.5.3.1 assertion 3). Moreover, the map s +— 73U;~ (¢, A) is meromorphic and
holomorphic on iR. We prove in Proposition 8.8.2.1 that the map ¢ € A;(gh) — Pg,.y(¢) does not
vanish identically if and only if there is s € C such that the map ¢ +— PU/% (¢, A5) does not vanish iden-
tically on Ap & (Uj;). This last fact is eventually a consequence of some unfolding identity that roughly
takes the following form:

Puy (o1 = [ Pay.u(os (W) dh
' B(A)\U, (4)

for ¢ € Ap +(Uj;), where ¢ stands for the corresponding element of Indg’} (6 ® A) (given through
the choice of a suitable Iwasawa decomposition Uj; (A) = P(A)K that is implicit in the definition of the
Eisenstein series E (¢, A5)) and B’ = U(h) = V with V the unipotent radical of the parabolic subgroup
of U(h) stabilizing the isotropic subspace vect(xy, . ..,x,). It should be emphasized however that this
identity does not make sense per se, as the Eulerian integral on the right-hand side is not absolutely
convergent in general. More precisely, it has to be ‘interpreted in the sense of L-functions’, which
requires some nontrivial unramified computations of local integrals involving Bessel functions. We
refer the reader to Section 8 and, more specifically, 8.7 and 8.8 for details.

It follows that condition 2 of Theorem 1.3.3.1 holds for 4 € H,, and o if and only if the following
assertion holds:

2’. There exists s € iR such that ¢ — PU;_ (¢, A5) does not vanish identically on Ap (Uj).

It is then straightforward to deduce Theorem 1.3.3.1 from Theorem 1.2.3.1.

1.3.5. Local Bessel periods

From now on, we fix & € H,, and a decomposition of the character = ®, ¢y, ¢, from which we get
a decomposition ¥z, = ®,cv,¥n,.v, Where ¥, , is a character of B, (F, ). Let v be a place of F. The
integral

/ fv(gv)‘//Bh,v(gv)dgv
B (Fy)

is well defined for a smooth and compactly supported function f, on G, (F,) and extends to a continuous
linear form f,, — Pp, 4, (f,) on the space of tempered functions; see subsection 8.4. It depends on the
choice of a Haar measure on By, (F,).
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Let o, be a tempered irreducible representation of G, (F, ) equipped with an invariant inner product
(-,)v. Let ¢, and ¢}, be vectors of o,. The associated matrix coefficient defined by f, .. (g) =
(ov(g)ev, ¢,)y for all g € G, (F,) belongs to this space and we set

PBh,l//v (‘pv, QD(;) = PBh,$v (f(pv,t,ﬁ())'

1.3.6. The Ichino-Ikeda conjecture for Bessel periods

Let o be a tempered automorphic cuspidal subrepresentation o= of G, (A). Tempered means that we
have a decomposition o~ = ®/, cvp v with o, tempered for all v. We also assume that the weak base
change of o to G is a discrete Hermitian parameter I1. As in §1.2.4, we define the ratio of L-functions
L(s,0) and its local counterparts L(s, o) for s € C. Explicitly, we have

n+l

L(s,0v) = l_[ L(s+i-1/2,7)

i=1

L(S, HV)
L(s+1/2,1I,,As")’

where As’ = AsCD" @ AsCD"" and L(s, o) is the product of the local factors in some half-plane. We
use the local factor to define the normalized local Bessel period

-1
) 1
Pgha‘//v(sov’(p‘)) :ﬁ(i’o—v) PBh"ﬁs"(f‘P\/s‘p())'

We assume that the product of local measures on By, (F,) gives the Tamagawa measure on By (A).
On o, we use the Petersson inner product (-, -)pe; normalized by the Tamagawa measure on G, (A).

Theorem 1.3.6.1. Let o and I1 as above. For every nonzero factorizable vector ¢ = ®),¢, € o, we have

h

P 2 1 P (pvsov)

P (@) =|Sn|1E(—,0')| [ B T (1.3.6.1)
(@, @)Ipet 2 v (v, ov)y

Remarks 1.3.6.2.

—_

In the right-hand side, almost all factors are equal to 1; see [Liul6, Theorem 2.2].

2. The statement has been conjectured by Y. Liu in a more general context; see [Liu 16, conjecture 2.5].

3. For m = 0, the group Gy, is the quasi-split unitary group U;,+; of rank 2r + 1. The theorem has been
conjectured by Lapid and Mao, [LM15, conjecture 1.1].

4. The proof we give is along the same lines as for Theorem 1.3.3.1; namely, it is eventually deduce it

from Theorem 1.2.4.1 in a similar fashion.

1.4. On some spectral contributions of the Jacquet-Rallis trace formulas

14.1.

In this subsection, we explain some new ingredients that play a role in the proof of Theorems 1.2.3.1
and 1.2.4.1. As many other contributions on the subject (among them, see [Zhal4b], [Zhal4a], [Xuel9],
[Beu2l], [BP21], [BLZZ21], [BPCZ22]), we follow the strategy of the seminal paper [JR11] of Jacquet
and Rallis. More precisely, besides the local harmonic analysis performed in the mentioned papers, our
work is based on the geometric comparison, fully established in [CZ21], of the relative trace formulas
constructed in [Zyd20] of the unitary groups Uj, for h € H,, and the corresponding group G. However,
to be able to exploit this comparison, we need to obtain more tractable expressions for the spectral
contributions we are interested in.
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14.2.

Let us first explain our result in the unitary case namely for the group U = U}, and its subgroup U’ = U, .
Let X(U) be the set of cuspidal data of U. According to the work of Zydor (see [Zyd20, section 4]),
the contribution of y € X(U) to the relative trace formula for the group U is built upon the absolutely
convergent integral

KT (x,y)dxdy.
/[U’]X[U'] /x

Here, KJTC v is a suitably modified version a la Arthur of the y-part Ky , of the automorphic kernel

Ky (x,y) = 2yeu(r) f(x~'yy) associated to a Schwartz function f on U(A); see (3.2.2.1) below for
the precise definition. It depends on a truncation paramerer 7. It turns out that the integral above is an
exponential-polynomial function in 7 whose purely polynomial part is constant and gives by definition
the y-contribution denoted by JA(,] (f) of the relative trace formula; see Theorem 3.2.3.1 for this slight
extension of Zydor’s work to Schwartz test functions. The problem, however, is to get an expression
for J, (f) that reflects the Langlands spectral decomposition of K¢ , and that is related to the periods
(1.2.2.1) we are interested in. The starting point is the following new independent characterization of
JY(f): the integral

/ (KAL) (x, y) dxdy (1.4.2.1)
[UIx[U"]

is absolutely convergent and is asymptotic to an polynomial exponential in the variable 7 whose purely
polynomial term is constant and equal to J)%’( f); see Corollary 3.3.5.2. Here, K¢ XA£ means that we
have applied the Ichino-Yamana truncation operator AT already mentioned in § 1.2.2 to the right variable
of the kernel K¢ ,. Let us now assume that the cuspidal datum y is (U, U’)-regular in the sense of
§3.5.2. Then the expression (1.4.2.1) does not depend on T and thus is equal to J)((J (f). To state our
result, we fix a representative (Mp, ") where Mp is a Levi factor of a parabolic subgroup P = MpNp
of U and o is a cuspidal automorphic representation of Mp(A). Let Ap o cusp(Un) be the space of
automorphic forms on the quotient AZ Mp (F)Np(A)\U(A) such that for all g € U(A),

me Mp(A) — 5P(m)7%90(m8)

belongs to the o-isotypic component of the space of cuspidal automorphic forms on the quotient
ApMp(F)\Mp(A). Working throughout Langlands spectral decomposition of K¢ ., we get (see The-
orem 3.5.7.1):

TU(f) = / JY (A, ) da, (1.42.2)

P

where the right-hand side is the absolutely convergent integral of the relative character defined by

I o= Y Pullp(d, e, )Pu (e, ).

‘PEBP,U'

Here, the periods Py (-, 1) are those defined in (1.2.2.1), and Ip(4, f) denotes the induced action of
f twisted by A. The sum is over some orthonormal basis Bp , of Ap,(r,cusp(U); see §3.5.5 for the
Petersson inner product.

1.4.3.
Let us turn to the linear case — namely, G = G, X G,+1. In this case, we have to consider two subgroups
—namely, H = G,, diagonally embedded in G and G’ = G,, X G’ _,, where G, = GL(n, F) is naturally

n+l1’
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embedded in G, = GL(n, E). Let y be a cuspidal datum of G and let f be a Schwartz function on
G(A). As before, we denote by Ky , the y-part of the automorphic kernel. According to [BPCZ22,
Theorem 1.2.4.1], the contribution I, (f), as defined by Zydor in [Zyd20], is also the constant term of
the polynomial exponential (in the variable 7)) which is asymptotic to the absolutely convergent integral

/ / ATK, (h. g) no () dgdh
[H] J[G]

Here, 1¢- is the quadratic character defined in §4.1.1 and A’ is a truncation operator (in the parameter
T) introduced by Ichino-Yamana and well-suited for the study of Rankin-Selberg period. Assume that y
is represented by a pair (M, ), where M is the Levi factor of a parabolic subgroup P of G. We assume
also that y is (G, H)-regular and Hermitian in the sense of §4.1.3. Then we have (see Theorem 4.1.8.1)

=2 [ paana

lllM

Here, L is a Levi subgroup of G containing M and determined by n (see §4.1.4). For A € iai[’*, the
relative character Ip (4, f) is given by one of the two expressions

Y, PEURQ e, D) - T(E ¢, D)

9€EBp x

IP,T((JH f)

ZRS(0,W(Ip(4, £)g, 1)) By (W(p, D))
<W(909 /l)» W(‘pv A))Pet

0€EBp,x

The sums are over some orthonormal bases Bp . for the Petersson inner product of the space
Ap .z cusp(G) (defined as above). The first expression is built upon P(E (¢, A)) and J(£, ¢, 2). The for-
mer is the regularized Rankin-Selberg period a la Ichino-Yamana (see [[Y 15]) of the Eisenstein series
associated to the pair (P, ). The latter is the intertwining (Flicker-Rallis) period of Jacquet-Lapid-
Rogawski [JLR99]. The second expression uses Whittaker functionals W (¢, 1) associated to Eisenstein

series and linear forms on the Whittaker models of Indg((i))

(-, -Ypet. The linear forms ZRS and B35, are counterparts of the period and the intertwining period. In
the Rankin-Selberg case, the link is recalled in Proposition 4.2.5.1: it is based on [I'Y15] which gen-
eralizes the classical Rankin-Selberg theory. In the Flicker-Rallis case, the precise relation is given in
Proposition 4.2.7.1, which generalizes the work of Flicker [F1i88]. Besides some reductions based on
[BPCZ22, section 9], the bulk of the proof of proposition is the object of Section 5. Note also that we
prove in Section 5 a result that is of independent interest: we express a basic intertwining period of
Jacquet-Lapid-Rogawski in terms of an integral of a Whittaker functional; see Theorem 5.5.1.1. The
second expression of the relative character is better suited for the proof of Theorem 1.2.4.1. In Section 6,
we give an alternative proof of this spectral expansion of I, (f), for (G, H)-regular y, that is based on
the theory of Zeta integrals.

Finally, let us remark that if y is a (U, U’)-regular cuspidal datum of U attached to a cuspidal
representation of Mp, (A) X U(h @ ho)(A) for some parabolic subgroup P, of U(h), then the modified
kernel K]TC x (x, y) coincides with the usual y-part of the kernel. Then one can directly get the expression
(1.4.2.2) in which the U’-periods are absolutely convergent. This includes, in particular, the Eisenstein
series needed for the deduction of the Gan-Gross-Prasad and Ichino-Ikeda conjectures for general Bessel
periods, as outlined in subsection 1.3.

(7 ® A) equipped with the Petersson product
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1.5. Organization of the paper

1.5.1.

The reader will find the main notations and some prelimary results in Section 2. The Section 3 is
devoted to the study of some spectral contributions of the Jacquet-Rallis trace formula for unitary
groups. The main general result is Theorem 3.2.3.1, which gives a more tractable expression to compute
spectral contributions. The proof of Theorem 3.2.3.1 is the bulk of subsections 3.3 and 3.4. Then in
subsection 3.5, the spectral contribution for some cuspidal data are explicitly given in terms of relative
characters (see Theorem 3.5.7.1). In Section 4, we turn to the Jacquet-Rallis trace formula for general
linear groups. The main result is Theorem 4.1.8.1, which expresses the spectral contribution for some
cuspidal data in terms of relative characters. In subsection 4.2, we show that these relative characters
can expressed in terms of Whittaker functionals; see Theorem 4.2.8.1. The main result of Section 5
is Theorem 5.5.1.1, which relates some basic intertwining period of Jacquet-Lapid-Rogawski to some
integral of a Whittaker functional: it is used in the proof of Theorem 4.2.8.1, but it is also of independent
interest. Its proof occupies the whole part of Section 5. As explained above, we provide in Section 6
an alternative proof for the description of the spectral contributions to the Jacquet-Rallis trace formula
for general linear groups that can be obtained by combining Theorem 4.1.8.1 with Theorem 4.2.8.1.
In Section 7, we explain the proof of Theorems 1.2.3.1 and 1.2.4.1 based on the comparison of the
Jacquet-Rallis trace formulas and the results obtained before. The aim of the final Section 8 is to
establish the reduction of Theorems 1.3.3.1 and 1.3.6.1 to special cases of Theorems 1.2.3.1 and 1.2.4.1,
respectively. Its most technical part is in subsection 8.7, where necessary unramified computation is
performed. Finally, Appendix A presents a probably well-known extension of Weyl’s character formula
to non-connected groups that is necessary for the unramified computation.

2. Preliminaries
2.1. Algebraic and adelic groups

2.1.1.
We shall try to follow the usual notations of Arthur and the main notations of the previous article
[BPCZ22]. For the reader’s convenience, we briefly recall our choices.

2.1.2.

We denote by F' a number field, Vp (resp. VF «) the set of its places (resp. Archimedean places) and
A its ring of adeles. For v € Vg, let F, be its completion at v. For any finite subset S C Vg, we set
Fs = ®,csF, and Fo, = Fy,. . We denote by | - | the morphism A* — R} given by the product of
normalized absolute values | - |, on each F,,.

2.1.3.

Let G be a reductive group defined over F. All the subgroups of G we consider are assumed to be defined
over F. We fix Py C G a minimal parabolic subgroup and My a Levi factor of Py. A parabolic subgroup
of G which contains Py, resp. My, is said to be standard, resp. semi-standard. Let P be a semi-standard
parabolic subgroup of G. It has a Levi decomposition P = MpNp such that Mp is a semi-standard
Levi factor (that is, My € Mp) and Np is the unipotent radical of P. Such a group Mp is called a
semi-standard Levi subgroup of G. It is said to be standard if, moreover, P is standard. Let X*(P) be the
group of rational characters of P defined over F. Attached to P are real vector spaces aj, = X*(P) ®z R
and ap = Homz(X*(P),R) in canonical duality:

() rapxap = R (2.1.3.1)
If P c Q c G, we have natural maps a*Q - al*, and ap — ag. The kernel of the second one is denoted

by ag. We have natural decomposition ap = ag ® ap and dually a}, = ag’* @ a*Q. We put a subscript
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C to denote the extension of scalars to C. Then one has a decomposition

a2 = Q*
PC

EBlaQ *,

where i> = —1. We shall denote by R and J the associated projections. The complex conjugate is then

defined by 1 = R (1) — iJ (). Note that the spaces ag, ag’* depend only on the Levi factors Mg and
Mg ,x*
Mp

Let Ade, be the adjoint action of Mp on the Lie algebra of Mo N Np. Let pg be the unique element

M
M p and thus are also denoted by a Mf, a etc.

of ag’* such that for every m € Mp(A), we have
| det(AdY (m))| = exp((2p'. Hp (m))).
For every g € G(A), we set
59(3) =exp((2p%. Hp(3))).

If the context is clear, we set pp = pg and 6p = 5?. Usually, we replace the subscript Py simply by 0
(for example, ag = ap,, po = Pp,, etc.).

2.14.
Let P be a standard parabolic subgroups of G. Let Ap = Ay, be the maximal central F-split torus
of Mp. Let A(I)D be the set of simple roots of Ag in Mp N Py. Let Ag be the image of AOQ \ Ag by
ALY c o2

P P

the projection a; — a},. It is a basis of ag’* whose dual basis is the subset of coweights

0
We have also the set of coroots AQ ¥ which is a basis of ag. We have the dual basis given by the set
of simple weights AQ ca? P *. The sets AQ and AQ determine open cones in ap whose characteristic

functions are denoted respectively by TP and T TP . We set
a0t = {/z eah | (La')>0, Vo' e A%V} .
We define similarly a][Q,Jr using roots instead of coroots. If Q = G, the exponent G is omitted.

2.1.5.

Let W be the Weyl group of (G, Ag) — namely, the quotient of the normalizer of Ay in G(F) by Mj.
For P = MpNp and Q = MgNg two standard parabolic subgroups of G, we denote by W(P, Q) or
W(Mp, M) the set of w € W such that wAéD = AOQ. For w € W(P,Q), we have wMpw™' = M.
When P = Q, the group W (P, P) is simply denoted by W(P) or W(Mp). We will also write WM* for
the Weyl group of (Mp, Ap).

2.1.6.
Let K = [], ey, K» € G(A) be a ‘good’ maximal compact subgroup in good position relative to Mo
(called ‘admissible’ in [Art81, p. 9]). We write

K = K.K®,

where Koo =[], ey, Kv and K% =[], cv,\v, ., Kv. We have a homomorphism Hp : P(A) — ap
such that (y, Hp(p)) = log |x(p)| for any p € P(A) and y € X*(P). By Iwasawa decomposition
G(A) = P(A)K, it extends to a map Hp : G(A) — ap which is left-invariant by Mp(F)Np(A) and
right-invariant by K. We denote A7 = A‘;’,P the neutral component of the group of real points of the
maximal Q-split torus of the Weil restriction Resg;q(Ap). Then the restriction of Hp to A% is an
isomorphism.
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We set [G]lp = Mp(F)Np(A)\G(A) and [Glp,o = AZMp(F)Np(A)\G(A). Let [G]}, be the
subset of [G]p where the map Hp vanishes. If P = G, we shall omit the subscript P.

2.1.7.
We fix a height || - || on G(A) as in [BPCZ22, section 2.4]. Let P C G be a standard parabolic subgroup.
We set forx € [G]p

x||p = inf x||.
el = nf s

2.1.8. Haar measures

Let us explain briefly our choice and notations of measures; see [BPCZ22, section 2.3] for more details.
We fix a nontrivial continuous additive character ' : A/F — C*. For each place v € Vg, the local
component i, of " determines an autodual Haar measure on F, . The choice of an invariant rational
volume form on G then determines a Haar measure dg, on G (F, ). We have an Artin-Tate L-function
LG (s) = [lyev, La,v(s);see[Gro97] and more generally LSG (s) = [lvevy\s La.v(s) for S C V finite.
Then Aé’* (simply Ay, if § is empty) is defined to be the leading coefficient in the Laurent expansion
of Lg(s) at s = 0. We also set Ag,, = Lg,,(0). The Tamagawa measure dg on G(A) is defined by
dg = dgs x dg>, where dgs = [], <5 dg, and dg> = (Aé’*)_l [T,¢s Ag,vdgy for S C Vr finite.

We equip ap with the Haar measure that gives a covolume 1 to the lattice Hom(X*(P),Z) and ia},
with the dual Haar measure. The group A is equipped with the Haar measure compatible with the
isomorphism AF =~ ap induced by the map Hp. The groups ag ~ ap/ag and iag’* ~ iap /iag; are
provided with the quotient Haar measures.

The homogeneous space [G] (resp. [G]' = [G]o) is equipped with the quotient of the Tamagawa
measure on G (A) by the counting measure on G (F) (resp. by the product of the counting measure on
G (F) with the Haar measure we fixed on Ag). For P a standard parabolic subgroup, we equip similarly
[G]p with the quotient of the Tamagawa measure on G (A) by the product of the counting measure
on Mp(F) with the Tamagawa measure on Np(A). Since the action by left translation of a € A% on
[G]p multiplies the measure by 6p(a)~!, taking the quotient by the Haar measure on AY induces a
‘semi-invariant’ measure on [G]p o = AZ\[G]p.

2.2. Space of functions

2.2.1.

For two positive functions f and g on a set X, we write f(x) < g(x), x € X if there exists a constant
C > 0 such that f(x) < Cg(x) for every x € X. We write f(x) ~ g(x), x € X if f(x) < g(x) and
g(x) < f(x).

2.2.2.
For every C € RU {—oo} with D > C, we set H-c = {z € C| R(z) > C}.

2.2.3. Schwartz spaces
As before, G is a reductive group defined over F. We let g., be the Lie algebra of G(F) and U (g) be
the enveloping algebra of its complexification and Z(g.) C U(go) be its center.

We shall briefly review several useful locally convex topological spaces of functions; see [BPCZ22,
section 2.5] for more details. Let S(G(A)) be the Schwartz space of G(A): it contains the dense
subspace C.”(G(A)) of smooth and compactly supported functions. Let P C G be a standard parabolic
subgroup. Let S°([G]p) be the space of measurable functions ¢ : [G]p — C such that

l@llo,ny = sup [lxllp l@(x)] < eo (2.23.1)

x€[Glp
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for every N > 0. Let S([G]p) be the Schwartz space of [G]p that is the space of smooth functions
¢ : [G]p — C such that for every N > 0 and X € U(go), we have

lpllv,x = sup [IxlIp [(R(X)¢) (x)] < co.

x€[G]p

The space of functions of uniform moderate growth on [G]p is defined as

T(Glp) = | ) Tw([G1p),

N>0

where Ty ([G]p) is the space of smooth functions ¢ : [G]p — C such that for every X € U(go), We
have

lell-nx = sup [lxllpN [(R(X) @) (x)] < co. (22.3.2)

xe[Glp

All these spaces are equipped with locally convex topologies. The space S°([G]p) is equipped with
the family of semi-norms |||« n'; it is a Fréchet space. The spaces S(G(A)), S([Glp), Tn ([G]p) and
T ([G]p) are LF-spaces: we refer the reader to [BPCZ22, section 2.5] for a precise description of the

topology.

2.2.4. Automorphic forms

Here, we refer the reader to [BPCZ22, section 2.7] for more details. The space Ap(G) of automorphic
forms on [G]p is the subspace of Z(g.)-finite functions in 7 ([G]p). Let Ap cusp(G) € Ap(G) be
the subspace of cuspidal automorphic forms: these are the functions ¢ € Ap(G) such that ¢ = 0 for
every proper parabolic subgroup Q ¢ P. The constant term ¢ is defined by

pox) = /[ . el
(o)

for all x € G(A). A cuspidal automorphic representation 7 of Mp(A) is a topologically irreducible
subrepresentation of Acys,(Mp). For every A € a; o> We define my = m ® A as the space of functions of
the form

m € [Mp] — exp({1, Hp(m)))¢(m)

for ¢ € m.
We denote by A cusp(Mp) the m-isotypic component of Acysp (Mp). The normalized smooth induc-
tion Indg((i)) (Ax,cusp(Mp)) is denoted by Ap r cusp(G) and is identified with the space of automorphic

forms ¢ € Ap(G) such that

m € [Mp] — exp(—(pp, Hp(m)))p(mg)

belongs to Ay cusp(Mp) for every g € G(A). The algebra S(G(A)) acts on Ap x cusp(G) by right
convolution. For every 4 € a;’c, we denote by I(2) the action on Ap r cusp(G) We get by transport
from the action of S(G(A)) on Ap x, cusp and the identification Ap r cusp — AP, xy,cusp given by
@ > exp({4, Hp(.)))¢. Assume that the central character of r is unitary. Then we equip Ap, x cusp(G)
with the Petersson inner product given by

ol = (. @hrec = / lo(g) .
[Glpo

*

Note that for every cuspidal automorphic representation 7 of Mp(A), there exists a unique 4 € a}, -
such that the central character of 7 is trivial on A . Unless otherwise stated, the cuspidal automorphic
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representations we consider are always normalized in the sense that they are assumed to have a central
character which is trivial on Ay, .

Let K be the set of isomorphism classes of irreducible unitary representations of K. A K-basis Bp.x
of Ap,x,cusp(G) is by definition the union over of 7 € K of orthonormal bases B p,x.7 for the Petersson
inner product of the finite dimensional subspaces Ap_x cusp(G, T) of functions in Ap_r cusp(G) which
transform under K according to 7.

For any ¢ € Ap cusp(G), g € G(A) and A € a’I’;,C and any parabolic subgroup Q > P, we introduce
the Eisenstein series

E9g o) = > exp((d, Hp(62))p(6g). 224.1)
SeP(F)\Q(F)

The right-hand side is convergent for R (1) in a suitable cone, and for more general A, the left-hand
side is given by meromorphic continuation. Let P and Q be standard parabolic subgroups of G. For any

weW(P,Q)and A € a; o> We have the intertwining operator

M(w,) : Ap(G) — .AQ(G).

For more details and continuity properties of these constructions, we refer the reader to [BPCZ22,
§§2.7.3,2.7.4].

2.2.5. Cuspidal datum

Let P C G be a standard parabolic subgroup of G. Let L?>([G]p) be the space of square integrable
functions on [G]p. Let X(G) be the set of cuspidal data of G. Recall that X(G) is the quotient of the
set of pairs (Mp, 7) such that

e P is a standard parabolic subgroup of G;
e 7 is the isomorphism class of a cuspidal automorphic representation of Mp (A) with central character
trivial on A

by the following equivalence relation: (Mp,m) ~ (Mg, 7) if there exists w € W(P,Q) such that
waw™! ~ 7. Then for any standard parabolic subgroup P of G, we have the Langlands decomposition
(see [BPCZ22, section 2.9] for more details):

LX([Glp)= P LA(Glp).

X€X(G)
The Schwartz algebra acts on L?([G]p) and for each y € ¥(G) on L)Z(([G] p) by right convolution.

For each f € S(G(A)), we get integral operators whose kernels are denoted respectively by K¢ p and
Ky p,,. We shall use also the decomposition

LX([Glpo) = € L2([Glpo).

X<X(G)

2.3. Around Arthur’s partition

2.3.1.
Let 71, T € ap and P be a standard parabolic subgroup of G. We define

ARS(T) = {a € A7 | (@, Ho(a)) > (@, Th), Ya € Af'}
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and
ALS(TLT) = {a € ALV (1) | (@, Ho(a)) < (@.T), Ve € A},

2.3.2. Siegel domains
LetT_ € a((); and wy C Py(A)! be a compact subset such that Py(A)! = Py(F)wy. Let P be a standard
parabolic subgroup of G. We define

sp(wo, T, K) = woAII;(;m(T,)K.

There exists 7. € —aS such that for all standard parabolic subgroup of G, we have G(A) =

P(F)sp(wo,T-, K).We will fix T_ and wg and we set sp = sp(wq, T, K): this is a Siegel domain of [G]p.
Note that for any standard parabolic subgroup P of G, we have ||x|| ~ ||x||p forx € sp; see [BPCZ22,
(2.4.1.3)].

2.3.3.
For any standard parabolic subgroup P of Gand T € aj, we consider the characteristic function F P, 1)

P g; ** such that for all

of a)()AO
TeTy+ ag; " and all standard parabolic subgroup Q of G, we have the following formula which gives
a partition of [G]g (see [Art78, Lemma 6.4] and also [LLW 13, Proposition 3.6.3]):

(T, T)K C sp. This function descends on [G]p. There is a point Ty € a

Z FP(6¢,T)t2(Hp(6g) - T) = 1. (2.3.3.1)
PyCPCQ S5eP(F)\Q(F)

Note that the relation implies a simpler definition of F¥ (-, T) for T € Ty + aOG *: the function F¥(-,T)
is the characteristic function of the following set:

{g € [G]p |Yw € AL, 6 € P(F) (w, Hy(6g) = T) < 0}. (2.3.3.2)
Indeed, this is a straightforward consequence of [Art85, Lemma 2.1] and the definition of the operator

AT there.
We shall use several times the following simple lemma.

Lemma 2.3.3.1. Let P C Q be parabolic subgroup of G. Let g € G(A) be such that
FP(g,T)tS(Hp(g) - T) = 1. Then we have

Va € A\ AL, (@, Ho(g)) > (a.T).

In particular, if g € sp, then g € s¢.

Proof. Leta € AOQ \ AP. We write @ = ap +a" according to the decomposition a; = a}, ®a, " Since
we have (af, 8V) = (@, 8") < Oforall B € AP, we know that o is a non-positive linear combination
of elements of A(’; . Thus, the condition F”(g,T) = 1 implies that

(", Ho(g)) > (a",T).

The condition Tlg(Hp(g) —T) = 1 implies that we have {ap, Hy(g)) > {(ap,T). We conclude that
(a,Hy(g)) > {(a,T) forall @ € AOQ \ A(’;. The last assertion is then obvious since T is positive. O
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2.34.
Let ¢ : ag — C be a function and let T € Ty + aOG "*. For any standard parabolic subgroup Q of G, we
define for all g € [G]p,

do(¢.2.T)= >, >, FP(6g.T)7E (Hp(6g) — T) exp(¢(Hp(62))).
PyCPCQ 6eP(F)\Q(F)

We will mainly use dg(4, g,T) for A € aj. The next proposition shows that the function dg (4, -, T) is
an example of a function that satisfies [Fra98, Proposition 2.1] (such a kind of function is also used in
[BPCZ22, §2.4.3]).

Proposition 2.3.4.1. Let A € a;j and Q C G a parabolic subgroup.

1. Let T c Ty + aOG * be a compact subset. We have

exp({4, Ho(g))) ~ do(4.8.T)

forallg € sg and T € T. In particular, all functions dp(A,T) are equivalent for T € T.
2. Let K be a compact subset of G(A) and let T € Ty + a()G’+. We have

do(A,8,T) ~do(4,gc,T)
forall g € [G]g, c € K.

