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The boundary motive: definition and basic properties

Jörg Wildeshaus

Abstract

We introduce the notion of the boundary motive of a scheme X over a perfect field.
By definition, it measures the difference between the motive Mgm(X) and the motive with
compact support M c

gm(X), as defined and studied by Voevodsky et al. in Cycles, transfers,
and motivic homology theories (Annals of Mathematics Studies, vol. 143 (Princeton
University Press, Princeton, NJ, 2000)). We develop three tools to compute the boundary
motive in terms of the geometry of a compactification of X: co-localization; invariance
under abstract blow-up; and analytical invariance. We then prove auto-duality of the
boundary motive of a smooth scheme X. As a formal consequence of this, and of
co-localization, we obtain a fourth computational tool, namely localization for the
boundary motive. In a sequel to this work (J. Wildeshaus, On the boundary motive of
a Shimura variety, Prépublications du Laboratoire d’Analyse, Géométrie et Applications
de l’Université Paris 13, no. 2004-23), these tools will be applied to Shimura varieties.
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Introduction

In this paper, we define the boundary motive ∂Mgm(X) of a scheme X over a perfect field k. By its
very construction, it is part of an exact triangle

∂Mgm(X) −→ Mgm(X) −→ M c
gm(X) −→ ∂Mgm(X)[1],

where Mgm(X) and M c
gm(X) denote the motive of X and its motive with compact support, respec-

tively. The exact triangle is in the triangulated category DM eff
− (k) of effective motivic complexes

which, together with Mgm(X) and M c
gm(X), was defined in [VSF00]. We refer to § 1 for a review
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of these constructions. We expect this exact triangle to be of a certain interest. First, it induces
long exact sequences for motivic homology and cohomology. More generally, any exact functor to
a triangulated category D will induce long exact sequences of Ext-groups in D which are a priori
compatible with the sequence in motivic homology, respectively, cohomology. Second, the exact tri-
angle itself can be employed to construct explicit extensions of objects in DM eff

− (k), i.e. classes in
motivic cohomology.

Note that most of the existing attempts to prove the Beilinson or Bloch–Kato conjectures on
special values of L-functions necessitate the explicit construction of elements in motivic cohomology.
Furthermore, the realizations (Betti, de Rham, étale, . . . ) of these elements can often be constructed
out from the cohomology of non-compact varieties, using the respective realizations of our exact
triangle

∂Mgm(X) −→ Mgm(X) −→ M c
gm(X) −→ ∂Mgm(X)[1].

This approach is clearly present, for example, in Harder’s work on special values [Har93].
Our definition may thus be seen as an attempt to give a rigorous motivic meaning to these con-
structions.

In order to efficiently apply our new notion, one is naturally led to look for means to identify
the boundary motive. We develop three tools to compute ∂Mgm(X): co-localization (§ 3); invariance
under abstract blow-up (§ 4); and analytical invariance (§ 5). In a sequel to this work [Wil04], they
will be applied to Shimura varieties, yielding in particular a motivic version of Pink’s theorem on
higher direct images of étale sheaves in the Baily–Borel compactification.

All our tools are based on the identification of ∂Mgm(X) with the motive associated to the
diagram of schemes

∅ ��

��

X

��
∂X �� X

for a compactification X of X, with ∂X := X −X (see Proposition 2.4 for the precise statement).
Let us insist that the definition of ∂Mgm(X) does not involve such a compactification.

Co-localization is the motivic analogue of the dual of the localization spectral sequence associated
to a stratification of ∂X. In the context of Betti cohomology (say), a good stratification ∂X =

∐
Ym

induces a spectral sequence converging to the cohomology of ∂X , and with E2-terms given by
cohomology with compact support of the Ym. If one wants to express the analogue of the E2-terms
as motives rather than motives with compact support, one is led to imitate the dual spectral
sequence, whose E2-terms are equal to the usual cohomology of Ym, but with coefficients given by
the exceptional inverse images of the coefficients on ∂X. This explains our choice of notation for
the motives ‘with coefficients’ occurring in §§ 3–5, and more importantly, the precise nature of their
behaviour. It turns out that in order to obtain a clean statement, co-localization (Theorem 3.4) has
to be formulated more generally for diagrams of the type

Y ′ − Y ��

��

W − Y

��
Y ′ �� W

and for stratifications of Y , where Y ↪→ Y ′ ↪→ W are closed immersions of not necessarily proper
schemes over k. This diagram should be seen as modeling cohomology of the ‘motivic sheaf’ i!Y j! Z,
where iY : Y ↪→ W and j : W − Y ′ ↪→ W . Due to the lack of sufficient covariance properties of the
functor M c

gm, it does not seem obvious to geometrically model cohomology with compact support
of i∗Y j∗Z. We refer to Definition 7.1 for a partial remedy to this problem.
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Given the sheaf-theoretical point of view, invariance under abstract blow-up and analytical
invariance come as no surprise: in the context of complex spaces (say), the cohomology of i!Y j! Z can
be computed after proper base change to a second diagram as above, provided that this base change
induces an isomorphism above the complement W −Y ′. Theorem 4.1 is the motivic analogue of this
invariance. Verdier’s theory of the specialization functor (see e.g. the overview in [Ver85, § 1]) shows
that the sheaf i!Y j! Z on Y can be computed on the normal cone of Y along W . Since analytically
isomorphic situations near Y lead to the same normal cone, this implies that i!Y j! Z can be computed
with respect to a second set of closed immersions Y ↪→ Y ′

2 ↪→ W2, provided that the formal
completions of W2, respectively of Y ′

2 , along Y agree with those of W , respectively of Y ′, along Y .
Theorem 5.1 states that the motivic analogue of this latter statement holds. While co-localization
and invariance under abstract blow-up are direct consequences of the material contained in [VSF00],
the proof of analytical invariance in addition uses the full force of Artin approximation.

In § 6, we generalize duality for bivariant cycle cohomology [VSF00, Theorem IV.7.4], in order to
establish an important structural property of the boundary motive ∂Mgm(X) of a smooth scheme X
of pure dimension n: it is canonically isomorphic to its own dual ∂Mgm(X)∗, twisted by n and shifted
by 2n− 1 (Theorem 6.1). As one formal consequence of this auto-duality, and of co-localization, we
obtain a fourth tool to compute ∂Mgm(X), namely localization (§ 7) in the context of stratifications
∂X =

∐
Ym, for a compactification X of a smooth scheme X (with ∂X = X −X as above).

Sections 3–6 are logically independent of each other. Section 1 serves as a basis for all that is
to follow, and § 7 uses everything said before. All results from §§ 4, 6 and 7 require resolution of
singularities for the base field k.

1. Notation and conventions

Our main and almost only reference is the book [VSF00]. When citing a result from its Chapter n,
we shall precede the numbering used in [VSF00] by N , where N is the symbol representing n in the
Roman number system. For example: Proposition 3.1.3 from Chapter 5 from [VSF00] will be cited as
[VSF00, Proposition V.3.1.3].

