High Power Laser Science and Engineering, (2023), Vol. 11, e20, 7 pages. doi:10.1017/hpl.2023.4 # RESEARCH ARTICLE # Feasibility study of laser-driven neutron sources for pharmaceutical applications Takato Mori¹, Akifumi Yogo¹, Yasunobu Arikawa¹, Takehito Hayakawa^{1,2}, Seyed R. Mirfayzi³, Zechen Lan¹, Tianyun Wei¹, Yuki Abe^{1,4}, Mitsuo Nakai¹, Kunioki Mima¹, Hiroaki Nishimura⁵, Shinsuke Fujioka¹, and Ryosuke Kodama¹ (Received 11 November 2022; revised 22 December 2022; accepted 5 January 2023) #### Abstract We predict the production yield of a medical radioisotope 67 Cu using 67 Zn(n, p) 67 Cu and 68 Zn(n, pn) 67 Cu reactions with fast neutrons provided from laser-driven neutron sources. The neutrons were generated by the p+ 9 Be and d+ 9 Be reactions with high-energy ions accelerated by laser-plasma interaction. We evaluated the yield to be $(3.3 \pm 0.5) \times 10^{5}$ atoms for 67 Cu, corresponding to a radioactivity of 1.0 ± 0.2 Bq, for a Zn foil sample with a single laser shot. Using a simulation with this result, we estimated 67 Cu production with a high-frequency laser. The result suggests that it is possible to generate 67 Cu with a radioactivity of 270 MBq using a future laser system with a frequency of 10 Hz and 10,000-s radiation in a hospital. Keywords: laser ion acceleration; laser-driven neutron source; medical radioisotope ## 1. Introduction Particle acceleration using lasers[1] has been studied for about four decades and, after the development of chirped pulse amplification^[2], laser intensity has increased up to 10²³ W/cm^{2[3,4]}. At present various particles of photons, electrons, ions and neutrons are generated by laser facilities. Ions have been accelerated by the electrostatic field generated by the electron pressure gradient, socalled target normal sheath acceleration (TNSA)^[5-8]. Neutrons are generated by photodisintegration reactions with γ-rays generated by laser-plasma interactions^[9], laser fusion reactions such as d(p, np)p and $d(d, n)^3$ He reactions^[10] or nuclear reactions by placing a secondary target behind the first target for ion acceleration^[11–14]. The energies of ions accelerated by laser reach several tens of MeV, thus making it possible to generate neutrons through nuclear reactions, such as ${}^{7}\text{Li}(p,n){}^{7}\text{Be}^{[11]}$, ${}^{9}\text{Be}(d,xn)$ and ⁹Be(p, n)^[12–14]. The flux of the laser-driven neutron sources (LDNSs) has been increased up to approximately 10¹¹ Correspondence to: Akifumi Yogo, Institute of Laser Engineering, Osaka University, Suita 565-0871, Japan. Email: yogo-a@ile.osaka-u.ac.jp neutrons/sr^[12–14]. Although neutrons in the MeV energy region are primarily produced by LDNSs, low-energy neutrons in thermal and epi-thermal regions can also be generated using moderators^[11,15]. LDNSs have the characteristics of high brightness and short pulses, and are expected to be useful for various applications. Several experiments have demonstrated imaging using fast neutrons provided from an LDNS^[16–19]. LDNSs are also expected to be used for single-shot radiography to non-destructive inspections with the combination of thermal neutrons and X-rays^[20,21]. Furthermore, elemental analysis using nuclear resonance absorption with low-energy neutrons from an LDNS has been demonstrated^[20]. One of the expected applications using LDNSs is the production of medical radioisotopes by a compact laser system inside of hospitals. Radioisotopes, which may radiate a γ -ray with an energy of a few hundred keV, such as 99m Tc (half-life 6.02 h), are used for single-photon emission computed tomography (SPECT) in medical diagnostic scans. At present, most medical radioisotopes have been provided from nuclear reactors and accelerators, and they have been distributed to hospitals. A positron emitter 18 F with a ¹Institute of Laser Engineering, Osaka University, Suita, Japan ²National Institutes for Quantum Science and Technology, Tokai, Japan ³ Tokamak Energy Ltd., Abingdon, UK ⁴ Graduate School of Engineering, Osaka University, Suita, Japan ⁵Fukui University of Technology, Fukui, Japan [©] The Author(s), 2023. Published by Cambridge University Press in association with Chinese Laser Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. 