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The purpose of this paper is to present three somewhat disparate results
on free objects in three different classes of /-groups. The first is that no proper
ideal of a finitely generated free vector lattice can itself be a free vector lattice.
Second, each free abelian /-group is characteristically simple. The third result
is that each disjoint subset of a free (non-abelian) /-group is countable.

The reader is referred to Conrad (1970) for the general algebraic theory of
/-groups and (real) vector lattices. We review here only the standard definitions of
freedom. A vector lattice Fis free if V ^ 0 and V possesses a generating subset S
such that each function a: S -> W, where Wis a vector lattice, extends to a vec-
tor lattice homomorphism a: V -> W. We say V is free on S. Free /-groups and
free abelian /-groups are similarly defined.

Given any non-empty set S there exists a (unique up to isomorphism) free
vector lattice on S. A very useful model for this free vector lattice was given in
Baker (1968), and earlier in a generalized form in Henriksen and Isbell (1962).
We confine our attention here to the case that S is finite of cardinality n. The set
W of all functions/: R"->-R with pointwise operations is a vector lattice. The
sublattice of W generated by the linear functions is (isomorphically) the free
vector lattice on S. It will be denoted by FVLn. S is to be identified with the set
of coordinate projection maps nt: R" -> R (i = 1, ••-,«).

We have FVLn = {/: R" -> R | / = V/Aj/y where / and J are finite
and the/y are linear}. In particular, each feFVLn is continuous and positively
homogeneous (f(rx) = rf(x) for all xeW and O g r e R ) . The set T(f) =
{XGR"| / (X) =£ 0} is open since / is continuous.

Let S""1 denote the unit sphere in R". The map restricting feFVLn to
S""1 is an isomorphism (by positive homogeneity). It is often convenient to
identify FVLn with this isomorphic copy. In this case T(f) = {xeS"'1 \f(x) # 0}
is an open subset of the sphere. K. Baker (1968; Lemma 3.2) showed that the sets
T(f), feFVLn, form a base for the topology of S"-i.
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1. Finitely generated free vector lattices

We intend to prove that no proper ideal of FVLn can be a free vector lattice.
The free vector lattice on one element is isomorphic to the cardinal sum of two
copies of U. Thus the only proper ideals of FVLl are U and 0, neither of which
is free. In the remainder of this section m and n will denote positive integers
with n ^ 2.

Let A be a proper non-zero ideal of FVLn. If, on the assumption that A
is free, one could produce an idempotent endomorphism of FVLn with image
A, then a contradiction would result since it is known (Bleier (1973), corollary to
Theorem 2.3) that F VLn has no proper cardinal summands. Howeber, the author
sees no direct method of producing such an endomorphism, and hence a different
line of proof will be pursued.

LEMMA 1.1. (Baker (1968), Lemma 3.3). Iff,geFVLn and T(f) £ T(g),
then there exists an integer k such that \f\^k\g\; in other words, fe(g},

where <#> is the principal ideal of FVLn generated by g.

LEMMA 1.2. (Bleier(1973), Lemma 3.6). IfxeS"'1 then there exists feFVLn
such that T(f) = S"~l\{x}.

LEMMA 1.3. Let V be a vector sublattice ofFVLn, and suppose <x: V-* FVLm
is a homomorphism. Let 0 £ / , geV. If T(f) s T(g), then T(af) c T(a#).
In particular, if T(f) = T(g) then T(of) = T{ag).

PROOF. T(/) S T(g) implies by Lemma 1.1 t h a t / g kg for some positive
integer k. Hence 0 £ <x/^ ukg, and thus T(of) s T(akg) = T(kocg) = T(ag).

LEMMA 1.4. Let h e FVLn. Let &x = {T(f) | 0 ^ fe FVLn and T(f) £ T(h)}
and let Sf2 = {T(g) \ 0 S 9 e FVLm). IfQi) is isomorphic to FVLm, then there
is a one-to-one inclusion-preserving correspondence between ̂ t and S?2 with
inclusion-preserving inverse.

PROOF. Suppose a is an isomorphism of <fe> onto FVLm with inverse /?.
We define a: Sft -* y 2 by a(T(/)) = T(a/). By Lemma 1.1 a/is defined for all
/ f o r which T C / ^ e ^ , and by Lemma 1.3 a is well-defined and inclusion-
preserving.

Similarly, define £: Sf2 -> 5^ by P(T(g)) = T(j?0). Again by Lemma 1.3,
this time applied to /?, we have that p is well-defined and inclusion-preserving.

a and /? are inverses since a and p are.

LEMMA 1.5. Let the notation be as in the statement of the preceding lemma.
If (J%y is a proper ideal of FVLn, then there is no one-to-one inclusion-preserving
correspondence between £fx and £"2

 w i t n inclusion-preserving inverse.
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PROOF. Suppose A is a one-to-one inclusion preserving correspondence
between yy and y2

 w i t n (inclusion preserving) inverse \i. If T(h) = S""1,
then by Lemma 1.1 we have </i> = FVLn, a contradiction. T(h) = 0 is clearly
impossible. Thus T(/i) is a non-empty proper open subset of S""1, and hence
is not compact.