Proof. 1. If we write 1 = 1p + A< according to the decomposition a; = a*Q + aOQ’*, we see that
do(A,8,T) =exp({1gp,Hp(g)))do (12,¢,T) forall T € Ty + ag and all g € [G]p. Since we also have
exp({1, Hy(g))) = exp({do, Hp(8))) exp({12, Hy(g))), we may and shall assume that A € aOQ’*. Let
g €5pand T € T. There exists P C Q such that F? (g, T)Tg(Hp(g) —T) = 1. Then, by definition, we
get dp(A,8,T) = exp({1, Hp(g))). It suffices to prove that Hy(g) — Hp(g) stays in a compact subset
which depends only on 7 for any g € sp such that F¥(g,T) = 1. In fact, the latter condition implies
(w,Hy(g)) < (@, T) forall w € AP, and g € sp implies that (a, Hy(g)) > (a,T_) for all a € A(I;.
Hence, the projection of Hy(g) on a(l)) stays in a fixed compact subset, but this projection is nothing else

but Hy(g) — Hp(g).
2. First, we observe that Hy(kc) stays in a fixed compact for k € K and ¢ € K. By assertion 1, we

may replace T by any element in Ty + aOG **. In particular, we may and shall assume that 7 is such that
T — Hy(kc) e Ty + aOG’+ for all k € K and ¢ € K. For any g € G(A), we shall denote k(g) an element
of K such that gk(g)™" € Py(A).

Let g € G(A) and ¢ € K. Then there exist a unique parabolic sugroup P ¢ Q and § € Q(F) such
that FP (gc, T)Tlg(Hp((Sgc) —T) = 1. Observe that Hy(dgc) = Ho(6g) + Hy(k(5g)c). We deduce on
the one hand that Tg(Hp((Sg) — (T — Hy(k(6g)c)) = 1 is equivalent to ‘rg (Hp(6gc) —T) =1, and on
the other hand, we also have F” (6g, T — Hy(k(8g)c)) = 1; indeed, for all w € A", we have

(@, Ho(68)) = (w, Ho(6g¢)) — (@, Hy(k(68)c))
<(@.,T - Hy(k(6g)c))

since FP(8gc,T) = 1. From this, we get
8 g

do(4,8.T — Ho(k(68)c)) = exp({1, Hp(6g))) = do (A, 8¢, T) exp(—(4, Ho(k(68)c))).

Using assertion 1 and the fact that Hy(k(8g)c) stays in a fixed compact set, we can easily conclude. O
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Lemma 2.3.4.2. Let Q C R be standard parabolic subgroups of G. There exists Ty € Ty + aé; * such
that forall T € T\ + ag’+, all A € ajand all g € G(A) such that FQ9(g, T)TS(HQ (g)-T) =1, we have

do(4,8,Ty) = dr(4,g,T).

Proof. Both the hypothesis and the conclusion are invariant under left translation by Q (F). It suffices to
prove the result for g € so such that F@(g, T)‘rg (Hp(g) — T) = 1. First, there exists a unique standard

parabolic subgroup P C Q such that F¥ (g, To)‘rg (Hp(g) —Tp) = 1. In the proof of Proposition 2.3.4.1,
we have shown that Hy(g) — Hp(g) stays in a fixed compact subset for g € so such that F¥' (g, Tp) = 1.
In particular, we can assume that for such elements g, we have

(@,Th) > {ap,To) + (@, Ho(g) — Hp(g)). (2.3.4.1)
By Lemma 2.3.3.1, we have (@, Hy(g)) > {(a,T) foralla € A(’f\Ag. So we have forall @ € A(’f\AQ,

(a@p, Ho(g)) = (a, Hp(g)) = {(a, Ho(g)) + (@, Hp(g) — Ho(g))
> (a,T) +{a,Hp(g) — Ho(g))
> (@, T1) +(a, Hp(g) — Ho(g))
> (ap,To)

by (2.3.4.1). In particular, we see that we have T;f (Ho(g) —Tp) = 1. Thus, by definition, dr (4, g, To) =
exp({4, Hp(g))) = do(4, 8, To). |

Proposition 2.3.4.3. Let QO C R be standard parabolic subgroups of G such that AOR \ Ag = {a} for
some simple root «. Let ¢ such that ¢ > {«, Ty p) for all parabolic subgroups P C Q.
For any g € G(A), there is at most one element 5 € Q(F)\R(F) such that dg(a, 6g,To) > exp(c).

Proof. Letg € G(A)suchthatdg(a, g, To) > exp(c). Using left translations by Q (F), we may and shall
assume that there exists a standard parabolic subgroup P C Q such that F¥ (g, To)Tg (Hp(g)—Tp) = 1.
Then the condition dgp (e, g,To) > exp(c) is equivalent to (@, Hp(g)) > ¢, and so {(a, Hp(g)) >
(@, To,p). So we have also F¥ (g, To) TR (Hp(g) —Tp) = 1. Now the uniqueness follows from the partition
(2.3.3.1) applies to [G]r. O

3. On the spectral expansion of the Jacquet-Rallis trace formula for unitary groups
3.1. Notations

3.1.1.

Let E/F be a quadratic extension of number fields and ¢ be the nontrivial element of the Galois group
Gal(E/F). Let A be the ring of adeles of F. Let n > 0 be an integer. Let ,, be the set of isomorphism
classes of pairs (V, h), where V is a E-vector space of dimension n and & a nondegenerate c-Hermitian
formon V. Forany (V, h) € H,,, we identify (V, h) with a representative, and we shall denote by U(V, h)
or simply U (h) its automorphisms group. We will fix (Vy, hg) € H;.

3.1.2.
We attach to any & € ‘H, the following algebraic groups over F:

e the unitary group U; = U(h) of automorphisms of /;
o the unitary group U," = U(h & hg) where h & ho denoted the orthogonal sum;
o the product of unitary groups U, = U; X U,/.
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We have an embedding

U, — U g (ﬁ (1)) (3.1.2.1)

and a diagonal embedding U; < Uj,.

3.1.3.
Letn > 1 be an integer and (V, h) € H,,. We fix a parabolic subgroup P of U; and a Levi factor M of
P(, both defined over F' and minimal for these properties. As a parabolic subgroup, P is the stabilizer
of a flag of totally isotropic subspaces of V. Let P be the parabolic subgroup of U,’ stabilizing the
same flag. Let M be the unique Levi factor of P that contains M. Then Py = P X P{/ is a parabolic
subgroup of U, with Levi factor My = Mj X M[’. We fix also a pair (B{/, T’) consisting of a minimal
parabolic F-subgroup of U}’ and a Levi factor defined over F. We may and shall assume B{ c P and
Ty ¢ M. We fix maximal good compact subgroups K; C U, (A) and K;' C U}'(A), respectively,
in good position relative to M{ and T’ in the sense of §2.1.6. We set K, = K, X K;" C Up(A). Any
g € Up = U, x U}/ will be written (g’, g’") without any further comment.

From now on, (V, h) is fixed, and we shall omit it in the notations; thus, we have U = U, U’ = U ,’1
and so on.

3.14.

Let 7 be the set of parabolic subgroups of U’ that contain P). For any P’ € F, let P”’ be the parabolic
subgroup of U’ which stabilizes the flag of totally isotropic subspaces of V that defines P’. Note that
P NU’ = P’. We get a one-to-one map

P s P=P xP" (3.1.4.1)

from J onto a subset, denoted by F of parabolic subgroups of U. For any standard parabolic subgroup
P’ of U’, resp. P of U”, resp. P of U, we will denote by A", resp. A", resp. AT, the set of simple
roots of AM(;, resp. ATO~, resp. AM(;XTO” in P(’) N Mp-, resp. Bé’ N Mpr, resp. (P(’) X B(’)’) N Mp. We
set ay = apy = ap;. The inclusion Py C P gives an identification apy = ap; = aj. Using the map
a*B(,), — a’l‘,(,], = a’l‘,(,) dual to the inclusion Apy C Az, we see that any A € az,(,), defined a linear map
a;, — R still denoted by A. Let P’ € Fj and P”” C U"” be the associated parabolic subgroup. Observe
that if A is a simple root & € Ag "\ AP”, the linear map a; — R we getis equal, up to a positive constant,
to a unique root @ € AY" \ AL

Following §2.3.2, we have the notion of Siegel domains. They depend on auxiliary choices w, T’
for U” and w()', T”" for U". The Siegel domains for U = U’ X U" will be the product of Siegel domains
for U" and U”’. We may and shall assume that 77 and 7"’ are chosen so that

P’ 00 /7 P” 00 rrrr
Ap (T € AR (1), (3.1.4.2)

We fix a height || - || on U(A); see §2.1.7. By (diagonal) restriction, this gives a height on U’(A).
Note that for P and P’ as above, we have ||x||pr ~ ||x||p for x € U’(A), as it follows from [Beu2l,

proposition A.1.1 (ix)].

3.1.5.
We fix a point Ty € a(’) as in §2.3.3, and we set

dp(4) = dp/(4,Tp)
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for any P’ € F and A € a;. The precise choice of T is irrelevant in the sequel, and we will not use this
notation anymore. We proceed in the same way to define dp~(1).

Proposition 3.1.5.1.

1. Let A € a;},,. We have
0

dpr(A,x) ~dp(A,x) x € [U]p. (3.1.5.1)
2. Fora e Agﬂ \ APN, there exists r > 0 such that
dpr(@,x) ~dp(a,x)" x € [U]p,

where a € Ag, \ Ag’ " is deduced from & as above.

Proof. 1. Both sides of (3.1.5.1) are invariant by left P’(F)-translation. Thus, it suffices to prove the
equivalence on spr = a)(')A;;’m (T)K'. Note that if a € Alf;{;’m(T_’), then a™'w(a is included in a fixed
compact subset K c U’(A) that does not depend on a. Thus, by Proposition 2.3.4.1 assertion 2, we
have dp»(xak) ~ dp~(a) for x € w), a € Ag]’w(T_’) and k € K’. By the inclusion (3.1.4.2) and
Proposition 2.3.4.1 assertion 1, we have dp~(a) ~ exp({4, Hpy (a))) fora € A;:)’”(T_’). Then we have
Hpy(a) = Hp; (a) = Hp (xak) and exp({4, HB(')/(a))) ~ dp/ (A, xak) by Proposition 2.3.4.1 assertion 1
applied to P’. 2. is a consequence of 1 and the fact that the restriction of @ to aj is ra forsome r > 0. O

3.1.6. Sufficiently positive T’
We will fix an euclidean norm ||.|| on a, invariant by the Weyl group. For T € ag, let

d(T) = inf (a.T).

ach;

We will fix C > O0and & > 0, respectively, large and small enough constants. We shall throughout assume
that T is ‘sufficiently positive’; that is, we assume T satisfies the inequality d(7) > max(&||T||,C). In
particular, we shall assume that Lemma 2.3.4.2 holds for any sufficiently positive 7" and our functions
dp/ (/1) and dPN (/l)

3.2. Truncated kernel

3.2.1.
Let f € S(U(A)). For any cuspidal datum y € X(U) and any standard parabolic subgroup P of U, we
getkernels K¢ p,resp. K¢ p ,; see §2.2.5. If P = U, we shall omit the subscript U.

3.2.2.
Forany T € a/, x,y € U’'(A) and y € X(U), we set

Kf (y)= D e ) Dot (Hp(8Y) - T)Ks p o (yx,6y),  (322.1)
P'eF; yeP (F)\U'(F) §eP"(F)\U'(F)

where we set
ep = (=1)dim@r) (3.2.2.2)

and K¢ _p , is the kernel attached to the parabolic subgroup P of U image of P’ by (3.1.4.1). Recall that

N AU’
we set Tpr = Tp -
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Remark 3.2.2.1. This is the kernel used in [Zyd20] for compactly supported functions. Since we consider
more general test functions, we need a comment here. Let P and P’ be as above. First, the sum over
6 € P/(F)\U’'(F) may be taken in a finite set which depends on y (see [Art78] Lemma 5.1). Second, by
[BPCZ22, Lemma 2.10.1.1], there exists Ng > 0 such that for any N > 0 and any continuous semi-norm
[| - llnv: on Ty ([U]p) with N’ = N + Ny, there exists a continuous semi-norm || - ||s on S(U(A)) such
that we have

Z IK s Py ()l < NI f sl (3.2.2.3)
XE€X(U)

for all x € [U]p and f € S(U(A)). It follows that the sum over y € P'(F)\U’(F) is absolutely
convergent.

3.2.3.
The next theorem is an extension to Schwartz test functions of the work of Zydor in [Zyd20, section 4].
The proof will be given in subsection 3.4 below.

Theorem 3.2.3.1. Let T € aj be sufficiently positive.
1. We have

/ |K]TCX(x, y)| dxdy < .
YEX(U) [U’]x[U’] ’

2. Let y € X(U). As a function of T, the integral

JUT(f) = / KL (x,y)dxdy (3.2.3.1)
. w7
coincides with an exponential-polynomial function in T whose purely polynomial part is constant
and denoted by J)l(] ().
3. Forany y € X(U), the distribution JAI,J is continuous, left and right U’ (A)-invariant.
4. The sum
JU(f) = Z JV(f) (3.2.3.2)
XeX(U)

is absolutely convergent and defines a continuous distribution JY .

3.3. Truncation operator and distributions Jg

3.3.1.

The goal of this section is to state Theorem 3.3.5.1, which gives the asymptotics of the distributions
J)l(]’T (f) defined in Theorem 3.2.3.1 when the parameter goes to infinity. The theorem will be useful
for subsequent computations in Section 3.5.

3.3.2. The Ichino-Yamana truncation operator

LetT € a/ sufficiently positive. In [I'Y 19], Ichino-Yamana defined a truncation operator which transforms
functions of uniform moderate growth on [U”'] into rapidly decreasing functions on [U’]; see [IY 19,
lemma 2.2]. By applying it to the right component of [U] = [U’] x [U”'], we get a truncation operator
which we denote by AL It associates to any function ¢ on [U] the function on [U’] defined by the
following formula: for any x € [U’],

ML) x) = > er D te(Hp(6x) = Tgyrxpr(6%), (3.3.2.1)
P'eF; SeP'(F)\U'(F)
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where we follow notations involved in (3.2.2.1) and in §3.1.4. Moreover, ¢y« p~ is the constant term of
¢ along the parabolic subgroup U’ X P” of U, where P’ x P’ is the image of P’ by (3.1.4.1). We shall
recall and precise the main properties of AL .

Remark 3.3.2.1. To avoid confusions, we emphasize that in (3.3.2.1), the map ¢y xp~ is evaluated at
ox € U’(A) where U’ is viewed as a diagonal subgroup of U.

3.3.3. Properties of AL

Proposition 3.3.3.1.

1. The map ¢ — AL ¢ induces a linear continuous map from T ([U]) to S°([U"]).
2. For every N1, Ny > 0 and r > O, there exists a continuous semi-norm ||.|| on Ty, ([U]) such that

(AL ) () = FV (x, D) (x)| < e ]|

forallx € [U’], ¢ € Ty, ([U]) and T € af sufficiently positive.

Proof. The assertion 1 can be easily extracted from [[Y 19, (proof of) lemma 2.2]. For the convenience
of the reader, we give some details. First, it suffices to show that for any N > 0, there exists a continuous
semi-norm ||.|| on 7 ([U]) such that for all ¢ € T ([U]), we have

AL @llo,n < Nl

We recall that ||/ ||,y = SUPycu/ ||x||g,|t,b(x)| for any function ¢ on [U’]. We can write for x € [U’],

M= > > FhExT)o] (Hy(6x) - T)er,2(6%), (3.3.3.1)
P|CP} 6€P|(F)\U'(F)

where Hy = Hp; and 0'12 = 5,2 is the eponymous function with values in {0, 1} introduced by Arthur
1
in [Art78, section 6] for the group U’ and

o12 = Z P QUIXP” (33.32)
P{cP'CP]

with ¢y «p~ as above. Note that if Pi = Pé, then 0'12 = 0 unless Pi = Pé = U’. In this case, the
corresponding term is FU' (x, T)¢(x) for which the result is obvious. The other cases are deduced from
the next lemma, which also gives assertion 2. O

Lemma 3.3.3.2. Assume P| C P}. Forevery N1, Ny > Qandr > 0, there exists a continuous semi-norm
Il on Tw, ([U]) such that

FPi(6x,T)or} (Hpy (6x) = T)l1.2(5x)| < e 1Tl 1
SeP|(F)\U'(F)

forallx € [U’'], ¢ € Ty, ([U]) and T € af sufficiently positive.

3.3.4. Proof of Lemma 3.3.3.2
Let g be an element in U (A) which we write g = (g’,g”") withg’ € U’(A) and g”” € U”(A).Let N > 0.
By [MW94, preuves du lemme 1.2.10 et du corollaire 1.2.11], for any A which is a linear combination of

P P . ... . . . .
elements of A,* \ A" with positive coefficients, there exists a continuous semi-norm || - || on 7 ([U])
such that

lo12(8)] < exp(=(a, Hay ("M gl™ el (3.34.1)
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for all g € U(A) such that g’ € U’(A), g"’ € spy and all ¢ € Tn ([U]). We want to apply this
majorization to an element g = (x, x) where x € U’(A) satisfies F*1 (x, T)o-lz(H p (x) =T) = 1. Since
this condition and the map x € U’(A) = ¢12(x,x) are P|(F)-left invariant, we may assume that

x € spr. By [Art78, lemma 6.1], x also satisfies FFi (y, T)TP? (Hp; (y)-=T) =1,s0by Lemma 2.3.3.1,

we have x € sp;. We can deduce from the proof of Proposition 3.1.5.1 and the majorization (3.3.4.1) that
there exists a fixed compact subset K C U’(A) such that sp; C s pﬁrlC and that there exists a continuous
semi-norm || - || on Ty ([U]) such that

|1,2(0)] < exp(=(A, Hpy () Ixll Y llell (3.3.4.2)

for all x € sp; and ¢ € Twn ([U]). Here, we wrote x instead of (x,x) in the left-hand side. Since the
.. Py Py .o ..
restriction to ap; of elements of A | 2 \A, ! are (up to some positive constants) the restriction of elements

of A;) 2 \ A 5 i , we can conclude by the next Lemma 3.3.4.1 and the fact that, for all N > 0, there exists
¢, N’ > 0 such that for all x € [U’],

—-N’ -N
D lexlpN < ellxligY

5P| (F)\U'(F)
Lemma 3.3.4.1. For every N > 0 and r > 0, there exists t > 0 and C > 0 such that for any

A= Z X With xy > 1, (3.3.4.3)

ra
aeAOZ\AO !
we have
FPi(x, T)o2 (Hpy (x) = T) exp(=(4, Hpy (x))) < Ce™ x| 2N
1
forall x € sp and T € a sufficiently positive.

Proof. Any H| € a p; can be written H; = H ]2 + H; according to the decomposition ap; = aif ®ap;.
1
By [Art80, Corollary 6.2], there is ¢y > 0 such that

IH1] < er(1+[|H7 ) (33.4.4)
forall H; € ap such that 0'12(H1) # 1. There exist ¢;, ¢3, ¢4 > 0 such that for all x € Sp;, we have
llxllp; < callx]l < c3exp(eallHo ()],
where we set Hy = H P We assume from now on that we have
FPi(x,T)o2 (Ho(x) - T) # 0. (3.3.4.5)

In particular, we have x € sp; as we have already seen it in §3.3.4 —discussion below (3.3.4.1). According

to (3.3.4.4), the norm of Hy(x) is bounded in terms of the norm of the projection of Hy(x) on al P,,
up to some positive constant, it is bounded by

1+ Z [, Ho(x)))-

aeA 2
Py
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Since we assume FPi(x,T) = 1 and x € s p;» the norm of the projection of Hy (x) on af,)} is bounded
P ’
Py’
0'12(H0 (x) = T) # 0; see [Art78, lemma 6.1]. Hence, we deduce that there exist c¢s, cg such that for all
X €spr that satisfy (3.3.4.5), we have

by some multiple of ||T||. For all @ € Aié \ A}, we have {a, Hy(x)) > {(a,T) > 0 since we assume
0

llxllp; < eallxll < esexp(es (T + Z (@, Ho(x)))).

. pr
2 1
a€eA pr \A P
o "o

The lemma is then obvious since for such x, and all @ € Aié \ Aii and any sufficiently positive T (see
0
§3.1.6), we have {a, Hy(x)) > {(a,T) = ||T||. O

3.3.5.
We can apply the operator AL to the right variable of the kernel K £ (x,¥): we get a function on
[U] x [U’] denoted by Kf,XAg.

Theorem 3.3.5.1.

1. For all T € a sufficiently positive, there exists a continuous semi-norm ||.|| on S(U(A)) such that
Jorall f € S(U(A)), we have

Z / |(Kr AL (x,y)| drdy < |IfII. (3.3.5.1)

yexw) Y WIxIU’]

2. For all r > 0, there exists a continuous semi-norm ||.|| on S(U(A)) such that for any T € a]
sufficiently positive and f € S(U(A)), we have

2

X€eX(U)

J)’(]’T(f)—/ (Kf o AD)(x,y) dxdy| < eI 7). (3.3.5.2)
[U/]x[U"]

From Theorem 3.2.3.1 assertion 2 and from Theorem 3.3.5.1, we get the following:

Corollary 3.3.5.2. The absolutely convergent integral
[ KAy dudy
[U’Ix[U’]

is asymptotic to an exponential-polynomial in the variable T whose purely polynomial term is constant
and equal to J)l(] N

3.4. Proof of main theorems

3.4.1. Proof of Theorem 3.3.5.1 assertion 1

Let N1, N2 > 0. Let No > 0 be as in Remark 3.2.2.1 (for P = U). We set N| = Ny + No. Let T € aj be
sufficiently positive. By Proposition 3.3.3.1, there exists a continuous semi-norm || - ||; on Tn; ([U])
such that for all y € X(U), allx € [U] and y € [U’], we have

VIR 5 A ) G 9] < K f e (2, ) Ly, -
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Then, by Remark 3.2.2.1, more particularly the majorization (3.2.2.3) for P = U, there exists a continuous
semi-norm || - ||s on S(U(A)) such that for all x € [U] and y € [U’],

DK W AD @] < F sl Iyl
X€X(U)

,Nz

-N
Now the map (x,y) = |lxll; " Iyl

Proposition A.1.1 (ix)].

is integrable on [U’] x [U’] for large Ni, N,; see [Beu2l,

3.4.2. Asymptotics of several truncated kernels
We shall use the two following results.

Theorem 3.4.2.1. For every N1, Ny, r > 0, there exists a continuous semi-norm ||.|| on S(U(A)) such
that

> \K},X(x, Y) =Ko )FY (3, D) < e g Iyl 11 (3.4.2.1)
Y€X(G)

for f € S(UA)), (x,y) € [U'] x [U'] and T € af sufficiently positive.
The proof of Theorem 3.4.2.1 will be given in §3.4.5 below.

Corollary 3.4.2.2. For every Ny, Ny, r > 0, there exists a continuous semi-norm ||.|| on S(U(A)) such
that

> \K]?%(x, ) = Ky (o AD ) < e oM Iyl 1A (34.2.2)
XEX(G)

for f € S(UA)), (x,y) € [U'] x [U'] and T € af sufficiently positive.

Proof. Let Ny, N{, N, > 0 be as in §3.4.1. By assertion 2 of Proposition 3.3.3.1, for every r > 0, there
exists a continuous semi-norm || - ||N1, on TN{([U]) such that for all f € S(U(A)), y € X(U),x € [U],
y € [U’'] and T € aj sufficiently positive, we have

[(Kf N, y) = Ky e ) FY (0, ) < e Wy 12 1K g ) e

From this and the majorization (3.2.2.3) (for P = G), we deduce that there exists a continuous semi-
norm || - |ls on S(U(A)) such that for all f € S(U(A)), x € [U],y € [U'] and T € qa; sufficiently
positive, we have

UK AT y) = Kp oy (600 FY (0, DL < e W £l el vl
xeX(U)

By [Beu2l, Proposition A.1.1 (ix)], we have ||x|ly ~ |lx|ly for x € [U’]. The corollary is then a
straightforward consequence of the inequality above and Theorem 3.4.2.1. O

3.4.3. Proof of Theorem 3.2.3.1
First, we mention that all the statements but the continuity are stated and proved for compactly supported
functions; see [Zyd20, theorems 4.1, 4.5 and 4.7]. We just need the extension to Schwartz functions.
The assertion 1 of Theorem 3.2.3.1 is a direct consequence of Corollary 3.4.2.2 and assertion 1 of
Theorem 3.3.5.1. This gives also the continuity of the distributions J}Y]’T and their sum over y € X(U).
The assertion 2 of Theorem 3.2.3.1 can be proved as in [Zyd20, proof of theorems 4.5]. We take
for granted the obvious extension of Corollary 3.4.2.2 and Theorem 3.3.5.1 assertion 1 to the auxiliary
kernels of [Zyd20, section 4.1] relative to some parabolic subgroups of U. Indeed, it can be proved
with the same technics and is left to the reader. In particular, the formula of [Zyd20, proposition 4.4]
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holds for Schwartz functions, and each term in right-hand side of the formula (among them J)[(] (f))is
a continuous distribution. From this, we deduce assertion 3 of Theorem 3.2.3.1 as in [Zyd20, theorem
4.7]. Finally, assertion 4 follows from assertion 1.

3.4.4. Proof of Theorem 3.3.5.1 assertion 2
It is an obvious application of Corollary 3.4.2.2.

3.4.5. Proof of Theorem 3.4.2.1
We shall use the notation of the proof of Proposition 3.3.3.1. We start from the expression for all
x,y € [U]

K (6,y) =K (6, )FY (3, 7)

=> D > FPey, Yot (Hp(6y) = T)Ki 2,5 (vX, 6Y),

P|CP} 5P| (F)\U'(F) yeP,(F)\U'(F)

where 0'12 = ;:,2 is as in (3.3.3.1), the sum is over P{, P} € F and we set for x € P;(F)\U’(A) and
1

y € PI(P\U'(A),

Kiop(xy) = Z €p Z Ky px(yx,y).
P{cPcP] YEP'(F)\P}(F)

From now on, we fix Pi c Pé. Let @ € Agﬁ \ A(I)); and let Pi c "Pi C Pé be defined by
A;P‘ = Aé)] U,{a}. For any “P{ C P’ C P}, we denote by P, the parabolic subgroup P C P, C P’
defined by AJ“ = AP\ {a).

We denote by P and P, the parabolic subgroups associated to P’ and P, (see the map (3.1.4.1)). For
any “P{ C P’ c P}, wesetforx € P'(F)\U'(A) and y € P{(F)\U'(A),

K¢ p o (,3) =Kyp py(x,y) = Z Ky poy(¥x,y).
YEPL(F)\P'(F)

Note that we have for all x € PJ(F)\U’(A) and y € P{(F)\U’(A),

Kio g (x,y) = Z €p Z K¢ p  (0x,). (3.45.1)
@p/CP'CP]  SeP'(F)\P,(F)

We fix P’ as in the sum above, and we start by majorizing each K o f (x,y).

Lemma 3.4.5.1. There exists ny > 0 such that for any ny,ny > 0, there is a continuous semi-norm || - ||
on S(U(A)) such that

Z KT p o o] < I1flldp; (e 0) ™ Iyl ™ el
xeX(U)

forall x € P'(F)\U'(A), y € P{(F)\U'(A) and T € af sufficiently positive such that
FPi(y, T)of (Hp(y) = T) = 1. (3.4.5.2)

Proof. Lety € U’(A). By using left translation by P{(F), we may and shall assume that y € s p;. Assume

that y satisfies also the Condition (3.4.5.2): by [Art78, lemma 6.1], y thus satisfies F 1 (y, T)) T;,é (Hp (y)-
1
T) =1.By Lemma 2.3.3.1 and then Lemma 2.3.4.2, we have y € sp; and dp;, (a,y) = dp(a, y). Since
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we have [|y[[p; ~ |||l for y € spr and dp, (a,y) ~ exp({a, Hpé(y)>) for y € sp;, we may and shall
freely replace dp; (a, y) by either dp/ (a, y) or exp({a, Hp; (y))) and ||y||p1r by ||y|| in the inequality we
have to prove.

Let us observe that we have

Ky pox(yx,y) = / Ky py(x,ny)dn,
YEPo(F)\P(F) [Nol

where N, = Np,. We have P, = P, x P;;, where P, C P’ and P,, C P” are maximal parabolic
subgroups. We set N); = Np,. We denote by & the unique element of Ag "\ Ag"
Thus, we see that KI‘J’X f (x, y) is the sum of three terms:

Ky, (6,3) =Ky p(xy) - /[ v Ky py(x,ny) dn (3.4.5.3)
f PX(X y) = ‘/[ K¢ py(x,ny)dn —‘/[ Ky py(x.ny)dn (3.45.4)
Ng "
K;(;/\/(x’y) = Z Kf’Pm)((Vx’y), (3455)
’)/E.va(y

where Qp_, is the complement in P, (F)\P(F) of the diagonal image of P’(F).
By a variant of (3.3.4.2), for all ny,ny > 0, there exists a continuous semi-norm || - || on 7y, ([U])
such that for all f € S(U(A)), x € X(U),x € [U]p and y € sp/, we have

Ky ()| < exp(=nifa, Hpy(WDIVI™ K 7 by (x, ) -

By [BPCZ22, Lemma 2.10.1.1], there exists ny > 0 such that for any n, > 0 and any continuous
semi-norm || - || on 7, ([U]), there is a continuous semi-norm || - ||s on S(U(A)) such that

DK el < D Nl

x€xX(U)

for all f € S(U(A)) and x € [U]p. We conclude that there exists ng such for all ny,ny > 0, there is a
semi-norm || - ||s on S(U(A)) such that

SRR @)l < exp(-nila, Hpy (DD Fls Iy 17 el (3.4.5.6)
xeX(U)

for all f € S(U(A)) x € [U’]pr and y € sp.. In the same way, one proves that the bounds (3.4.5.6)
holds forK P (x,y).
We 1ntr0duce the weight function

w(x) = min(dpy (@, x’),dpy (&,x"))

for x = (x’,x”) € [U]lp, = [Ulp, x [U]p;. In the following, we shall view o + @ as an element of
a;,/ ) a*B,,. By [BPCZ22, Lemma 2.10.1.1], there exists ng > 0 such that for any n;, n, > 0, there is a
0 0

continuous semi-norm || - ||s on S(U(A)) such that

Z K s P (1, D < N fllsw (@) Nzl w ()™ x5

XEX(U)
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forall f € S(U(A)) and x, z € [U]p,. Thus, for all x € P'(F)\U’(A) and z € [U’]p,, we have

D DT K po Dl < Ifllsw@ T 2™ > wm lyxllp. (3457)

X€X(U) yeQp,a YEQP, o

By Proposition 2.3.4.3, there is ¢ > 0 such that for all y = (y’,y”’) € P(F) = P’(F) x P""(F) and
any x € U’(A) (viewed as a diagonal element of U(A)) such that w(yx) > ¢, we have y” € P,/ (F)y’.
Thus, such a y cannot belong to the subset Qp . In this way, for x € U’(A), we have

Do wlm xR <t T (3.4.5.8)

Y€Qp. o YE€Po(F)\P(F)

By Proposition 3.1.5.1, we have w(z) ~ dp;, (a,z)" for some r > 0 and all z € [U’]p,. We deduce
from (3.4.5.7) and (3.4.5.8) that there exists ny > 0 such that for any n;, n, > 0, there is a continuous
semi-norm || - ||s on S(U(A)) such that

2

YEX(U)

K35 )l < IIfllsdp, (@)™ Iyl x|

fory € sp, and x € P'(F)\U’(A). The conclusion is clear. O

Lemma 3.4.5.2. There exists ny > 0 such that for any n, > 0 and any A in the open convex cone
generated by Agz \ A(I;‘, there is a continuous semi-norm || - || on S(U(A)) such that

K125 2 o< N FNldp (= D) I Nlxll o2
1 1 2
X€exX(U)

for/all f € SWU(A)), T € af sufficiently positive, x € P,(F)\U'(A) and y € P{(F)\U'(A) such that
FPL(y, )02 (Hp, (y) = T) = 1,

Proof. Let P{ C P’ C P) and @ € Ag’é \ Ag’i. By Lemma 3.4.5.1, there exists ny > 0 such that for
all ny,ny > 0, there is a continuous semi-norm || - || on S(U(A)) such that for all f, T and y as in the
statement and all x € P’(F)\U’(A), we have

Z K¢ p e <Iflldp;(a, y)” ”'Ilyll}’ﬁm"llxll_”z.
XEX(U)

Using the decomposition (3.4.5.1), we see that there exists ng > 0 such that for any n,ny > 0, there is
a continuous semi-norm || - || on S(U(A)) such that

Z IK12.5 (e 0| < (I flldpy (e, )™ "‘IIyIIZ%M(’II [
xeX(U)

for all f; T, x and y as in the statement. The result follows easily. m}

Let ng be as in Lemma 3.4.5.2. For any ny,n,r > 0, there are A and C > 0 as in Lemma 3.3.4.1
such that for all y € P{(F)\U’(A) and T € a/ sufficiently positive, we have

FP (. T)o (Hpy (6) = Ty (= ) Iy < Cexp(=rIITI).