We follow the notation of [VSF00]. Fix a perfect base field k. Denote by Sch/k the category of
schemes which are separated and of finite type over k, and by Sm/k the full sub-category of objects
which are smooth over k. Recall the definition of the category SmCor(k) [VSF00, p. 190]: its objects
are those of Sm/k. Morphisms from Y to X are given by the group c(Y,X) of finite correspondences
from Y to X, defined as the free Abelian group on the symbols (Z), where Z runs through the integral
closed sub-schemes of Y ×k X which are finite over Y and surjective over a connected component
of Y . Note for later use that the definition of c(Y,X) still makes sense when X ∈ Sch/k is not
necessarily smooth. The category ShvNis(SmCor(k)) of Nisnevich sheaves with transfers [VSF00,
Definition V.3.1.1] is the category of those contravariant additive functors from SmCor(k) to
Abelian groups, whose restriction to Sm/k is a sheaf for the Nisnevich topology. This category
is Abelian [VSF00, Theorem V.3.1.4]. Inside the derived category D−(ShvNis(SmCor(k))) of com-
plexes bounded from above, one defines the full sub-category DM eff

− (k) of effective motivic complexes
over k [VSF00, p. 205] as the one consisting of objects whose cohomology sheaves are homotopy
invariant [VSF00, Definition V.3.1.10]. Since k is supposed to be perfect, this sub-category is trian-
gulated [VSF00, Proposition V.3.1.13]. According to [VSF00, Proposition V.3.2.3], the inclusion of
DM eff

− (k) into D−(ShvNis(SmCor(k))) admits a left adjoint RC, which is induced from the functor

C∗ : ShvNis(SmCor(k)) −→ C−(ShvNis(SmCor(k)))

which maps F to the simple complex associated to the singular simplicial complex [VSF00, p. 207].
Its nth term (in homological numbering) Cn(F ) sends X to F (X ×k ∆n).
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One defines two functors L and Lc from Sch/k to ShvNis(SmCor(k)) [VSF00, pp. 223–224]: the
functor L associates to X the Nisnevich sheaf with transfers c( • ,X). The functor Lc maps X to

Y �−→ z(Y,X),

z(Y,X) being defined as the free Abelian group on the symbols (Z), where Z runs through the
integral closed sub-schemes of Y ×k X which are quasi-finite over Y and dominant over a connected
component of Y . One defines the motive Mgm(X) of X ∈ Sch/k as RC(L(X)), and the motive with
compact support M c

gm(X) as RC(Lc(X)).
For certain applications, it is of interest to enlarge the domain of the functor L: denote by

Sch∞/k the category of schemes which are separated and locally of finite type over k. The functor
L extends, with the same definition of c( • ,X) as above. This identifies L(X) with the filtered
direct limit of the L(U), with U running through the open sub-schemes of X which are of finite
type over k. This observation also allows us to use certain results from [VSF00] for the motives
Mgm(X) := RC(L(X)) ∈ DM eff

− (k), with X in Sch∞/k.
We shall also use another, more geometric approach to motives, i.e. the one developed in

[VSF00, §V.2.1]. There, the triangulated category DM eff
gm(k) of effective geometrical motives over

k is defined. There is a canonical full triangulated embedding of DM eff
gm(k) into DM eff

− (k) [VSF00,
Theorem V.3.2.6], which maps the geometrical motive of X ∈ Sm/k [VSF00, Definition V.2.1.1] to
Mgm(X). Using this embedding, we consider Mgm(X) as an object of DM eff

gm(k). Finally, the category
DMgm(k) of geometrical motives over k is obtained from DM eff

gm(k) by inverting the Tate motive Z(1)
[VSF00, p. 192]. All four categories DM eff

gm(k), DMgm(k), D−(ShvNis(SmCor(k))), and DM eff
− (k) are

tensor triangulated, and admit unit objects [VSF00, Proposition V.2.1.3, Corollary V.2.1.5, p. 206,
Theorem V.3.2.6]. These tensor structures are such that for all X,Y ∈ Sm/k, one has

Mgm(X) ⊗ Mgm(Y ) = Mgm(X ×k Y )

in DM eff
gm(k), and

L(X) ⊗ L(Y ) = L(X ×k Y )

in D−(ShvNis(SmCor(k))). The unit object of DM eff
gm(k) is Mgm(Speck), and that of D−(ShvNis

(SmCor(k))) is L(Speck). Both of them are denoted by Z(0). For M ∈ DMgm(k) and n ∈ Z, write
M(n) for the tensor product M ⊗ Z(n). The three functors DM eff

gm(k) ↪→ DM eff
− (k), DM eff

gm(k) →
DMgm(k) and RC : D−(ShvNis(SmCor(k))) → DM eff

− (k) are compatible with the tensor structure.
(By contrast, the embedding of DM eff

− (k) into D−(ShvNis(SmCor(k))) is not; see [VSF00, Remark
on p. 206].) According to [VSF00, Theorem V.4.3.1], the functor DM eff

gm(k) → DMgm(k) is a full
triangulated embedding if k admits resolution of singularities.

Convention 1.1. Whenever we speak about resolution of singularities, it will be taken in the sense
of [VSF00, Definition IV.3.4].

Convention 1.2. We shall use the same symbol for Mgm(X) ∈ DM eff
− (k) and for its canonical rep-

resentative C∗(L(X)) in C−(ShvNis(SmCor(k))); similarly for M c
gm(X). Whenever we speak about

cones of morphisms between motives, we mean the class of the cone of the morphism between the
canonical representatives. For a commutative diagram

X ′ ��

��

X1

��
X =

X2
�� X ′′

in Sch∞/k, define its motive Mgm(X) ∈ DM eff
− (k) as RC applied to the simple complex sL(X)
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associated to L(X), i.e. to the complex

L(X ′) −→ L(X1) ⊕ L(X2) −→ L(X ′′),

which we normalize by assigning degree zero to the component L(X ′′). A similar construction is
possible for commutative diagrams in Sch∞/k of ‘dimension’ greater than two, provided that there
are not more than two schemes on any of the lines in the diagram.

2. Definition of the boundary motive

Let X ∈ Sch/k. Note that the inclusion c( • ,X) ↪→ z( • ,X) induces a monomorphism

ιX : L(X) ↪−→ Lc(X).

Definition 2.1. The boundary motive of X is defined as

∂Mgm(X) := RC(Coker ιX)[−1].

Note that there is a canonical quasi-isomorphism

Cone(Mgm(X) −→ M c
gm(X)) −→ ∂Mgm(X)[1],

where the cone is to be understood as in Convention 1.2. We have the following.

Proposition 2.2. There is an exact triangle

∂Mgm(X) −→ Mgm(X) −→ M c
gm(X) −→ ∂Mgm(X)[1]

in DM eff
− (k).

Corollary 2.3. Assume that k admits resolution of singularities. Then the boundary motive
∂Mgm(X) belongs to DM eff

gm(k).

Proof. This follows from Proposition 2.2, the fact that the embedding of DM eff
gm(k) into DM eff

− (k)
is triangulated, and [VSF00, Corollary V.4.1.4 and Corollary V.4.1.6].

The definition of the boundary motive does not involve a compactification of X. However, the
tools to compute ∂Mgm(X) which we shall develop in the sequel are based on the following.

Proposition 2.4. Let X be a compactification of X ∈ Sch/k, and define ∂X as the complement
X −X, equipped with the reduced scheme structure. There is a canonical morphism

Cone
(
Mgm

(
X

∐
∂X

)
→ Mgm(X)

)
−→ ∂Mgm(X)[1]

in C−(ShvNis(SmCor(k))). It becomes an isomorphism in DM eff
− (k) if k admits resolution of singu-

larities.

Proof. Consider the exact sequences

0 −→ L(X) −→ Lc(X) −→ Coker ιX −→ 0

and
0 −→ Lc(∂X) −→ Lc(X) −→ Lc(X).

