GALAXY LUMINOSITY FUNCTIONS, M/L RATIOS, AND CLOSURE OF THE UNIVERSE

James E. Felten NASA Goddard Space Flight Center and University of Maryland

Data on the luminosity function (LF) of galaxies are reviewed and compared on a common magnitude system and with common assumptions. The result of Kirshner et al. (Astron. J. <u>88</u>, 1285, 1983) is chosen as a best guess. Departures from this "standard LF" for specific galaxy types and environments (clusters, groups, field) are discussed briefly. If the Galactic absorption is $A_B = 0.2 \csc |b|$ and the solar absolute magnitude is $M_{BO} = 5.48$, this LF leads to a mean luminosity density $\mathcal{L} = 2.4 \times 10^{8} h L_{\odot} Mpc^{-3}$ on the B_T system, or about 1.4 x 10⁻² h "Galaxies" Mpc⁻³. The mean M/L ratio needed to give critical cosmological density ($\Omega_0 = 1$) is then 920h in solar units on the B_m^0 (face-on) system. [The latter number can be larger by a factor $\sqrt{2}$ if a different LF is used, and larger still on different systems and with different assumptions (see Table).] The "weighed" M/L on this system is \Re (250 ± 50)h in clusters, but it is smaller in binaries and small groups. Estimates of the weighed (clumped) Ω_0 vary, but it is definitely < 1. Comparison with constraints imposed by inflation and nucleosynthesis suggests that we distinguish at least two "darkmatter" problems: (1) What is the weighed mass, and how is it distributed? It contributes an $\Omega_0 \sim 0.1-0.5$ and could be all baryonic if at the lower end of this range. (2) Is there additional matter, more smoothly distributed and probably nonbaryonic, which brings Ω_{o} up to unity? For details see Comments on Astrophys., in press.

Magnitude system	If $A_B = 0$			If $A_B = 0.2 \operatorname{csc} b $		
	B(0)	^В т	"Face-on" B ⁰ T	B(0)	^в т	"Face-on" B ⁰ T
"Weighed" M/L	(480±100)h	(380±80)h	(300±60)h	(400±80)h	(310±60)h	(250±50)h
(Great clusters)						
Critical M/L to give according to LF of:	Ω ₀ = 1,					
Kirshner <u>et</u> <u>al.</u>	1960h	1540h	1220h	1470h	1160h	920h
Davis & Huchra	2530h	1990h	1580h	1900h	1500h	1190h
Ellis	4430h	3480h	2770h	3330h	2620h	20 8 0h

COMPARISON OF M/L RATIOS ON VARIOUS SYSTEMS AND WITH VARIOUS ASSUMPTIONS

111

J. Kormendy and G. R. Knapp (eds.), Dark Matter in the Universe, 111. © 1987 by the IAU.