2 T. Mori et al. half-life of 1.8 h, which is used for positron emission tomography (PET), is produced by compact cyclotron accelerators located inside of hospitals. In addition to medical diagnostic scans, radioisotopes with half-lives of several days have been used for cancer therapy. The radioisotope ⁶⁷Cu with a halflife of 2.58 d is a good candidate for a radiopharmaceutical for cancer therapy because of its appropriate nuclear and chemical properties^[22-24]. ⁶⁷Cu decays to an excited state or the ground state of the daughter nucleus ⁶⁷Zn through the emission of a β -ray with a maximum energy of 392, 484 or 577 keV. When an excited state is generated, it subsequently decays to the ground state of 67 Zn with emission of γ -rays with energies of 91, 93 and 185 keV. During therapy, a radiopharmaceutical including ⁶⁷Cu is accumulated inside of a tumor in a human body, therefore making the β -rays radiated from ⁶⁷Cu appropriate to effectively kill the cancer cells with a lethal dose. In addition, the γ -rays radiated from the 67 Curadiopharmaceutical accumulated in the cancer are suitable for SPECT imaging. Therefore, ⁶⁷Cu is expected to be used for radioimmunotheranostics^[25], and various production methods of ⁶⁷Cu have been studied for future operation. ⁶⁷Cu production with protons and deuterons using accelerators has been studied, where ⁶⁷Cu is produced via ⁶⁸Zn(p, $2p)^{67}Cu^{[26,27]}$, $^{70}Zn(p, \alpha)^{67}Cu^{[23]}$ and $^{70}Zn(d, \alpha n)^{67}Cu$ reactions^[28]. One of the feasible production methods is photodisintegration reactions; 67 Cu can be produced by the 68 Zn(γ , p)⁶⁷Cu reaction^[29–31] with γ -rays provided from electron accelerators. Production by neutron-induced reactions was also studied (Figure 1). ⁶⁷Cu can be produced by the ⁶⁷Zn(n, p) 67 Cu $^{[32-35]}$ and 68 Zn(n, np) 67 Cu $^{[34-36]}$ reactions. LDNSs provide primary fast neutrons in the energy range of 1–20 MeV, making them suitable for production of ⁶⁷Cu via neutron-induced reactions, as presented here. In the present study, we explore the possibility of ⁶⁷Cu production by LDNSs with a high-power laser. The activation method is one of the tools used to evaluate precisely the number of unstable isotopes. In our previous studies, the numbers of fast neutrons with energies of 8-20 MeV and thermal neutrons were quantitatively evaluated using activation methods [14,37]. Here, we demonstrated 67 Cu production with an irradiation of laser-driven neutrons on a natural Zn metal target and measured the radioactivities of the unstable isotopes and isomer generated in the Zn target. The evaluation of the produced radioisotopes was carried out by γ -ray measurement with a high-purity germanium (HPGe) detector and we reveal the activities of 67 Cu and the unstable isotopes of Zn, Cu and Ni. ## 2. Experimental methods The neutron irradiation experiment was carried out using the petawatt laser for fast ignition experiments (LFEX) laser system at the Institute of Laser Engineering (ILE) at Osaka University^[38]. To generate and accelerate ions we focused four laser pulses provided from LFEX on a target with an intensity of approximately 1.5×10^{19} W/cm² and with a duration of 1.5 ps in full width at half maximum (FWHM). Figure 2 shows the experimental setup of the target installed in the vacuum chamber. The angle between the laser axis and the normal vector of the target foil was 42°. As the target, a deuterated carbon $[(C_8D_8)_n$, henceforth referred to as CD] foil with a thickness of 5 µm was used. A plasma was induced by the laser and, subsequently, ions of protons and deuterons were accelerated from the plasma via TNSA^[39–41]. In the TNSA, a target foil is irradiated by a laser with an intensity higher than or equal to 10¹⁸ W/cm² to make a plasma. The generated plasma is extended into a vacuum for the opposite side (rear side) to the laser irradiation side to generate a charge separation field, by which ions on the rear surface of the target could be accelerated up to several tens of MeV. The accelerated protons and deuterons have continuous energies, of which the spectral density **Figure 1.