Observe that since ∂X and X are proper, we have L(∂X) = Lc(∂X) and L(X) = Lc(X).
The monomorphism L(X) ↪→ Lc(X) factors through L(X). Hence the exact sequences induce a
monomorphism between the quotient L(X)/L(X

∐
∂X) and Coker ιX , whose cokernel is identical

to that of the restriction L(X) = Lc(X) → Lc(X). According to [VSF00, Proposition V.4.1.5], this
latter cokernel has trivial image under RC if k admits resolution of singularities.
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3. Co-localization

Consider the geometric situation of Proposition 2.4: let X ∈ Sch/k, choose a compactification X
of X, and define ∂X := X −X. In this section, we develop the motivic analogue of the dual of
the localization spectral sequence associated to a stratification of ∂X . It turns out to be useful
to consider a more general geometric situation: fix closed immersions Y ↪→ Y ′ ↪→ W in Sch∞/k.
Write j for the open immersion of W −Y ′, and iY for the closed immersion of Y into W . Denote the
following commutative diagram by Y.

Y ′ − Y ��

��

W − Y

��
Y ′ �� W

Definition 3.1. The motive of Y with coefficients in i!Y j! Z is defined as

Mgm(Y, i!Y j! Z) := Mgm(Y)

(see Convention 1.2).

Remark 3.2.
(a) Note that Mgm(Y, i!Y j! Z) lies in DM eff

gm(k) if W and Y ′ are in Sm/k.

(b) Assume that k admits resolution of singularities. Then Mgm(Y, i!Y j! Z) lies in DM eff
gm(k) if W is

in Sch/k [VSF00, Corollary V.4.1.4].

Remark 3.3. If Y = Y ′, i.e. if iY is complementary to j, then Y acquires the form

∅ ��

��

W − Y

��
Y �� W

and we have
Mgm(Y, i!Y j! Z) = Cone

(
Mgm

(
(W − Y )

∐
Y

)
→ Mgm(W )

)
.

If in addition W is proper, then Proposition 2.4 relates Mgm(Y, i!Y j! Z) to ∂Mgm(W − Y )[1].

Now assume a given filtration

∅ = F−1Y ⊂ F0Y ⊂ · · · ⊂ FdY = Y

of Y by closed sub-schemes. It induces a stratification of Y by locally closed sub-schemes Ym :=
FmY − Fm−1Y , for m = 0, . . . , d. Define W m as the complement of Fm−1Y in W . This gives a
descending partial filtration of W by open sub-schemes. Note in particular that we have W 0 = W
and W d+1 = W − Y . Write iYm for the closed immersion of Ym into W m. By abuse of notation,
we use the letter j to also denote the open immersions of W − Y ′ into W m.

Theorem 3.4 (Co-localization). There is a canonical chain of morphisms

Md+1 = 0
γd

−→ Md γd−1

−−−→ Md−1 γd−2

−−−→ · · · γ0

−→ M0 = Mgm(Y, i!Y j! Z)

in C−(ShvNis(SmCor(k))). For each m ∈ {0, . . . , d}, there is a canonical isomorphism

Cone γm ∼= Mgm(Ym, i!Ym
j! Z)

and hence a canonical exact triangle

Mgm(Ym, i!Ym
j! Z)[−1] −→ Mm+1 γm

−−→ Mm −→ Mgm(Ym, i!Ym
j! Z)
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in DM eff
− (k). In particular, all the Mm represent objects in DM eff

− (k). If k admits resolution of
singularities, then all the Mm represent objects in DM eff

gm(k).

Proof. Consider the induced filtration Y ′m := Y ′−Fm−1Y = W m∩Y ′, and define Mm := Mgm(Ym),
where Ym is the following commutative diagram.

Y ′ − Y ��

��

W − Y

��
Y ′m �� W m

Now note that Mgm(Ym, i!Ym
j! Z) is the motive associated to the following diagram.

Y ′m+1 ��

��

W m+1

��
Y ′m �� W m

Corollary 3.5. Assume that k admits resolution of singularities. In the above situation, assume
that Y = ∂X := X −X, with X ∈ Sch/k, and X a compactification of X. Write (∂X)m := Ym.
Then there is a canonical chain of morphisms

Md+1 = 0
γd

−→ Md γd−1

−−−→ Md−1 γd−2

−−−→ · · · γ0

−→ M0 = ∂Mgm(X)[1]

in C−(ShvNis(SmCor(k))). For each m ∈ {0, . . . , d}, there is a canonical exact triangle

Mgm((∂X)m, i!
(∂X)m

j! Z)[−1] → Mm+1 γm

−−→ Mm → Mgm((∂X)m, i!
(∂X)m

j! Z)

in DMgm(k). In particular, all the Mm are in DM eff
gm(k).

Proof. This follows from Proposition 2.4 and Theorem 3.4.

Of particular interest is the case when X ∈ Sm/k, and X is a smooth compactification of X,
such that ∂X is a normal crossing divisor. Then d < dim X and (∂X)m equals the geometric locus
of points lying on exactly d+1−m local irreducible components of ∂X . Since analytical invariance
will permit us to give a good description of the Mgm((∂X)m, i!

(∂X)m
j! Z), we postpone the discussion

of this case until § 8.

4. Invariance under abstract blow-up

Fix a proper morphism π : W1 → W2 and closed immersions Y2 ↪→ Y ′
2 ↪→ W2 in Sch∞/k. Write Y1 ↪→

Y ′
1 ↪→ W1 for the base change of these immersions, jm for the open immersion of Wm − Y ′

m and iYm

for the closed immersion of Ym into Wm. We obtain the following diagram.

Y1
� � iY1 ��

��

W1

π

��

W1 − Y ′
1

� �
j1��

π

��
Y2

� � iY2 �� W2 W2 − Y ′
2

� �
j2��

Theorem 4.1 (Invariance under abstract blow-up). Assume that

π : W1 − Y ′
1 −→ W2 − Y ′

2

is an isomorphism. If k admits resolution of singularities, then the map

π : Mgm(Y1, i
!
Y1

j1! Z) −→ Mgm(Y2, i
!
Y2

j2! Z)

is an isomorphism.
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Recall that Mgm(Ym, i!Ym
jm! Z) is associated to the following diagram.

Y ′
m − Ym

��

��

Wm − Ym

��
Y ′

m
�� Wm

Since the two rows are of the same nature, Theorem 4.1 is a formal consequence of the following.

Theorem 4.2. Consider closed immersions Y ′
1 ↪→ W1 and Y ′

2 ↪→ W2 in Sch∞/k, and a proper
morphism π : W1 → W2 identifying Y ′

1 with the fibre product W1 ×W2 Y ′
2 , and inducing an

isomorphism from W1−Y ′
1 to W2−Y ′

2 . If k admits resolution of singularities, then the monomorphism

π : L(W1)/L(Y ′
1) −→ L(W2)/L(Y ′

2)

in ShvNis(SmCor(k)) induces an isomorphism RC(π) in DM eff
− (k).

Proof (see [VSF00, Proposition V.4.1.3] and its proof). The sequence

0 −→ L(Y ′
1) −→ L(W1) ⊕ L(Y ′

2) −→ L(W2)

is exact and the quotient L(W2)/(L(W1)+L(Y ′
2)) satisfies the condition of [VSF00, Theorem V.4.1.2].

5. Analytical invariance

Fix closed immersions Y ↪→ Y ′
1 ↪→ W1 and Y ↪→ Y ′

2 ↪→ W2 in Sch∞/k. Write jm for the open
immersion of Wm − Y ′

m, and iY,m for the closed immersion of Y into Wm. The aim of this section is
to prove the following.