This indeed follows from Lemma 3.3.4.1: we may take y € sp; and use the fact that dp; (-4, ) is
equivalent to exp({—4, Hp (y))) fory e sp: (see Proposition 2.3.4.1).
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As a consequence, we get by Lemma 3.4.5.2 that for any ny, ny > 0, there exists a continuous semi-
norm || - || on S(U(A)) such that

FPGp. Dot (Hp () =T) Y [Kiaga )l < 1 lle P22 il
XeX(U)

for all T sufficiently positive, all x € P, (F)\U’(A) and y € P{(F)\U’(A) and all f € S(U(A)). It is
then straightforward to get Theorem 3.4.2.1.

3.5. The (U,U’)-regular contribution in the Jacquet-Rallis trace formula

3.5.1.

The goal of the section is to get Theorem 3.5.7.1 below which gives a computation of the distributions
J)l(] of Theorem 3.2.3.1 in terms of relative characters for some specific cuspidal data which we are
going to define.

3.5.2.

Recall that we have U = U’ X U"”. Let y = (xy’, x”") € X(U) = X(U’) x X(U") be a cuspidal datum.
Let (M =M’ xM"”,n =n’"®n"") be a representative where M = Mp is standard Levi subgroup of
a standard parabolic subgroup P of U. For any integer r, we set G, = Resg;r GL(r, E). We can find
hermitian forms i’ and h” respectively of rank n’ and n”, integers n{,...,n/, and ni’, ...,n, and
for 1 < i < r’ cuspidal representations 7} of G n (A) (with central character trivial on Agn/) and for

1 <@ < r” cuspidal representations 7;" of G,z (A) (with central character trivial on Ag ), cuspidal

representations o’ and o’ respectively of U(h’)(A) and U(h"")(A) such that such that

o n'+2(nj+...+n,)=nandn” +2(n +...+n,)=n+1;
o M =~ G"'l X ... X G,,r, X U(h') and M ~ Gn'{ X...X G,,:f” xU(h");
e/ =nR..®x, R0’ and "’ =7 ®... W7, ®o" accordingly.

We shall say that y is

o U-regular (or simply regular) if both y’ and y”’ are regular. We say that y’ is regular if the repre-

sentations ﬂi, R (ﬂ'i)*, ..., (m],)" are two by two distinct (the same definition applies to y’).
Here, 7* means the conjugate dual of the representation 7.

o U’-regular if foreach 1 <i <r’and 1 < j < r” such that n} = n}’, the representations (77)" (the
contragredient of 77) and n’/ are neither isomorphic nor conjugate dual;

(U, U’)-regular if it is both U-regular and U’-regular.

3.5.3.
Let ¢ € Ap zcusp(U). Let 4 € a}, - such that the Eisenstein series E(g,4) on [U] is regular at A.

For T € a;, we denote by AT'E (g, 2) the function on [U’] obtained from E (¢, 1) by truncation by the
operator defined in (3.3.2.1). The following proposition is basic to our calculation.

Proposition 3.5.3.1. Let T € a sufficiently positive.

1. The integral
/ AVE(x, ¢, 1) dx (3.5.3.1)
(U]

is absolutely convergent.
2. If the spectral datum y defined by (M, rt) is U’-regular, then the integral (3.5.3.1) does not depend
onT.
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3. Write P=P’' X P".If P' =U" or P"" =U", then we have

/ AZE(x,go,/l)dx:/ E(x,¢, 1) dx, (3.5.3.2)
[U’] [U1

where the left-hand side is absolutely convergent.

Proof. 1. The absolute convergence follows from the uniform moderate growth of Eisenstein series and
the basic properties of the truncation operator A recalled in Proposition 3.3.3.1.

2. To analyse the dependence on 7T, we shall use the following formula (adapted from [[Y 19, eq.
(2.2)]): for any 7’ € a/; and any smooth function ¢ on [U], we have for any x € U’(A),

Mo = > > Tr(Hr(6x) = Tr, T (AL R ¢) (63), (35.3.3)
R'eF} 5eR (F)\U'(F)

where the function I'g/ (-, T”) is compactly supported on ag- (for the precise definition, see p.9 of [IY 19]);
moreover, we set for any x € U’(A),

’ di R’, AR’
(AZ;,R ‘p) (x) — Z (_1) 1m(0Q ) Z Tg/ (HQ’(&X) — T)QDU’XQ"(&X)’
Q'CR’ 0€Q/(F)\R'(F)

where the sum is over the set of standard parabolic subgroups Q' of R” and ¢y /xo~ is the constant term
along U’ X Q”, where Q” x Q" is the image of Q' by the map (3.1.4.1). For R’ = U’, we recover the
operator AL

Using (3.5.3.3) and some Iwasawa decomposition, we see that assertion 2 follows from the following
vanishing statement: for any proper standard parabolic subgroups R’ of U’, we have for some Haar
measure on K,

/l | [ exp(=@or Ha DT (i () = T.TOALH Enr . 4) ds =0
Mp] JK

where Eg (¢, A) is the constant term of E (¢, A) along the parabolic subgroup R, the image of R’ by the
map (3.1.4.1).

Using the usual computation of the constant term of (cuspidal) Eisenstein series, we are reduced to
prove that

/[M ; APMRER (x5 1) de =0 (3.5.3.4)
R/

for all parabolic subgroup P C R, all ¢ € Ap r cusp(U) such that the class of (Mp,n) is U’-regular.
Here, ER(¢p, 1) denotes the Eisenstein series relative to R.

Let us prove this last claim. The reasoning here is very similar to that of [BPCZ22, proof of proposition
5.1.4.1], so we will be quite brief. There exist a hermitian form 4’ of rank m and integers ny,...,n,
suchthat m +2(ny +...+n,) =n

Mg = (Gpy X...XGp ) XU(') X (Gpy X...xXGp,) X U(h" & ho)
Mg = (Gpy X ... X Gy, ) XU(R').

The embedding Mg € Mpg is given by the product of the diagonal embeddlngs Gy X...xG, C
(Gpy X ...xGp)*and U(h') c U(h’) X U(h’ @ ho). Then the operator A R is the product of

e the usual Arthur operator attached to G,, X ... X G, viewed as an operator on functions on
[Gny X ...X Gy ] X[Gy X...%x Gy, ] acting on the second factor;

e the operator Az’U(h/) defined relatively to the embedding U(h’) c U(h’) X U(h’ & hy).
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We see that in (3.5.3.4), each integral over G, can be interpreted as a scalar product of an Eisenstein
series and a truncated Eisenstein series. By Langlands’ computation of this scalar product and our
U’-regularity assumption, we get the expected vanishing.

3.If P’ = U’ or P = U”, then on the one hand, the cuspidal datum defined by (M, r) is automatically
U’-regular. Thus, the left-hand side of (3.5.3.2) does not depend on 7. On the other hand, the restriction
of E(¢,A) to [U’] is rapidly decreasing. So the right-hand side of (3.5.3.2) is absolutely convergent.
Now the equality (3.5.3.2) is a straightforward consequence of assertion 2 of Proposition 3.3.3.1 and
the dominated convergence theorem. O

3.5.4. Ichino-Yamana regularized period
Assume that the cuspidal datum defined by (M, x) is U’-regular. Following [IY19], we define the
regularized period of E(¢, 1) for ¢ € Ap zcusp(U) and 1 € aj, . by

Py (g, ) = / ATE(x, ¢, 1) dx, (3.5.4.1)
[U’]

where the right-hand side is the absolutely convergent integral (3.5.3.1) attached to the Eisenstein series
E(g,A) for any T € a] sufficiently positive. It does not depend on 7 by Proposition 3.5.3.1 assertion
2. It is meromorphic in A and holomorphic when E(¢, A) is regular, in particular on ia}. The map
¢ > Py (e, ) is continuous.

3.5.5. Relative character
We keep our assumption on (M, 7). Let A € a}, . We define the relative character Jg (4, f) by

TN = > Pulp(d e, )Pu(p.d), (3.5.5.1)
peBp.x

where f € S(U(A)) and Bp , is a K-basis of Ap r cusp(U) in the sense of §2.2.4. Outside the
singularities of the involved Eisenstein series, the sum is absolutely convergent. It is holomorphic on
ia},. It does not depend on the choice of Bp . and it defines a continuous linear form on S(U(A)) (see
[BPCZ22, proposition 2.8.4.1])). For further use, we observe the following simple functional equation.

Proposition 3.5.5.1. Let P and P, be standard parabolic subgroup of U of respective standard Levi
factors M and M,. Assume that the pairs (M,n) and (M, 1) define the same U’-regular cuspidal
datum. Then for w € W(M, My) such that m; = wr and A € ia},, we have

Jp (A f) = Tp o (w- 4, f).

Proof. This is an immediate consequence of the functional equation E (¢, 1) = E(M(w, )@, wld) of
Eisenstein series and the fact that for A € ia},, the intertwining operator sends a K-basis of Ap_ cusp(U)
to a K-basis of Ap_x, cusp(U). O

3.5.6. Some auxiliary results
For further use, we state and prove some useful results.

Lemma 3.5.6.1. Let y € X(U) be a U-regular cuspidal datum. For any standard parabolic subgroup
P of U and any representative (Mp, nt) of x, we have for all f € S(U(A)) and x,y € [U],

Kf,x(st)zj* D1 EGIp(, e, DE(y, ¢, ) da, (35.6.1)

% peBp.x

where Bp_» is a K-basis as above.
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Proof. Let y € X(U) and x,y € [U]. We start from the general spectral expansion (see [BPCZ22,
lemma 2.10.2.1])

Kpy(x,y) =) ng / oD EGaIo( e HE(y, ¢, ) dA, (35.6.2)

o o peBg

where the sum is over the set of standard parabolic subgroups Q of U; the integer ng is the number of
semi-standard parabolic subgroups of U which admits the same semi-standard Levi component as Q.
The set Bp,, is a K-basis of the space .AOQ’X, gise (U) (we refer the reader to [BPCZ22, §2.10.2] for the
notation). From now on, we assume moreover that y is U-regular. Let (Mp, ) be a representative of
x with P a standard parabolic subgroup of G. Let Q be a standard parabolic subgroup of G. Then the

space AUQ v gise (U) has the following simple description:

-AOQ,X’diSC(U) = éWEW(P,Q)AQ,Wﬂ,CUSp(U)' (3~5~6'3)

In particular, this space is zero unless Q and P are associated, which we assume from now on. As a
consequence, we may and shall assume that Bp , is a union over w € W(P, Q) of K-bases Bg v of
Ao wr,cusp(U). In this way, by the same argument as in the proof of Proposition 3.5.5.1, we see that we
have for allw € W(P,Q) and A € ia*Q,

D EC g e, DEG e, ) = Y ECIp(w™ A, e, w DE(y, ¢, w ),
QDEBQ.wn QDEBP,R

where Bp  is a K-basis of Ap r cusp(U). So we get by the change of variables A — w1,

/ D E(ndo(A e HE(y, ¢, ) dd

1aQ LPEBQ,)(

Z / Z E(x, 1o, f)e, VE(y, ¢, 1) dA

WEW(P,Q) LaQ ‘peBQ,wn

Y. EGIp(d, e, DE(y, ¢, ) dd.

I
=
o
©

This gives the result since we have 3, [W(P, Q) |n‘Q1 = 1 where the sum is taken over standard parabolic
subgroups Q. Note that in the second line above the integral over ia}, is absolutely convergent. Let us
check this. By Dixmier-Malliavin theorem, we may and shall assume that we have f = fi * fJ for some

fi. f» € S(U(A)), where * denotes the convolution product and we have set f;(g) = f2(g7!). By a
standard change of basis argument, we have for all x|, x; € U(A),

Z E(xl,lQ(/Lf)‘P»/l)E(XZ’ 90»/1) = Z E()Q,IQ(/Lfl)QD,/l)E(xz,IQ(/sz)l,O,A)o
YeEBo wnr @EBO wx

By Cauchy-Schwarz inequality, the expression
/* | Z E(x1,1g(A, )@, DE (x2, ¢, 2)| dA
! Q SDEBQ,wn

is bounded above by the square-root of the product over i = 1,2 of

1

/ D EGi I f)e. )P dA = / D E(xilo(4,g)¢, VE(xi, ¢, ) dA,

laQ LPEBQ,M’R aQ ‘PEBQ,WH
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where we have set g; = f; * f;. By the same argument, we see that the spectral expansion of K, (x,x)
deduced from (3.5.6.2) is a sum of non-negative terms, and thus, the last expression above is bounded
above by K, (x;,x;) times ng. o

Let Ty, T; be two sufficiently positive points in a;. Let Ak 7, XAZZ be the function of two variables

we get when we apply on K¢, the truncation operators AZ‘ and AE, respectively, on the left and right
variables.

Lemma 3.5.6.2. Let y € X(U) be a U-regular cuspidal datum. For any standard parabolic subgroup
P of U and any representative (Mp, i) of x, we have for all f € S(U(A)) and x,y € [U’],

(ALK, AR (x,y) = Z (ATE)(x, Ip(A, f)o, VARE(y, ¢, 2) da, (3.5.6.4)

iap weBp x

where Bp_» is a K-basis as above.

Proof. This is a variant of the proof of Lemma 3.5.6.1. Simply instead of (3.5.6.2), we start from the
spectral expansion for any y € X(U):

(ALK o AP y) = S g / S ABE( o e DARE(r @ D dl. (565)
o Q‘PEBQX

The proof of this expansion is similar to that of [BPCZ22, proof of lemma 4.2.3.1] and thus is left to
the reader. m]

Remark 3.5.6.3. Assume we have f = f} * f; as in the proof of Lemma 3.5.6.1; one has the following
bound (proved by the same method as in the proof of Lemma 3.5.6.1): there exists ¢ > 0 (independent
of f1 and f>) such that for all x,x, € [U’],

> / >0 ADE(. Io(4 g, DAL E(x2, ¢, )| dA (3.5.6.6)
(M,x) Y% |peBp.x

12 1/2
¢ (AT Ky AT GexD))  (APK AR 2032))

where the first sum is over a set of representatives (M, rr) of U-regular cuspidal data of U and we have

set g; = fi * f;".
Proposition 3.5.6.4. There exists a semi-norm on S(U(A)) such that for all f € S(U(A)),

> / P (4, Pl < |I£l, (3.5.6.7)
(M, 7)

where the sum is over a set of representatives (M, i) of (U, U”)-regular cuspidal data of U and P is the
standard parabolic subgroup of which M is the standard Levi factor.

Proof. By uniform boundedness principle, it suffices to prove that the expression (3.5.6.7) is finite for
each f. Let T be a sufficiently positive point in a such that for all representatives (Mp, 7r) of (U, U’)-
regular cuspidal data of U with P a standard parabolic subgroup of U and for all ¢ € Ap r cusp(U), we
have

Pu (@, ) = / ATE(x, ¢, ) dx. (3.5.6.8)
[U’]
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Recall that the map ¢ — Py (@, 2) is continuous. It follows from [BPCZ22, Proposition 2.8.41] that
we have for A € iaj,,

W= [ S ALE(h 1p(4 fo, ONLE g, Do,
W xIvU) 45

Now it suffices to show that we have

/ / AzE(hl,Ip(/l,f)gp,/l)AEE(hz,go,/l) dhidhydd < o0,  (3.5.6.9)
U’ |x[U

(M 7r) ‘pEBPn

where the outer sum is as in (3.5.6.7). To show the convergence of (3.5.6.9) for a fixed function
f € S(U(A)), we may and shall assume, by Dixmier-Malliavin theorem, that f = f = f;' (the notations

are those used in the proof of lemma 3.5.6.1). But then we can apply the bound (3.5.6.6). In this way,
we see that the left-hand side of (3.5.6.9) is bounded above by (up to some irrelevant constant) by

n/ (ATK AT)(x x) dx

The volume of [U’] is finite, and the integral

1/2

vol([U

/ (ATK A (x, x) dx

is absolutely convergent by properties of truncation operator (see Proposition 3.3.3.1) and the fact that
the kernel is slowly increasing; see [BPCZ22, Lemma 2.10.1.1]. Note that the derivatives of the kernel
Ky, are related to the kernel associated to derivatives of g;; see also the proof of Theorem 3.5.7.1 where
this fact is used. So we can conclude. o

3.5.7.
We can now state and prove the main result of this section.

Theorem 3.5.7.1. Let y € X(U) be a (U,U’)-regular cuspidal datum. For any standard parabolic
subgroup P of U and any representative (Mp, ) of x, we have

I ()= / Jp A da,
lClP
where the integral in the right-hand side is absolutely convergent.

Proof. Let (Mp, rr) be arepresentative of a (U, U’)-regular cuspidal datum y with P a standard parabolic
subgroup of U. Let T, T, be two sufficiently positive points in a/) such that (3.5.6.8) holds for T = 71, 7.
We shall use the spectral expansion given by Lemma 3.5.6.2. Using (3.5.6.6), we get (as in the proof of
Proposition 3.5.6.4)

/ / Ag‘E(x, Ip(A, /e, A)AE‘E(y, ©, )| dxdy < .
X[U] ‘/JEBP

Using this and Fubini theorem, we see that we can integrate the spectral expansion (3.5.6.4) over
[U’] x [U’] and permute the adelic and the complex integrals. Using the definition of the relative
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character (3.5.5.1) built upon the periods (3.5.4.1), we have by [BPCZ22, Proposition 2.8.41],

JY (A, f) :/ >0 ATE(h, Ip (4, g, DAZE(ha, @, A)dhidhs.
[WIXIU"] &R

So we can conclude that we have

/[U] [U](AﬁKf,xAﬁ)(x,y) dxdy :/ T (A, f)da, (35.7.1)
’ >< 7 N

l(lP

where both sides are absolutely convergent. Note that the right-hand side of (3.5.7.1), and hence the
left-hand side, depend neither on 77 nor on 75.

We fix T, € aj sufficiently positive. By Proposition 3.3.3.1 assertion 2, Ag‘ Ky ,XA? converges to
Ky, XAZZ pointwise when d(7T]) — +co (see §3.1.6). We want to apply the dominated convergence
theorem. Let N, N’ > 0. By Proposition 3.3.3.1 assertion 2, there exists a continuous semi-norm || - ||y~
on T ([U]) (which does not depend on T7) such that we have for all x,y € [U’] and all f € S(U),

ALKy A2 0o 9 < Al Y TR AR G e + 1Ky A2 (3, 9)]-
Let J c U(Ay) be a compact open subgroup and S(U(A))’ c S(U(A)) be the subspace of right-J-

invariant functions. There are finite families (;);c; of integers and (X;);¢; of elements of U/ (11.,) such
that we have for all x, y € [U’] and f € S(U(A))’, we have

1K f f APl < D sup (IR (R K 7 (AR (B, )])

iel helU]

_ —-N; T

= > sup (Il (Koo £ o AR (B 2)D)-
iel helU]

Here, R(X;)K s , means that we apply the differential operator R(X;) on the left variable of K ,. We
also use the fact that we have R(X;)Kr , = Ky (x,)f,, for some right-invariant differential operator

L(X;). Now we can use (3.2.2.3) and Proposition 3.3.3.1 assertion 1 applied to the operator AZZ to see
that for all n; > 0, there exists a continuous semi-norm || - ||s on S(U(A)) such that for all x € [U],
ye[U']andall f € S(U(A)), we have

Ky A2 G < s el Iyl

We deduce that for any n, > 0, there exists ¢ > 0 (which depends on 7>, n; and f € S(U(A)) but
not on 77) such that for all x, y € [U’],

(AL Ky A (2 9] < cllxll 2 1yl

By choosing n; large enough so that (x, y) — ||)c||£,',12 ||y||£]’,’2 is integrable over [U’] x [U’], we can
apply the dominated convergence theorem to get

lim (Ag1 Ky ’XAgz)(x, y) dxdy = /

(K¢, ATZ)(x,y) dxdy.
d(T)—+ J U’ ]x[U’] [U"]x[U’] St

We have seen that the left-hand side depends neither on 7 nor on 7. So the right-hand side is also
independent of 7,. We can conclude from Corollary 3.3.5.2 that the right-hand side is in fact equal to

JY(f). O
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4. The (G, H)-regular contribution in the Jacquet-Rallis trace formula
4.1. Statement and proof

4.1.1.

Let E/F be a quadratic extension of number fields. Let A be the ring of adeles of F and 7 = ng/r be
the quadratic character of the group A* attached to E/F. Let n > 1 and G, = GL,, r be the algebraic
group of F-linear automorphisms of F". We view as an F-subgroup of G,, = Resg/r(G;, Xr E). We
denote by ¢ the Galois involution of G,. Let 57, be the character of G, (A) given by

na;, (h) = n(det(h))™!

for all » € G, (A). Let (B,,T,) be a pair where B;, is the Borel subgroup G, of upper triangular
matrices and 7, is the maximal torus of G, of diagonal matrices. Let (B,,, T,,) be the pair deduced from
(By,,T,) by extension of scalars to E and restriction to F it is a pair of a minimal parabolic subgroup
of G, and its Levi factor. Let K, € G, (A) and K, = K,, N G, (A) € G,,(A) be the ‘standard’ maximal
compact subgroups. We set

a+ _ +Gnat
n+l — By

where the right-hand side is defined in §2.1.4.

Weset G =G, X Gpyp and G’ = G, X G;1+1 (see §4.1.1). Let ¢ be the Galois involution of G whose
fixed points set if G’. The reductive groups G and G’ are equipped with the pairs (B, X By+1, Ty X Ty41)
and (B, x B, |, T, xT' ). Let K = K;, X K11 C G(A) and K’ = K N G’(A). We denote by n¢g’ the

character ng;, ®ng:  of G'(A). Let H be the image of the diagonal embedding
G, > G, XGpy.

Let 7 be a cuspidal automorphic representation of G (A) with central character trivial on AZ. As in
§3.5.2, we denote by 7" the conjugate-dual representation of G (A). We shall say that  is self conjugate-
dual if 7 ~ 7* and that 7 is G’-distinguished, resp. (G’, )-distinguished, if the linear form (called the
Flicker-Rallis period)

@ w(h)dh, resp./ w(h)n(det(h)) dh 4.1.1.1)
[G'lo [G']o

does not vanish identically on Az cusp(G). Then r is self conjugate-dual if and only if « is either
G’-distinguished or (G’, n)-distinguished and it cannot be both (see [F1i88]). Note that since we are
working with general linear groups, we shall omit the subscript cusp and we shall write simply A, (G)
for the space A cusp(G). The same rule is applied to the space Ap . (G) if 7 is a cuspidal automorphic
representation of Mp(A).

4.1.2. Caution

Since it is easy to get confused, we want to emphasize some consequences of our choices of measures.
Let P be a standard parabolic subgroup of G and let P’ = P N G’. The restriction map X*(P) — X*(P’)
identifies X*(P) with a subgroup of X*(P’) of index 24™(@~) Tt induces an isomorphism ap: — ap
which does not preserve the Haar measures: the pullback to ap: of the Haar measure on ap is pdim(ap)
times the Haar measure on ap-. In the same way, the groups A% and A%, are canonically identified, but
the Haar measure on AY is 2dim(ar) times the Haar measure on Ap.

Note also that for all x € G’(A), we have

(P Hp(x)) = 2(p,, Hp:(x)). (4.12.1)

https://doi.org/10.1017/fmp.2025.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.8

38 R. Beuzart-Plessis and P.-H. Chaudouard

4.1.3. The (G, H)-regular and Hermitian cuspidal data
Let ¥ = (xn> xn+1) € X(G) = X(G,,) X X(G4+1) be a cuspidal datum. Let (M, ) be a representative
in the class of y with M = Mp for a standard parabolic subgroup P of G. We write M = M,, X M1
and = 7, ® 7y accordingly. Let j € {n,n+ 1}. We write M; = Gp, ; X... X Gnrj,j for some integer
rp2landn; =0y ; R... R0y, ; accordingly.

We shall say that y is

o G-regular (or simply regular) if for all j € {n,n+ 1} and 1 < i,i’ < r; such that n; ; = ny_; and
0i,j = 0y,j, WE have i’ = 1.

e H-regularif for 1 < i < rpandall 1 < j < ruqq, if n;, = nj 441, the representation o, is not
isomorphic to the contragredient of o ;,11;

e (G, H)-regular if it is both G-regular and H-regular;

e Hermitian if 7 = n* and if the representation oy ; is nG, -distinguished for all 1 < i < r; and

*

J € {n,n+ 1} suchthato; ; = o

4.14.

We fix a (G, H)-regular and Hermitian cuspidal datum y. With the notations as above, we may and
shall choose the representative (M, mr) such that for all j € {n,n+ 1}, there exists an integer s; > 0 such
that the following conditions are satisfied:

1. 2s5; < r; and for all odd 7 such that 1 <7 < 2s;, we have 041 ; = o-l.*’j (in particular, o ; # ‘7';,]');

2. foralli > 2s;, we have 0y ; = o-lf“j.

Let L = L,, X L4+ be the standard Levi subgroup of G such that for all j € {n,n + 1}, we have

Lj=Gpany; X .o X anSj_l,j+nzs,,_f X ans,+1,_,~ X...XGp, ;. (4.14.1)

Let &£ € W(M) such that £Z = 1 and all\;l is the kernel of & + 1d for the natural action of W (M) on ay,.
We denote by Q the standard parabolic subgroup of Levi L.

4.1.5. Intertwining period

We identify the Weyl group of G with the group of permutation matrix. In this way, we identify & with
an element of L(F). Let £ € L(F) such that £c(€)! = &, where c is the Galois involution of G. We
define the F-subgroups Pz, Mz and N¢ of G’, respectively, by

P;=G'n&'PE. (4.1.5.1)
Mz=G' n&'ME. (4.15.2)
Nz=G' n&'NE (4.1.5.3)

We have the Levi decomposition P g = M EgN & where M £ is reductive and N Z is unipotent. Let
Q’ = Q N G': this is a standard parabolic subgroup of G’ of Levi factor L’ = L N G. Observe that we
have A;"‘j[,g = A7, Mé; c L’ and N§~ =Ny

The map a — Hp(£aé™") identifies A;"‘jl‘$~ with the subspace ap. In particular, we have
(A, Hp(£aé™")) = 0 for any a € Aﬁé and A € ak[’j‘c. We define the intertwining period for all
peAp r(G)and A € affc by

e = [ exp((L, Hp (€M) ¢ (Enncy (h) dh. (4.154)
AR Mz (F)Ng(A)\G'(4)

https://doi.org/10.1017/fmp.2025.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.8

Forum of Mathematics, Pi 39

Here, the group Ng (A)AﬁSE Mg (F ) is equipped with a right-invariant Haar measure. However, this
measure is not left-invariant: the modular character is given by

Sp.¢ 1 x — exp({pp, Hp(éxE™1)));

see [JLR99, VII p.221]. The integral in (4.1.5.4) is understood as a right-G’(A)-invariant linear form
on the space of (Ng (A)AEE Mg(F), 6 p, z)-equivariant functions. This space contains

exp({1, Hp(£)))p (&)

for A € aﬁl’jﬁc. The integral (4.1.5.4) makes sense at least formally. It is, in fact, absolutely convergent

for A such that (1, @) is large enough for any oV € A%’V and it admits a meromorphic continuation

to af,[’*c. It does not depend on a specific choice of . For all these properties, we refer the reader to
[JLR99, theorem 23 and (proof of) lemma 32]. In the same way, for any ¢ € Arnp, (L), one defines
the intertwining period J% (£, ¢, ) by analytic continuation of the integral

/A exp((L, Hp (E1)))d(Eng: (h) dh,

W Me (\L(2)

which is convergent for A in some cone in af/[’*c. Let dk’ be the Haar measure on K’ such that the
Iwasawa decomposition G’(A) = L’(A)No/ (A)K’ is compatible with the various choices of measures.
The following ‘parabolic descent’ will be useful:

Lemma 4.1.5.1. Forall ¢ € Ap (G) and A € akf’*c, we have

J(€ 9, 2) = TH(&, 65, 0),

where we set

oK' (5) = exp(~(po. Ho() [ elakmer(K')di'. @.155)

Proof. We refer the reader to [JLR99, (proof of) lemma 32]. m]

However, by [Lap06, lemma 8.1 case 2], we have in our situation
J(& @, 2) =T (&,¢5,2)

_ /[L] AT EC(x, oK', A)ne (x) d, (4.15.6)
"To

where the truncation operator AY is essentially that introduced in [JLR99]. More precisely, we decom-
pose L = L, X Ly as in (4.1.4.1): on a factor G, 4p,,,,; With j = n,n+ 1 and r an odd integer such
that 1 < r < 2s;, the truncation operator is exactly that of [JLR99, IV] and it is trivial on a factor G,,, ;
withr; > r > 2s;. The Eisenstein series £ Q(x, X', 1) is holomorphic on i az%/i*' The basic properties of
the truncation operator A; (see [JLR99, IV]) implies that the integral of the truncated Eisenstein series
(4.1.5.6) is meromorphic on ai/l’j”c and even holomorphic on iaﬁl’*. We deduce that the meromorphic

continuation of J(&, ¢, 1) is holomorphic on iab* and that, for 1 € iak[’*, the map ¢ — J(&, p, ) is
continuous on Ap_,(G).