** Partial nuclear chart around Zn and nuclear reactions with neutrons on a natural Zn target. 64 Cu, 66 Cu and 68 Cu are produced by (n, p) reactions with high-energy neutrons on 64 Zn, 66 Zn and 68 Zn, respectively. 65 Cu and 69 Cu m are produced by (n, 2n) reactions on 64 Zn, 66 Zn and 70 Zn, respectively. 66 Cu and 67 68 Zn, respectively. High-energy neutrons could produce 65 Ni by the 68 Zn(n, α) 65 Ni reaction. Neutron capture also occurs. **Figure 2.** Experimental setup for the laser shot to generate neutrons. The laser is focused on the CD foil target. The Be neutron converter is placed 4 mm downstream of the CD foil. Behind the Be target, the Zn target was set in the hole at the center of the front surface. decreases with increasing energies. The maximum energies of the protons and deuterons using LFEX are typically 30 and 20 MeV, respectively^[42]. A Be block with a size of $\phi 10 \text{ mm} \times 5 \text{ mm}$ was installed 4 mm downstream from the CD foil. The accelerated ions generated neutrons by p+9Be and d+9Be reactions[12-14]. High-energy neutrons are predominantly generated by the ⁹Be(p, n)⁹B reaction with high-energy protons. Around the Be block, a semicylindrical polyethylene moderator with a volume of 157 cm³ in a stainless-steel case was located. The thicknesses of the top and side were 5 mm and the thickness of the bottom was 2 mm (see Figure 2). To produce ⁶⁷Cu, a natural Zn target with a size of $\phi 10 \text{ mm} \times 5 \text{ mm}$ and a weight of 2.86 g was placed behind the Be target. The neutron energy spectrum was measured by the time of flight (TOF) method. A benzophenon-doped BBQ liquid scintillation detector with a size of ϕ 60 mm×60 mm with a photomultiplier tube (PMT; Thron EMI, 9902KBT)[43] was located 8.3 m downstream from the center of the target chamber, and the angle between the laser axis and the TOF beam line was approximately 15°, corresponding to 57° away from the normal vector of the Be target. The output signal from the PMT was recorded by an oscilloscope shot by shot and the neutron energy spectrum for each laser shot was obtained from each signal^[44]. Unstable isotopes and isomers were produced via nuclear reactions of the neutrons and stable isotopes of Zn. Eleven minutes after the laser shot, the Zn target was moved from the target chamber to obtain the γ -ray signals. The γ -rays emitted from the produced nuclides were measured with an HPGe detector. The efficiency of the HPGe detector relative to a ϕ 3 inch \times 3 inch NaI(Tl) scintillation detector was approximately 70%. A multichannel analyzer (TechnoAP, APG7400A) was used to acquire the pulse height of the amplifier, and the dead time was less than 0.07%. Copper plates with a thickness of 5 mm and lead blocks with a thickness of 10 cm were used for background radiation shielding. Standard γ -ray sources of 152 Eu and 133 Ba were used for calibration of the detection efficiency and energy of the HPGe detector. The y-ray measurements of the laser-neutron irradiated Zn sample and background with a non-irradiated Zn target were conducted for 120 and 99 h, respectively, with the same background shield. # 3. Experimental results Figure 3 shows the energy spectrum of the generated neutrons, which was measured using the TOF method with the scintillation detector located 57° from the normal vector of the Be block. The maximum energy is approximately 17 MeV, and the number of neutrons decreases with increasing