Theorem 5.1 (Analytical invariance). Assume a given isomorphism

f : (W1)Y ∼−−→ (W2)Y

of formal completions along Y inducing an isomorphism (Y ′
1)Y ∼= (Y ′

2)Y , and compatible with the
immersions iY,m of Y . Then f induces an isomorphism

Mgm(Y, i!Y,1j1! Z) ∼−−→ Mgm(Y, i!Y,2j2! Z)

in DM eff
− (k).

Remark 5.2. Using Proposition 2.4 together with Remark 3.3, we deduce the following statement
from Theorem 5.1, assuming that k admits resolution of singularities. Let Xm be a compactifica-
tion of Xm ∈ Sch/k, m = 1, 2, and set ∂Xm := Xm −Xm (with the reduced scheme structure).
Assume that there is an isomorphism ∂X1

∼= ∂X2, which can be extended to an isomorphism
between the formal completions of Xm along ∂Xm. Then ∂Mgm(X1) and ∂Mgm(X2) are isomorphic.

Note, however, that in practice it may not always be possible to identify the formal completion
of ∂X along a given compactification X of a scheme X. Actually, one might control the formal
completion of an abstract blow-up of each stratum belonging to a stratification of ∂X . In order
to compute ∂Mgm(X) in such a situation, one first applies co-localization with respect to the
stratification, then uses invariance under abstract blow-up for each stratum, and finally analytical
invariance as stated in the above generality.

The main technical ingredient of the proof of Theorem 5.1 is the following consequence of Artin
approximation.
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Theorem 5.3 (Artin). Let S be the spectrum of a field or of an excellent Dedekind domain, let
W1 and W2 be two S-schemes which are locally of finite type, let Ym be closed sub-schemes of Wm,
ym ∈ Ym, and let am be the ideal of Ym in the Henselization Oh

Wm,ym
of the local ring OWm,ym .

Denote by ÔWm,ym the completion of Oh
Wm,ym

with respect to am, for m = 1, 2.

(a) If ÔW1,y1
∼= ÔW2,y2 over OS , then y1 and y2 have a common Nisnevich neighbourhood: there

exists an S-scheme W ′, a point y′ ∈ W ′ and étale morphisms W ′ → Wm mapping y′ to ym, for
m = 1, 2, which identify the residue fields κ(y1) ∼= κ(y′) ∼= κ(y2).

(b) Assume that in addition we are given an isomorphism Y1
∼= Y2. Assume that the isomorphism

in (a) maps the completed ideal â1 isomorphically to â2, and that the induced isomorphism
Oh

Y1,y1
∼= Oh

Y2,y2
is compatible with the given isomorphism Y1

∼= Y2. Then the Nisnevich neigh-
bourhood W ′ in (a) can be chosen such that in addition

Y ′ := W ′ ×W1 Y1 = W ′ ×W2 Y2

as sub-schemes of W ′, and the induced étale morphisms Y ′ → Ym are compatible with the
isomorphism Y1

∼= Y2.

Proof. This is a variant of [Art69, Corollary 2.6]. In fact, the results stated in [Art69, § 2] are the
translations of the main results of § 1 only in the case when the ideal of definition is the maximal
ideal of the point in question. In order to deduce the variant from [Art69, Theorem 1.12], one
faithfully imitates the proof of [Art69, Corollary 2.6].

Corollary 5.4. With S, Wm and Ym as in Theorem 5.3, assume a given isomorphism Y1
∼= Y2

which extends to an isomorphism

f : (W1)Y1
∼−−→ (W2)Y2

of formal completions. Then there are Nisnevich coverings Wm of Wm of the form

W1 = {W ′
i | i ∈ I}

∐
{W1 − Y1}, W2 = {W ′

i | i ∈ I}
∐

{W2 − Y2}
(with the same W ′

i ) such that for any i ∈ I, one has

Y ′
i := W ′

i ×W1 Y1 = W ′
i ×W2 Y2

as sub-schemes of W ′
i , and the induced étale morphisms Y ′

i → Ym are compatible with the isomor-
phism Y1

∼= Y2.

We turn to the proof of Theorem 5.1. Recall that Mgm(Y, i!Y,mjm! Z) is associated to the following
diagram.

Y ′
m − Y ��

��

Wm − Y

��
Y ′

m
�� Wm

Since the two columns are of the same nature, Theorem 5.1 is a formal consequence of parts (a)
and (b) of the following.

Theorem 5.5. Consider closed immersions Y ↪→ W1 and Y ↪→ W2 in Sch∞/k which extend to an
isomorphism

f : (W1)Y ∼−−→ (W2)Y
of formal completions along Y .
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(a) There is an isomorphism

L(W1)/L(W1 − Y ) ∼−−→ L(W2)/L(W2 − Y )

of Nisnevich sheaves with transfers, and depending only on f .

(b) The isomorphism L(W1)/L(W1 − Y ) ∼−−→ L(W2)/L(W2 − Y ) is compatible with restriction of
the Wm to sub-schemes containing Y .

(c) The isomorphism L(W1)/L(W1 − Y ) ∼−−→ L(W2)/L(W2 − Y ) is compatible with restriction
of Y .

Proof. Choose Nisnevich coverings

Wm = {W ′
i | i ∈ I}

∐
{Wm − Y }

as in Corollary 5.4. Set

W ′ :=
∐
i∈I

W ′
i

and write αm for the coproduct of the étale morphisms from the W ′
i to Wm, for m = 1, 2. By

Corollary 5.4, we have

Y ′ := W ′ ×W1 Y = W ′ ×W2 Y

and α1 and α2 coincide on Y ′. Using [VSF00, Proposition V.3.1.3], we see that we have exact
sequences

L(W ′ ×W1 W ′)
L((W ′ − Y ′) ×W1 (W ′ − Y ′))

pr1∗−pr2∗−−−−−→ L(W ′)
L(W ′ − Y ′)

α1∗−−→ L(W1)
L(W1 − Y )

−→ 0,

L(W ′ ×W2 W ′)
L((W ′ − Y ′) ×W2 (W ′ − Y ′))

−→ L(W ′)
L(W ′ − Y ′)

α2∗−−→ L(W2)
L(W2 − Y )

−→ 0,

of Nisnevich sheaves with transfers. Let us show that the map α2∗ is zero on the image of
L(W ′×W1 W ′)/L((W ′ −Y ′)×W1 (W ′−Y ′)). We imitate the proof of [VSF00, Proposition II.4.3.9].
It is sufficient to show the following claim.

Claim 5.6. For any local Henselian scheme S which is smooth over k, the composition

c(S,W ′ ×W1 W ′)
pr1∗−pr2∗−−−−−→ c(S,W ′) α2∗−−→ c(S,W2)

c(S,W2 − Y )

is trivial.