4.1.6. Rankin-Selberg period

LetT € a | be asufficiently positive parameter. Let ¢ € Ap (G) and 4 € a},. Let P(E(¢, 1)) be the
regularized Rankin-Selberg period of the Eisenstein series E (¢, 1) defined by Ichino-Yamana in [I'Y 15].
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Because we assume that (M, ) is H-regular, the period is given by the truncated integral
P(E(p, 1) = / ATE(h, ¢, 2) dh, (4.1.6.1)
[H]

where AT is the Ichino-Yamana truncation operator (whose definition is recalled in [BPCZ22, eq.
(3.3.2.D)]). In fact, as the notation suggests, the right-hand side of (4.1.6.1) does not depend on T
(the proof of this property is the same as the proof of [BPCZ22, proposition 5.1.4.1]). In particular,
P(E (¢, 4)) inherits analytic properties of the Eisenstein series E (¢, 1). Thus, it is holomorphic on ia},
and the map ¢ — P(E (¢, 1)) is continuous.

4.1.7. The relative character
For any ¢ and ¢ € Ap_(G), the expression

is holomorphic on iaﬁl’* and gives a continuous pairing on Ap_.(G). By [BPCZ22, proposition 2.8.4.1],
for any f € S(G(A)) and any A € iak[’*, we can define the relative character

Ipa(d,f)= . PEUIp(L ). D) - JE G -A).

YEeBp &

where the sum is over a K-basis Bp . We get a continuous map f +— (1 +— Ip (4, f)) from S(G(A))
to the space of Schwartz functions on iak[’*: this is a slight extension of [BPCZ22, proposition 4.1.10.1]
which basically relies on bounds of Eisenstein series due to Lapid in [Lap06, proposition 6.1]. Note also
that this is also an easy consequence of the inequality given in [Cha22, proof of proposition 7.2.3.2].

4.1.8. The (G, H)-regular contribution to the Jacquet-Rallis trace formula

The contribution to the Jacquet-Rallis trace formula of a cuspidal datum y is a distribution denoted
by I, and defined in [BPCZ22, theorem 3.2.4.1]. In the case of a Hermitian (G, H)-regular cuspidal
datum, the next theorem relates this contribution to the relative character defined above.

Theorem 4.1.8.1. Let y € X(G) be a (G, H)-regular cuspidal datum.

1. If x is not Hermitian, we have I,, = 0.
2. Assume that y is, moreover, Hermitian and let (Mp, ) and L be as in §4.1.4. For all f € S(G(A)),
we have

(=2 [ a (@181

L(IM

where the integral in the right-hand side is absolutely convergent.
4.1.9. Proof of Theorem 4.1.8.1
Let y € X(G) bea (G, H)-regular cuspidal datum. Let f € S(G(A)) and let K, be the kernel of the right

convolution by f on L}(([G]). By [BPCZ22, proposition 3.3.8.1 and theorem 3.3.9.1], the contribution
I, (f) is the constant term in the asymptotic expansionin T € a | of the absolutely convergent integral

[ ] AlK(hgynoo)dgdn (@.19.1)
[H] J[G']
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By [BPCZ22, lemma 5.2.2.1], we have for all h € [H],

/ (ATK) (h, g)ne () dg = AT ( f K, (g (g) dg| (h). 41.92)
[G’] [G']

Then we have the following lemma:

Lemma 4.1.9.1. Let y € X(G) be a (G, H)-regular cuspidal datum. For all x € G(A), the absolutely
convergent integral

/ Ky(x,8)nc(g) dg (4.1.9.3)
[G']
vanishes unless y is Hermitian. If x is Hermitian and represented by (Mp, ), we have

/m Ky (x,8) ngr(g)dg = 274 / (D EIp( e d) - J(E G- dl,  (419.4)

lal\/i QDEBP.”

where the Levi subgroup L is that defined in §4.1.4 and Bp r is a K-basis.

Proof. For brevity reasons, we shall get the lemma as a simple application of a much more difficult
result — namely, [Cha22, Theorem 7.2.4.1]. Our situation is essentially that of [Cha22, Theorem 7.2.4.1]
except that we are working here with a product of two general linear groups and our Flicker-Rallis
periods are twisted by the caracter ng/. Note that the absolute convergence of (4.1.9.3) results from
[BPCZ22,Lemma2.10.1.1]. Let (M, 7r) be a representative of the (G, H)-regular cuspidal datum y with
P a standard parabolic subgroup of G and M = Mp. Let P; be standard parabolic subgroup of G and set
My = Mp,. There is a finite set I, (M) used in the statement of [Cha22, theorem 7.2.4.1]. There is no
need to recall the general definition given in [Cha22, §7.1.1]: indeed, because y is G-regular, either P,
and P are not associated in which case I, (M) is empty or IT, (M) is the set of wr withw € W(P, Py).

We can extract from [Cha22, theorem 7.2.4.1] that (4.1.9.3) is equal to the absolutely convergent
expression

Dt YT pdmen) Y /L]Y*ILI,W,,(x,f,/l)d/l, (4.1.9.5)
Py

LieLy(My) weW (P,Py) ¥ 1%,

where the sum is over the set of standard parabolic sugroups Py of G and M; = Mp,, the number of
parabolic subgroups of Levi M is denoted by |P(M)|, the set L£,(M;) is a subset of the set of Levi
subgroups of G containing M; (see [Cha22, §2.2.3]) and 7, v, » (x, f, A) is mutatis mutandis the relative
character that essentially appears in the statement of [Cha22, theorem 7.2.4.1]. The main difference is
that we are working here on a product of two linear groups and that the relative character is built upon
Eisenstein series and the intertwining periods defined in [Cha22, §5.1.4] but twisted by the character
ng.Let My, Ly andw € W(P, Py)beasin (4.1.9.5) and letx € G(A) and A € iafl‘l’*. Rather than spell
out the exact definition of Zy, , (x, f, 1), we will explain it in the particular case that concerns us.
Before doing that, we owe a detailed explanation to the careful reader who will certainly have noticed
the apparent discrepancy of a factor 24™M(®6) The reason is the following: [Cha22, theorem 7.2.4.1]
gives in fact the spectral expansion of

/ / K, (ax. §)nc:(g) dads.
[G']o JAE

whereas we are working with

/ K, (x. 8)nc:(g) dg = 2~ 4m(e0) / / K, (ax, )1 (g) dadg.
[G"] [G']o A
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The equality above comes from the difference between the respective measures on AS and AZ,; see
§4.1.2.

By the fact that y is G-regular and by the basic properties of the cuspidal intertwining periods (see
[JLR99, theorem 23]), we see that the relative character Zy,, . (x, f, 4) vanishes unless y is Hermitian.
So we get the first assertion, and we assume from now on that y is moreover Hermitian. Note that, by
definition, we have for all u € iakl’*,

Tiale f)= Y, EGIp(u e, p) - J (€ 6, —p). (4.1.9.6)
pEBp.x

We claim that we have
VA €iayt™ Tp, wa(x £,4) = Ty o (6, £, w7 0). (4.1.9.7)

Moreover, it follows from the fact that y is G-regular and Hermitian that for all Levi subgroup L; €
Lr(M) and all u € ai[]’*, we have

Trywn(x, f,A) =0if Ly # wLw™'. (4.1.9.8)

Let us assume (4.1.9.7) for the moment, and let us finish the proof of (4.1.9.4). By (4.1.9.7) and
(4.1.9.8) and the change of variables A — w™! 1, we see that (4.1.9.5) is equal to

2—dim(aL) Z |P(M1)|_l Z /WLW—I’* IL,n(xv f’ W_l/l) da

P weW (P,Py) ¥ 1%,

=2 (5P W P)I) [ Tuate s
P ayy

— p-dim(ar) /L Tr.(x, £, 1) dA
iay;”

M

since 3 p, |P(M1) |~'|W(P, Py)| = 1 where the various sums are over standard parabolic subgroups P;.

Let us prove the claim (4.1.9.7). We start from M, L1, A, w as in (4.1.9.5). By (4.1.9.8), we may and
shall assume that we have L; = wLw™!.Let Q| be a parabolic subgroup of Levi L. Let P, be a standard
parabolic subgroup of G and let w; € W(Py, P;) such that P, C lelwl‘l. Using the definition of
intertwining periods given in [Cha22, §5.1.4], the functional equation of Eisenstein series and a standard
basis change relying on the fact that the intertwining operator M (w1, 1) induces a unitary isomorphism
from Ap, yw(G) onto Ap, v,w(G), we see that we have

IL],Wﬂ(xs fs /1) = ILz,W]Wﬂ(xs f» Wl/l)

with L, = wL w]‘1 . Thus, we are reduced to prove (4.1.9.7) in the special case where the Levi subgroup
L = wLw™! is standard. But then (4.1.9.7) follows from the same arguments as before, namely the
functional equation of Eisenstein series and a standard basis change and the functional equation of
intertwining periods, namely [JLR99, theorem 31] completed with [Lap06, lemma 8.1]. For a similar
statement, see [Lap06, proposition 8.2]. This finishes the proof. O

It follows from Lemma 4.1.9.1 that, for & € [H], we have

A7 ( /[G/] KX<-,g)nc/<g)dg) (=29men) [N (ATE(hIr(1 )0 d) - I(€. 6= i

Y pEBp 7

(4.1.9.9)
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To get this, we have to permute the truncation operator with the sum and the integral. However, one
observes that for a fixed 4 € [H], the truncation operator is a finite sum of constant terms. So to get
(4.1.9.9), one has basically to permute the integral over iajl\jl’* and the integral that gives a constant term.
So, by Fubini theorem, it suffices to show that for any parabolic subgroup Q of G, the sum

>, [ 1Bk 1 gDl dn 1 E g2

peBp.x No

is a Schwartz function in the variable A € iaﬁl’*. But this is a variant of [Lap06, Lemma 7.4]; it is also
an easy consequence of [Cha22, proposition 7.2.3.2]. The last step is to observe that

/ / Do ATE(hIp(4, ), A) - (£, ¢, ~) dAdh (4.1.9.10)

M ©eEBp. x
[

/ ALE(h, Ip(A, f)e,A) dh - J(€,,-A) dA
ay’ weBp .«

and to use (4.1.6.1) to recognize the relative character /p (A, f) in the inner sum. Once again by a
variant of [Lap06, Lemma 7.4] (or by [Cha22, proposition 7.2.3.2]) and the basic properties of truncation
operator (see [BPCZ22, proposition 3.3.2.1]), we have

/ Z /[H] |AZE(h’]P(/l’f)SD,/1)Idh (&, @, —2) |dA < co.

L
Wy peBp.g

We can again conclude with Fubini’s theorem.

4.2. The relative character in terms of Whittaker functions

4.2.1.
We keep the notations of the previous subsection. Let N = N,, X N4 and Ny = N, be viewed as a
diagonal subgroup of N. Let N = NN G”’.

4.2.2.
We fix a nontrivial additive character ¢’ : A/F — C*. We deduce a character ¢ : Ag/E — C* trivial

on A by ¢(z) = ¥'(Trg,r(72)), where 7 € E* is such that c¢(7) = —7. We define a regular character
Ut [Nn] = C* by

n—1
Yn(u) =y ((‘U" Z Mi,i+1)
i=1

for any u € [N,]. In the same way, we get a character 41 of [N,41]. Thus, we have a character
YN =¥, B,y of [N]. By construction, ¥ is trivial on the subgroups N’ and N .

4.2.3.

Recall that we have fixed a pair (M, 7) with M = Mp (see §§4.1.3 and 4.1.4). Let A € iag’*. Let 7, be
the representation 7 twisted by the character m +— exp({A, Hp; (m)) and let I, = Indg((ﬁf (7)) be the
induced representation. The representation I1, is irreducible, unitary and generic. Let W(I1,, ) be
its Whittaker model with respect to the character .
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For any ¢ € Ap »(G) and g € G(A), let
W(g.¢,A) = /[NJ E(ug. o, )Yy (u) du.

We may and shall identify g — W(g, ¢, 1) with an element of W(I1, ¥ N ).

4.2.4.
Let W e W(I1,, ¢y ). By [JPSS83] and [Jac09], the integral

Z8 (s, W) = / W (h)|det hl; _dh
Nu (8)\H (&)

converges for R(s) > 0 and extends to a meromorphic function on C which is holomorphic at s = 0.
Let P = P, X P41 be the product of the respective mirabolic subgroups P,, and P,,4; of G, and G,41.
Let P’ =P NG'. We put Asg = AsCD"™ m AsCD" | For any finite set S C Vg, we set

By(W) = (AT LS (1,14, Asg) W(ps)ng (ps)dps
N’(Fs)\'P'(Fs)

and

(W, Wywnie = (A5 'LS* (1,11, Ad) \W(ps)|*dps.
N (Fs)\'P(Fs)

Here and hereafter, L*(1) means the leading coefficient in the Laurent expansion of the meromorphic
function L(s) at s = 1. The above expressions converge and are independent of S as soon as it is chosen
sufficiently large according to the level of W (see [F1i88] and [JS81b]).

4.2.5.
Proposition 4.2.5.1. For any ¢ € Ap (G), we have

ZRS(0,W(g,2) = P(E(g, ).

Proof. This is a straightforward application of results of Ichino-Yamana and the fact that (M, x) is
H-regular. First, for any T € a} ., and any s € C, the integral

/ AL E(h, ¢, 2)|det(h)|* dh (4.25.1)
[H]

converges and defines a holomorphic function in the variable s. Moreover, since (M, xr) is H-regular,
it does not depend on T (see [BPCZ22, proof of proposition 5.1.4.1]). Because of this, (4.2.5.1) is the
regularized Rankin-Selberg period of h — E(h, ¢, 1)| det(h)|® defined in [IY15]. By [IY 15, theorem
1.1], we deduce that (4.2.5.1) is equal to ZRS (s, W(¢, A)). It suffices to take s = 0 to get the result. O

4.2.6.
Proposition 4.2.6.1. For any ¢ € Ap (G), we have

<¢’ ¢>Pet = (W(()D’ /l)a W((/?, A))Whilt‘

Proof. This is the proof of [BPCZ22, proposition 8.1.2.1]), the main assumption there being that (M, )
is regular. O
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4.2.7.
Proposition 4.2.7.1. For any ¢ € Ap_(G), we have

J(&, 0, 0) = Br(W(p, ). 4.2.7.1)

Proof. We shall follow the notations of §§4.1.4 and 4.1.5. Let A € aﬁl’*c. For all ¢ € Ap cusp(G), we
have the Eisenstein series EC (¢, A) defined in (2.2.4.1), and we set for all g € G(A),

Wi(g.0,0) = / EC (ug, ¢, )0y (u) du.
[NAL]

Let P, the mirabolic subgroup of L (defined as the product of the mirabolic subgroups of its factors
in the decomposition into a product of general linear groups). We set P, = Pr, N L’. Let Asy, (resp.

Asy, ) be the tensor product of AsCD™ (resp. As(™D") for each factor in the decomposition of L,
resp. L1, into a product of general linear groups. Let As; = As;, ®As;, .. Let H/lQ = Indg((ﬁ)) (my) be

the induced representation. It follows from our hypothesis on 7 and from [Fli92, proposition 2.6] that
H? is (L', ngr)-distinguished.
Let ¢ € Ap (G). First, by Lemma 4.1.5.1, we have

J(E, 0, 0) = TE(E, 65, 0),

where goK/ is defined in (4.1.5.5). Then using [Zhal4a, proposition 3.2], [F1i88] and Theorem 5.5.1.1 in
section 5 below, we can compute the intertwining period J L (&, cpK ', A) in terms of Wy : we deduce that,
for S a large enough set of places, J(¢, ¢, 1) is equal to

(AS)7ILS* (1,119, As) N E P (e Wi(gs.©* Ve (qs) dgs
n sI\Py (Fs

- @i tangas [ f WL (45K, @-pg D (qsk’) dgsdk”
" J(N’'NL)(Fs)\P; (Fs)

where ¢(g) = exp(—pg, Hp(8)))¢(g). For g € G(Fys), set

D(g) = WL(qs8, ¢-po> UG (qs8) dgs.

v/(N’ﬂL) (Fs)\Py(Fs)

The map ® is left-invariant by L’ (Fy) as follows from the first assertion of [BPCZ22, theorem 9.1.7.1].
We deduce that it is also left-invariant by Q’(Fs). Using the equality (4.1.2.1), we get that J (&, ¢, A) is
equal to

(Aé’,*)flLS’*(l,H,%ASL) NG )CXP(PQ,HQ(gs»)‘D(gS)dgs.
'(Fs "(Fs

Now we can appeal to the equality of [BPCZ22, theorem 9.1.7.1] to get that the last line is equal to

(ASHTILS* (1,112, As) T )Ws(ps,/l, ©)nc:(ps) dps,
"(Fs)\'P'(Fs

where Wg(gs, 4, ¢) stands for the Jacquet integral given by the value at s = 0 of the holomorphic
continuation of the integral:

/ S0 (wrugs) W (wiugs, ¢ D (0™ du, R(s) > 1,
(W,:ILWLQN)(FS)\N(FS)
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where w is the permutation matrix that represents the product of the longest elements respectively of
the Weyl groups of L and of G. To conclude, it suffices to observe that for any gs € G(Ag),

L5 (1,119, As)Ws (g5, 4, @) = L5 (1,11, As) W (gs, 4, 9).

Indeed, this follows from computations of [Sha81, section 4] and the fact that the functions
LS (s, H/IQ, Asy) and LS (s, T4, As) have a pole of same order at s = 1 since the cuspidal datum associ-
ated to (M, ) is G-regular and Hermitian. O

4.2.8.
Let Bp,  be a K-basis of Ap_(G). For any f € S(G(A)), we define

RS 2 (Wl 1))

<W((,D, /l)’ W(QD, /1)>Pet

p€eBp
Theorem 4.2.8.1.

1. The series (4.2.5.1) converges, does not depend on the choice of Bp , and defines a continuous
distribution on S(G (A)).
2. We have I, (f) = Ip, (4, f).

Proof. The two assertions follow from the fact that the relative characters Iy, and I, ; can be identified
term by term by the combination of Propositions 4.2.5.1,4.2.6.1 and 4.2.7.1. O

5. Intertwining periods and Whittaker functions
5.1. Notations

5.1.1.

We follow the notations of §4.1.1. However, in this section, we set G = G5, and G’ = Gén. LetP = MN
be the maximal standard parabolic subgroup of G where its standard Levi factor M is G, X G,,. Let o
be an irreducible cuspidal automorphic representation of G,, with central character trivial on Agn. Let
=0 ® o this a cuspidal representation of M.

5.1.2.
We set

PWp={weW |Mnw 'By,w=MnNBy, =MnNwByw '}
and the subset of involutions
pWpa={we pWp |w? =1}

We have the following lemma:

Lemma 5.1.2.1. (Jacquet-Lapid-Rogawski, see [JLR99, proposition 20]). Any double coset in
P(F)\G(F)/G'(F) has a representative & such that & = €c(£)~' belongs to pWpo. The map
P(F)EG'(F) > & is well defined and induces a bijection from P(F)\G(F)/G’(F) onto pWp .

For any & € G(F) such that £c(€)~! belongs to pWp o, we set Pg=G'nN E'PE and Mg =
G’ N E'ME. Note that Mg is a Levi factor of Pg.
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5.1.3.
We fix T € E such that ¢(7) = —7. Let

~ I, I, s oz
&o = (In —TI,,) and & = (&)
We have &y € pWp» and P§~O = M§~O.

Let ¢ € Ap (G). Forany 1 € a
Rogawski; see [JLR99])

G,*

p.c» We consider the intertwining period (due to Jacquet-Lapid-

(oo ) = / exp((L, Hp (€1)))p(Eh) dh. (5.1.3.1)

A;\;go Mg, (F)\G' (&)

Note that we have A}, = AZ,. Let a be the unique root in Ap. The integral above is absolutely
0

convergent if R ({a, 1)) > 0. Moreover, it admits a meromorphic continuation to ag’é; see [JLR99,
theorem 23].

5.2. Epstein series and intertwining periods

5.2.1.
The group G acts on the right on the space of rows of size 2n (identified to E>"). Let P be the stabilizer
of ez, =(0,...,0,1). Let P’ =P NG’

Let ® € S(A?). For any s € C such that R(s) > 1 and any & € [G’], the Epstein series is defined
by the following absolutely convergent integral:

E(h,®,s) = / > ®(eayah)| det(ah)|*da.
AG yeP (F)\G'(F)

Here, | - | is the product over all places v of F of normalized absolute values of the completions F,. The
map s — E(®, s) extends to a meromorphic function valued in 7 ([G’]) with simple poles at s = 0, 1
of respective residues ®(0) and ®(0) (cf. [JS81b, Lemma 4.2]).

5.2.2.
Let £ € G(F) such that & = £c¢(£)~! belongs to pWp». We assume also & # 1. Let ¢ € Ap_(G). We
define

J(&, 0,1, @,5) = / exp({1, Hp(€h)))(ER)E (h, ®, 5) dh. (5.2.2.1)
A%, Pz(F)\G'(A)

If it is well defined, this integral does not depend on & provided that we have & = £c(€)~!, hence the
notation.

Proposition 5.2.2.1. Assume & # 1.

1. There exists r > 0 such that for each for any A in the domain,
_ G, \%
Dr - {/l € aP,C | ?R(</laa/ )) > r}’

and any s € C\ {0, 1} the integral (5.2.2.1) converges absolutely. It also converges uniformly for
R (A) in a compact subset of D, and s in a compact subset of C \ {0, 1}.

2. The map (A,5) — J(&, 9,4, D,s) is holomorphic on D, x C\ {0, 1}.

3. If € # &, the map has a holomorphic extension to D, X C.
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4. If ¢ = &y, the map has simple poles at s = 0, 1 with respective residues:
©(0)J (€0, ¢, 4) and &(0)J (§o, ¢, A).

Proof. We fix a compact subset €2 of C. We can write

J(E 0,4, ®,5) = / > exp((d, Hp(Eoh))g(Eoh) | E(h, @, 5) dh.
(G \sep; (F\G'(F)

We shall use the following two facts:
e there exist C, ¢t > 0 such that for all 4 € G'(A)1 and s € Q,
|s(s — 1)E(h, ®,s)| < C||h||’(;,. (5.2.2.2)

e there exists r > 0 such that for any # > 0 and any A € D,, there exists C > 0 such that for all
heG'(A),

D, lexp( Hp(Esh)e(Esh)| < Cllhllg,. (5.2.2.3)
SePz(F)\G'(F)

Moreover, in (5.2.2.3), the constant C may be chosen uniformly for A such that R (1) belongs to a
compact subset of D,.. This can be extracted from the proof of [JLR99, theorem 23], more precisely
from the combination of proposition 24 and the lines following (58) of [JLR99].

We get the holomorphic continuation with at most simple poles at s = 0, 1. Up to a factor ®(0) or
®(0), the residue is given by

/ exp((1. Hp (EM))o(ER) dh.
A, P2 (F)\G'(4)

This integral converges absolutely thanks to the majorization (5.2.2.3). According to the proof of
[JLR99, theorem 23], the integral vanishes unless & = &. In this case, the integral is nothing else but

J (0. ¢, ). o

5.3. Period of a pseudo-Eisenstein series: first computation

5.3.1.
Let w be the central character of 7. By restriction, it induces a unitary character of Z;; (A). Let

B(h,w,5) = / O (eanzh)w(2)| det(zh)[ d=.
Zer (B)

The integral is convergent for R (s) > % Let P = P’Zg. This is a parabolic subgroup of G of type
(2n —1,1). Then we have

/ E(zh, @, s)w(z) dz = E(h, ®(w, s)),
AZ Zg (F)\Zg (A)

where

E(h,®(w,s)) = Z D(yh, w, s)
YEP(F)\G'(F)
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is a usual Eisenstein series, which is convergent for R(s) > 1. By the classical computation of the
constant term of an Eisenstein series, there exist a finite set / and families (¢; s)ier € Ap (G and
(Mis)ier € ag’é for any s € C such that the following conditions are satisfied for any i € I:

e the map s — y; g is affine;
e the map s — ¢;  is a meromorphic function;
e we have ¢; s(ah) = ¢; s(h) forany h € G'(A) and a € AY,,;

e we have forany a € A}, m € M’(A)' and k € K’,

/ E(namk, ®(w, s))dn = Zgol-,x(mk) exp({ui.s, Hp(a))). (5.3.1.1D)
[NP'] iel

5.3.2.
We shall simply say that a map 8 : ag’é — C is a Paley-Wiener function if it is given by the Fourier-

Laplace transform of a compactly supported smooth function on ag’*.

5.3.3.
In the following, we consider the following objects:

e (3 a Paley-Wiener function;

e feCr(G(Fx)) adecomposable function;
® kK€ aj,;

® v € Ap (G).

From these, one defines the pseudo-Eisenstein series

o) = >, B,

5eP(F)\G(F)

where B is the function on AZN (A)M (F)\G(A) given by

B(g) =/ . &xp((4 Hp () (Tp (4, f)e) (8)B(4) dA.

In the following, we shall assume that « is in the region of convergence of the Eisenstein series
E(y, ). Then we have

o) = [ EIr( e 00 dd

for any g € G(A).
We fix r > 2 that satisfies the conditions of Proposition 5.2.2.1. In the following, we assume moreover
that « is such that {(x,a") > r.

5.34.

Proposition 5.3.4.1. Let s € C\ {0, 1}. Assume that B vanishes at the points —u; s for i € 1. Then we
have

/ O(h)E(h,®,s)dh = / JE Ip(A, e, A, ®,5)B(A) dA, (5.34.1)
[G'1o K+iag'*

§epWpo,&#1

where both sides are absolutely convergent.
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Proof. Because 6(h) is rapidly decreasing, the left-hand side is absolutely convergent. Using the
majorizations (5.2.2.2) and (5.2.2.3) given in the proof of Proposition 5.2.2.1, we see that the right-hand
side of (5.3.4.1) is also absolutely convergent.

By the Lemma 5.1.2.1, the left-hand side of (5.3.4.1) is given by

/ B(ER)E(h, ®, s) dh, (5.3.4.2)
£ oW, Y AS Pe(F\G'(A)

where £ € G(F) is any element such that & = £c(£)7!.
Assume ¢ # 1. Using the definition of B and permuting the adelic and the complex integrals, we get
that

B(.fh)E(h,cb,s)dhzf o I ETP(A, e, 1, @,5)B(A) da.

K+l(1P

/A;;, P£(F)\G'(4)

This permutation is easily justified by the majorization (5.2.2.3) and the fact that 3 is a Paley-Wiener
function. We have to compute the term corresponding to & = 1 (for which we take & = 1), namely

/ B(h)E(h, @, s) dh.
AZ, P/(F)\G'(A)

We will show that this integral vanishes. Using Iwasawa decomposition, we can write it as follows:

// / exp({—pp, Hp(a)))B(amk) E (namk, ®(w, s))dndmdk.
" IM(F)Zg (A)N\M"(A)! JAZ AT, [Npr]

(5.3.4.3)

According to the shape of the constant term in (5.3.1.1), we are reduced to fixi € I, m € M ’(A)l,
k € K’ and to show the vanishing of

N o SR Hp@)) [ (Up Q)@ B exp(( Hp(@) dida

K+iapy”
for any m € M’(A)! and k € K’. By Fourier inversion, this is, up to a constant,

(Ip(=His, o) (mk)B(—pi,s),

and we are done. O

5.4. Period of a pseudo-Eisenstein series: computation in terms of the Whittaker functional
5.4.1.
We fix a nontrivial character ¥’ : A/F — C*. We define ¢ : [N,,] — C* by

2n—1

Y(u) =y (Trg p(t Z Ui i+1))

i=1

for u = (u; j) € N2y(A). Note that i is trivial on N] (A), where N] = Ny, N G’.
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5.4.2. A variant of mirabolic subgroups
For all 1 < i < 2n, we define the following subgroup of G,:

P, = {(g ;) | g € Ganiu € Ni}.

Note that P; is the mirabolic subgroup P defined in §5.2.1 and P, = B»,. We denote by Np, the
unipotent radical of P;. Let P; be the standard parabolic subgroup of G of type (2n — i,i). We have
P: c P; and P, is the parabolic subgroup P defined in §5.1.1. We denote by an upper script ’ the
subgroups obtained by intersection with G’ thatis P/ = P; N G’.

For any smooth function ¢ on P;(F)\G(A), we put for g € G(A),

Wils. ) = /[ o (ug)w ()™ du.

i

When i = 2n, we have Np, = N, and we omit the subscript: we set W = W»,,.

5.4.3.
Forany ¢ € Ap ,(G) and A € ag’é such that R ({1, &")) is large enough, we define

W(g. ) = / exp((, Hp (&o1g))) o (Eoug)w ()™ du.

(NonNM) (F)\N2p (4)

One has in the convergence region
W(g, ¢, 1) = W(g, E(p, ), (5.4.3.1)

and so the integral has a meromorphic continuation to ag’é. It factors through the Fourier coefficient

W (g.¢) = / (ug)v (u)™" du.