energy. The neutron yield was 8×10^9 neutrons/sr in the energy range from 1 MeV to the maximum energy. The maximum energy is high enough to induce the 67 Zn(n, p) 67 Cu and 68 Zn(n, np) 67 Cu reactions. Note that the total number and the maximum energy are expected to be lower than those of the neutrons emitted forward, respectively. The produced radioisotopes and isomers were identified using the analysis of ν -rays radiated following β decay or internal decay of the isomers. For some nuclear species, the decay curves of γ -rays were also used for identification. The number of a produced nuclide was evaluated from the peak area in the energy spectrum. Figures 4(a)-4(c) show the γ -ray spectra from the neutron-irradiated Zn sample, the background and their subtraction in the three different energy ranges. In these spectra, the γ -rays of 63 Zn, 65 Zn, ⁶⁹Zn^m, ⁶⁴Cu, ⁶⁶Cu and ⁶⁷Cu are observed. Because the peaks of the 93 and 185-keV γ -rays radiated from ⁶⁷Cu in the energy spectrum were overlapped with the γ -rays from ²³⁴Th and ²³⁵U in the background, the background spectrum was subtracted from the Zn sample spectrum. Figures 4(d)-4(f) show the γ -ray spectra measured for 8.1 h, 5.1 h and 8 min, respectively. In Figures 4(d) and 4(e), γ -rays radiated from 71 Zn^m ($T_{1/2} = 4.0 \text{ h}$) and 65 Ni ($T_{1/2} = 2.5 \text{ h}$) are observed, respectively. In contrast, when the measuring time is as short as 8 min, the γ -ray peak of 68 Cu^m with a half-life of 3.8 min appears [see Figure 4(f)]. From the energy spectra and decay curves, ⁶³Zn, ⁶⁵Zn, ⁶⁹Zn^m, ⁷¹Zn^m, ⁶⁴Cu, ⁶⁶Cu, ⁶⁷Cu, ⁶⁸Cu^m and ⁶⁵Ni were identified. Table 1 shows the properties and measured activities of the radioisotopes. Note that the only **Figure 3.** Fast neutron spectrum obtained from the TOF measurement. The neutron energies reached 17 MeV. 4 T. Mori et al. **Figure 4.** γ -ray spectra measured for 120 h, 8.1 h, 5.1 h and 8 min. (a)–(c) The γ -ray spectra integrated for 120 h. The background signal measured for 99 h was normalized to the target measurement of 120 h. (d) The γ -ray spectrum measured for 8.1 h, where peaks corresponding to 71 Zn m are observed. (e) The γ -ray spectrum for 5.1 h, where peaks for 65 Ni are observed. (f) The γ -ray spectrum for 8 min, which shows the 68 Cu m peak at 526 keV. **Table 1.** Produced nuclides and their half-lives, γ -ray energies, emission probabilities of the γ -rays, nuclear reactions, numbers and activities. | | | | | | | Activ | ity (Bq) | |-------------------------------|-----------|--------------------|------------------|------------------------------------------------|-------------------------------|--------------------------|---------------------------------| | Nuclide | $T_{1/2}$ | E_{γ} (keV) | I_{γ} (%) | Nuclear reaction | Quantities of the nuclides | t = 0 h | t = 12 h | | ⁶³ Zn | 38.47 min | 669.62 | 8 | ⁶⁴ Zn(n, 2n) | $(9.3 \pm 0.8) \times 10^5$ | $(28 \pm 2) \times 10$ | $(6.5 \pm 0.6) \times 10^{-4}$ | | | | 962.06 | 6.5 | | | | | | 65 Zn | 224.26 d | 1115.55 | 50.6 | 64 Zn(n, γ) and 66 Zn(n, 2n) | $(1.45 \pm 0.15) \times 10^7$ | 0.52 ± 0.05 | $(5.2 \pm 0.5) \times 10^{-1}$ | | $^{69}\mathrm{Zn}^m$ | 13.76 h | 438.6 | 94.77 | 68 Zn(n, γ) and 70 Zn(n, 2n) | $(6.6 \pm 0.4) \times 10^5$ | 9.2 ± 0.6 | 5.0 ± 0.3 | | 71 Zn | 2.45 min | 910.27 | 7.8 | 70 Zn(n, γ) | $< 1.5 \times 10^5$ | <710 | $< 2.4 \times 10^{-86}$ | | ⁷¹ Zn ^m | 3.96 h | 386.28 | 93 | 70 Zn(n, γ) | $(1.9 \pm 0.5) \times 10^4$ | 0.8 ± 0.2 | $(1.1 \pm 0.3) \times 10^{-1}$ | | | | 487.38 | 62 | | | | | | | | 596.14 | 27.9 | | | | | | | | 620.18 | 57 | | | | | | ⁶⁴ Cu | 12.7 h | 1345.84 | 0.473 | 64 Zn(n, p) | $(5.9 \pm 0.5) \times 10^7$ | $(89 \pm 8) \times 10$ | $(4.7 \pm 0.4) \times 10^2$ | | ⁶⁶ Cu | 5.12 min | 1039.23 | 9 | 66 Zn(n, p) and 67 Zn(n, np) | $(2.03 \pm 0.25) \times 10^6$ | $(458 \pm 56) \times 10$ | $(2.1 \pm 0.3) \times 10^{-39}$ | | ⁶⁷ Cu | 61.83 h | 93.3 | 16.1 | 67 Zn(n, p), 68 