Note that the presheaves U �→ c(U, T ), for T ∈ Sch∞/k, can be extended in an obvious way to
the category of smooth k-schemes which are not necessarily of finite type. For the proof of Claim 5.6,
we shall repeatedly apply the following principle, valid since S is Henselian: for any T ∈ Sch∞/k,
the support of any element of c(S, T ) is a disjoint union of local Henselian schemes. This principle
allows us to consider only cycles in c(S,W ′ ×W1 W ′) of the form (Z), where Z is a local Henselian
sub-scheme of S ×k (W ′ ×W1 W ′). Without loss of generality, we may assume that the closed point
of Z lies over Y ′, hence over Y . Write prl∗(Z) = nl · (Z l), with local Henselian sub-schemes Z l of
S×k W ′, for l = 1, 2. We have α1∗pr1∗ = α1∗pr2∗, hence the α1∗(Z l) are multiples of (Z1) for one local
Henselian sub-scheme (Z1) of S ×k W1. In order to show the analogous statement for the α2∗(Z l),
note first that the closed point y of Z1 belongs to S ×k Y . The support of

α2∗(pr1
∗ − pr2

∗)(Z) = α2∗(n1 · (Z1) − n2 · (Z2))
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is a disjoint union of local Henselian schemes, parametrized by their closed points. But since α1 and
α2 coincide on Y ′, this support must be local, and we have indeed

α2∗(pr1
∗ − pr2

∗)(Z) = r · (Z2)

for a local Henselian sub-scheme (Z2) of S ×k W2, whose closed point is y. In order to show that
r = 0, consider the commutative diagram

c(S,W ′)
α1∗

��������� α2∗
���������

c(S,W1)
w1∗ ��������� c(S,W2)

w2∗���������

c(S,Spec k)

with wm denoting the structure morphism of Wm. On the one hand,

w2∗α2∗(pr1
∗ − pr2

∗)(Z) = w1∗α1∗(pr1
∗ − pr2

∗)(Z) = w1∗(0) = 0.

On the other hand, w2∗(Z2) is non-zero since Z2 is finite over S. Hence r must indeed be zero, and
thus

α2∗(pr1
∗ − pr2

∗)(Z) = 0.

This shows that α2∗ is zero on the image of pr1∗ − pr2∗. By symmetry, we see that the identity on
L(W ′)/L(W ′ − Y ′) factors to give an isomorphism

L(W1)/L(W1 − Y ) ∼−−→ L(W2)/L(W2 − Y ).

In order to prove that it does not depend on the choice of the Nisnevich coverings Wm as in
Corollary 5.4, use the fact that the system of such coverings is filtering.

6. Auto-duality

Throughout this section, we assume that k admits resolution of singularities. Under this assumption,
DMgm(k) is a rigid tensor triangulated category [VSF00, Theorem V.4.3.7 1 and 2]. In particular,
there exists an internal Hom functor

Hom : DMgm(k)×DMgm(k) −→ DMgm(k) .

Writing M∗ := Hom(M, Z(0)), we thus have M = (M∗)∗ for all M ∈ DMgm(k).

Now fix X ∈ Sm/k, and assume that X is of pure dimension n. According to [VSF00, Theorem
V.4.3.7 3], there is a canonical isomorphism

µX : M c
gm(X) ∼−−→ Mgm(X)∗(n)[2n],

hence by duality, a canonical isomorphism

νX := µ∗
X(n)[2n] : Mgm(X) ∼−−→ M c

gm(X)∗(n)[2n].

The aim of this section is to prove the following.

Theorem 6.1 (Auto-duality). There exists a canonical isomorphism

ηX : ∂Mgm(X) ∼−−→ ∂Mgm(X)∗(n)[2n − 1].
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It fits into the following morphism of exact triangles.

∂Mgm(X)
ηX ��

α

��

∂Mgm(X)∗(n)[2n − 1]

γ∗(n)[2n]
��

Mgm(X)
νX ��

β
��

M c
gm(X)∗(n)[2n]

β∗(n)[2n]

��
M c

gm(X) µX ��

γ

��

Mgm(X)∗(n)[2n]

α∗(n)[2n]

��
∂Mgm(X)[1]

ηX [1] �� ∂Mgm(X)∗(n)[2n]

Furthermore, it is itself auto-dual in the sense that the equality

ηX = η∗X(n)[2n − 1]

holds.

First observe that the existence of some isomorphism ηX fitting into the above diagram of exact
triangles is a consequence of the axioms of triangulated categories, and the commutativity of the
following diagram.

Mgm(X)
νX ��

β
��

M c
gm(X)∗(n)[2n]

β∗(n)[2n]

��
M c

gm(X) µX �� Mgm(X)∗(n)[2n]

Thus, the point of auto-duality is that ηX can be defined canonically, and that this definition is
itself auto-dual.

For the proof of Theorem 6.1, observe that by adjunction, the construction of ηX is equivalent
to the construction of a pairing

( • , • ) : ∂Mgm(X) ⊗ ∂Mgm(X)[1] −→ Z(n)[2n].

We are thus led to investigate morphisms in DM eff
gm(k) whose target is Z(n)[2n]. The statement we

are aiming for is Theorem 6.14. It is a generalization of [VSF00, Corollary V.4.2.5]. In the above
geometric context, it implies that certain codimension n-cycles on the self-product X ×k X, where
X is a smooth compactification of X, yield morphisms of the type of ( • , • ). In order to prepare
Theorem 6.14, we need to prove a variant of duality for bivariant cycle cohomology (Theorem 6.11).
Let us start by recalling the definition of certain variants of the Nisnevich sheaves with transfers
Lc(V ) = z( • , V ) (see [VSF00, p. 228]).

Definition 6.2. Let V ∈ Sch/k, W ∈ Sm/k and r � 0.

(a) The Nisnevich sheaf with transfers zequi(V, r) associates to U ∈ Sm/k the free Abelian group
on the symbols (Z), where Z runs through the integral closed sub-schemes of U ×k V which
are equi-dimensional of relative dimension r over U and dominant over a connected component
of U .

(b) The Nisnevich sheaf with transfers zequi(W,V, r) maps U ∈ Sm/k to zequi(V, r)(U ×k W ).

Note that the sheaves zequi(W,V, r) are contravariant in the first variable. Now recall [VSF00,
Corollary V.4.1.8].
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Proposition 6.3. The object Z(n)[2n] of DM eff
gm(k) ⊂ DM eff

− (k) is represented by the complex

M c
gm(An) = C∗(z( • , An)) = C∗(zequi(An, 0)).

More generally, if W ∈ Sm/k, then the complex

C∗(zequi(W, An, 0))

represents the functor

HomDM eff
− (k)(Mgm(W ), Z(n)[2n])

on DM eff
− (k) [VSF00, Corollary V.4.2.7]. We need a variant of this statement as follows.

Definition 6.4. Let V ∈ Sch/k, W ∈ Sm/k and r � 0. Assume further that Y ⊂ W is a closed
sub-scheme.

(a) Define

Mgm(W/Y ) := C∗(L(Y → W )),

where L(Y → W ) is the complex given by L(Y ) in degree −1 and L(W ) in degree zero, the
differential being induced by the immersion of Y .

(b) Assume in addition that arbitrary intersections of the components Yj of Y are smooth. Define

zequi(Y • → W,V, r)

as the complex of Nisnevich sheaves with transfers whose zeroth component is zequi(W,V, r),
and whose mth component, for m � 1, is the direct sum of the zequi(YJ , V, 0), for all m-fold
intersections YJ of the Yj. The differentials are induced by contravariance of the sheaves
zequi( • , V, r).

Of course, Mgm(W/Y ) is the same thing as Mgm evaluated at the diagram

Y −→ W

(see Convention 1.2).

Proposition 6.5. Let W ∈ Sm/k. Assume further that Y ⊂ W is a closed sub-scheme such that
arbitrary intersections of the components of Y are smooth. Then the complex

C∗(zequi(Y • → W, An, 0))

represents the functor

HomDM eff
− (k)(Mgm(W/Y ), Z(n)[2n])

on DM eff
− (k). This identification is compatible with passage from the pair Y ⊂ W to Y ′ ⊂ U , for

open sub-schemes U of W , and closed sub-schemes Y ′ of Y ∩U such that arbitrary intersections of
the components Y ′

j of Y ′ are smooth.