Thus there is a covering of T(h) by a countable number of open sets
Tifd,T{f2), —, where 0 ^ fieFVLn and T(/,) s T(fc), such that no finite
number of the T(/() cover T(ft). Let D, = T(/ t v — v/,) = r ( / i ) u - U T ( / i ) .
Then DieS^1, and 1^ £ D2 £ ••• is an ascending sequence of open sets each
properly contained in T(h). Moreover, T(h) = \jDt. Note that S"1"1 corres-
ponds to T(h) under X, and thus each XD{ is properly contained in S™"1.

Suppose (by way of contradiction) there exists x e Sm~1 \ u AD,-. By Lemma
1.2 there exists geFVLm such that T(g) = Sm~l\{x}. T(g) contains each XDit

and hence (j.T(g) contains each Dt. Thus /xT(g) = T(h), contradicting the fact
that S"1"1 corresponds to T(h).

Hence ADt c AD2 £ ••• is an ascending sequence of proper open subsets
of S"1"1 whose union is S1""1. This contradicts the fact that Sm~1is compact,
and completes the proof.

THEOREM 1.6. If A is a proper ideal of FVLn, then A is not a free vector
lattice.

PROOF. Suppose (by way of contradiction) that A is free with / as a free set
of generators. Then (Weinberg (1963), Thm. 2.13) / is finite and so A has a strong
order unit h. Thus A = pha is a principal ideal of FVLn. Let | /1 = m. Then there
exists an isomorphism a of A onto FVLm. By Lemma 1.4 a induces a one-to-one
correspondence of the type prohibited by Lemma 1.5. This contradiction completes
the proof.

2. Free abelian /-groups

It is known that the free abelian <f-group FALn on n elements is the /-sub
group of FVLn generated by the coordinate projection maps nt: W -> U. (See
Baker (1968) or Conrad (1971).) Moreover, {nt, i = 1, •••,n} is a set of free
generators for FALGn.

Our goal is to prove that FALGn is characteristically simple; that is, the only
ideals of FALGn which are invariant under all if-automorphisms of FALGn are 0
and FALGn itself. We imitate the method used in Bleier (1973) for the free vector
lattices. However, there are several technical difficulties to be overcome. (We
remark in passing that these difficulties can be stubborn an Y sometimes critical,
as noted in the appendix to Bleier (1973). The proof in Section 1 of this paper does
not go through for free abelian ^-groups because Lemma 1.2 fails. Whether or
not the abelian /-group analogue to Theorem 1.6 holds is an open question.)
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We denote the integers by Z , and view Z" as a subset of W in the natural
way. Z" consists of those points in W having only integer coordinates.

LEMMA 2.1. Suppose tx:R" -> R" is a vector space isomorphism such that
a(Z") = Z". If feFALGn, then f°u~1eFALGn and T ( / , O = a(T(/)).

PROOF. Assume/is in the subgroup G(ri) of FALGn generated by the K(: W-*R.
T h e n / = m ^ + ••• + mnnn, for some mu - , m n e Z . Let et be the unit vector
inR" with 1 in the i-thplace and0 elsewhere. Write a-1(e()=(al f , •••,flII,)eZ". Then
/ o a.~\e^ = »»i«ii + ••• + ™BaB,. Thus / ° a-1 = ( m ^ n + ••• + m ^ ) ^ + —
+ ( m 1 a l B + - + mnann)nn. Hence / ° a"1 eG{n).

Now suppose / e FALGn. Then / = V i A / / i ; where / and J are finite and
fijeG(n). T h u s / o a - i = ( V , A.,/!,)0 a"1 = V i AAftj " a " 1 ) - By the pre-
ceding paragraph / j 7 ° <x~x e G(n). Thus / ° a~ * e FALGn.

LEMMA 2,2. Suppose a:Rn->R" is a vector space isomorphism such that
a(Zn) = Z". Then a*: FALGn ^ FALGn by a * ( / ) = / ° a - 1 is an /-group
automorphism.

PROOF. By Lemma 2 . 1 / T 1 e FALGn whenever fe FALGn. The rest of
the proof is completely routine.

LEMMA 2.3. Let 0 ^ fe FALGn. There exists a finite number of f-group
automorphisms at,- ••,akojFALGn and meZ such that | nt | ^ m (| a±f | + •••

+ \<rj\)-

PROOF. There exists some point z = (zx, •••,zB) such that / (z) 9̂  0 and
z1,---,zn are relatively prime integers. Indeed, the rays from the origin through
such points form a dense subset or R", and T(/ ) = {xeR"\f(x) # 0} is a non-
empty open cone in R".