Zn(n, np) | $(3.3 \pm 0.5) \times 10^5$ | 1.0 ± 0.2 | $(9.0 \pm 1.4) \times 10^{-1}$ | | | | 184.6 | 48.7 | | | | | | 68 Cu m | 3.75 min | 525.9 | 73 | 68 Zn(n, p) | $(3.2 \pm 1.4) \times 10^4$ | 99 ± 43 | $(1.6 \pm 0.7) \times 10^{-56}$ | | ⁶⁵ Ni | 2.52 h | 366.27 | 4.81 | 68 Zn(n, α) | $(1.8 \pm 0.2) \times 10^5$ | 14 ± 2 | $(5.1 \pm 0.6) \times 10^{-1}$ | | | | 1115.55 | 15.43 | | | | | | | | 1481.84 | 24 | | | | | upper limit of the radioactivity of 71 Zn was obtained by taking the square root of background around 910.27 keV. Although the 511.56-keV γ -ray with a highest emission probability of 32% is radiated from 71 Zn, it is difficult to use it for the estimation of radioactivity because its energy is nearly equal to 511 keV, which is one of the strongest background γ -rays. ## 4. Discussion In the present study, we revealed that the radioisotope 67 Cu was generated by nuclear reactions on the natural Zn target with laser-driven neutrons, and obtained $(3.3 \pm 0.5) \times 10^5$ atoms of 67 Cu corresponding to the radioactivity of 1.0 ± 0.2 Bq for 67 Cu using only a single laser shot. We evaluated the expected radioactivity of ⁶⁷Cu and the other isotopes measured in the present experiment using the PHITS version 3.08 Monte Carlo simulation code^[45]. The cross-sections of the nuclear reactions were taken from the JENDL–4.0 nuclear data library^[46], as shown in Figure 5. Note that although the cross-sections at energies higher than 20 MeV are not included in the database, this upper limit is higher than the maximum energy of the neutrons assumed in the calculation. We calculated the radioactivities for the present experimental setup, and the measured neutron spectrum, as shown in Figure 4, was used as input data. The results are also presented in Table 2. There is disagreement between the experimental and calculated values. As listed in Table 2, the calculated radioactivities are lower than the measured values by a factor of 2.8–200. The measured radioactivity **Figure 5.** Cross sections used in the simulation calculation, which are taken from the JENDL-4.0 nuclear data library. **Table 2.** Experimental activities, calculated activities and their ratio of the obtained activities in the present experiment. The calculated activities were obtained using the PHITS simulation code with the measured neutron energy spectrum. | Nuclide | Experiment | Simulation | Exp/Sim ratio | |------------------|--------------------------|------------|---------------| | ⁶³ Zn | $(282 \pm 2) \times 10$ | 1.40 | 200 | | ⁶⁵ Zn | 0.52 ± 0.05 | 0.19 | 2.8 | | 69 Zn m | 9.2 ± 0.6 | 1.4 | 6.6 | | 71 Zn | <710 | 30.6 | <23 | | 71 Zn m | 0.8 ± 0.2 | 0.04 | 20 | | ⁶⁴ Cu | $(89 \pm 8) \times 10$ | 37.2 | 23.9 | | ⁶⁶ Cu | $(458 \pm 56) \times 10$ | 59.2 | 77.4 | | ⁶⁷ Cu | 1.0 ± 0.2 | 0.02 | 50 | | 68 Cu m | 99 ± 43 | 0.84 | 118 | | ⁶⁵ Ni | 14 ± 2 | 0.35 | 40 | of ⁶⁷Cu is 50 times larger than the calculated one. This discrepancy suggests that the number of the high-energy neutrons irradiating on the Zn target is more than the value assumed in the present calculation. This probably comes from the fact that the neutron energy spectrum used as the input was measured at 57°. Because the neutron density is, in general, the largest at the forward angle, the assumed neutron flux and the maximum energy are considered to be lower than the actual values. Thus, we multiply the calculated yield of ⁶⁷Cu by the scaling factor of 50 in the following discussion. Radioisotopic impurity is one of the key parameters for the realization of a radiopharmaceutical. To evaluate the radioisotopic impurity, we also evaluated the radioactivities of other isotopes, as listed in Table 2. The radioactivities of ⁶³Zn, ⁶⁹Zn^m, ⁶⁴Cu, ⁶⁶Cu, ⁶⁸Cu^m and ⁶⁵Ni are stronger than that of ⁶⁷Cu by one to three orders of magnitude. In general, the Zn and Ni isotopes could be separated from the Cu isotopes with chemical processes^[47]. Among the Cu isotopes, because