Convention 6.6. By over-simplification of language, we shall refer to the last compatibility state-
ment in Proposition 6.5 as ‘compatibility with restriction of W and Y ’.

Proof of Proposition 6.5. First, observe that the canonical morphism Mgm(Y •) → Mgm(Y ) is an
isomorphism. This follows from induction on the number of components Yj. The induction step is
provided by [VSF00, Proposition V.4.1.3]. Similarly, Mgm(Y • → W ) → Mgm(W/Y ) is an isomor-
phism.

As in the proof of [VSF00, Proposition V.4.2.8], one has a canonical morphism of complexes
can from C∗(zequi(Y • → W, An, 0)) = C∗(p∗p∗(Lc(An))) to Rp∗(p∗ C∗(Lc(An))), where p denotes

643

https://doi.org/10.1112/S0010437X06001989 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06001989


J. Wildeshaus

the structure morphism of the diagram Y • → W . By an obvious generalization of the last part of
[VSF00, Proposition V.3.2.8], one has

Rp∗(p∗ C∗(L
c(An))) = Hom(Mgm(Y • → W ), Z(n)[2n])

in DM eff
− (k). To check that can is an isomorphism, one uses the spectral sequences on both its

source and target, associated to the stupid filtration (filtration bête) of Y • → W . Result [VSF00,
Corollary V.4.2.7] shows that can is an isomorphism on the E1-terms of this spectral sequence.

Remark 6.7. In the situation of Proposition 6.5, assume in addition that W is of dimension at
most n. By [VSF00, Corollary V.4.3.6], the object Mgm(W/Y )∗(n)[2n] of DMgm(k) belongs to
DM eff

gm(k), and its image under the embedding into DM eff
− (k) equals HomDM eff

− (k)(Mgm(W/Y ),
Z(n)[2n]). It is thus represented by the complex C∗(zequi(Y • → W, An, 0)).

Given an object F of ShvNis(SmCor(k)), denote by hl(F ) the lth cohomology object of the
complex C∗(F ). Thus, the lth cohomology object of C∗(zequi(Y • → W, An, 0))(Spec k) equals
hl(zequi(Y • → W, An, 0))(Spec k).

Corollary 6.8. In the situation of Proposition 6.5, there is a canonical isomorphism

cW/Y : hl(zequi(Y • → W, An, 0))(Spec k) ∼−−→ Hom(Mgm(W/Y ), Z(n)[2n + l]).

Here Hom denotes morphisms in DM eff
gm(k). The isomorphism is compatible with restriction of W

and Y in the sense of Convention 6.6.

Proof. First, we have

Hom(Mgm(W/Y ), Z(n)[2n + l]) = HomDM eff
− (k)(Mgm(W/Y ), Z(n)[2n + l])

since the embedding of DM eff
gm(k) into DM eff

− (k) is full. Adjointness of ⊗ and Hom implies that
HomDM eff

− (k)(Mgm(W/Y ), Z(n)[2n + l]) equals

HomDM eff
− (k)(Mgm(Speck),HomDM eff

− (k)(Mgm(W/Y ), Z(n)[2n + l])).

By Proposition 6.5, this group equals

HomDM eff
− (k)(RC(L(Spec k)),RC(zequi(Y • → W, An, 0))[l]).

Now use the fact that RC is left adjoint to the inclusion of DM eff
− (k) into D−(ShvNis(SmCor(k))).

For later use, we also note a consequence of the special case Y = ∅.
Corollary 6.9. Let W ∈ Sm/k. Then the functor on open sub-schemes of W ,

U �−→ C∗(zequi(U, An, 0)),

satisfies the Mayer–Vietoris property in the following sense. Given an equality U = U1 ∪U2 of open
sub-schemes of W , the exact sequence

0 → zequi(U, An, 0) → zequi(U1, A
n, 0) ⊕ zequi(U2, A

n, 0) → zequi(U1 ∩ U2, A
n, 0)

in ShvNis(SmCor(k)) induces an exact triangle

RC(zequi(U, An, 0)) −→ RC(zequi(U1, A
n, 0)) ⊕RC(zequi(U2, A

n, 0))
−→ RC(zequi(U1 ∩ U2, A

n, 0)) −→ RC(zequi(U, An, 0))[1]

in DM eff
− (k).
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Proof. This follows from Proposition 6.5 and the Mayer–Vietoris property for the functor U �→
Mgm(U) [VSF00, Proposition V.4.1.1].

We need to find a way to efficiently generate elements in the group

h0(zequi(Y • → W, An, 0))(Spec k).

Definition 6.10. Let W ∈ Sm/k, and assume that W is of pure dimension m. Fix a closed sub-
scheme Y ⊂ W and an object V in Sch/k. Let r � 0. Define the sub-sheaf

zequi(W ×k V,m + r)Y ⊂ zequi(W ×k V,m + r)

as follows. Map U ∈ Sm/k to the free Abelian group on the symbols (Z), where Z runs through
those generators of zequi(W ×k V,m + r)(U) such that for any geometric point

Spec(k) −→ U ×k Y ↪−→ U ×k W

of U ×k Y , the sub-scheme
Z ×U×kW Spec(k)

of Vk is empty or of dimension r. The sheaf of Abelian monoids

zeff
equi(W ×k V,m + r)Y ⊂ zequi(W ×k V,m + r)Y

is defined as the intersection of zequi(W×kV,m+r)Y with the monoid of effective cycles zeff
equi(W×kV,

m + r) in zequi(W ×k V,m + r).

One checks that zequi(W ×k V,m + r)Y and zeff
equi(W ×k V,m + r)Y inherit the transfers from

zequi(W ×k V,m+r). If one imposes the defining condition on all geometric points of U×k W instead
of just those of U ×k Y , then one obtains zequi(W,V, r)(U). Hence zequi(W,V, r) is a sub-sheaf of
zequi(W ×k V,m + r)Y :

D : zequi(W,V, r) ↪−→ zequi(W ×k V,m + r)Y .

Define the natural inclusion

ι : zequi(W ×k V,m + r)Y ↪−→ zequi(W ×k V,m + r).

The Moving Lemma [VSF00, Theorem IV.6.3] implies (see [VSF00, Lemma IV.6.6]) that if both
W and V are smooth and projective, then both RC(ι) and RC(ι) ◦ RC(D) are isomorphisms.
Hence RC(D) is an isomorphism if both W and V are smooth and projective. Our aim is to prove
this statement under less restrictive hypotheses on W and V . Our result is a variant of duality for
bivariant cycle cohomology [VSF00, Theorem IV.7.4].

Theorem 6.11. Let W ∈ Sm/k be quasi-projective and of pure dimension m. Let Y ⊂ W be a
closed sub-scheme and V ∈ Sch/k. Let r � 0. Then the inclusion

D : zequi(W,V, r) ↪−→ zequi(W ×k V,m + r)Y

induces an isomorphism RC(D). It is compatible with restriction of W and Y in the sense of
Convention 6.6.

Proof. We shall follow faithfully the strategy of [VSF00, pp. 172–176]. Fix compactifications W of
W and V of V with a smooth and projective W . For any proper V -scheme T , define the morphism

αT : zequi(W ×k T ,m + r) −→ zequi(W ×k V ,m + r) −→ zequi(W ×k V,m + r)

as the composition of proper push-forward with restriction [VSF00, pp. 141–142]. Similarly, define
the variant on effective cycle sheaves

αeff
T

: zeff
equi(W ×k T ,m + r) −→ zeff

equi(W ×k V,m + r).
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Denote by ΨT ⊂ zequi(W ×k T ,m + r) the sub-sheaf of Abelian groups generated by (αeff
T

)−1

(zeff
equi(W ×k V,m + r)Y ). We have

ΨV = α−1
V

(zequi(W ×k V,m + r)Y ).