[NanM]

5.4.4.
We view WA‘Z(I, -) as a Whittaker functional on x. Let 7 = ®_,, 7, be a decomposition of 7 as a
restricted tensor product of representations m,, of M(F,). According to this decomposition, we fix a

Whittaker functionnal WX/’I , on m, such that W;f,’l(l, ) = ®yevy WX:I o Let VE oo € S C VF be a finite

set such that all objects 7, ®, , E/F are unramified outside S. We put WA‘Z s =% ESW}\¢4 .- For any

A € a8, let 7, ;1 be the representation of M(F,) given by m,, 1(m) = exp({d, Hy (m)))m, (m) for
P.C . p g y Ty, p

m € M(F,). LetTl, , = Indfj((?)) (my.2) and I, =TT, _1—o. We put ITg = ®, 5T,
For any gs € G(Fs) and ¢ € Ilg, we define the Jacquet integral by the analytic continuation of

Wsles. 6.0 = [ WY (Ma(Eougs)$) du. (5.44.1)
(NZnnM) (FS)\NZH,(FS)

For any v ¢ S, let W:,p (-, ) be the K, -invariant Whittaker function such that W‘l,p (I,my) = 1. We
shall identify ¢ with 5 ® ¢%, where @5 € Ils and ¢S € ® (I1, is KS-invariant. Then we have

1
LS(1+{1,aY),0 xo°)

W(g, Ip(A, [, d) = Ws(gs, Ip(4 Nes, ) [ [ W (gm0 (5442)

veS

for all g = (gs, (8v)ves) € G(A).
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Proposition 5.4.4.1. There is so € R such that for any 1 € « + iag’* and any s € H,, the integral
Ji (W (h, Ip(, £, )(es0h)] det ()| d
N, (A\G'(A)

is absolutely convergent and uniformly bounded on compact subsets of H.,.

Proof. We shall use (5.4.4.2). First, the factor L5 (1 + (1, "), o X O'C)_l is bounded uniformy for A
such (R (1), a") > 2. We have ® = ®g @ PS5, where @5 is the characteristic function of (O5)?". By (the
proof of) [BP18, proposition 2.6.1 and lemma 3.3.1], there exists 5o € R such that for any 1 € x + iag’*
and any s € H.,, the integral

i (W5 (s Lo (A f)ps, )Ps (e2qhs)| det(hs)I*] dhs

N, (Fs)\G'(Fs)

is convergent and uniformly bounded on compact subsets of H.,. So we are left with

[/ WY (hy 7)WL gz (e )| det(hy) 3 dy.
Nj, (FO\G'(Fy)

veES

Then we can use the Iwasawa decomposition and the bound of [JPSS79, proposition 2.4.1] since we
may assume that S is large enough so that for v ¢ S the cardinality of the residue field of F), is bigger
than n. The details are left to the reader (see also [IY 15, proof of lemma 4.5]). |

5.4.5.
‘We consider the situation of §5.3.3.

Proposition 5.4.5.1. There is s € R such that for any s € H, and any Paley-Wiener function 8 that
vanishes at the points +sa /2, we have

[ ememoesa=[ [ W(hIp (4. £, )®(e2)| LW dh| B(1) d.
(G +iaS \J N (A\G'(A)
(5.45.1
where the two sides are given by absolutely convergent integrals.
Before giving the proof (which is to find in §§5.4.6-5.4.8 below), we shall give a corollary.
Corollary 5.4.5.2. There is so € R such that for any A € k + iag’* and s € Hsg,, we have

> I ®,s) = / W (h, ¢, A)®(e2,h)| det(h)|° dh,
g€ pWpa. 41 N, (A\G'(4)

where the right-hand side is given by an absolutely and uniformly convergent integral on compact
subsets of Hg,.

Proof. The combination of Propositions 5.3.4.1 and 5.4.5.1 implies (see [LLR03, lemma 9.1.2] for a
simple argument)

Y, senneies= [ W, I (L g, DD (ezah)] det()I* d
EepWpo,E#1 Nz/n (A\G'(A)
forany A € k + ia}G,’*. Since we can find f such that Ip (4, f)¢ = ¢, we get the result. O
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5.4.6. Proof of Proposition 5.4.5.1
We first recall the well-known computation of the constant term of a pseudo Eisenstein series.

Lemma 5.4.6.1. For 1 < i < 2n, the constant term of 0 along P;, defined by

Vg € G(A) Op,(g) = /[N g dn,

vanishes unless i € {n,2n}. Moreover, we have

or()= ). / ~exp(wd, Hp())(M(w, DIp (1, /)¢)(2)B(A) dA.
weWw (M) ¥ KFtap’

Unfolding the Epstein series, we get

/ 9(h)E(h,d>,s)dh=/ 0(h)®(eanh)| det(h)|* dh
[G'lo P{F\G (&)

= / / 0(nh) dn
PHF)Np (A\G'(A) \J[N

’
]

®(eanh)| det(h)| dh.

The Fourier expansion of the map n € [Np,] — 6(nh) gives

o) =60p(M+ > Wilyh0)
YEP2(F)\P1(F)

from which we deduce

/[N/ 0(nh) dn = 0p, (h) + Z W, (vh, 6).

7] yeP;(F)\ P} (F)

If n > 1, then 8p, = 0 (see Lemma 5.4.6.1). In particular, we get

/ G(h)E(h,CD,s)dh:/ Wi (h, 0)®(eanh)| det(h)|* dh
[G']o Py (F)NL (A\G'(A)

= / / Wi(nh, 0) dn| ®(ex,h)|det(h)|® dh.
P (F)Np, (ANG'(A) \/[Np \Np, ]

Next, using the Fourier expansion of n € [Np, N Mp,] — Wi (nh, 0), we get

/ Wi (nh,6) dn = Wy (h,0p,) + Z Wa(vh, ).
[Np, \Np, | yeP;(F)\Pj(F)

If n > 2, we have 6p, = 0 (see Lemma 5.4.6.1). By recursion, we get that the left-hand side of (5.4.5.1)
is the sum of

/ W1 (h, 0p, )®(eanh)| det(h)|* dh (5.4.6.1)
Pa(F)Nj, (A\G'(4)

and

/ W, (h, 0)®(esnh)| det(h)|* dh. (5.4.6.2)
Pl (F)Nj, (£)\G(4)

n
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The manipulation is justified as in [[Y 15, corollary 4.3 and bottom of p. 697]. The next step is to
compute both expressions. Let us start with the second.

5.4.7. Computation of (5.4.6.2)
We can continue the process. Since 8p, = 0 for k > n, W = W5, and Pz’n(F)N;,Zn (A) = Nj, (A), we
get that (5.4.6.2) is equal to

/ W(h, 8)®(es,h)| det(h)|® dh.
N2y (A)\G’ (A)
Using (5.4.3.1), we also have
Worho0)= [ W16 g DB d
k+iap™”

To get the right-hand side of (5.4.5.1),we just need to permute the adelic integral and the integral over
A. This is justified by Proposition 5.4.4.1. To conclude, it suffices to show that (5.4.6.1) vanishes: this is
done in the next §.

5.4.8. Vanishing of (5.4.6.1)
Recall that P,, = P. Using the Iwasawa decomposition, we get that the expression (5.4.6.1) is equal to

[ exo(-tor Hr(@))

M

/ W,—1(amk, 0p)® (e ak)| det(a)|® dh.
(A)\M’(A) JK’

(54.8.1)

M’ (A)N(PL(F)Np,

By Lemma 5.4.6.1, we see that the expression W,,_; (amk, 8p) is the sum over w € W(M) of
[ eptatp@y [ (MO0 I )i amk s ) dup(Da
K+ia$ [Np, 1

Writing u = upups withups € (Np, , " M) andup € (Np, , N Np), we see that

(M(w, )Ip(4, f)p)(uamk) = exp({pp, Hp(a))) (M (w, )Ip(A, [)¢) (upmk).

Let A7, be the stabilizer of ez, in Af,. We have | det(a)|* = exp(s{(e, Hp(a))/2). The contribution in
(5.4.8.1) corresponding to w € W (M) factors through the integral:

/Am exp(s{a, Hp(a))/2) [ (M(w,D)Ip(4, f)¢)(umk) exp((wa, Hp(a)))B(2) dAda

(5.4.8.2)

for some Haar measure on A%, If w = 1, the expression (5.4.8.2) is simply

/A exp(s{a, Hp(a))/2) o Up (4, @) (umk) exp({4, Hp(a)))B(4) dAda.

‘;;1 k+iag®

By Fourier inversion, it is, up to a constant, (Ip(—sa/2, f)¢)(umk)B(—sa/2) and thus vanishes.
If w # 1, then wAd = —A and the expression (5.4.8.2) can be written as

/Am exp(s{a, Hp(a))/2) [~ (M(w,)Ip(4, f)g)(umk) exp(—(1, Hp(a)))B(A) dAda.
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Assume that R (s) is large enough so that R(s){a, @) > 2(x,a"). One can check that there exists ¢
such that the inner integral vanishes unless (@, Hp(a)) < c. Thus, one can restrict the outer integral
to this ‘half-line’. Then we can permute the two integrals. By Cauchy formula, we get that it is, up to
a constant, (M (w, sa/2)Ip(sa/2, f)¢)(umk)B(sa/2), and thus, it also vanishes. This concludes the
proof of Proposition 5.4.5.1.

5.5. Final result

5.5.1.
We keep the notations of previous sections. Let 1 € ag’é. For s € C, let L5(s,TI,, As) be the Asai
L-function ‘outside S°. We have

LS(s,T1, As) = LS (s + (4, @), 0, As)LS (s — (4, @"), o, As)LS (s, - X oV).
The factor L5 (s, o X ¥) has a simple pole at s = 1 and we set
LS*(1,0x oY) = }1_1)1}(s —~ DL (s, 0 x ).
Then we get an analytic function in A by setting

L5 (1,14, As) = LS(1+ (4, "), 0, AS)LS (1 — (A, a"), 0", As)LS* (1,0 X oV).

Theorem 5.5.1.1. We have the following equality of meromorphic functions on iag’é:
T (&0, ¢, 0) = (A5 L5 (1,114, As) W(ps. ¢, ) dps,

N}, (Fs)\P'(Fs)

where the integral is absolutely convergent, and the left-hand side and the integrand in the right-
hand side are respectively defined in (5.1.3.1) and (5.4.3.1). Moreover, both sides of the equality are
holomorphic at A € iag’* in the following cases:

e o is not G, -distinguished;

o 0 is G, -distinguished and A # 0.

5.5.2. Proof of Theorem 5.5.1.1
By (5.4.4.2), we have for all gg € G(Fs),

1
LS(1+{4,aV),0 X o°)

W(gs, @, ) = Ws(gs, ¢s, 4).

Let ®g a test function in the Schwartz space S(F é”) Let us consider the following integrals:

/ Ws(hs, ¢s,4) dhs (5.5.2.1)
N, (Fs)\P'(Fs)
and
i W (hs. g5 )®s (eanhs)| det(hs)[* dhs. (5.522)
N, (Fs)\G'(Fs)

Lemma 5.5.2.1.

1. There exists n > 0 (resp. and & > 0) such that the integral (5.5.2.1), resp. (5.5.2.2), is absolutely
convergent and holomorphic on the subset of 1 € ag’* such that |{R(1),av)| < n, resp. and
s € H]_s.
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2. The integral (5.5.2.2) admits a meromorphic continuation to C X ag’é denoted by Zs (s, A, @s).

3. Forany c > 0, there exists 51 € R such that for s € Hg, and [{R(1),a")| < c, the integral (5.5.2.2)
is absolutely convergent and coincides with Zs(s, A, ®s).

Proof. All the results are slight variations on [BP18, lemma 3.3.1, lemma 3.3.2 and section 3.10]. To
get the convergence of (5.5.2.1) or the precise lower bound 1 — &, we need to observe that ¢g belongs to
the induced representation of the S-component of an irreducible automorphic cuspidal representation of
M (A). As such, itis an irreducible, generic and unitary representation. We can now use the classification
of local irreductible generic and unitary representations as fully induced from essentially discrete series
with exponents in | — 1/2; 1/2[ (see, for example, [Tad09], [Zel80] and [BR 10, Theorem 8.2.]). O

Let ® = g ® ®5, where ®g is the Schwartz space S(F. g") and @ is the characteristic function
of (0%)?". Let ¢ > (k,a"). By Lemma 5.5.2.1 assertion 3, there exists s; € R such that for s € Hs,
and [{(R (1), a")| < c, the integral (5.5.2.2) is absolutely convergent. We may and shall assume that s,
is large enough so that Proposition 5.4.4.1 holds for s;. Then by the factorization (5.4.4.2), some local
computations [Fli88] and Lemma 5.5.2.1 assertion 2, we have

LS (s, 1, A
/ W(h, @, )D(eanh)| det(h)[* dh = (AS;)™! (s, Iz, As) Zs(s, 4, )
v

5, (A\G(4) LS(1+(a,a"),0 x 0€)

forany A € k+i ag’* and s € H.,. By analytic continuation of the equality of Corollary 5.4.5.2, we have

L5 (s, Iy, As)
LS(1+{1,aY),0 xo°)

J(E @A, ®,5) = (AS) ™ Zs(s, A, @s)

EepWpp,E#1

for all s € C and A € D, given by Proposition 5.2.2.1. We can compute the residue of the left-hand side
at s = 1 following Proposition 5.2.2.1. We get

L5*(1,11, As)

A~ _ S,xy—1
©(0)J (¢, 9, 1) = (AG)) ZS(I”I"I’S)LSU +{,av), 0 xac)’

(5.5.2.3)

Both sides are analytic in A. Thus, the equality for A € iag’*. But by Lemma 5.5.2.1 assertion 1 and
assertion 2, one has

Zs(1,4,®5) =/ Ws(hs, s, 1) Ds(ernhs)| det(hs)| dhs.
N, (Fs)\G'(Fs)

Let N| be the unipotent radical of the opposite of the parabolic subgroup P; defined in §5.4.2. The
standard Levi factor of P; decomposes as Gy,-1 X G. Thus, we have Nén\Pi ~ Nén\P’ X Gi. By a
usual decomposition of measures, we get

Zs(1,1,@g) = / / / Wy (htn, s, A) dh | ®g(eantn)|t|*" dtdn.
Ni(Fs) JG|(Fs) \YN;, (Fs)\P'(Fs)

However, we have also

dg(0) = /F | ®s(X)aX

= / / Dy (eantn)|t|*" dtdn.
Ni(Fs) 4G} (Fs)
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Since (5.5.2.3) holds for any Schwartz function ®g, we get that J (&, ¢, ) is equal to

L5*(1,10,, As)
L5(1+{A, "), 0 x0°) Jn; (Fs)\P'(Fs)

Ws(gs, ¢s,A)

= L5*(1,Ty, As) W(ps, ¢, ) dps,
N, (Fs)\P'(Fs)

where we have used the factorization (5.4.4.2). In the first expression above, the integral is holomorphic
on iag’*; see Lemma 5.5.2.1. Using the factorization of L5(s, 0 x o) in terms of Asai L-functions
L(s,o, As*), we get

LS*(1,11, As)
LS(1+{1,aV),0 x0°)

L5(1-(1,a"),07, As)
LS(1+{A,av),0,As7)’

= L5*(1,0 % oY)

On iag’*, the L-function L5(1 + {1, "), o, As™) does not vanish by [Sha81, theorem 5.1] and L5(1 —
(4,@"), o*, As) is holomorphic unless A = 0 and o* (thus o) is G,-distinguished (see [F1i88]). On the
other hand, if o is not G, -distinguished, then J (&, ¢, A) is known to be holomorphic on iag’*; see
[Lap06, lemma 8.1]. Otherwise, J (&g, ¢, A) is holomorphic on iag’* \ {0}, but it may have a simple pole
at 1 =0.

6. The (G, H)-regular contribution to the Jacquet-Rallis trace formula: alternative proof
6.1. Statement

6.1.1.
The goal of this section is to provide an alternative proof of the following combination of Theorem 4.1.8.1
and Theorem 4.2.8.1.

Theorem 6.1.1.1. Let y € X(G) be a (G, H)-regular cuspidal datum and let f € S(G(A)). Then,

1. If x is not Hermitian, we have I,,(f) = 0.
2. If x is Hermitian, we have

L(f) =2‘dim<“'<)/“1nﬂ(f)dﬂ, 6.1.1.1)

llIM

where we recall that (M, ) is a pair representing y, L D M is the Levi subgroup defined by (4.1.4.1),
I1, stands for the induced representation Indg((ﬁ)) (mp), for P a chosen parabolic subgroup with Levi
factor M, and Iy, is the relative character defined by (4.2.8.1).

More precisely, the proof will be very similar to that given in [BPCZ22, Section 8] and is based on
two ingredients of independent interests. The first one is that the Rankin-Selberg period (over H) admits
a continuous extension to the space 7, ([G]) of functions of uniform moderate growth supported on a
H-regular cuspidal datum y and that this extension can moreover be described in terms of the analytic
continuation of Zeta integrals of Rankin Selberg type. This was already established in [BPCZ22, Section
7]. The second ingredient is an explicit spectral decomposition of the Flicker-Rallis period (over G*)
restricted to S, ([G’]) when the cuspidal datum y is (G-)regular. This was already done in [BPCZ22,
Section 6] under the stronger assumption that y is =-regular. The aim of the subsection 6.2 is to state
and prove the extension of this result to the regular case. Once established, we will be able to give a
proof of Theorem 6.1.1.1 in subsection 6.3 in much the same lines as [BPCZ22, §8.2].
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6.2. Spectral decomposition of the Flicker-Rallis period for regular cuspidal data

6.2.1. Zeta integrals
Letn > 0 be an integer. We will freely use the notation introduced in Section 4. For every f € T ([G,]),
we denote by

Wi = [ st g <Gy
its Whittaker function and, for ¢ € S(A™), we set
285 f. )= [ Wy () (enh)ldet hl*ncs, (h)dh.
Ny (A\G, (A)

This expression is absolutely convergent for R (s) sufficiently large. More precisely, for every N > 0,
there exists ¢ > 0 such that ZER(S, f,¢) converges for s € H. (see [BPCZ22, Theorem 6.2.5.1]).

6.2.2. Flicker-Rallis period
Recall that for every f € C([G,]), the period integral

Pa,(n)= [ 70, i

is convergent [BPCZ22, Theorem 6.2.6.1].

6.2.3. Hermitian cuspidal data
Let y € X(G,,) be a cuspidal datum. Then, we can find a pair (M, 7r) representing y with

=< []axs « [ ox

iel jed kek

and

_ ®d; ®d; ®dj
=@ e Q)

iel JjeJ keK

for some disjoint finite sets 7, J, K, families of positive integers (n;);e;usuk > (di)ierusuk and a family
of distinct cuspidal automorphic representations (;);ejusuk satisfying

e Foreveryi € I, m; # n};
e Forevery j € J, 7; ~ 7} and L(s, ﬂj,As(_l)"H) has no pole at s = 1;
e Forevery k € K, my ~ ) and L(s, nk,As(_l)"+l) has a pole at s = 1.

Fixing data as above (which are unique up to reordering), we recall that y is said Hermitian (see
§4.1.3) if the following condition is satisfied:

(6.2.3.1) Forevery i € I, there exists i* € I such that 7r;- ~ 7 and for every j € J, d; is even.

6.2.4.

Assume furthermore that y is regular in the sense of §4.1.3 or [BPCZ22, §2.9.7] and fix a pair (M, rr)
representing y together with data I, J, K, (n;)ierusuk,> (di)ierujuks ()ierusuk as in the previous
paragraph. By the regularity assumption, we have d; = 1 for every [ € I UJ U K. Moreover, y is
Hermitian if and only if J = 0 and there exists an involution i + i* of I without fixed point such that
nj+ = m; for every i € I. If this is the case, we choose a subset I” C [ such that [ is the disjoint union of
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I’ and (I')* = {i* | i € I}, and we define a Levi subgroup L > M by

L:=[]Gun. x [ | Gue.
iel’ keK
6.2.5.
Let P be a parabolic subgroup with Levi factor M. For every 4 € a}, ~ and f € C([G,]), we set

Gn(A
I, := Indp(é))(m)

and
Wy, = an,,’
where fi1, € 7([G,]) is defined as in [BPCZ22, Eq. (2.9.8.14)].

Assuming that y is Hermitian, we define for every A € i afl’* alinear form 8,, on W(I1,, ¢,,) by setting

N — % _1\n+l
Ba(W) = (AL LS (1,11, AsTD™) W(ps)ne, (ps)dps
" Ny, (Fs)\P; (Fs)

for every W € W(II, ), where S is a sufficiently large finite set of places of F (depending on W).
That the above integral is convergent follows from [BP18, Proposition 2.6.1, Lemma 3.3.1], [JS81b],
and moreover, the product stabilizes for S sufficiently large by the unramified computation of [FIi88,
Proposition 3].

6.2.6.
Theorem 6.2.6.1. Let y € X™8(G,,) for which we adopt the notation introduced in the previous three
paragraphs. Then, for every f € C,,([G,]) and ¢ € S(A"), we have

1. If x is Hermitian, the function A € iall\‘/[’* = Bn(Wy n,) is Schwartz and the resulting map

Co([Gn]) = S(iak™), [ (4 eiak” ﬂn(wf,nﬂ)) (6.2.6.1)

is continuous.
2. The function s — (s — l)ZER(s, Of, ) admits an analytic continuation to H~1 with a limit at s = 1,

and setting ZgR’*(l, 0f. ¢) = ]ir111+(s - 1)Z£R(s, Of, @), we have

. . 21-dim(az) g () [iafj Bn(Wy n,)dA if x is Hermitian,
7R (1,07, ¢) = (6.2.6.2)
4
0 otherwise.

3. The equality

~ 1
9(0)Pg; (1) = 52, (1.°F. 4). (6.2.6.3)

6.2.7.
We note the following immediate corollary of Theorem 6.2.6.1.
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Corollary 6.2.7.1. Let y € X"8(G,) for which we adopt the notation introduced in the paragraphs 6.2.4
and 6.2.5. Then, for every f € C,(|Gn]), we have

7—dim(ar) fia’“’* Bn(Wy n,)dA if x is Hermitian,
M

Pg; (f) = (6.2.7.1)
0 otherwise.

6.2.8. Proof of Theorem 6.2.6.1 1. and 2.
Here, we prove parts 1 and 2 of Theorem 6.2.6.1. We will explain how to deduce the last part in the next
subsection. The proof is actually along the same lines as that of [BPCZ22, Theorem 6.2.5.1]. Therefore,
we will be brief on the parts that are similar.

Set

./4 = (iR)IUJUK

and let 4 be the subspace of vectors x = (x¢)cerusuk € A such that 3,7y 0k X¢ = 0. We equip A
with the product of Lebesgue measures and .4y with the unique measure inducing on A/ Ay =~ iR the
Lebesgue measure via the map x = ¥ ,¢;uuk Xc. We identify A with ia}, by sending x € A to the
unramified character

g = (go)ecruguk € M(A) = 1_[ G, (A) — l_[ |detg€|gg/ne.
{elUJUK £elUJUK

We note that this isomorphism sends .4y onto iaf,[’*. Furthermore, by our choice of measure on iaj,
(see §2.1.8 as well as [BPCZ22, Eq. (2.3.1.1)]), this isomorphism sends the Haar measure just described
on A to (27)" P times the Haar measure on ia},, where we have set

r=dim(Ay) = |IUJUK|, P= ﬂ ne.
telUJUK

Set fx = fu, for every x € A. Then, by a computation completely similar to that leading to [BPCZ22,
Eq. (6.3.0.3)] (using one of the main results of [Lap13]), we have

Z60F.0) = o0 [ 2R f o)

0
for R(s) > 1.

Let Sp be a finite set of places of F including the Archimedean ones and outside of which x is
unramified and let So_ s C So be the subset of finite places. We fix, forevery / € JUJUK and v € Sp ,
polynomials Q;(T), Qy,»(T) € C[T] with all their roots in H}o 1| and H, -1 [, respectively, such that
the products s +— Ql(s)Loo(s,m,As(_l)nH) and s = Q. (q,*)Ly (s, ﬂl,AS(_l)"+l) have no pole in

Hjo,1(- Let Io be the set of i € I for which there exists i* € I (necessarily unique by regularity of x)
satisfying 7r;« = 7 and fix a subset I’ C Iy such that Iy is the disjoint union of /" and (1")*. Set

B Xi + X; X; + X 2x1 2X1
P(s,)_c)—l_l(s+ p» )(s+ p» _1)H(S+E)(S_1+E)

iel’ keK
2x,
2xl —S—Tl
X l_[ 0 (S+ n_ 1—[ Ql,v qv "
1eIUJUK U7 reruguk
VES()J‘
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Then, we can prove exactly as in [BPCZ22, §6.3] that the two functions
(5,x) eCx Ay P L)z (s ] f
$,X 0 S x| 2y s+ 2 @
and
1 FR
(5,x) eCxAgp— P z—st o s+ fx, ,

where Ji(g) = fi(! g~ "), satisfy the conditions of [BPCZ22, Corollary A.0.11.1]. Therefore, by the
conclusion of this corollary, the map

s Fy = (EHH(S+)%;C“—1) 1_[ (s+2:—kk—1)ZER(s,fx,¢))

iel’ keK

induces a holomorphic map H;-¢ — S(Ap) for some € > 0. This already implies that

-1 -1
FR( 0 _ s ol Xi+Xpe 2xp
510 ZR(s,°f.9) = %(2m) /A]‘I[(H ) [T+ 2-1) Awa

N
L keK

has an analytic continuation to ;. Moreover, if y is not Hermitian, the linear forms x € Ay — x; +x;-,
iel'sand x € Ay — xi, k € K, are linearly independent, and thus, by [BP21, Lemma 3.11],
ZER(S,Of, ¢) has a limit as s — 1.

We assume from now on that y is Hermitian so that / = I’ U (I’)* and J = 0. Set AL = (iR)’,
A’ = (iR)!"YK and let A, be the subspace of x € A’ such that 3,/ x; + ¥xcx Xk = 0. We have a short
exact sequence

O—>AL—>A0—>A(')—>O,

where the first map sends x € AF to the vector y € Ag with coordinates y; = x; fori € I’, y; = —x;+ for
i € (I")* and y; = 0 for k € K, whereas the second map is given by

x € Ao ((x; + x4 )ier, (X )kek) -
We equip AL and A’ with the products of Lebesgue measures and Aj as before with the unique measure

inducing on A’/ A{ = iR the Lebesgue measure. Then, it is easy to see that the above exact sequence is
compatible with the different Haar measures. In particular, we have

Z (s, f, ¢) = (271) r“/ ]_[(s+——1) 1_[ (s+2y—"_1)_l/ Fy(x +y)dxdy.
ni AL - -

ozel' keK

From this and [BP21, Proposition 3.12], we obtain

. n [lier ni [kex 5 > I'UK -1
lim (s - NZMR(s,°F, ¢) = = (27)7"*! —(2m) "'k / Fi(x)dx  (6.2.8.1)
s—1t 4 P Zlelln,+2k€K 5 AL - =

2)~ 1
:Lzl—\lfl‘/ Fi(x)dx,
P’ AL -
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where we have set P’ = [];¢;+ n;. Furthermore, from the unramified computation of [F1i88, Proposition 3]
and [BP21, Lemma 2.16.3], we have

Fi(x) = lim (s = DI"KIZER (s, £, 0) = 6(0)a (W) (6:28.2)

for x € A". However, the isomorphism A = ia}, sends A" onto ia%" and sends the measure on A" to
eoll'lp

20|
so is the function A € iab’* — B (W m,). Moreover, that the map (6.2.6.1) is continuous follows from
(6.2.8.2) together with [BPCZ22, Theorem 6.2.5.1 1., Eq. (A.0.4.3)] and the closed graph theorem.
Finally, combining (6.2.8.1) with (6.2.8.2) and the above comparison of measures readily gives the
identity (6.2.6.2) and ends the proof of Theorem 6.2.6.1 2.

times the measure on iakl’*. As, by [BPCZ22, Corollary A.0.11.1], the function F is Schwartz,

6.2.9. Proof of Theorem 6.2.6.1 3.
The proof of [BPCZ22, Theorem 6.2.6.1] applies verbatim noting that in loc. cit. the condition that y is
x-regular is only used at the end of the proof to show that the family of bilinear forms denoted by

s P @ZER ()
on C, ([M,]) x S(A"™") extends holomorphically to H-. However, thanks to the proof of part 2 of

Theorem 6.2.6.1 given in the previous subsection, we know that this property continues to hold for
cuspidal data that are only assumed to be regular.

6.3. Proof of Theorem 6.1.1.1
Since y is H-regular, by [BPCZ22, Theorem 7.1.3.1], the period integral

Py : ¢ €S, ([G]) - '/[H] ¢(h)dh

extends continuously to a linear form on 7, ([G]) that we shall denote by P}, . Then, by the very same
argument as for [BPCZ22, Eq. (8.2.3.5)], we have

L(f) =Py (/[G,] Kf,x(-,g’)ncf(g')dg') , (6.3.0.1)

where the inner integral is taken in 7 ([G]) for N large enough. Furthermore, applying Corollary 6.2.7.1
instead of [BPCZ22, Corollary 6.2.7.1], the discussion of [BPCZ22, §8.2.4] shows that this inner integral
is identically zero if y is not Hermitian, whereas otherwise, it leads to the following expansion:

[G/]Kf,x('ag,)nG’(gl)dg':2—dim(aL)/L Z EC.Ip(4, f)¢, )Bp(W(¢,))dA  (6.3.0.2)

iuA/i* ¢€Bp’7r
for Bp, . a K-basis of Ig((ﬁ)) (7). We assume from now on that y is Hermitian. We claim the following:

(6.3.0.3) There exists N > 0 such that for every 1 € iak,l’*, the series

Y EGIp( )¢ DB, (W(g, 1) (6.3.0.4)

PEBP &

converges absolutely in 7 ([G]), and furthermore, the integral over iakl’* in the right-hand
side of (6.3.0.2) converges absolutely in Ty ([G]) .
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Indeed, that the series (6.3.0.4) converges absolutely in 7 ([G]) for large enough N (independent
of A) follows from [BPCZ22, Theorem 2.9.8.1]. Note that for every A € iall‘jl’* and g € [G], we have

D E(Ip(4, )¢, By (W(h, 1) = By(Kf (g ),

PEBp 1

where K¢ (g,.)n, denotes the projection of the function Kr(g,.) € S([G]) to I, as defined in
[BPCZ22, Eq. (2.9.8.14)]. Moreover, by [BPCZ22, Lemma 2.10.1.1], for every continuous semi-norm
pon S([G]), we can find N, > 0 such that for every f’ € S(G(A)), we have

N,
WKy (8, ) <pur lgllg", forg € [G].