the half-lives of ⁶⁶Cu and ⁶⁸Cu^m are shorter than 6 min, after the cooling time of 12 h their activities decrease lower than 10⁻⁴⁰ Bq (see Table 1). Even if we use chemical separation and cooling processes, the unstable isotope ⁶⁴Cu still remains. ⁶⁴Cu is predominantly produced by the ⁶⁴Zn(n, p)⁶⁴Cu reaction on the stable isotope ⁶⁴Zn with an isotopic fraction of 48.6%. To decrease the impurity of ⁶⁴Cu, when we use the isotope enriched target of ⁶⁷Zn or ⁶⁸Zn, in which the isotopic fraction of ⁶⁴Zn is lower than 0.0486%, it is possible to decrease the ⁶⁴Cu radioactivity lower than 0.47 Bq. The experiment/simulation ratio for ⁶⁴Cu is 23.9, as listed in Table 2, which is lower than that for ⁶⁷Cu. This is because ⁶⁷Cu is produced by the ⁶⁸Zn(n, np)⁶⁷Cu reaction with relatively high-energy neutrons, but ⁶⁴Cu cannot be produced by the ⁶⁵Zn(n, np)⁶⁴Cu reaction on the unstable isotope ⁶⁵Zn. Thus, when we use relatively high-energy neutrons, the radioactivity of ⁶⁴Cu decreases. To estimate the activity of ⁶⁷Cu that can be produced in hospitals, we calculate a possible yield of ⁶⁷Cu using a laser for an optimized target system, as shown in Figure 6. We assume an enriched ⁶⁷Zn target for neutron irradiation. A well-type Zn target has a ϕ 30 cm×3 cm size with a hole of ϕ 5 cm×15 cm. The volume of the Zn target is approximately 2.1×10^4 cm³. In the bottom of the hole, the Be neutron generation target is located. The unstable isotope ⁶⁷Cu is predominantly produced via the 67 Zn(n, p) 67 Cu reaction with neutrons with energies up to 17 MeV. We finally obtain the expected radioactivity of approximately 54 Bq for a single laser shot without the scaling factor of 50. Although we used a low-frequency high-power laser for the present demonstration, a high-frequency laser will be most efficient for the laser system placed inside hospitals because of its compactness and ability to provide laser intensity higher than 10²⁰ W/cm², leading to effective neutron generation. If we irradiate the laser-driven neutrons in the condition as assumed above for 10,000 s with a frequency of 10 Hz, we can obtain approximately 270 MBq of ⁶⁷Cu with the scaling factor. This result suggests the possibility of production of medical radioisotopes using LDNSs in hospitals, although further studies are required for more realistic estimation. # 5. Summary In this study, we have demonstrated production of a medical radioisotope, ⁶⁷Cu, using LFEX at Osaka University. Neutrons with energies of up to 17 MeV have been generated using p+9Be and d+9Be reactions on the secondary target located behind the ion acceleration target. The neutron energy spectrum at 57° is obtained from the TOF method. The radioactivities of the generated unstable isotopes and isomers were evaluated from y-ray energy spectra measured with an HPGe detector. The ⁶⁷Cu radioactivity of 1.0 ± 0.2 Bq was obtained, which is about 50 times higher than the value calculated using the PHITS simulation code. This may originate from the fact that the neutron energy spectrum was measured at 57° and, thus, the maximum energy and total number are lower than those of the neutrons irradiating on the Zn target. We estimated radioactivity of ⁶⁷Cu using a future laser system and the PHITS code, obtaining the result that it is possible to produce 270 MBq 6 T. Mori et al. **Figure 6.** Geometry of the calculation of the yield of ⁶⁷Cu using a laser for an optimized target system. (a) Cross-sectional view of the Be and ⁶⁷Zn target. (b) 3D image of the target. of ⁶⁷Cu using a high-frequency laser for 10,000 s irradiation. This suggests that the medical radioisotope may be produced in a compact laser system inside of a hospital in the future. # Acknowledgements This work was supported by the JSPS Bilateral Program (Grant No. JSPSBP120209922) and JSPS KAKENHI (Grant Nos. JP22H02007 and JP22H01239). ### References - 1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979). - 2. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985). - 3. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. **78**, 309 (2006). - K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, Matter Radiat. Extrememes 5, 024402 (2020). - R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, Phys. Rev. Lett. 85, 2945 (2000). - A. G. S. Maksimchuk, K. Flippo, D. Umstadter, and V. Y. Bychenkov, Phys. Rev. Lett. 84, 4108 (2000). - S. P. Hatchett, C. G. Brown, T. E. Cowan, E. A. Henry, J. S. Johnson, M. H. Key, J. A. Koch, A. B. Langdon, B. F. Lasinski, R. W. Lee, A. J. Mackinnon, D. M. Pennington, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. S. Singh, R. A. Snavely, M. A. Stoyer, S. C. Wilks, and K. Yasuike, Phys. Plasmas 7, 2076 (2000). - S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001). - Y. Arikawa, M. Utsugi, M. Alessio, T. Nagai, Y. Abe, S. Kojima, S. Sakata, H. Inoue, S. Fujioka, Z. Zhang, H. Chen, J. Park, J. Williams, T. Morita, Y. Sakawa, Y. Nakata, - J. Kawanaka, T. Jitsuno, N. Sarukura, N. Miyanaga, M. Nakai, H. Shiraga, H. Nishimura, and H. Azechi, Plasma Fusion Res. **10**, 2404003 (2015). - S. Kar, A. Green, H. Ahmed, A. Alejo, A. P. L. Robinson, M. Cerchez, R. Clarke, D. Doria, S. Dorkings, J. Fernandez, S. R. Mirfayzi, P. McKenna, K. Naughton, D. Neely, P. Norreys, C. Peth, H. Powell, J. A. Ruiz, J. Swain, O. Willi, and M. Borghesi, New J. Phys. 18, 053002 (2016). - S. R. Mirfayzi, A. Alejo, H. Ahmed, D. Raspino, S. Ansell, L. A. Wilson, C. Armstrong, N. M. H. Butler, R. J. Clarke, A. Higginson, J. Kelleher, C. D. Murphy, M. Notley, D. R. Rusby, E. Schooneveld, M. Borghesi, P. McKenna, N. J. Rhodes, D. Neely, C. M. Brenner, and S. Kar, Appl. Phys. Lett. 111, 044101 (2017). - A. Kleinschmid, V. Bagnoud, O. Deppert, A. Favalli, S. Frydrych, J. Hornung, D. Jahn, G. Schaumann, A. Tebartz, F. Wagner, G. Wurden, B. Zielbauer, and M. Roth, Phys. Plasmas 25, 053101 (2018). - A. Favalli, N. Guler, D. Henzlova, S. Croft, K. Falk, D. C. Gautier, K. D. Ianakiev, M. Iliev, S. Palaniyappan, M. Roth, J. C. Fernandez, and M. T. Swinhoe, Sci. Rep. 9, 2004 (2019). - 14. T. Mori, A. Yogo, T. Hayakawa, S. R. Mirfayzi, Z. Lan, Y. Abe, Y. Arikawa, D. Golovin, T. Wei, Y. Honoki, M. Nakai, K. Mima, H. Nishimura, S. Fujioka, and R. Kodama, Phys. Rev. C 104, 015808 (2021). - S. R. Mirfayzi, A. Yogo, Z. Lan, T. Ishimoto, A. Iwamoto, M. Nagata, M. Nakai, Y. Arikawa, Y. Abe, D. Golovin, Y. Honoki, T. Mori, K. Okamoto, S. Shokita, D. Neely, S. Fujioka, K. Mima, H. Nishimura, S. Kar, and R. Kodama, Sci. Rep. 10, 20157 (2020). - M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J. L. Tybo, F. Wagner, S. A. Wender, C. H. Wilde, and G. A. Wurden, Phys. Rev. Lett. 110, 044802 (2013). - N. Guler, P. Volegov, A. Favalli, F. E. Merrill, K. Falk, D. Jung, J. L. Tybo, C. H. Wilde, S. Croft, C. Danly, O. Deppert, M. Devlin, J. Fernandez, D. C. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, D. Henzlova, R. P. Johnson, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, M. T. Swinhoe, T. Taddeucci, S. A. Wender, G. A. Wurden, and M. Roth, J. Appl. Phys. 120, 154901 (2016). - R. Mizutani, Y. Abe, Y. Arikawa, J. Nishibata, A. Yogo, S. R. Mirfayzi, H. Nishimura, K. Mima, S. Fujioka, M. Nakai, H. Shiraga, and R. Kodama, High Energy Density Phys. 36, 100833 (2020). - K. Mima, A. Yogo, S. R. Mirfayzi, Z. Lan, Y. Arikawa, Y. Abe, and H. Nishimura, Appl. Opt. 61, 2398 (2022). - A. Yogo, S. R. Mirfayzi, Y. Arikawa, Y. Abe, T. Wei, T. Mori, Z. Lan, Y. Hoonoki, D. O. Golovin, K. Koga, Y. Suzuki, M. Kanasaki, S. Fujioka, M. Nakai, T. Hayakawa, K. Mima, H. Nishimura, S. Kar, and R. Kodama, Appl. Phys. Express 14, 106001 (2021). - T. Wei, A. Yogo, T. Hayakawa, Y. Arikawa, Y. Abe, M. Nakanishi, S. R. Mirfayzi, Z. Lan, T. Mori, K. Mima, S. Fujioka, M. Murakami, M. Nakai, H. Nishimura, S. Kar, and R. Kodama, AIP Adv. 12, 045220 (2022). - I. Novak-Hofer and P. A. Schubiger, Eur. J. Nucl. Med. 29, 821 (2002). - 23. S. Mirzadeh, L. F. Mausner, and S. C. Srivastava, Appl. Radiat. Isot. 37, 29 (1986). - N. A. Smith, D. Bowers, and D. A. Ehst, Appl. Radiat. Isot. 70, 2377 (2012). - G. Ting, C.