We claim that the inclusion

ιT : ΨT ↪−→ zequi(W ×k T ,m + r)
induces a quasi-isomorphism C∗(ιT ). In order to prove this claim, imitate the proof of [VSF00,
Proposition IV.7.3]. One uses the Moving Lemma that we have already cited. It is here that the
projectivity assumption on W enters.

Next, one imitates the proof of [VSF00, Theorem IV.7.4], using the above instead of [VSF00,
Proposition IV.7.3], to see that the inclusion

ι : zequi(W ×k V,m + r)Y ↪−→ zequi(W ×k V,m + r)

induces a quasi-isomorphism C∗(ι). The same observation, applied to the case where Y = W implies
that the composition RC(ι) ◦RC(D) is an isomorphism. (This is, of course, the original statement
of [VSF00, Theorem IV.7.4].)

We unite the assumptions from Proposition 6.5 and Definition 6.10. Hence W ∈ Sm/k is of pure
dimension m, and Y ⊂ W is a closed sub-scheme such that arbitrary intersections of the components
of Y are smooth. Observe that the condition on elements in zequi(W×kA

n,m)Y ensures, in particular,
that they intersect properly with the components Yj ×k A

n of Y ×k A
n. This allows us to define an

inverse image δ making the following diagram commutative.

zequi(W, An, 0)

δ
��

� � D �� zequi(W ×k A
n,m)Y

δ
��⊕

j zequi(Yj, A
n, 0) � � D ��

⊕
j zequi(Yj ×k A

n,dim Yj)

The group in the lower right-hand corner has to be modified if Yj has several components of
different dimension. But in fact, zequi(W ×k A

n,m)Y is defined such that δ not only exists but
maps zequi(W ×k A

n,m)Y to ⊕j zequi(Yj, A
n, 0). Thus we may enlarge the complex

zequi(Y • → W, An, 0)

by replacing its zeroth component zequi(W, An, 0) with zequi(W ×k A
n,m)Y :

zequi(Y • → W, An, 0) ⊂ zequi(Y • → W, An, 0)′.

When W is quasi-projective, then Theorem 6.11 shows that this inclusion of complexes induces an
isomorphism after application of RC. In the general case, there is a (mainly notational) complication
since we do not know whether the functor on open sub-schemes of W ,

U �−→ C∗(zequi(U ×k A
n,m)Y ),

satisfies the Mayer–Vietoris property. Therefore, we fix an additional geometric datum, namely a
finite open covering {Wα} of W by quasi-projective schemes. Consider the covering of Y induced
by {Wα}, and define

zequi(Y • → W, An, 0)′′

as the simple complex of the double Čech complex associated to this covering and zequi(Y • → W,
A

n, 0)′. For example, the components of degree 0 and 1 are⊕
α

zequi(Wα ×k A
n,m)Y
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and ⊕
α,j

zequi(Wα ∩ Yj, A
n, 0) ⊕

⊕
α1 �=α2

zequi((Wα1 ∩ Wα2) ×k A
n,m)Y .

Consider the natural inclusion

D : zequi(Y • → W, An, 0) ↪−→ zequi(Y • → W, An, 0)′,

and use the same symbol for the composition of D with the co-augmentation

zequi(Y • → W, An, 0)′ −→ zequi(Y • → W, An, 0)′′.

Corollary 6.12. The morphism

D : zequi(Y • → W, An, 0) −→ zequi(Y • → W, An, 0)′′

induces an isomorphism RC(D). In particular, different choices of coverings W = ∪αWα give rise to
the same object RC(zequi(Y • → W, An, 0)′′). The isomorphism RC(D) is compatible with restriction
of W and Y in the sense of Convention 6.6.

Proof. This follows from Theorem 6.11 and Corollary 6.9.

Definition 6.13. Define the sub-sheaf with transfers

zequi(W,m − n)Y ⊂ zequi(W,m − n)

as the sub-sheaf of cycles having empty intersection with Y .

Note that zequi(W,m − n)Y behaves contravariantly with respect to restriction of W and Y .
Flat pull-back defines a morphism

p∗An : zequi(W,m − n)Y [0] −→ zequi(Y • → W, An, 0)′.

Its composition with the co-augmentation

zequi(Y • → W, An, 0)′ −→ zequi(Y • → W, An, 0)′′

induces a morphism on the level of h0(Spec k), denoted by the same symbol p∗
An . Putting everything

together, we obtain the following.

Theorem 6.14. Let W ∈ Sm/k be of pure dimension m and let Y ⊂ W be a closed sub-scheme such
that arbitrary intersections of the components of Y are smooth. Then there is a unique morphism

cycW/Y : h0(zequi(W,m − n)Y )(Spec k) −→ Hom(Mgm(W/Y ), Z(n)[2n])

making the following diagram commute.

h0(zequi(W,m − n)Y )(Spec k)
p∗
An ��

cycW/Y

��

h0(zequi(Y • → W, An, 0)′′)(Spec k)

Hom(Mgm(W/Y ), Z(n)[2n]) h0(zequi(Y • → W, An, 0))(Spec k)
cW/Y

∼=
��

D∼=
��

Here Hom denotes morphisms in DM eff
gm(k). The morphism cycW/Y is compatible with restriction

of W and Y in the sense of Convention 6.6.

Proof. Apply Corollaries 6.8 and 6.12.

Remark 6.15. Another type of compatibility property with respect to change of W and Y is useful.
Assume a given second pair Y1 ⊂ W1 of schemes satisfying the hypotheses of Theorem 6.14, and
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a proper morphism W1 → W identifying Y1 with the fibre product W1 ×W Y , and inducing an
isomorphism from W1 − Y1 to W − Y . Theorem 4.2 tells us that

Mgm(W1/Y1) −→ Mgm(W/Y )

is an isomorphism. On the other hand, we clearly have

zequi(W,m − n)Y = zequi(W1,m − n)Y1.

It is easy to see that in this situation, the diagram

h0(zequi(W,m − n)Y )(Spec k) = ��

cycW/Y

��

h0(zequi(W1,m − n)Y1)(Spec k)

cycW1/Y1

��
Hom(Mgm(W/Y ), Z(n)[2n])

∼= �� Hom(Mgm(W1/Y1), Z(n)[2n])

commutes.

When Y is empty, then [VSF00, Corollary V.4.2.5] tells us that cycW := cycW/∅ is an isomor-
phism. We have not attempted to prove whether the analogous statement for cycW/Y is true when
Y is non-empty.

Proof of Theorem 6.1. We start by introducing the notation Cycn(W )Y for the group zequi(W,
m − n)Y (Spec k), when W and Y ⊂ W are as before. By definition, Cycn(W )Y is the group of
codimension n cycles on W not meeting Y . Write Cycn(W ) for the group of all codimension n
cycles on W . Our proof relies on the following principles, which are consequences of Theorem 6.14
and of the definition of the tensor structure on DM eff

− (k).