In particular, combining this estimate with the first part of Theorem 6.2.6.1, we deduce that for each
d > 0, we can find N; > 0 such that, for f’ € S(G(A)), we have

Z E(8,1p(A, )¢, DBy (W (e, V)| = |8, (K (g, )| <apo gl (1+ 11D

$EBp,x

for (4,g) € iaff x [G]. Choosing d such that A — (1 + [|A])~¢ is integrable on iakl’* and applying the
above inequality to f* = R(X) f for X € U(g) gives the second part of (6.3.0.3).

We now need to recall how the extension Py, is defined in [BPCZ22, Theorem 7.1.3.1]: for ® €
T, ([G]), the integral

ZJS (5, @) = / Wao (h)|det h[},_dh,
Nrz (£)\H (&)

where We (h) := f[ N ®(uh)n (1)~ du, a priori only defined when R (s) is sufficiently large, admits
an analytic continuation to C and we have

Py (@) = Z55(0,®).

Therefore, by continuity of P3,, (6.3.0.2) and (6.3.0.3), we obtain

Py (/{G,J Kf,x(-,g’)ncf(g’)dg’)zzdi“‘(“” /iaL Do PEC TP, )¢, ))B, (W(g, D)dA

A/;* ¢€BP’,{

_ 5-dim(ar) / LD ZESOWUR( g, 0))B, (W (e, )dA

97" $EBp.

= 2~ dimlar) / LI, (f)da.
iay;”

M

Together with (6.3.0.1), this ends the proof of the theorem.

7. Proof of Gan-Gross-Prasad conjecture: Eisenstein case
7.1. Global comparison of relative characters

7.1.1. Notations

We follow the notations of Sections 3 and 4. In particular, we fix an integer n > 1. We consider the
group G = G, X Gy and, for h € H,, the groups U;l C Uy,. Since n is fixed, we drop it from the
notation: H = H,. The various Haar measures are those considered in §2.1.8.
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7.1.2.

Let Vr o C So C Vr be a finite set of places containing all the places that are ramified in E. For every
v eVp,weset E, = E®f F,, and when v ¢ Vr ., we denote by O, C E, its ring of integers. Let
‘H° C ‘H be the (finite) subset of Hermitian spaces of rank n over E that admits a selfdual O, -lattice
for every v ¢ So. For each h € H°, the group Uy, is then defined over O, and we fix a choice of
such a model. For v ¢ Sy, we define the open compact subgroups K, = U,(O,) and K, = G(O,),
respectively, of Uy, (F, ) and G(F, ). We set

Ky =] Knvandk® =[] Ko

véSy veSy

We choose also for each v € Sy some maximal compact subgroup K, € Up(F,) and K, ¢ G(F,)
(see §3.1.3).

Letv ¢ Sy. We denote by S° (U, (F))), resp. S°(G (F,)), the corresponding spherical Hecke algebra.
We have the base change homomorphism

BCh,y : S°(G(Fy)) = S*(Un(Fy)).

We denote by S°(Uj,(A)), resp. S°(G(AS0)), the restricted tensor product of S°(Uj(F,)), resp.
S°(G(Fy)), for v & So. We set BC,° = ®yg5,BCh .

We also denote by S°(G(A)) € S(G(A)) and S°(Up(A)) € S(U,(A)), for h € H°, the subspaces
of functions that are, respectively, bi-K°-invariant and bi—KZ -invariant.

7.1.3. Transfer
Let 4 € H°. We shall say that f5, € S(G(Fs,)) and fs’:) € S(Up(Fs,)) are transfers if the functions f5,

and f;g have matching regular orbital integrals in the sense of [BLZZ21, Definition 4.4].

7.1.4. Cuspidal datum yy and H-regular Hermitian Arthur parameter Il

Let P be a standard parabolic subgroup of G and 7 be a cuspidal automorphic representation of M = Mp.
Let yo € X(G) be the class of the pair (Mp, 7). We assume henceforth that y is a Hermitian (G, H)-
regular cuspidal datum in the sense of §4.1.3. We assume also that (M, ) satisfies the conditions of
§4.1.4 and that L is the standard Levi subgroup containing M defined in this §. Set IT = Indg (m): this
is a H-regular Hermitian Arthur parameter in the sense of §1.2.1. We assume that S is large enough so
that IT admits K°-fixed vectors. Let Il be the discrete component of IT (see §1.1.2).

The group S = Sty is defined in §§1.1.2 and 1.1.4. Its order can be computed as follows:

ISn| = Zdim(aL)—dim(ak,)_ (7.14.1)

For any A € iak[’*, we shall use the distribution Ip . (4,-) on S(G(A)) defined in §4.1.7.

7.1.5.
Let S(’) be the union of Sy \ VF « and the set of all finite places of F that are inert in E. Let h € H° and
let %1’1[ C X(Up) be the set of cuspidal data represented by pairs (M}, o) such that Mj, is the standard

Levi factor of a standard parabolic sugroup P}, of Uy and o is a cuspidal automorphic representation of
My, (A) such that

e II is a weak base change of (P, o) (in the sense of §§1.1.3 and 1.1.4);
e 0 is [[,¢s,(Mn(Fy) N Kp,,)-unramified;

https://doi.org/10.1017/fmp.2025.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.8

Forum of Mathematics, Pi 65

e with the identifications M), = G¥ x U where G* is a product of linear groups and U = U (hy,,) xU (hné])

for some hné € Hp, and hp, € ’Hné ando = ot® oy accordingly (where oy is a cuspidal automorphic
representation of U(A)), for all v € S| U VF «, the representation Iy, is the split base change of the
representation oy .

Since IT is a H-regular Hermitian Arthur parameter, the class of (M, o) is (U, U’)-regular in the
sense of §3.5.2. Moreover, there is a natural isomorphism

be = be(u,, o) Oy = ayy, - (7.1.5.1)

More precisely, we wrote Mj, = G* x U, where G* is a product of linear groups G,,, for some integers
mi and 1 <i < s sothatay, = & a; . Butthe product [T;_;(Gm; X Gpm,) is also a factor in the
decomposition of M into a product of linear groups. So the space a;,h ® a;‘wh =&, (az;mi ® a*GMi) isa
subspace of aj,. The antidiagonal map x +— (x, —x) then identifies a,, Wwith a subspace of a), ®a},

and thus of a},, and this subspace is precisely aﬁ,l’*.

Remarks 7.1.5.1. The base change map bc¢ depends implicitly on the choice of the pair (M}, o). Indeed,
if (My p,07) is a pair equivalent to (M, o) and if w € W(My,, M; ) is such that o = w - o, then
bemy o) = W o beuy,, o) (Where we view w as a map a}‘uh - a}‘wl’h). In order to not burden the
notation, we shall omit the subscript (M},, o) from the notation bc in (7.1.5.1).

‘We warn also the reader that the map (7.1.5.1) does not preserve the various choices of Haar measures.
In fact, the pullback of the measure on aj*wh is 24im(@37) times the measure on all\‘/[’*.

For any A € iall\jl’*, we set

)= D Tk (e, £, (7.15.2)

(My,0)

where the sum is over a set of representatives (M, o) of classes in %ﬁ and ];‘,h’(r(bc(/l), f) =

Jg:,a(bc(/l),f) is the distribution introduced in §3.5.5. By Proposition 3.5.5.1 and remarks 7.1.5.1,
the distribution does not depend on the choice of the representative.

The sum above is a priori absolutely convergent and the convergence is uniform on compact subset
of iall\jl’* (as follows from from a reinforcement of [BPCZ22, proposition 2.8.4.1] based on results of

Miiller; see [Miil98, corollary 0.3]). In particular, the expression J]f’[ (4, f) is holomorphic for A € i akl’*.

7.1.6. A global relative characters identity
Theorem 7.1.6.1. Let f € S°(G(A)) and f* € S°(Uy(A)) for every h € H°. Assume that the following
properties are satisfied for every h € H°:

f=(AART) fs, ® £50 with fs, € S(G(Fs,)) and 5 € §°(G(A%)).
S = (A28 @ f1S0 with f2 € S(Un(Fs,)) and f'50 € S*(Up(A50).
The functions fs, and fs}; are transfers.

fr5 = BOO (%)

The function 5 is a product of a smooth compactly supported function on the restricted product
H;ezs(guvp,m G (F,) by the characteristic function OvaeS(’]\So G(O,).

M e

. L%
Then for any A € ia,;", we have

Z T, £ = 18nl™ e £ (4, f). (7.1.6.1)

heHe
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Remark 7.1.6.2. If I1is a discrete Arthur parameter (thatis, L = M), the statement reduces to [BPCZ22,
proposition 10.1.6.1]. As we observed in [BPCZ22], if the assumptions hold for the set Sy, they also
hold for any large enough finite set containing So.

7.1.7. Proof of Theorem 7.1.6.1

As in [BLZZ21] and [BPCZ22], our proof is based on the global comparison of Jacquet-Rallis trace
formulas and the use of multipliers to isolate some spectral contributions. However, the spectral contri-
butions we consider here are continuous in nature, and we need further considerations.

In [BPCZ22, Theorem 3.2.4.1], we defined a distribution 7 on S(G(A)): this is the ‘Jacquet-Rallis
trace formula’ for G. For unitary groups, we have an analogous distribution J# = JU» on S(Uj, (A)) for
each h € H (see Theorem 3.2.3.1). By [CZ21, théoreme 1.6.1.1], we have for functions f and fh as in
the statement

1) = > "M, (7.1.7.1)

heHe

In the following, for each finite place outside Sy, we fix open compact subgroups K;, c K, and
, C K,y of finite index. We set

k=[] x[]xadky = [] &, []&ne

v ESO\VF,oo vESo v GSO\VF,oo véSy

’
Kh,

We denote by S(G(A), K(®) € S°(G(A)), resp. S(Up(A), K;’:l) c §°(Up(A)), the subalgebras of
bi-K{* (resp. bi-KZ‘jl) invariant functions. Since we can shrink K7° and K;’:l if necessary, it suffices to
prove the theorem for functions in these subalgebras.

We denote by M5 (G (A)), resp. M50 (Uy(A)), the algebra of S(-multipliers defined in [BLZZ21,
definition 3.5] relatively to the subgroup vasg) K, , resp. Hv¢5() Kp,v. Any multiplier u € M5 (G(A)),
resp. u € MS(Up,(A)), gives rise to a linear operator ux of the algebra S(G(A), K7°), resp.
S(Up (A),K;’:l). For every admissible irreducible representation p of G(A), resp. of Uj(A), there
exists a complex number u(p) such that p(u * f) = u(p)p(f) for all f € S°(G(A),K}’), resp.
f e 8 (Up(A), K,‘;‘:l). Note that u(p) depends only on the infinitesimal character of the archimedean
component of p and on the components outside S(. Moreover, if Q is a standard parabolic subgroup of
G, resp. Up, and if p is an admissible irreducible representation of the Levi component Mo (A), then

we have for any A € a*Q’C and R, = Indg (pa), resp. Indg” (P,

Ra(p = f) = p(R)RA(f),

where u(R,) € C and the map A — u(R,) is holomorphic.
The following two lemmas are based on [BLZZ21, theorem 3.17] and a strong multiplicity one
theorem of Ramakrishnan; see [Ram18].

Lemma 7.1.7.1. Let h € H° and A € iak[’* in general position. Then there exists a multiplier u; €
MSo(Up(A)) such that

1. Forall f" € S(Uy(A), K;’l‘jl), the right convolution by uy, * f"* sends L*>([U}]) into
®,cxn Ly ([Un]).

2. For (My, o) € X", we have u, (Indg: (Tbey)) = 1.

Proof. By [GRS11], there exists at least one 4’ € H° such that the set %ﬁb is nonempty. We fix such
a form /" and a pair (Myp, o). Let A € iaﬁ[’* in general position. Let 7 € H° and let XS’ be the set of
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cuspidal data of U}, represented by pairs (Mg, p) with Q C Uy, a standard parabolic subgroup for which

there exists 2’ € a* 0.c such that

(A) the Archimedean infinitesimal characters of Ind , Yo ( Tpe /z)) and Indgh (pr) are the same;

(B) for all finite places v outside S, the irreducible representatlon IndU"" (Fy)

Py (Fy >( be(d),v
Up (Fy
of Indgy(;3 (p.v)-

By [BLZZ21, theorem 3.19], there exists a S(')-multiplier up such that
(C) Forall f' € S(U,(A), K,’,), the right convolution by p, * f" sends L2([Uy]) into

) is a constituent

&, cxn Ly ([UnD).

(D) ﬂh(Ind D ( c(/l)))

Letd’ € aQ c

We can write the Levi factor Mg of Q as a product G* x Uy, where G* is a product of linear groups and
Uy is a product of two unitary groups. Accordingly, we write p = pti x po. Let O = Resgr(Q Xr E)
andlet A}, € a*QE be the base change of A’. Observe that I, is generic for all places v and is the split base

) for finite v ¢ S 4 So the representation Ind ”b((?) (o’b

and (Mg, p) be arepresentative of an element Xf,’ such that conditions (A) and (B) hold.

Fy)
of the representation Ind "b(

) (e ()

is also generic, and thus, IndU”(F v) (pr.v) and py ., are also generic for finite v ¢ S’ By [BLZZ21,

Theorem 4.14 (1)], there ex1sts an 1sobanc automorphic representation pr of Mg, such that the split
base change of p is pg at almost all split places. By the strong multiplicity one theorem of Ramakrishnan
(see [Ram18]), we deduce that the isobaric automorphic representations of G (A) associated to (P, 7®A1)
and (Qf, pE ® A};) are isomorphic. Using [JS81a, theorem 4.4] and the fact that A is in general position,
we conclude that up to a change of representative, we have P C O, the inclusion given by base change

a*Q C a*QE induces an isomorphism of a*Q onto akl’* which identifies A’ to bc (), the representation Iy

is the weak base change of py and IndgE (p* ® Iy ® ph*) = IL. Using condition (B), we deduce that
Io,, is also the split base change of pg,, for all finite places v outside S). We get that %f{ C %ﬁ, and so
(C) implies assertion 1.

Still, we have to check assertion 2. Let (Mg, p) be a representative of an element in %h. We claim
that IndU" (p) and Ind, Yo (a' be( /1)) have the same Archimedean infinitesimal character and have the

same local component for all finite places v outside S;. The latter condition follows directly from the
definition of the set %f_‘[ and the fact that the split base is injective. The former condition follows from
[BLZZ21, Theorem 4.14 (4)] (applied to p) and the fact that the base change map is injective at the
level of archimedean infinitesimal characters. Since condition 2 depends only on the components of
Ind(Q]" (p) on Vg \ S7, we see that (D) implies assertion 2. O

Lemma 7.1.7.2. Let A € ia]%,l’*. Then there exists a multiplier 1 € M50 (G (A)) such that

1. For all f € S(G(A),KZ‘:I), the right convolution by u = f sends L*(G(F)Ag(A)\G(A)) into
L3, ([GD).
2. We have u(I1;) = 1.

Proof. The proof is similar to (but simpler than) that of Lemma 7.1.7.1 and is based on [BLZZ21,
Theorem 1.3]). m]

Let Ao be an element of iaﬁl’* in general position. Let 1 € M50 (G(A)) and pu € M5 (Up(A)) for
h € H° satisfying assertions of Lemmas 7.1.7.1 and 7.1.7.2 for 4 = 1p. We may and we shall also assume
that uh is the ‘base change’ of u (see [BLZZ21, Lemma 4.12]). Let f € S(G(A), K‘f"), and for h € H°,
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let f" € S(Un(A), K;?,) that satisfy the hypotheses of Theorem 7.1.6.1. Then y * f and ul « f1 for
h € H° still satisfy the hypotheses (see [BLZZ21, Proposition 4.8]). Hence, by (7.1.7.1), we have

I(uxf) = Z Jh(uh M. (7.1.7.2)

heHe

It follows from Lemma 7.1.7.2 and [BPCZ22, Proposition 3.3.3.1 and Theorem 3.3.9.1] that we have
I(p* f) = L, (pt * f). In the same way, Lemma 7.1.7.1 and Corollary 3.3.5.2 show that the right-hand

side of (7.1.7.2) reduces to
D0 T s .
hEHOXexﬁ

By Theorems 3.5.7.1 and 4.1.8.1 and by an elementary change of variables, we get

2_dim(aL) /;I<s* IP,H(/L# * f) d/l = Z Z / J;l)h,(r(bc(ﬂ)’ ,Uh * fh) d/l

*

M heH° (Mh,(T)Exﬁ LaMh
_ »—dim(ak)) h h
=2 ), /L T (A pp o f7) da. (7.1.7.3)
heHe zaM

Let vy, v, two finite places outside S with distinct residual characteristics. Let §; € Vg \ §; be
a finite set of finite places. We assume that S contains v; and v,. Let Ag, be the spherical algebra
®Qves; S°(G(Fy)). Let g € Ag,. For all h € H°, let " = (®yes5,BChv)(g) be its base change to
®ves, S°(Un(F,)). The assumptions of Theorem 7.1.6.1 still hold for the convolutions f g and f" x g".
Note that we have for any A € iaﬁ,l’*,

TEQ i+ (F" % g"M)) = TA(A un * M8 (s,

where § is the Satake transform and g(I1, s, ) is the scalar by which g acts on I1 5, = ®,es,I1,,. For
alld e iak[’*, we set

) = 1Sul™ Ip (s £) = D I x ).
heHe

The equality (7.1.7.3) implies that for all g € Ag,, we have

/L,* g’(H,LSI)h(/l) da =0.

tayy

Let7s, : 1€ iaﬁl’* — II, s,. Because vi and v, have distinct residual characteristics, the morphism from
ia}, to the group of unramified characters of M (F,, X Fy,) givenby A € ia}, = (x € M(F,, X F;))
exp({4, Hp(x))) is injective. We deduce that the map 7y,, ,,} has finite fibers of uniformly bounded
cardinality. In particular, the map 7, has the same property with the same bound. By Stone-Weierstrass
theorem, the set {g | g € As, } is dense in the set of continuous fonctions on the unramified unitary dual
of [, es, G(Fy).The push-forward of the measure /(1) dA by the map s, is thus zero. In this way, we

get that for almost all A € ia}:",

Z h(1;) =0 (7.1.7.4)

AeTg ([ s,)

for all finite sets S;, as above. By continuity of £, this equality holds for all A € iall\jl’* and in particular
for A = .
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Let us write ’7;_]1 (ILay,s,) = {20, A1, ..., 4}, where j + 1 is the cardinality of this set. Let 1 <i < j.
If I1,, # II,,, by the strong multiplicity one theorem of Ramakrishnan (see [Ram18]), there exists a
finite place v; ¢ S(') U 81 such that ITy, ,, # I1,,,,,. Since we may enlarge S; by adding such a place v;,
we will assume without loss of generality that for any A € 7;’11 (ITy,,s,), we have I1; = I1,,. By [JS81a,
theorem 4.4] and the fact that the cuspidal datum (M, ) is G-regular, we have even ) = 74, and thus,
A = Ag.So (7.1.7.4) reduces to (1) = 0. Because Ay is in general position, we may use Condition 2 of
Lemmas 7.1.7.1 and 7.1.7.2: we get

h(A0) = 1Snl™ e 2 (A0, ) = Y T (Ao, 1.

heHe

So we get (7.1.6.1) for A in general position, and so for all 1 € iakl’*, since both members of (7.1.6.1)
are continuous (and even analytic).

7.2. Proof of Theorem 1.2.3.1

7.2.1.
Once we have Theorem 7.1.6.1, the proof of Theorem 1.2.3.1 is very similar to the proof of [BPCZ22,
theorem 1.1.5.1]. For the reader’s convenience, we recall some steps. We use notations of Section 7.1.
Let IT = Indg(n) be a H-regular Hermitian Arthur parameter of G and let A € iai[’*. The relative
character I, defined in (4.2.8.1) is built upon two linear forms — namely, Z®S(0) and $,,. The linear
form ,, is not identically zero (as a consequence of [GK72], [Jac10, Proposition 5] and [Kem15]) and
ZR5(0) is nonzero if and only if L(%, IT1,) # 0 (as follows from the work Jacquet, Piatetski-Shapiro and
Shalika [JPSS83], [Jac04]). Since by Theorem 4.2.8.1, we have I, = Ip, (1), we deduce that Ip . (1)
is nonzero if and only if L(%, 1) # 0.

Let us consider & € H, a parabolic subgroup P, = M, Np, of U, and a cuspidal subrepresentation
o of My. Let Ap, &, (Un) € Ap, (Up) be the space of forms ¢ € Ap(G) such that

m € [Mp] — exp(—(pp, Hp(m)))p(mg)

belongs to the space of o for every g € G(A). By a variation on §3.5.5, we define for u € a;[h the
relative character '

Jor )= > Pu (e, (1, £, 1)Pu; (0 1),

SDEBPh,o'

where Bp, » is a K-basis of Ap, o, (Uy); that is, it is the union over of 7 € K}, of orthonormal bases
Bp, .o« for the Petersson inner product of the finite dimensional subspaces Ap, o (Up, T) of functions
in Ap, »(Up) which transform under K}, according to 7.

Let us assume that IT is the weak base change of (Pj, o). Then we have the map bc : akl’* - a}“wh;
see (7.1.5.1). It is clear that the distribution J f’)h,o_(bc(/l)) is nonzero if and only if the period integral
Pu; (-, bc(2)) induces a nonzero linear form on the space of o~. Then Theorem 1.2.3.1 reduces to the
equivalence between the two assertions:

(A) The distribution Ip_,(A) is nonzero.
(B) There exist h € H, a parabolic subgroup P, = M, Np, of U, and a cuspidal subrepresentation o
of My, such that IT is the weak base change of (Py,, o) and Jl'ih o, (bc(A), f) #0.

7.2.2. Proof of (A) = (B)

Let Sy be the finite set of §7.1.2 such that Iy is not identically zero on S°(G(A)). Then by results of
[Xuel9] towards the archimedean transfert and the existence of p-adic transfer of [Zhal4b], we see that

https://doi.org/10.1017/fmp.2025.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.8

70 R. Beuzart-Plessis and P.-H. Chaudouard

there exist functions f and f” for h € H° satisfying the hypotheses of Theorem 7.1.6.1 and such that
Ip (4, f) # 0. Then (B) follows from (7.1.6.1).

7.2.3. Proof of (B) = (A)
We may choose the set Sy so that there exist ko € H°, a parabolic subgroup Pp, = Mu,Np,, C Up, a
cuspidal subrepresentation o of Mp,(A) and a function ¢ € §°(Up,(A)) such that

o the class of (Mp,, 0y) belongs to XM,
o JM (be(R),8) #0.

Py, 00

We set foh(’ =&xEY, where £V (g) = £(g~1). Then (see [Zhal4b, p. 993]) we have Jl}i‘ja(bc(/l), foh(’) >

0 for all pairs (P, o-) whose class belongs to X{.l[“ . Moreover, J i‘,"’ - (bepy (A), f()h[)) > (. Forany h € H°
10 £l

such that i # ho, we set foh = 0. Up to enlarging Sp, we may and shall assume that the family ( foh)h eHe
satisfies conditions 2 and 5 of Theorem 7.1.6.1. The left-hand side of (7.1.6.1) for the family ( foh)h eHo
is nonzero. By the existence of transfer in [Zhal4b] and the results towards archimedean transfer in
[Xuel9], we can find test functions f € S°(G(A)) and f* € S°(Uj,(A)), for h € H°, satisfying all the
conditions of Theorem 7.1.6.1 and such that the left-hand side of (7.1.6.1) is nonzero. Assertion (A) is
then clear.

7.3. Proof of Theorem 1.2.4.1

7.3.1.
Let h € H. Let P = MpNp be a parabolic subgroup of Uy, and o be a cuspidal automorphic subrep-
resentation of Mp(A) which is tempered everywhere. Then the group Resg/r (P X E) obtained by
extension to E and restriction of scalars to F' can be identified to a parabolic subgroup Q = MgpNg of
G. Then by [Mok15], [KMSW], o admits a strong base-change 7 to Mg ; namely, for every place v of F,
the local base-change of o, (defined in [Mok15] and [KMSW]) coincides with 7. Let IT = Indg (m). It
follows that 7 and IT are also tempered everywhere. We assume that I1 is a H-regular hermitian Arthur
parameter. As in §1.1.3, we shall not distinguish in the notation the spaces aj; and a},. Let 4 € iay}.

We choose a finite set of places Sp as in §7.1.2 such that 4 € H° and o as well as the additive
character ¢’ used to normalize local Haar measures in §2.1.8 are unramified outside of Sy.

We have a decomposition o = ®, ¢y, 0. Let 2, be the full induced representation IndYn (Fv)

rr,) (V8
A). Letv € V. We define a distribution Js, , on S(Up(Fy)) by

I (= [ TS S (e, S € SWLE)

U, (F

where
S0 (f1) = / (8 Ean (80)do.
Uh(Fv)

By [Har14], since the representations X, are all tempered, the expression defining Jy, , is absolutely
convergent, and for every v ¢ Sy, we have

> L (%, H/l,v)
JZA,V(IUh(OV)) - AUﬁ’vm'

If there exists a place v € So such that o, does not support any nonzero continuous U, (F,)-
invariant functional, both sides of (1.2.4.1) in Theorem [.2.4.1 are clearly automatically zero. So
we shall assume that for every v € Sy, the local representation o, supports a nonzero continuous
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U, (Fy)-invariant functional. Then the semi-local distribution [], g, J5, , ( f\f’) does not vanish iden-
tically by [BP20, theorem 8.2.1]. According to our choice of local measure, Theorem 1.2.4.1 is then
equivalent to the following assertion: for all factorizable test function f* € S(Uy,(A)) of the form

S
1= (A0 Tlves, 1 % Tlvgs, lunco, ), we have

L% (4.1,

Th (M) =18l ETq [ 75 (£, (7.3.1.1)

, 14, As”) e

7.3.2.
By Theorem 4.2.8.1 and the definition of Iyj, there, for every factorizable test function f € S(G(A))

of the form f = Af}”*A‘Zﬂ’* [Tves, fv X [1ves, 16(0,). We have

L% (4,1,

m n In,, (fv), (7.3.2.1)

veSy

IQ,n(/L f) =

where for for every place v € Sp, we introduce the local relative character Iy, , defined by

% HV v WV v WV
IH,l,v (fV) = Z il ( <W(/{, 34/‘))\))5312;‘/( )’ fV € S(G(Fv))

W,

Here, the sum runs over a K, -basis of the Whittaker model W(I1, ,,¢¥n ), and A, B;.v, {., )Whit,v
are given by

@y (W) = / W, (hy)diy
NH(FV)\H(FV)

ﬁn,v(Wv) :/ W, (pvIng v (pv)dpy,
N’(Fy)\P'(Fy)

<Wv’Wv>Whitt,v = / |Wv(pv)|2dpv-
N (Fy)\P(Fy)

The above expressions, especially a, (W, ), are all absolutely convergent due to the fact that IT, , is
tempered (see [JPSS83, Proposition 8.4]). The above definition implicitly depends on the choice of an
additive character ¥ of Ag/E trivial on A which, up to enlarging Sy, we may assume to be unramified
outside of Sy.

7.3.3.

Let f h be a test function as in (7.3.1.1). Since both sides of (7.3.1.1) are continuous functionals in f‘f’
for v € Sy, we may assume that the function £ admits a transfer f, € S(G(F,)) for every v € S using
results of [Xue19] and [Zhal4b]. Moreover, by the results of those references, we may also assume that
for every h’ € H® with h’ # h, the zero function on Uy (Fs,) is a transfer of fs, = [], s, fv- We set

f= Af_}”*Aé),’*fSO X [Tygs, 1G(0,)- Then, setting ' = 0 for every i’ € H° \ {h}, the functions f and
(f" ) ene satisfy the assumptions of Theorem 7.1.6.1. Therefore, we have

TR, ) = 1Snl ™ g, < (A, £). (7.33.1)
7.3.4.

By the local Gan-Gross-Prasad Conjecture [BP20], the classification of cuspidal automorphic represen-
tations of Uy, in terms of local L-packets [Mok15], [KMSW], all the terms in the definition of J{.‘[ A, f h)
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(see (7.1.5.2)) vanish except possibly Jf,’, (T(/l, fh). So (7.3.3.1) reduces to

Jh ") = 1Sul ™ o, (A, £). (734.1)

By [BP21, Theorem 5.4.1] and since II,, is the local base-change of o, there are explicit constants
Kk, € C* for v € S satisfying [], ¢, kv = 1 and such that

In,, (fv) = koJs, (F) (7.3.4.2)

for every v € So. Now (7.3.1.1) results from the combination of (7.3.4.1), the factorization (7.3.2.1) and
the local comparison (7.3.4.2).

8. Application to the Gan-Gross-Prasad and Ichino-Ikeda conjectures for Bessel periods
8.1. Groups

8.1.1. Notations

They are as in Sections 2, 3 and 4. In particular, E/F is a quadratic extension of number fields. For
every place v of F, we set E\, = F, ®¢ E and we let O, be the ‘ring of integers’ in the quadratic étale
extension E,, of F,. We denote by A = []; E, the ring of adeles of E. We fix a nontrivial character
W : Ap/E — C* that is trivial on A. We also set (see §2.1.7)

= inf s
el = inf_ x|

o(x) =1+]log|lx|[, forx e G(A).

If V is a finite dimensional vector space over F, we also fix a height ||.|ly, : Va = V ®r A — Ry
as in [BPCZ22, §2.4.2], and for every place v of F, we denote by ||.||y, the restriction of ||.||y, to
V, =V ®F F,. We will also write S(V,,) for the usual Schwartz-Bruhat space on the vector space V,
(i.e., the usual Schwartz space if v is Archimedean or the space of compactly supported locally constant
functions when v is non-Archimedean).

Recall also, that for every integer n > 0, H,, stands for the set of isomorphism classes of Hermitian
forms of rank n for the extension E/F. For each h € H,,, we denote by U (h) the corresponding unitary
group. We also fix, as in 3.1, some Hermitian form of rank one hg € H;.

8.1.2. Linear groups
For every k > 0, we set G = Resg,r GLi, g equipped with the pair (B, Ty) asin §4.1.1. Let Ny C By
be the unipotent radical of By. We define two generic characters g, ¥_y : [Nx] — C* by

k-1
Yi(u) =y (Z ui,i+1) .

i=1
k-1

o (u) =y (—Zui,m), u € [Ne].

i=1

We also let P, C Gy be the mirabolic subgroup consisting of matrices with last row (0, ...,0, 1) and
Ki =1, Kk.v be the standard maximal compact subgroup of G (A).