By Fuchs (1970; Lemma 15.3, page 78) there exist w2, •••, wn e Z" such that the
n elements z,w2,---,wn generate Z" as an abelian group, It is known then that
z,w2, •••, wn form a basis for R" as a vector space. Hence there is a vector space
isomorphism p-.R" -• R" such that )3(Zn) = Z" and fi(z) = (1,0, --.O); simply let
j3(w{) = ej, for i = 2, •••,n, where ei is the unit vector in R" with 1 as the ith
coordinate and 0 elsewhere.

Let U = P{T(f)). Then U is an open cone in R" and et e U. Let
jt = (fc,0,---,0) where fceZ, and let at = ex and at = ef + k for i = 2,---,n.
Let k be sufficiently large that aua2,---,ane U. Note that au•••,an generate Z"
as a group. For each fixed choice C of signs + elt • • •, + en, there is a vector space
isomorphism yc: R" -> i?" such that vc(

flj) = ± ei- Let ac == yc ° fi, and let
a.*: FALGn -> FALGn be given by a*(g) = ^ ° a^1- By Lemma 2.2 a<? is an
/-group automorphism of FALGn. By Lemma 2.1 T ( a * / ) = T ( / ° a^1) =
ac(T(/)) = VcC^7)- Each yc(C7) contains an orthant of R"\{0}, and the union
of all the yc(U), over all choices of signs C, is W\{0}.
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Let au •••,<Tk be a listing of all the a* . Then

= U T(aJ) = R-\{0}.
i=l

By Lemma 1.1 (or alternatively by the compactness of S""1) there is a positive

integer m such that | ^ i | ^ w( |<7 1 / | + ••• + |<T|t/|).

THEOREM 2.4. Each free abelian /-group is characteristically simple.

PROOF. The free abelian /-group on S is that /-subgroup of the free vector
lattice on S generated by S (Conrad (1971)). We have developed the machinery
in the lemmas so that the proof of Theorem 2.7 in Bleier (1973) can be imitated
directly. We omit the details.

3. Free [-groups

Credit for the argument in this section belongs to I. Amemiya (1966). The pre-
sent author's sole contribution lies in noting that Amemiya's argument applies to
free (non-abelian) /-groups and in writing out the details in the careful form
given below.

Let F(S) denote the free /-group with S as a free generating subset. If T s S,
then the /-subgroup of F(S) generated by Tis F(T). This is readily verified from
the definition of freedom. Let x e F(S). Then x e F(T) s F(S) for some finite
subset T of S. This is immediate since S generates F(S) and the algebraic opera-
tions are unitary. Also, if S is finite, then F(S) is countable.

THEOREM 3.1. No free /-group contains an uncountable disjoint subset.

PROOF. Suppose (by way of contradiction) that {xx}xs^ is an uncountable
subset of disjoint elements of the free /-group F(S). For each xx choose a finite
subset Tx of S such that xx e F(TX) s F(S). Then there exists some integer n such
that | Tx | = n for uncountably many oces/.

Let y4 = {T |̂ \TX\ = n}. A is uncountable since otherwise some F(Ta)
would contain uncountably many of the xx, which is impossible since each
F(TJ is countable. Let k be the largest integer such that there exists some subset
X of S with | X | = k and X s Tx for uncountably many Tx e A. Note that
0 ^ k < n. Fix X with | X | = k and X £ Ta for uncountably many Ta e A.
(If k = 0, take X = 0 . )

Let B = {TaeA\X £ T j , and let Ya = TX\X. Then C = {Yx\TxeB} is
uncountable. Let D be a subset of C which is maximal with respect to Yx n Yfi = 0.
Suppose D is countable. Then W = {y e Yx | Yx e D) is countable since each Yx

is finite. Because of the maximality of D, each member of C has non-empty
intersection with W. Hence some weWbelongs to uncountably many members
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of C. But now X U {w} is contained in uncountably many members of A, contra-
dicting the maximality of k.

Thus D is uncountable. Let s/* = {a e sf | Yx e D}, and let Y be a set of
cardinality n — k. For a e stf* let / j a : X u Y« -• X u Y be a bijection such that
hx restricted to X is the identity on X. hx extends uniquely to an isomorphism
ha:F(T,)-+F(X\jY).

We prove {hx(xx) | a e s/*} is a pairwise disjoint subset of F(X u 10 • Let
aje si*. Define/:Zu YXKJ YP -* F{X u Y) by

if zeX

if z e y a

if zeFp

X, ya, and Yp are pairwise disjoint subsets of A, and hence/is indeed single-
valued. / extends uniquely to a homomorphism / : F(TX u Tfi) -* F(X u 10.
Note that/extends both hx and hf. Since x ,Ax f = 0,we have / ( x j A /(X^) = 0,
and hence hjixx) A hf{xp) = 0.

Thus we have an uncountable disjoint subset of F(X u Y). This contradicts
the fact that F(X u Y) is countable.
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