-H. Chang, H.-E. Wang, and T.-W. Lee, J. Biomed. Biotechnol. 2010, 953537 (2010). - A. K. Dasgupta, L. F. Mausner, and S. C. Srivastava, Appl. Radiat. Isot. 42, 371 (1991). - T. Katabuchi, S. Watanabe, N. S. Ishioka, Y. Iida, H. Hanaoka, K. Endo, and S. Matsuhashi, J. Radioanal. Nucl. Chem. 277, 467 (2008). - J. Kozempel, K. Abbas, F. Simonelli, A. Bulgheroni, U. Holzwarth, and N. Gibson, Radiochim. Acta 100, 419 (2012). - 29. M. Yagi and K. Kondo, Appl. Radiat. Isot. 29, 757 (1978). - P. Polak, J. Geradts, R. Vlist, and L. Lindner, Radiochimica Acta 40, 169 (1986). - 31. G. H. Hovhannisyan, T. M. Bakhshiyan, and R. K. Dallakyanc, Nucl. Instrum. Methods Phys. Res. Sect. B **498**, 48 (2021). - L. F. Mausner, K. L. Kolsky, V. Joshi, and S. C. Srivastava, Appl. Radiat. Isot. 49, 285 (1998). - M. Al-Abyad, I. Spahn, S. Sudar, M. Morsy, M. N. H. Comsan, J. Csikai, S. M. Qaim, and H. H. Coenen, Appl. Radiat. Isot. 64, 717 (2006). - T. Kin, Y. Nagai, N. Iwamoto, F. Minato, O. Iwamoto, Y. Hatsukawa, M. Segawa, H. Harada, C. Konno, K. Ochiai, and K. Takakura, J. Phys. Soc. Jpn. 82, 034201 (2013). - M. Kawabata, S. Motoishi, A. Ota, A. Motomura, H. Saeki, K. Tsukada, S. Hashimoto, N. Iwamoto, Y. Nagai, and K. Hashimoto, J. Radioanal. Nucl. Chem. 330, 913 (2021). - N. Sato, K. Tsukada, S. Watanabe, N. S. Ishioka, M. Kawabata, H. Saeki, Y. Nagai, T. Kin, F. Minato, N. Iwamoto, and O. Iwamoto, J. Phys. Soc. Jpn. 83, 073201 (2014). - T. Mori, A. Yogo, T. Hayakawa, S. R. Mirfayzi, Z. Lan, T. Wei, Y. Abe, Y. Arikawa, M. Nakai, K. Mima, H. Nishimura, S. Fujioka, and R. Kodama, J. Phys. G 49, 065103 (2022). - 38. J. Kawanaka, N. Miyanaga, H. Azechi, T. Kanabe, T. Jitsuno, K. Kondo, Y. Fujimoto, N. Morio, S. Matsuo, Y. Kawakami, R. Mizoguchi, K. Tauchi, M. Yano, S. Kudo, and Y. Ogura, J. Phys. Conf. Ser. **112**, 032006 (2008). - J. Fuchs, P. Antici, E. d'Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, Nat. Phys. 2, 48 (2006). - J. Fuchs, Y. Sentoku, E. d'Humières, T. E. Cowan, J. Cobble, P. Audebert, A. Kemp, A. Nikroo, P. Antici, E. Brambrink, A. Blazevic, E. M. Campbell, J. C. Fernández, J.-C. Gauthier, M. Geissel, M. Hegelich, S. Karsch, H. Popescu, N. Renard-LeGalloudec, M. Roth, J. Schreiber, R. Stephens, and H. Pépin, Phys. Plasmas 14, 053105 (2007). - A. Yogo, K. Mima, N. Iwata, S. Tosaki, A. Morace, Y. Arikawa, S. Fujioka, T. Johzaki, Y. Sentoku, H. Nishimura, A. Sagisaka, K. Matsuo, N. Kamitsukasa, S. Kojima, H. Nagatomo, M. Nakai, H. Shiraga, M. Murakami, S. Tokita, J. Kawanaka, N. Miyanaga, K. Yamanoi, T. Norimatsu, H. Sakagami, S. V. Bulanov, K. Kondo, and H. Azechi, Sci. Rep. 7, 42451 (2017). - 42. D. O. Golovin, S. R. Mirfayzi, S. Shokita, Y. Abe, Z. Lan, Y. Arikawa, A. Morace, T. A. Pikuz, and A. Yogo, J. Instrument. **16**, T02005 (2021). - Y. Abe, H. Hosoda, Y. Arikawa, T. Nagai, S. Kojima, S. Sakata, H. Inoue, Y. Iwasa, K. Iwano, K. Yamanoi, S. Fujioka, M. Nakai, N. Sarukura, H. Shiraga, T. Norimatsu, and H. Azechi, Rev. Sci. Instrum. 85, 11E126 (2014). - 44. S. R. Mirfayzi, S. Kar, H. Ahmed, A. G. Krygier, A. Green, A. Alejo, R. Clarke, R. R. Freeman, J. Fuchs, D. Jung, A. Kleinschmidt, J. T. Morrison, Z. Najmudin, H. Nakamura, P. Norreys, M. Oliver, M. Roth, L. Vassura, M. Zepf, and M. Borghesi, Rev. Sci. Instrum. 86, 073308 (2015). - T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S.-i. Abe, T. Kai, P.-E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, and K. Niita, J. Nucl. Sci. Technol. 55, 684 (2018). - K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, and J.-I. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011). - S. Watanabe, Y. Iida, N. Suzui, T. Katabuchi, S. Ishii, N. Kawachi, H. Hanaoka, S. Matsuhashi, K. Endo, and N. Ishioka, J. Radioanal. Nucl. Chem. 280, 199 (2009).