8.1.3. Unitary groups
We define the Hermitian form hy € H, by hy = ho @ —ho. We also fix a basis (x, y) of E? consisting of
isotropic vectors for Ay (i.e. hgy(x,x) = hgy(y,y) = 0) such that hg(x,y) = 1,and weset X = Ex,Y = Ey.
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We fix once and for all two positive integers n > m of the same parity. Thus, n = m + 2r for some
r > 0.Let hy,, € Hy. We set Appy = hy @ ho, hy = hE" @ hyyy, hyyy = by ® ho = hE" @ hyyy and

Un= U(hm)v Uns1 = U(hm+1)s U, = U(hn)v Upy1 = U(hn+1)~

Note that we have natural inclusions U,, < U1 — U, — U,;1. We also define the following
products:

G=UpXUpi, U=UyXUps1, U=UpXUpsi. (8.1.3.1)
For every 0 < i < r, we set

xi=(0,...,0,x,0,...,0), yi=(0,...,0,,0,...,0), vo=(0,...,0,1) € E™,
N—— N—— N—_—— N—— N——
2i-2 1+m+2r-2i 2i-2 1+m+2r-2i 2r+m

and we define the subvector spaces X; = (xy,...,x;) and ¥; = (y,...,y;) of E™! spanned by
(x1,...,x;) and (y1,...,y:), respectively. Then, 0 = Xy € X;... € X, is a flag of A, -isotropic
subspaces, and we let P C U,y be the parabolic subgroup stabilizing it. Let N be the unipotent radical
of P. We define a character ¢y : [N] — C* by

r—1

Un ) =9 | D et (i1, 30) + bt (wvo, ) |, € [N].

i=1

The subgroup U,, C U, normalizes N, and ¢ is invariant by U,,(A)-conjugation. We define the
following three subgroups of the respective groups in (8.1.3.1):

B=Uu,=N, U =U,, ,U =U, (8.1.3.2)

where the embedding B C G is the product of the inclusion B C Uy+; and the natural projection
B — U,,, whereas the embeddings U’ c U, U’ c U are the diagonal ones. We also let /3 : [B] — C*
be the character that coincides with ¥ on [N] and is trivial on [U,,].

We will also need some auxiliary parabolic subgroups. First, we let P’ = P N U,, be the stabilizer of
the flag Xo € ... € X, in U,. We also let Q,,41 C U,y (resp. Q,, € U,) be the parabolic subgroup
stabilizing the h,.;-isotropic (resp. hj-isotropic) subspace X, and we denote by V,.; (resp. V,) its
unipotent radical.

Using the basis (xy,...,x,) of X,, we will identify G, as the subgroup of elements in both U,, and
U,+1 that stabilize the two isotropic subspaces X;, ¥, and act trivially on the orthogonal complement
(X, ®Y,)*. We then have a semi-direct decomposition

N =N; < Vyia.
We also let L,, € Q,, be the Levi factor of Q,, stabilizing Y,.. We have

Ly = Re/pGL(X,) X U(h) = Gy X Uy (8.1.3.3)

We will also use the natural identification a,, =~ a; = C sending s € C to the unramified character
(gr,h) € Ly(A) — |det(g,) |AE. Similarly, for any representation 7 of L, (A), we will denote by 7 the
twist of 7 by this character. Also, once we have fixed suitable maximal compact subgroups below giving

rise to a Harish-Chandra map Hyp,, : U,(A) — ag,, for each ¢, € Ig" (1) and s € C, we will denote
by @n.s € Ig” (75) the section given by g +— exp(s{det, Hp, (g)))¢.(g). This applies in particular to
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on € Ag, (Uy), and we will write Eg: (¢n, s) for the Eisenstein series

Eg:(g’ ¢ms) = Z ¢n,s(7g),

Y€Qn (F)\Un (F)

which converges absolutely when R (s) is large enough.
We also set Q = Q,, X U4 (a maximal parabolic subgroup of U) and

L=L,xUy1 =G, xXG
(a Levi factor of Q). We define the following subgroup of L:
BE=N,xB
as well as the character Y § = ¢_, Ry of [B]. We also set
B =U"NnB= (N, xUp)xV,.

We fix a finite set S of places of F' containing the Archimedean places as well a the places dividing 2
and such that the character ¢ and the Hermitian form #4,,, are both unramified outside S (i.e., there exists
a lattice A, € E™ such that A, = Ay, ®o, OF, is self-dual with respect to h,, for every v ¢ S).
Then, the same holds for the lattices A,+1 = Ay @ OF, A, = ngr @® A, and A, = A, & O with
respect to the Hermitian forms %,,,41, hy, and h,,41, respectively.

For € € {m,m+1,n,n+ 1}, we fix a maximal compact subgroup K =[], K}{v C Uy (A) such that

forevery v ¢ S, Kt’;]v is the stabilizer of the lattice Ay ®¢p,, O, -

8.2. Measures

8.2.1.

For every linear algebraic group G defined over F, we have equipped G(A) with its (left) Tamagawa
measure dg; see §2.1.8. Also, for each G € {U,,, Uy, Up+1, Uns2, G, Vi }, we fix a factorization dg =
[1, dgy into local Haar measures giving G(O, ) measure one for almost all v. In the case where G = Ny,
it will be convenient to fix more precisely the local measures as follows: for every place v of F, let dy, x,,
be the Haar measure on E,, that is self-dual with respect to ,,. Then we equip Ni (F,) with the product
measure

duv = I_[ d,//vu‘,,i,j.

1<i<j<k

It is well known, and easy to check, that du = [], du, is indeed the global Tamagawa measure on
Ni(A) (i.e., it gives [Ny ] volume one).
Similarly, for every v, there is another natural measure on G (F, ) = GLy (E, ) defined by

[Ti<ij<k dy, 8v.i.i
|det(gv)I5

dl//vg\/’ =

We will denote by v(G,,) € Rsq the quotient dg,, (dy, gv)~! between the Haar measure we have fixed
on G, (F,) and the above one. Set

k
AG, =G | ] 2e),
i=2
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where (£ () denotes the completed Dedekind Zeta function of E and {7, (1) its residue at s = 1. Similarly
for every place v (resp. every finite set T of places), we set

k k
AGew =] ]¢e, @) (esp. AL =" (] [ 2k G,
i=1 i=2

where (g, denotes the local Eulerian factor! of g at v (resp. { g (s) denotes the corresponding partial
Dedekind zeta function and ¢ g’*(l) is its residue at s = 1). Then, for every non-Archimedean v where
¥, is unramified, we have

VOl(Kv,dy,8v) = Ag,

and the global Tamagawa measure on G (A) is, by definition,
dg = (Az;k)71 l_[ AGk,vdlpng-
14

In particular, it follows that if T is a sufficiently large finite set of places, we have v(Gy,,) = Ag, v for

v ¢ T and
]_[ ¥(Giw) = (A5 (8.2.1.1)
veT
8.2.2.
Finally, we record the following Fourier inversion formula: for every f € C2°(P+1(Fy)) setting
Wy (g1,82) =/ )f(gl_luvgz)lﬂkﬂ(uv)duv, 21,82 € Pry(Fy),
N1 (Fy

we have

F(p) = / Wy (rayp)d,y
Ni (F\)\Gk (Fy)

for every p € Py.1(F,), where dy, v denotes the quotient of the Haar measure dy, g, on G (F,) by
the Haar measure du, = dy, u, on Ny (F,). In particular, replacing d, v by the quotient measure dy
of dg, by du,, we obtain the following renormalized inversion formula:

f(p) =v(Gi )™ / Wy (y,yp)dy. (8.2.2.1)
Nk(Fv)\Gk(Fv)

8.3. Global periods

8.3.1.
We define the Whittaker period on G, as the linear form

Pryon - A(G,]) 2 6 > /l B0 @

(Note the minus sign.)

More precisely, this is really a product of two such factors when v splits in E.
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8.3.2.
Under extra assumptions ensuring absolute convergence (e.g., cuspidality), we will consider the follow-
ing global Bessel period for ¢ € A([G]) (resp. ¢ € A([U))):

Py (¢) = /{BJ ¢(s)yp(s)ds.

esp P@) = [ o)

For example, it is readily seen that the period Py (¢) is absolutely convergent for ¢ = ¢,, ® ¢,+1, where

¢n € A([Un]) and ¢n+] € -Acusp([UnH])-

8.3.3.
Again provided it is convergent, for ¢ € A([L]), we define the mixed Whittaker-Bessel period

'PBL,M;(Q’) = -/[BL] ¢(S)lﬁ§(s)ds.

For example, this period is absolutely convergent when ¢ = ¢, ® ¢’ where ¢, € A([G,]) and
¢’ € Acusp([G]), in which case we have

PBL,wé () =Pn,,u_, (6r)PB,ys (¢).

8.4. Local Bessel periods

8.4.1.

Let v be a place of F. For every connected reductive group G defined over F,, we let C* (G(F),))
be the space of tempered functions on G(F,) as defined in [BP20, §1.5] (where it is called the weak
Harish-Chandra Schwartz space). Since we will need it, let us recall quickly its definition. Let 2%
Harish-Chandra special spherical function on G(F, ), which, strictly speaking, depends on the choice
of a maximal compact subgroup K,, ¢ G(F,) (such a choice has already been made for all the groups
we will have to consider). For each d > 0, we let C (G(F))) be the space of functions f : G(F,) — C
such that:

e If v is non-Archimedean, f is biinvariant by a compact-open subgroup and we have

|f(g)] < E°(g)o(g)?, for g € G(F,);

e If vis Archimedean, f is C* and for every X,Y € U(Lie(G(F,))),

(LR f) ()] <x,y E¥(g)o(g)?, for g € G(F,).

When v is Archimedean, Cy (G(F,)) is naturally a Fréchet space, whereas if v is non-Archimedean,
C7(G(Fy)) is a strict LF space. By definition, the space of tempered functions is C" (G(F,)) =
Uas0Cy (G(Fy)). It is equipped with the direct limit locally convex topology, and it contains
CZ(G(Fy)) as a dense subspace. (However, note that CZ°(G(F))) is not dense in C; (G(F))) for any
d>0)
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8.4.2.
By definition, the local period Py ,, is the linear form

Purs: C*WEN 2 f = [ i,

(Fv)

the integral being absolutely convergent by [BP20, Lemma 6.5.1(i)].
Moreover, it is shown in [BP20, Proposition 7.1.1] that the linear form

CR(G(F) 3 fy /B L W )ds

extends by continuity to C* (G(F,)). We denote this unique continuous extension by Pz y,., and call
it the local Bessel period.
A similar argument shows that the linear forms

Cgo(Gr(Fv)) > fy /I;I " )fv(”)lp—r,v(u)du,

CoWE > S [t s

extend by continuity to C* (G, (F,)) and C (L(F,)), respectively. We denote these unique continuous
extensions by Pw, y_, v, PBL’%, and call them the local Whittaker period and Whittaker-Bessel
period, respectively.

\4

8.4.3.

Let (G,H) € {(U, U, (G, (B.yn)), (L, (B~ ¥E)), (G, (Nr,¢_r))}. Then, for any tempered irre-
ducible representation ¢, of G(F,) equipped with an invariant inner product (-,-), and vectors
oy, ¢, € oy, the matrix coefficient

f¢",¢(, 18 €G(F)) = (0v(8)dv, ¢(})v

belongs to C* (G(F,)). We set

PH,V (¢v’ ¢:1) = PH,V (f¢v’¢'v)'

8.5. Relation between global periods

8.5.1.

Proposition 8.5.1.1. Let ¢, € Ag, (Un) and ¢pns1 € Acusp(Uns1). Then, there exists ¢ > 0 such that
for s € H~., we have the identity

Py (B (80:5) ® o) = | Pty (R By ® Bus1)) dh,
" B (A)\U’ (A)

where the right expression is absolutely convergent.

Proof. For R (s) sufficiently large, we have

EQ' (hus)= > busyh), helUd,

Y€Qn (F)\Un (F)
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so that (the resulting expression being absolutely convergent by cuspidality of ¢,+1)

PUEG G ®bu) = [ S Guu(rmbna(dh (85.1.1)

WUnl yeQ, (F\U,(F)

- / G () bt ()
On(F)\Un(4)

¢n,s (h)¢n+1 .V (h)dh,

/Ln (F)Va (A)\Un (&)

where
busry, () = / Gusr (V) dv.
[Vl

We claim that we have a Fourier expansion

brrve() = > Gu . (Oh) (8.5.1.2)
SEN, (F)\G,(F)

for every h € U,,1(A) where we have set

Ont1,N,yy (h) = /

Nr+l

Gust.v, (U ()it = /[ o W )

Indeed, the subgroup G, N of U, contains V,, as a normal subgroup, and the quotient G, N /V,, can be
identified with the mirabolic subgroup P, of G, via restriction to the subspace (xy, ..., X;, Xy+1),
where we have set x4 = vg. It readily follows from the cuspidality of ¢, that for any & € U, (A),
the function p € [Pr+1] — @n+1.v, (ph) is cuspidal in the sense of [Cog08, §1.1] and therefore by loc.
cit. that we have the Fourier expansion (8.5.1.2).

Replacing ¢,.1,v, by its Fourier expansion (8.5.1.2) in (8.5.1.1), we formally obtain (remembering
the decomposition (8.1.3.3) for L,,)

Pur (B (60:5)® buat) = [ B (Wbt N (1)l
" Ny (F)Up (F) Vi (A)\Un (&)

= / PBL,zpé (R(h)(‘ﬁn,s ® ¢n+1)) dh.
B (AU’ (&)

To justify this formal computation, it remains to check that the integral

/ (65 (W) bmsr oy ()|
Ny (F)Up (F) Vi (A)\U, (A)

converges for R (s) sufficiently large. This can be rewritten as

/ / (s (UagH) Bt i, (a8 )] 50, (a) 55, (a) dudadgdh.
P (A)\U’(A) J [Un|XT- (A)X[N; ]

Thus, as P’(A)\U’(A) is compact, it suffices to check the convergence of
Ji 015 (48) e i (@8)] 60, (@) 65, (@) dudadg =
[Un IXT; (A)X[Nr]

/ |60 (1ag) Bust.n.un (ag)| 60, ()55, (a)”'|detal}, dudads.
[Usn IXT- (A)X [Ny ]
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Let us embed 7, (A) into A7, in the natural way. Then, by [BPCZ22, Lemma 2.6.1.1] and since ¢4 is
cuspidal, for every R > 0, we have

|bnet v (@g)| <r llallz gl (a.8) € T (A) X [Unl. (8.5.1.3)
Moreover, since ¢, is of moderate growth, we can find D > 0 such that
|pn(uag)l < llall®ligly),, (u,a,g) € [Ny] X T (A) X [Up]. (8.5.1.4)

Combining (8.5.1.3) with (8.5.1.4), we are eventually reduced to the following readily checked property:
for every s large enough, there exists R > 0 such that the integral

/ lall® lall;Ré0, (a)~' 65, (a)""|detal},, da
T, (A) £

converges. [m}

8.6. Relations between local periods

8.6.1.
Letvbe aplace of F and let 7, 07y, 07,41 be irreducible representations of G, (F,,), Uy, (F,) and U,,11 (F, ),
respectively. We set o= = 0, R 07,41 (an irreducible representation of G(F,,) = Uy, (F,) X Up41 (F))). Let

L e Hompgr (f,) (rmo, lﬁng,V).

By multiplicity one results [ARS10], [GGP12, Corollary 15.3], [JSZ10], £ factors as £ = LY & L5,
where LY € Homy, (r,) (T, v) and LB € Homp(r,) (0, ¥5,v).
UH. (FV)

For every s € C, we set 74 = T|det|f5v and we denote by / On(F)

induction of 7y ® 07, to U, (F),).

(15 ® 07,) the normalized parabolic

Proposition 8.6.1.1. There exists ¢ € R such that the functional

Un(Fy)

£§~], : ¢n,s ® ¢n+1 € IQn(Fv)

(Ts ®Om) ® Ope1 L(pn,s(h) ® ops1(h)Ppi1)dh
B (Fy)\U’(Fy)

converges absolutely for s € Hx.. If, moreover, both o and T are tempered, we may take ¢ = —1/2.
Furthermore, for s with sufficiently large real part, the following assertions are equivalent:

1. There exist ¢ € T, ¢y € O and Gt € Opyy such that L(Ppr @ ¢y @ Puv1) # 0;

2. There exist ¢, s € Ig:g:;(‘rs X 0y,) and ¢py) € Oyt Such that Lgl(qﬁn,s ® ¢dn+1) 0.

Proof. Since P’ = T, B’ is a parabolic subgroup of U’, it suffices to check the convergence of the integral
[ L@ © Bt (@) (@) da =
TY(FV)
/ L((1(a) ® ()5 (1) ® i) ldetal}, 60, ()65 (a)" da
T (Fv)

for R(s) > 0.

Lemma 8.6.1.2. There exists D > 0 such that for every ¢ € T ® o and R > 0, we have

IL((7(a) ® 0(a))p)| <k llallfllall®, fora € T,(F,). (8.6.1.1)
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If, moreover, o and T are tempered, for every ¢ € T R o and R > 0, we have
IL((t(a) ® 0 (@))$)| < lallzrES (@B (a),  fora € T, (Fy). (8.6.1.2)

Proof. Tt suffices to prove the lemma when ¢ is a pure tensor (i.e., it is of the form ¢ = ¢+ ® ¢, ® Pp41,
where ¢, € T, ¢y € 0y and @41 € 0p41). Indeed, in the case where v is non-Archimedean, every
vector in 7 ® o is a sum of pure tensors, whereas if v is Archimedean, the claimed inequalities would
automatically extend from the algebraic tensor product to the completed tensor product by the Banach-
Steinhaus theorem (see, for example, [Tre67, Theorem 34.1]).

Using the equality £ = £V ® LB, we are therefore reduced to show the existence of D > 0 such that
for every R > O (resp. that when 7, o are tempered for every R > 0), we have

LY (r(a)po)| < llall® (resp. |LV (v(a)¢)| < B9 (a)) (8.6.1.3)
and
1C8 (¢ ® 0s1 (@)pun)| <r llallFlall” (8.6.1.4)

(tesp. |L (B ® Ts1 (@)dnsr)| < lallgFEV (a) )

fora € T, (F,).

The estimates (8.6.1.3) and (8.6.1.4) can be established along the same lines as Lemma B.2.1 and
Lemma 7.3.1 (i) of [BP20], respectively. More precisely, in the tempered case, (8.6.1.3) is a direct
application of Lemma B.2.1 of loc.cit. The same inequality for general representations (and for a suitable
D) is aconsequence of the continuity of LW when vis Archimedean, whereas, for v non-Archimedean, by
the same argument as in [BP20, Lemma B.2.1], we can bound the function a € 7, (F,) — |£W (T(a)(bT)\
by a matrix coefficient of 7, which is in turn essentially bounded by ||a||” for some D > 0.

As for (8.6.1.4), we first note that

UB,v (2D LB (G ® 0s1 (@) Pr1) = LB (9 ® Ts1 (ae™)hsr) (8.6.1.5)

forevery (a, X) € T, (F,) xLie(B(F,)). Furthermore, when v is Archimedean, differentiating the above
identities yields

dy s (Ad(a)X)LE (¢ ® Tpi1(@)bni1) = LB (m ® 0041 (a) st (X) ua1)s (8.6.1.6)

where dy ., : Lie(B(F,)) — C denotes the differential of ¥, at 1. From (8.6.1.6), we deduce that
for every linear form A : E!, — F,, there exists X; € Lie(B(F,)) such that

/l(a)[/B(¢m ® O+l (a)¢n+1) = ['B(‘pm ® 0pe1(a)Ops (X/l)¢n+1)

for every a € T,(F,). Similarly, when v is non-Archimedean, we deduce from (8.6.1.5) and the
smoothness of ¢, the existence of C > 0 such that LZ(¢,, ® 0s1(a)@nr1) = 0 unless ||a|lg; < C.
Combining these two facts, we are now reduced to show the existence of D > 0 such that (resp. that for
o tempered we have)

|£B(¢m ® On+l (a)¢n+l)| < ”a”D (resp. |LB(¢m ® On+l (a)¢n+l)i < Bty (a))

for a € T,(F,). The case where o is tempered is a direct application of [BP20, Lemma 7.3.1(i)],
whereas the case of a general representation follows from continuity of £Z in the Archimedean case or
an argument similar to that of loc. cit. to show that a > LB (¢,, ® 0+1(a)¢,+1) is bounded by a matrix
coeflicient of o in the non-Archimedean case. O
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By the lemma, and since there exists d > 0 such that (see [Wal03, Lemme II.1.1])

Grv (@)BYn1v (a) < 6, (a)?6p(a)' Po(a)?, fora eT,(F,),

[1]

the convergence part of the proposition reduces to the two following readily checked facts:

e Let D > 0. Then, we can find ¢ > 0 such that for every s > ¢ and for suitable R > 0, the integral

f lall®llall ;¥ det al}, 50, (a)'/6p (a)"' da
T, (F,) v Y

converges;
e For every s > —1/2, we can find R > 0 such that the integral

/ lallf|detal}; o5, (a)'5p(a)' 60, (a)*6p (a) o (a)?da =
TV(F\))

allzR|detal>*"* o (a)4da
E E
T (Fy) Y Y

converges.

The implication 2. = 1. is clear from the definition of £Y". Let us show the converse. Thus, we
assume that £ is not identically zero, and we aim to prove that the same holds for Lgﬂ for R(s) > 0.
First, by the equality

‘Cg/(‘pn,s ® ¢n+1)

- / / L((t(8) ® 0 (8h)) s (h) ® bus1)ldet(g) 3 50, () Pdgdh
O (Fy)\U, (Fy) N (F,)\G,(Fy)

and since the space of Ig" EIF;; (1s®0y) is stable by multiplication by functions in C*(Q,, (F,,)\U,(F,)),

it suffices to show the existence ¢ € 7, ¢, € 0y, and @41 € 041 such that
/ LT(&)br ® b ® Tnat () bns)|det(@)]5. 0, () 2dg £ 0.
Ny (Fu)\Gy (Fy)

Let f € S(Vus1(Fy)), g € G, (Fy), ¢ € 0 and @41 € 0nyy. From the equivariance property of £,
we deduce

EB(¢m ® 0ns1(8)Ont1 (f)Pnat) = f(g*yr)£3(¢m ® Tn1(8)Pns1),

where for y € Y,.(F, ), we have set
Fr= [ 0w U v,y
Vn+l Fv)

By the theory of Fourier transform, f +— f induces a surjective map S(V11(Fy)) — S(Y,(F,)),
whereas the map g +— g*y, induces an embedding S(P,(F,)\G,(F,)) — S(Y,(F,)) (where we
recall that P, denotes the mirabolic subgroup of G, ). Consequently, it suffices to prove the existence of
$r €T, Om € Oms ns1 € Ony1 and f € S(P(F,)\G,(Fy)) such that

/ (g / £Y (+(pg)ér)
P, (F,)\G,(Fy) N, (Fy,)\P,(Fy)

L ($m ® 0ni1 (pg) bns1)|det(pg)ly: 0, (pg)~"?|det(p) |5 dpdg # 0
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or, equivalently, the existence of ¢, € 7, ¢, € T, dPn+1 € On41 such that

/ LY (2(h)6:) L5 (S ® Tst (D)) |det ()3 50, () 2dh # 0,
Nr—](Fv)\Gr—l(Fv) Y

By [GK75, Theorem 6] and [Kem15, Theorem 1], for every f € C2°(N,-1(F,)\G,-1(F\)), we can find
¢+ € T such that LY (r(h)¢.) = f(h) for h € G,_1(F,), and from this, the claim follows readily from

the nonvanishing of £5. O

8.6.2.

Proposition 8.6.2.1. Assume that o and T are tempered. Then, for every ¢,, ¢,, € IZ”E?)) (t®oy,) and

Gn+1> )| € Tns1, We have

Pur v (dn ® Gnsts ¢;l ®¢;+1) (8.6.2.1)
=v(Gy )™ Pyt yi y ($n(h1) @ Onst (1) Ger ¢, (h2) ® Tns1 (h2) ) dhidhs.

(B (Fy)\U’ (Fy))?

IUn(Fv)

onFy) (TBTm),

Proof. By definition of the local period Py, and of the invariant inner product on
we have

Pui(dn ® dnits ), ® dy) (8.6.2.2)
- / / (G (hay). 8 (1)) (st () st 8. ).
U’'(Fy) n (Fy)\Uy (Fy)

The above double integral is absolutely convergent. Indeed, from [CHHS88, Theorem 2] and [Wal03,
Lemme I1.1.6], we have

/ |(6n(hahy). 8, (ho))| diy < EUn (1), hy € Un(Fy),
QVI(FV)\UYI(FV)

and (0pe1 (h1)Gni1, @), ) < EUnstv (b)), whereas EVv = EUnvEUn+1v s integrable on U’ (F, ) ([BP20,
Lemme 6.5.1(i)]).

For the next lemma, we set Q' := Q,, that we consider as a subgroup of G, X G = L, X U,y via the
product of the natural surjection Q,, » L, and inclusion Q,, C Up;.

Lemma 8.6.2.2. For every f € C¥ (G, (F,) X G(F,)), we have the identity

Por gt (L(g1)R(82) )00, (8182) ™" *dgidgs,
(8.6.2.3)

/ F(@)b0 () Pdrg =v(G, )"
0'(Fy) (N (FO\Gr (Fy))?

where both sides are absolutely convergent.
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Indeed, assuming the lemma for the moment, from (8.6.2.2), we obtain

V(Gr,v)PUL (¢n ® Pn+i, ¢;1 ® ¢;l+1)

=v(Gry) qh), ¢,,(h2))(0ns1(qh1) Gnits Tni1 (h2) @, )dLgdhydhy

/ (6n
(On (F)\Un(Fy))? 4 Qn (Fy)

~/(Qn(Fv)\Un(Fv))2 ‘/(NV(FV)\Gr(FV))Z
Pat yi v ($n(g1h1) @ Oni1 (8171) st 61,(82h2) ® Tus1 (82h2)¢y,1)00, (8182)""dgidgodhidh,

= o ipy Pt () © 0o () 6, h2) © s () e,
"(Fy)\U’ (F,

where in the second equality, we have applied the lemma thanks to the fact that the function

(grs 8m> gn+1) = ((T(gr) ® Um(gm))¢n(h1)» (}5;!(]12)) (O-n+1 (gn+1)0-n+1 (h1)¢n+ls 0—n+1(h2)¢;+1)
belongs to C* (G, (F,) X G(F,)) and the proposition is therefore established.

Proof. (of Lemma 8.6.2.2). First, we check that both sides are convergent and define continuous
functionals on C" (G, (F,) X G(Fy)).
For the left-hand side, we can use the identity ([WalO3, Lemme II.1.6])

2% (g) = /K B (k)b (I(ke)) P dk,  for g € U(F,),

v

where, for g € U(F,), I(g) denotes any element in L(F,) = G,(F,) x G(F,) such that I(g)"'g €
(Vu(F,) x 1)KY, which in turn implies

/ 20 (g)(g) 450 (q) g = / B0 (1(h)) o (1(1) 6.0 (1()) 2 dlh
Q' (Fy,) U’ (F,)

FV

< / 2Y% (h)o (h)4dh < oo
U’ (Fy)

for every d > 0.
For the right-hand side, as in the proof of Proposition 8.6.1.1, it suffices to show for every d > 0 the
existence of d” > 0 as well as a continuous semi-norm v, on C) (G, (F,) X G(F))) such that

Pt gty (L(a1)R(a2) )| < EGr»*Untv (@) B> Univ (az)o(an) ¥ o (a) T va(f)  (8.62.4)

for f € C/(G,(F,) x G(F,)) and ay,a; € T,(F,). Such an inequality can be proved along the same
lines as [BP20, Lemma 7.3.1(ii)].

Now that we know that both sides of (8.6.2.3) define continuous functionals on C* (G, (F, ) XG(F))),
by density it suffices to check the claimed identity for f = f1 ® fo € C(G,(F))) ® CZ(G(Fy)).
The subgroup G, B of U,y contains U,, < V,, as a normal subgroup, and we may define a function
f3 € Cgo(Gr(FV)B(FV)/Um(Fv)Vn(Fv)) by

£ =00, [ f(phuydudh, p € G,(Fy)B(F,).
U (Fy)XVy (Fy)
Moreover, restriction to the susbpace (xi,...,X,+1), where we have again set x,+; = vg, induces an

identification G,B/U,,V,, ~ P,,1. Seeing f3 as a test function on P,,;(F,) in this way, the identity of
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the lemma becomes

/ £1(8)f(8)dg = v(Gr) ™! / Wi (g1, 80 Wl g2)dgadgr,  (8:62.5)
G, (Fy) (N (Fy)\Gr (Fy))?

where we have set

Wy (g1,82) =/

Ny (Fy)

Filgr uga)vy () du, Wp(gr.g0) = /N L P (0

But (8.6.2.5) is now a direct consequence of the Fourier inversion formula (8.2.2.1). ]

8.7. Unramified computation

8.7.1.

We continue with the setting of the previous subsection assuming, moreover, that v ¢ S and the
U

. . . KY K
representations 7, 0y, 041 are unramified in the sense that Ky £ 0, 0,,™" # 0and o, +"”‘V # 0. Note

1
Un(Ev) (1y = O'm)K'E{V #0(.e., 1Y)

that this implies IQ,. (Fo) 0. (F,)

(1y ® 07y) is also unramified).

8.7.2.
U

U K
(ts o) Xnv and ¢°, € o ', we

Un(Fy)

Proposition 8.7.2.1. For R(s) sufficiently large, ¢;, ¢ € I On(F)

have

vol(K,gv L(%+S,TXO’,H.1)

VOl(KfL{V NB'(Fy)) L(1 +s5,7¢ X 07)L(1 + 25,7, As™D™)

LY (g5 @ ¢2,,) = Ly (1)@ ¢5,).

(8.7.2.1)

U
Proof. Let ¢2 € tK~v and ¢9, € o',l,,<'"‘v be such that ¢ (1) = ¢2 ® ¢;,. Recall the factorization
L =LY ® LB, Up to scaling, we may assume, without loss of generality, that

LY (¢2) =1and LB (g5, @ ¢°,,) = 1.
Let P’ = PN U’ c U’ be the parabolic subgroup stabilizing the flag
0=XpcCcX;C...CX,.

Then, we have P’ = B’ =< T, and from the Iwasawa decomposition U’ (F, ) = P’(FV)K,[{’ »» We obtain

Y ) Lo ° Yopi(1)”! 8.7.2.2
(dn®dr,) = vol(KY, N B'(F,)) ,;r (#5,5(1) ® Tns1 (1) ;,,1)0 P/ (1) (8.7.2.2)
I(KY
o M) S W (r(0062) L5 (65, © e (065, Idet 1, 50, (01 25p (1),

vol(KY, nB'(F,)) e
where we have set A, = T, (F,)/T-(O,), which we will identify with the cocharacter lattice X..(7},)
via the map A — A(wF). Let A} c A, be the cone of dominant cocharacters with respect to B, and
A}t c A} the subcone of cocharacters that are moreover dominant with respect to B, through the

embedding g € G, — (g ) € G,41. To lighten the computations a bit, we will assume from now on

1
that the local measures at v have been chosen such that vol(K,[l{\,) = vol(K,ll{V NB'(F,)) =1.
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Before proceeding, it will be convenient to introduce some notation pertaining to complex dual
groups:

e For { € {m,m+ 1,n+ 1}, we identify the dual group 175 of Uy (resp. @, of G,) with GL,(C) (resp.
GL, (C) x GL,(C)) equipped with its standard pinning. Its L-group can be written
LU, = GL/(C) x Gal(E/F) (resp. G, = (GL,(C) x GL,.(C)) = Gal(E/F)),

where the Galois action is given by c(g) = g* (resp. c(g1,g2) = (g2,81)), where the involution
g € GL,(C) > g™ is

g =l I =
(_])f—l

We will also denote by S +— $* the automorphism of LG, which is the identity on Gal(E/F) and
given by (g1,82) — (g3.87) on G,.

o We will write (i s Er) for the standard Borel pair in 5, and (7/:[], Eg ) for that in [7[. The corresponding
semi-direct products with Gal(E /F) will be denoted

LT, =T, % Gal(E/F), *B, = B, x Gal(E/F), 'TV =TV » Gal(E/F), L'BY = BY = Gal(E/F).

e The dual groups of G, U are

—~

g: ﬁm X l7n+ls ﬁ = Um X Um+1,
and writing X for the fibered products over Gal(E/F), their L-groups are

L L L L7 L L
G= Un Xr “Upy1, “U = "Up Xr “Upy1,

respectively. We let B= Eﬁfn X E[njn’ T= f,,Ll’ X fﬁl (resp. B = Ef]n xBY T = 7/”}{ X fnL{H) be the

m+1’

standard Borel and maximal torus in 3 (resp. in U ). We also write

LT = T s Gal(E/F), “T = T » Gal(E/F).

e The parabolic subgroup Q.+ C Uy stabilizing the isotropic subspace X, corresponds to a standard
parabolic subgroup Q,+; of U, with standard Levi

_ [GL.(O)
Ly = GL 341 (C)
GL,(C)

The corresponding L-group Ll = Z,H] > Gal(E /F) is isomorphic to LG, xr LU, via the map
which is the identity on Gal(E/F) and

(D)
& (1 (%
8m+l1 — ((gr > 8r )’gm+l)

2
o
on Zn+1 .For S € LL,,,, we denote by (S(’), S(’”“)) € LG, xr LU,y its image by this isomorphism.
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o [t will also be convenient to use the parabolic subgroup Q = U,, X Q,+1 of G. We set @ = ﬁm X Q,Hl R
L =UpX Ly and L = £ = Gal(E/F). There are two natural decompositions

L,C = LUm Xr LLn+1 and L,C = Lﬁ Xr LGr,

and for S € L £, we will denote by (S,,, S,+1) and (8,8 5;:)1) the corresponding respective decompo-
sitions of S. L
e For every complex Lie group ©G with a subgroup @Q and respective identity components G, Q, we set

Dz 5(8) = det(1 — Ad(S) | Lie(G)/Lie(Q)), for S € “Q.
e ForGe {G,,U;,G, L, Lys1,Ty, Té,U, T}, we denote by L@, the L-group of G, = G X F, thatis
Lg. — iG if v is inert in E;
Y G ifvsplitsin E.

Also, for G € {G,,U¢,G, L, Lyy1}, we write W(G,,) for the Weyl group Norm@(LTv)/T, where

T c G is the standard maximal torus.

e The choice of the Borel pair (7, B,) allows to identify A, with the group of characters of LT,,V that
are trivial on Gal(E/F), and we will denote by A, > 7 — y, this identification. For r € A}, we write
ch; for the character of the irreducible representation of “ G, with highest weight y, (see Appendix A).

e For k,{ € N, we define the representation

LGy xGy) =LGr xr Gy - GL(CF @ ¢l @ CF @ CF)

I
(Sk,S¢) = Sk ® Se,

which sends ((g\", g\), (gt",¢{")) € Gr x G0 g" @ g!" @ ¢P ® ¢! and ¢ € Gal(E/F) to

the operator ¢ that swaps the two copies of C* ® C¢. _
e Composing this representation with the embeddings “U; — £G;, g € U; — (g,g%), (i = k, (), we
obtain representations
LU xGy) » GL(Ck o Cf @ Ck @ C°)

and

L xUp) - GL(Ck e Cf @ CF @ CY)

1
that for simplicity we will also denote by the symbol ®.
e In particular, we have two representations

1
R:LG =L (U x Upy1) = GL(C" @ C™ @ C" @ C™1), (Sps Spst) = Sin © Spai
— ~ 1
R:LU=L(U, xUps1) = GL(C" @ C™ @ C™ @ C™1Y), (Sps Spus1) > S ® Spue

that we will denote by R and R, respectively. The subspace

I<i<sm I<ism
Voi=((e; ® ej,O) | sjsntl ) @ (0,e; ® ej) | Isj<n+l
i+j>m+r+1 i+j>m+r+1
—~ I<i<m I<i<sm
resp. Vo i={(e; ® e;,0) | I<j<m+l} @ {(0,e; ® e) | ISj<m+l )|
i+j>m+1 i+j>m+1
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where we denote by (el-)l.k= | the standard basis of CF for any k, is stable by LT (resp. by LT), and we
set R_(S) := R(S) |v_ (resp. ﬁ_(g) = ﬁ(g)lﬁ) for S € LT (resp. SelT).
e We will also denote by As,, the representation

As,, :FG, - GL(C" @ C")

given by As,,(gV,g@) = gV @ g for (g1, g?) € G, and Asp(c) = (=1)™s, where s :
C'®C' — C"®C" isdefined by s(u® v) =v ®@u foru,v € C".

o The Satake parameters of the unramified representations 7, 07, 07,41 Will be denoted by S, S, and
S,+1, respectively. These are semisimple conjugacy classes in G, LU, and LU,,,, and to simplify
some arguments, we will choose representatives of them in “7,., X7 and “TY |, respectively. Thus,
denoting by Frob, € Gal(E/F) the Frobenius at v, we have

S; € T,Froby, S, €TYFrob, and S, €TY

n+l

Frob,,.

We will also write S = (S,,,, Sy41) € LT for the Satake parameter of o = 07, B 0741

By Shintani and Casselman-Shalika’s formula [Shi76] [CS80], we have

6, (1)'2ch(S,) ift € AL,

w oy _
LY (r(1)¢7) = {0 otherwise. (8.7.2.3)

Moreover, according to the formulas given in [KhoO8, Theorem 11.4], [Liul6, Proposition 6.4] and
[Zhal8], when S € LT is regular, we have

LB (45, ® T (1)92,) (8.7.2.4)
_ 172 .
(AY D) Sew (g, BUZL RSN s (wSp01) D)Sp (D)2 if 1 € AR
(Gv) 5,8 WS)
0 otherwise.

Moreover, the above sum over W(G,,) extends to a regular function on LT and the formula is still valid
when we interpret the right-hand side in terms of this extension. We will now prove the formula of the
proposition assuming that S is regular but, as it is an identity between rational functions, the extension
to the non-regular case will follow.

Lemma 8.7.2.2. Fort € Af*, we have

chy (WSp1)")Sp(1)'/2.

I
det(1 —g~1/2 ' . (r)x
,CB(¢;’H ® Tpr1 (D) = z : et(1—q /%S, ® (WS,41)V™)

D v (WS
weW (Upii.v) Un+l/B,11J+1( n+1)

(8.7.2.5)

Proof. First, we note that the function

_ I
Sut1 € T,grlFrobv — det(1 — q_l/sz ® Si:)l*)ch,(S(r)

n+l

is invariant under the action of W(L,.1,,,). Combining this with the identity (see Corollary A.0.2.2)

Z Dl?nﬂ/l?ffﬂ (WS"+1)_1 =D Uit /Onst (S"+1)_1 ’
weW (Lp41,v)
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we see that the right-hand side of (8.7.2.5) can be rewritten as

I
det(1 — 7128, ® (WSp41) %)

chy (WSpa1))Sp (1)/2.
D0n+l /énﬂ (WSn+1) ' "

WEW (Lypt1,0)\W (Unqt,v)
The natural projection W(G, ) — W(Ups1,,) induces a bijection
W(LI\W(Gy) = W(Ln+l,v)\W(Un+l,v)’

and thus by (8.7.2.4), we just need to establish, for every regular S = (S,;, Sp+1) € LT and t € A,, the
identity

1
det(1 — g71/28,, ® SU)*)

n+l

(AU ) Z det(1 — g '?R_(wS))

X (WSne) ) = ch (S7).

WeW (£,) Dgip(ws) DG, ,11Gu (Sns1)

(8.7.2.6)

We have decompositions

_ _ 5 r)
Dg5(8) = Dg;5()Dz5,(S) =Dy, 15, (Sns1) D =(5)Dg, 15, (S,/1):

L g B (F
R(S)=8Sn®S,.| ®R_(S).
and

W(L,) =W(U,) x W(G,).

This leads to the following expression for the left-hand side of (8.7.2.6):

det(1 - g7'128,, ® 5 SRR (5F g
et(l - ¢ m®S, ") U det(1 — ¢ '?R_(wS)) xe(wrS, )
PP T R C R 2 Do (75 2 ")

Un+1/Qni n+l wew (U,) L;}/;;(WS) wyr €W (G y) Dé\,/éj (WrSn+l)
Furthermore, Weyl’s character formula implies (see Proposition A.0.2.1)

(wrS))
_ WS Cht(Sr(z:—)l)’

(r)
Wy EW(Gr,v) Dé\r/a (W,-Sn+1

while, according to [Liul6, Proposition 6.4], we have

det(1 — g~ '?R_(WS,
(Arlrjz,v -1 Z 6( q ~~(W )) -1.
wew (Ty) Dz 5WS)
This shows the formula (8.7.2.6) and ends the proof of the lemma. m|

The next lemma is a consequence of the Cauchy identity [Bum04, Theorem 43.3].
Lemma 8.7.2.3. Let S, 5, € T;Frobv. Then, for R (s) sufficiently large, we have

1
D ldettl /™ ey (S1)chy(52) = det(1 - g7'251, @ 8)7,

teAS

where we have set Sy s '=q~°Si
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Combining the two above lemmas with (8.7.2.2), (8.7.2.3) as well as the identity

85p(0)'255, (1260, (1) 26p (1) = |dete|)>, 1 €A,

we obtain

1
5 det(1 = g7'28,, ® (WSys1)"*)

-1/2 L (-1
D o (wSm1) det(l —g /“S;s ® (WSps1)")™.
weW (Upi1.v) Uy /BY,, WO+l

LY (45, ®¢5,,) =
(8.7.2.7)

For every w € W(Up41,v), we have the identity

1 1 1 1
ST,S ® WSn+1 = S‘r,s ® (WSn+l)(r) 5] ST,S ® (WSn+l)(m+1) ® S‘r,s ® (WSn+l)(r)*-

It follows that

1 -l “1)2 I
L sts X Op+l :det(l -q ST,S ®Sn+1)
I 1 1
= det(l - qil/zs‘r,s ® (Wsn+l)(r>) det(l - qil/zs‘r,s ® (WSn+l)(m+1)) det(l - qil/zs‘r,s ® (WSn+1)(r)*)~
Thus, (8.7.2.7) can be rewritten as

, 1
‘C’fv] (¢2,s®¢;+1) =L(§,Ts><0—n+l) Z

weW (Un+l‘v)

1
det(1 = g2, ® (WSp41)*)

1 1
D WS det(1 - g 1283 ® (WSpe1) %) det(1 = 7128, 5 ® (WSpe1) ™D,
Un+1/BY,, n+

Since we have
I m
L(1,78 X o) =det(1 = q7'SS @ S,) 7", L(1, 75, AsTD™) = det(1 — ¢ 7' Ay (Sr.5)) 7"
we see that the proposition is now reduced to the equality

1
det(1 - ¢7'S¢  ® S,) det(1 — g As(Sey)) = Z (8.7.2.8)
WGW(UnH,v)

1
det(1 — ¢7'/2S,, @ (WSy1) ™)
Dﬁml/ﬁgﬂ (WSn+1)

I I
det(l - q_l/zs‘r,s ® (WSn+l)(r)*) det(l - q_l/zs‘r,s ® (WSn+l)(m+l))~

To prove the above identity, we first show that the right-hand side of (8.7.2.8) considered as a function
of the regular element S, € frf{r Frob, is constant. For this, we first note that the function

FU
Spi1 €T, Frob, —

1 1 1
det(1 - ¢7128,, ® (WS,e1) ) det(1 — ¢7128, s ® (WSpi1) V) det(1 — ¢7128, s ® (WS,e1) ™)
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is (the restriction of) a linear combination of characters of LTer. Thus, by Proposition A.0.2.1, it
suffices to check that for every character y appearing in this linear combination the sum p + y |7v ,
n+l

where p € X*(T) stands for the half-sum of positive roots (with respect to BY.)), is either singular or
conjugate, under the full Weyl group of (Un+1, 1) to p. Let y be such a character. Using the natural

isomorphism X* (Trf{rl) =~ 7" we have y |TU1 = (/11, ..., An+1), where the A;’s are integers satisfying
n+
-m—-r<A; <0forO<i<r,
<A;<rforr+1< r+m+1,

-r i <
O<A;, <m+rforr+m+2<i<n+l.

Furthermore, we have p = (’2’, "22, e, —%), and from the above inequality, we see that the coordinates
of p+ x |f,fi| are all integers or half-integers between —7 and 5. The claim about y lfrfil +p readily
follows, and we therefore deduce that the right-hand side of (8.7.2.8) is indeed independent of S,,4;.

Let A, B € GL,(C) be such that S; ¢ = (A, B)Frob,. Then, plugging

ql/ZA* R
Sp+1 = At Frob, € T,Z_IF}"ObV
q—l/ZB

in the right-hand side of (8.7.2.8), where the matrix A,,4+; € GL,;1+1(C) is chosen such that S,,; is
regular, the term indexed by w € W(Up41,v) is nonzero only when w € W(L,+1,,). It follows that this
sum equals

1
det(1 =¢85, ® (WSus1) %)
g (WSn+1)

1
o det(1 = 7280 ® (wSyu) )%
weW (Lys1v) Uns1/

I
det(1 — q_l/ZST s ® (WSpap) D)
I
= det(1 - ¢71285,, ® SV det(1 - g 7128, ® STV det(1 - g8, @ S
Z Dﬁn“/g’g“ (WSne1)™!

WEW(LnH,v)
I
= det(1 — g5, ® SU)%) det(1 — ¢7V/25 ® 5%
| G- _
det(l — q_l/ZST’S ® S( +1))DUn+]/Qn 1( n+1) ]7

n+l

where the last equality follows from Corollary A.0.2.2. By direct computation, we have

|
det(1 — g/25, ® SU%) = det(1 - g~ Sy ® SC ).

n+l

1
det(1 - ¢S, , ® SU%) = det(1 - ¢7'S. s ®S<.,),
1 1
det(l - q_l/ZST’S ® Si:‘;‘l)) = det(l - q_l/ZST,s ® Sm+l),

1
DﬁnH/QnH (Sn+1) = det(1 - q_1A5m+1 (S‘r,s)) det(1 - q_l/zs‘r,s ® Sm+1)s

I
where we have set S,,41 = Ap1 Frob, € T}nJHFrobv. Since S7 s ® S¢ = Asp(Sr.s) ® Aspr1(Ses),
this concludes the proof of (8.7.2.8) and therefore of the proposition. O
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8.8. Reduction to the corank one case

8.8.1.
In this subsection, we let

® 0, and 0,41 be cuspidal automorphic representations of U,,(A) and U, (A), respectively;

e 7 be an irreducible automorphic representation of G, (A) that is induced from a unitary cuspidal
representation, meaning that there exist a parabolic subgroup R = MNgr C G, as well as a unitary
cuspidal automorphic representation « of M(A) such that

. G, (A
T={Eg($,0) | ¢ € I (1)},
U".(A>
On(A)
(75 ® 07,). Then, by Proposition 8.5.1.1

Moreover, we henceforth identify Ag, rrc,, (Ux) With the parabolic induction o, := I

that for ¢,, € 0, and any s € C, we have ¢, s € 0 5 = Ig" Ef:;

and Proposition 8.7.2.1, for ¢,, € 0}, and ¢,41 € 041, We have

(TR oy,) so

vol (KT LT (%+s,‘r><a’n+1)

vol(KY"T N B/(AT)) LT (1 +5,7¢ X o) LT (1 + 25,7, AsCD™)
(8.8.1.1)

Pu(EQ (Bns5) @ Gusl) =

X / PBL,¢’B~(¢n,s(h) ® Ont1 (M) Pnr1)dh
B (Fr)\U’(Fr)

for R(s) > 0and where T D S is any sufficiently large finite set of places such that ¢,, is KYT -invariant
and ¢4 is KflJHT -invariant.

8.8.2.
Proposition 8.8.2.1. The following are equivalent:

1. There exist ¢, € O and ¢pui1 € Ot such that Pi y, (¢m ® ¢ni1) #0;
2. There exist ¢, € Opn, Pne1 € Opy1 and s € C such that ELQ]" (¢n,.) has no pole at s and

Py (EG (¢n5) ® ) # 0.

Proof. First, we remark that since there exists ¢, € 7 whose Whittaker period f[ N, G- (u)_ (u)du is
nonzero, assertion 1 is equivalent to the nonvanishing of PBL yLoONT ROy, ROy Then the equivalence

2. & 1. follows from (8.8.1.1) and the last part of Proposmon 8.6.1.1. m}
8.8.3.
Choose isomorphisms 7 = X)) 7y, o = @)} Om,v and gpe1 = X)), Tpst,v. This induces an iso-

morphism o, = ®'V Oy, Where 0, = Ig:g:; (Ty ® 0yn,v). We assume henceforth that for every

place v, the representations 7, 0y,,, and 041, are all tempered. Let ¢, € 7, ¢, € O, ¢ € 05, and
Pn+1 € 041 be factorizable vectors — that is,

T = ®¢T,V’ bm = ®¢m,w on = ®¢n,v, dn+1 = ®¢n+],v,

where ¢T,v ETy, dm,yv € Omyv, Pny € Oy and Onsl,y € Ontl,y-
We equip 0, 0n+1, T and o, with invariant inner products as follows:

o We endow 07, 0,41 With the Petersson inner products (., .) p.; (i.e., the L? inner products with respect
to the Tamagawa measures on [U,,]| and [U,], respectively).
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e On 7, we put the inner product defined by

w&wmﬂﬁwmm=/ $(mg)$ (mg)dmds

R(A\G,(4) J[M]!

for ¢, ¢’ € Ig(rg?)(K).

e 0, is equipped with the inner product induced from that on 7 ® ¢,, here denoted (., .)rgs,,; that is,

<¢ww=/ (6(8).8'(8)) rmon, dg. for 66" € .
O, (A\UL(A)

We also fix factorizations of these inner products on o,, 0u+1, T and o, into local invariant inner
products. Following Section 8.4, this allows to define, for every place v of F, local periods Py .,
PB,ys,vs PN,y v a0d PgL L\, ON Oy ROpsl,vs T,y BOp, v, Ty and Ty B0, B Oy, v, TESPECtively.
Furthermore, for almost all v, we have

1
L (j, Op,y X 0'n+l,v)

L(1, 00, A L(1, Ops1.y, Ad)

7DU’,V(¢n,v ® ¢n+1,v, ¢n,v ® ¢n+1,v) = AU,H],v

1
L (5, Om,y X 0—n+1,v)

L(1,0pm,v, Ad)L(1, 0ps1,v, Ad)

PB,¢5,V(¢m,v ® ¢n+1,w ¢m,v ® ¢n+1,v) = AUM],V

AGr,v

P (@ $2.v) = T =20

where we have set Ay, = [T L(i, nE/F J) and Ag, v = [I;_ {g, (i). Note that the last two
equalities above imply that

’PBL,lp]g,v (¢T,V ® ¢m,v ® ¢n+l,v, ¢T,v ® ¢m,v ® ¢n+1,v) =

1
L (j, Om,v X 0-n+l,v)

L(17 o-m,V7Ad)L(1’0—I’L+1,V’Ad)L(19TV9Ad)

AUn+1,vAGr,v

for almost all v. Given all these identities, it makes sense to define

’
]_[ PU’,V (¢n,v ® ¢n+l,vv ¢n,v ® ¢n+l,v) =
v

L’ (%,O—n ><0—n+1)
{] HPU'V(¢nv®¢n+lw¢nv®¢n+l v),
LT (1, 0, AD)LT (1, 07041, Ad) veT ’ ’ ’ ’ ’

’
1_[ ,PB,wB,v((pm,v ® ¢n+1,v, ¢m,v ® ¢n+1,v) =
v

T (1
L (ja Om X 0-n+l)

T
P, ® ) ® ,
Uit LT(l,O'm,Ad)LT(l,O',H_],Ad) ‘E B,yp,v (¢m,v On+l,y ¢m,v ¢n+1,v)
’ T ,*
G,
PN,,w,r,v((f’T,w ¢-r,v) = *—r PN,,zp,r,v(‘pT,v, ¢T,V)
i il

https://doi.org/10.1017/fmp.2025.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.8

Forum of Mathematics, Pi 93

for any sufficiently large finite set 7 of places where we have set

n+l

AL =] L Gnlye), AL =" O] [ R0
i=2

i=1

and LT’*(l, o, Ad), LT*(1, 7, Ad) stand for the regularized values

L1, 0, Ad) = ((s - 1)“LT(s,crn,Ad)) LT Ad) ((s 1)L (5,7, Ad))

s§= s§=

with a = dim(Ajy), respectively. We define similarly

’
l_[ PBL,wlg,v (¢T,V ® ¢m,v ® ¢n+1,v, ¢‘r,v ® ¢m,v ® ¢n+1,v)-
v

Of course, the previous discussion applies verbatim when we replace T and o, by 75 and o, ¢ for
every s € iR.

Proposition 8.8.3.1. Let ¢ € C and assume that for every factorizable vectors ¢, € O, Pus1 € Tn+l
and every s € iR, we have

U, 2 :
)PU’(EQZ (¢n7 S) ® ¢n+1) =cC 1_[ PU’,V(¢n,s,v ® ¢n+1,\u ¢n,s,v ® ¢n+1,v)'

Then, for every factorizable vectors ¢,, € o, and ¢p41 € Optt, Wwe have

|PB,¢B (¢m ® ¢n+l)|2 =c l—l ,PB,I/IB,V((ﬁm,v ® ¢n+l,vv ¢m,v ® ¢n+1,v)-

Proof. Let ¢,, € 0, and ¢,41 € 041 be factorizable vectors and let T be a finite set of places of F' that
we will assume throughout to be sufficiently large. By (8.8.1.1), we have

LT (% +5,TX o-n+1)

U 2
|PU«(EQ’;(¢n, 5) ® Pna1)| = (8.8.3.1)

LT (1+5,7¢ X 05 LT (1 4 25, 7, AsCD™)

[B o\ (Fr))? PBL,z//é(¢n,s(hl) ® Optl (hl)¢n+l)PBL,¢/’B~(¢n,x(h2) ® Tt (h2)Pns1)dhadhy
"(Fr)\U’(Fr

for s € iR. However, from the hypothesis, Proposition 8.6.2.1 and (8.2.1.1), we obtain

(8.8.3.2)

U 2 T T LT (%, Op,s X (Tn+])
PuEy ($n.5) ® pust)| = cALTA
[Por(Eg; (0.5 @ 0] = ey Unit T (1, 0 AD LT (1, G, AD)

l_[ [ FONUF)? PBL,lp’g,v (¢n,s,v (hl) ® o-n+l,v(h2)¢n+l,vv ¢n,s,v(hl) ® 0’n+1,v(h2)¢n+l,v)dh2dhl

veTl

for s € iR. From (8.8.3.1), (8.8.3.2), the last part of Proposition 8.6.1.1 as well as the identity of partial
L-functions for s € iR

T (1 T (1 T (1
L (j’o-n,sxo-rwl) L (j’o'mxo'nﬂ) L (§+s,7><an+1)

LT#(1,00,5,Ad)  LT*(1,7,Ad)LT (1,00, Ad) | LT (1 +5,7¢ X o) LT (1 + 25,7, AsCD™)

s
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we deduce the equality

LT (%, Om X O-n+l)
Uns1 [T (1,7, Ad)LT (1, 07,, AA)LT (1, 041, Ad)
X ]_[ PBL,zl/é,v(¢v ® Ppsi,v, Py ® ¢n+l,v)

veT

Pyt g (6 ® ¢,,+1)) = cAL7AT, (8.8.3.3)

!’
=c l_[ PBL,w’g,v(¢v ® Pnil,v> Py ® Pnr1,v)
v

for every factorizable vector ¢ = ®'v ¢y € T B 0y,. Furthermore, for ¢ € 7 and ¢,, € oy two
factorizable vectors, we have

Psr yL (¢ ® ¢ ® $ni1) = P, u, () PB.ys (dm © Gns1)

and

PBL,¢Z’;,V(¢T,V ® ¢m,v ® Pn+1,vs ¢T,V ® ¢m,v ® ¢n+1,v)
= PNr,w_,-,v (¢‘r,v, ¢T,V)P8,w5,v(¢m,v ® ¢n+1,\)a ¢m,v ® ¢n+1,v)

for every place v as well as the identity (cf. [FLO12, Eq. (11.3)])

PNy @ = [ | Py v (B ). (8.8.3.4)

The proposition can now be deduced by dividing the identity (8.8.3.4) by (8.8.3.3). Note that such a
deduction is valid as the Whittaker period Py, _, is known to be nonzero on 7. m]

A. Weyl character formula for non-connected groups

A.0.1.

Let G be a connected complex reductive group, B c G be a Borel subgroup and T c B be a maximal
torus. Let I' be a cyclic finite group acting on G by holomorphic automorphisms preserving the Borel
pair (B,T). Set ’G = G =T, LT =T =T and L B = B = T". We say that an element S € LT is regular if
the neutral component of its centralizer is contained in T.

Let X* (T) be the group of algebraic characters of T and X* (T)Jr cX* (T) be the subset of dominant
elements (with respect to the chosen Borel B). For every y € X* (T)+, we denote by (m,,V,) an
algebraic irreducible representation of G with highest weight y (it is unique up to isomorphism).
Note that the subgroup of I'-invariant characters X* (T\)F can be identified with the set of algebraic
characters T — CX that are trivial on I". Moreover, for every y € X* (T\)Jr nx* (T)F, the representation
(my, V) can be extended in a unique way to a representation of “G such that I acts trivially on the
line of highest weight vectors. We shall denote by ch, the character of that representation of LG (.,
chy(S) = Trn, (S) for S € LG).

A.0.2.
Let W = Normg (T)/T be the Weyl group of T'in G. Then, I acts in a natural way on W and the subgroup

of fixed points W' can be identified with W = Normg (tT)/ T. Let p € %X ¥ (f) be the half-sum of the
positive roots with respect to B. The dot action of W on X* (f) is defined by

wex=wly+p)—p, (w,x)€WxX*(T).
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For y € X* (T), we recall the following alternative. Either

e x + pis singular (i.e., there exists a coroot @" such that (", y + p) = 0)
o or there exists a unique w, € W such that w, - y € X*(T)*.

Note that, by unicity, for y € X*(T)' such that X+p] is nonsingular, we have w, € W.
For every standard parabolic subgroup Bc Q C G that is T-stable, we set

Dg,5(8) = det(1 - Ad(S)) | Lie(G)/Lie(Q)

for S € LT.
Proposition A.0.2.1. Let F € T be a generator and y € X *(f)r. Then

1. If x + p is singular, we have

x(wS)

for every regular S € T.
2. If x + p is nonsingular, setting x* = w,, - x, there exists a root of unity €,, € C* such that

x(wS)

=€ chy+(S)

for every regular S € TF. Moreover, if x is dominant, we have €, = 1.

Proof. Let X = G /E be the flag variety of G. The action of G on X naturally extends to LG (e.g.,
because we can also write X = “G/LB). Let £ ¢ be the L G-equivariant line bundle on X such that the
action of LB on the fiber above 1 € X is given by y. Then, by the Borel-Weil-Bott theorem, we have

e If y + p is singular, H'(X, L,) = 0 fori > 0,
e otherwise (i.e., if y + p is nonsingular), there exists a unique i > 0 such that Hi(X, Ly) # 0 and,
moreover, H' (X, £,) ~ V,+ as G-modules.

Let S € TF be regular. We apply Atiyah-Bott fixed point theorem [AB68, Theorem 4.12] to the action
of S on the pair (X, £, ). First, note that the set of fixed points of S in X is precisely the image of the
natural embedding W C X. Moreover, for w € W, the action of S on the fiber (£ ),, (resp. on the tangent
space T,, X identified in a natural way with Lie(G) /Lie(B))is the multiplication by y(w~'S) (resp. the
adjoint operator Ad(w~'S)). Given this as well as the above description of the cohomology groups of
L, the Atiyah-Bott fixed point theorem implies directly the proposition when y + p is singular, whereas
in the nonsingular, case it gives

x(wS)

=Tr(S | H(X, L,)).
S Dayp(ws) !

However, since H'(X,L,) = V,+ as G-modules and V,+ is irreducible, we see that H (X, L,) is
isomorphic as a “G-representation to a twist of V,+ by a character of I'. Denoting by €, the value of
this character on F, we obtain the second formula of the proposition. O

Corollary A.0.2.2. Let Q - G be a T-stable standard d parabolic subgroup. Let Lc Q be the unique
Levi component containing T and set W- = NormLL(T)/T C W, where we have set “L = L= T. Then,
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we have

Z Dg,wS) ™ =Dg,5(8)!

wewlL

for every regular S € *T.
Proof. Note that

DG/E(S) = Dé/é(S)DZ/EL(S)

for S € LT, where we have set B, = B N L. The corollary now follows readily from the previous
proposition applied to the trivial character and L instead of *G. O
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