(A) For i = 1, 2, let Wi ∈ Sm/k be of pure dimension, with closed sub-schemes Yi ⊂ Wi, such that
arbitrary intersections of the components of the Yi are smooth. Then any

c ∈ Cycn(W1 ×k W2)Y1×kW2∪W1×kY2

defines a pairing

( • , • )c : Mgm(W1/Y1) ⊗ Mgm(W2/Y2) −→ Z(n)[2n],

or equivalently, a morphism

εc : Mgm(W1/Y1) −→ Mgm(W2/Y2)∗(n)[2n]

in DMgm(k). The morphism εc is induced by a morphism of Nisnevich sheaves

ec′ : c( • ,W1)/c( • , Y1) −→ zequi(Y •
2 → W2, A

n, 0)

defined as follows. Use Corollary 6.12 to move the pull-back p∗
An(c) into a cycle

c′ ∈ zequi(W1 ×k W2, A
n, 0)(Spec k)

having empty intersection with Y1 ×k W2 ∪ W1 ×k Y2. Given U ∈ Sm/k and Z ∈ c(U,W1),
pull back Z to W2, giving ZW2 ∈ c(U ×k W2,W1). Similarly, pull back c′ to U , giving c′U .
Now consider the cycle

c′ ∩ ZW2 := CorW1×kW2×kA
n/W1×kW2

(c′U ⊗ZW2),

where CorW1×kW2×kA
n/W1×kW2

is the correspondence homomorphism from [VSF00, § II.3.7].
By [VSF00, Corollary II.3.7.5], we have

c′ ∩ ZW2 ∈ zequi(W2,W1 ×k A
n, 0)(U).
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Furthermore, finiteness of Z over U implies that c′ ∩ ZW2 is finite over U ×k W2 ×k A
n.

Push-forward via the projection p2 to this product then yields

ec′(Z) := p2 ∗(c′ ∩ ZW2) ∈ zequi(W2, A
n, 0)(U).

In fact, ec′(Z) lies in zequi(Y •
2 → W2, A

n, 0)(U) since c′ has empty intersection with W1 ×k Y2.
Furthermore, ec′(Z) only depends on the class of Z modulo c(U, Y1) since c′ has empty inter-
section with Y1 ×k W2.

(B) Let W ∈ Sm/k be of pure dimension, with a closed sub-scheme Y ⊂ W , such that arbitrary
intersections of the components of Y are smooth. Let

c ∈ Cycn(W ×k W )Y ×kW∪W×kY .

Then a sufficient condition for the pairing

( • , • )c : Mgm(W/Y ) ⊗ Mgm(W/Y ) −→ Z(n)[2n]

to be symmetric or, equivalently, for the morphism

εc : Mgm(W/Y ) −→ Mgm(W/Y )∗(n)[2n]

to be auto-dual (i.e. εc = ε∗c(n)[2n]), is the symmetry of the cycle c in Cycn(W ×k W ).

(C) For i = 1, . . . , 4, let Wi ∈ Sm/k be of pure dimension, with closed sub-schemes Yi ⊂ Wi,
such that arbitrary intersections of the components of the Yi are smooth. For i = 1, 2, let
ji : Wi ↪→ Wi+2 be an open immersion mapping Yi into Yi+2. Let

c1,4 ∈ Cycn(W1 ×k W4)Y1×kW4∪W1×kY4

and

c3,2 ∈ Cycn(W3 ×k W2)Y3×kW2∪W3×kY2 .

Then a sufficient condition for the diagram

Mgm(W1/Y1)
εc1,4 ��

j1
��

Mgm(W4/Y4)∗(n)[2n]

j∗2 (n)[2n]

��
Mgm(W3/Y3)

εc3,2 �� Mgm(W2/Y2)∗(n)[2n]

to commute is the equality of cycles

(j1, idW2)
∗c3,2 = (idW1, j2)∗c1,4

in Cycn(W1 ×k W2).

Furthermore, using the compatibility of moving cycles with correspondence homomorphisms and
direct images, and [VSF00, Proposition II.3.7.6], one sees the following principle.

(D) For i = 1, 2, let Wi ∈ Sm/k be of pure dimension mi, with a closed sub-scheme Y1 ⊂ W1, such
that arbitrary intersections of the components of Y1 are smooth. Assume that m2 � n and
that

c ∈ Cycn(W1 ×k W2)Y1×kW2 ∩ zequi(W1,W2,m2 − n)(Spec k).

Then the morphism

εc : Mgm(W1/Y1) −→ Mgm(W2)∗(n)[2n]

associated to c is also induced by the composition of the morphism of Nisnevich sheaves

e′c : c( • ,W1)/c( • , Y1) −→ zequi(W2 ×k A
n,m2)

649

https://doi.org/10.1112/S0010437X06001989 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06001989


J. Wildeshaus

with the inverse of the isomorphism RC(D) from Theorem 6.11, where e′c is defined as follows.
Given U ∈ Sm/k and Z ∈ c(U,W1), pull back Z to A

n, giving ZAn ∈ c(U×k A
n,W1). Similarly,

pull back c to U ×k A
n, giving cU×kA

n . Now consider the cycle

c ∩ ZAn := CorW1×kW2×kA
n/W1×kA

n(cU×kA
n ⊗ZAn).

By [VSF00, Corollary II.3.7.5], we have

c ∩ ZAn ∈ zequi(An,W1 ×k W2,m2 − n)(U).

Furthermore, finiteness of Z over U implies that c ∩ ZAn is finite over U ×k W2 ×k A
n.

Push-forward via the projection p2 to this product then yields

e′c(Z) := p2 ∗(c ∩ ZAn) ∈ zequi(An,W2,m2 − n)(U),

and the latter group is contained in zequi(W2 ×k A
n,m2)(U). Observe that e′c(Z) only depends

on the class of Z modulo c(U, Y1) since c has empty intersection with Y1 ×k W2.

Choose and fix a smooth compactification X of X such that ∂X := X −X is a normal crossing
divisor with smooth irreducible components. By [VSF00, Proposition V.4.1.5], we have a canonical
isomorphism between Mgm(X /∂X) and M c

gm(X). Applying principle (A), we see that the diagonal

∆ ∈ Cycn(X ×k X)∂X×kX

induces a morphism
ε∆ : M c

gm(X) −→ Mgm(X)∗(n)[2n].
Principle (D) and the proof of [VSF00, Theorem V.4.3.7] show that this is the morphism µX . To
say that

Mgm(X)
νX=µ∗

X(n)[2n]
��

β
��

M c
gm(X)∗(n)[2n]

β∗(n)[2n]

��
M c

gm(X) µX �� Mgm(X)∗(n)[2n]

commutes is equivalent to saying that the pairing

Mgm(X) ⊗ Mgm(X)
id⊗β−−−→ Mgm(X) ⊗ M c

gm(X)
( • , • )∆−−−−−→ Z(n)[2n]

is symmetric. By principle (B), this is indeed the case since the restriction of the cycle ∆ to X ×k X
is symmetric.

Now for the construction of

ηX : ∂Mgm(X) −→ ∂Mgm(X)∗(n)[2n − 1].

Recall that by Proposition 2.4, there is a canonical isomorphism

Cone
(
Mgm

(
X

∐
∂X

)
→ Mgm(X)

)
∼−−→ ∂Mgm(X).

From this, one deduces that ∂Mgm(X) ⊗ ∂Mgm(X)[1] is represented by the complex C∗(sL∗),
where L∗ is the complex concentrated in degrees −1, 0 and 1:

L(X ×k X) ⊕ L(X ×k ∂X) ⊕ L(∂X ×k X) ⊕ L(∂X ×k ∂X)

��
L(X ×k X) ⊕ L(X ×k X) ⊕ L(X ×k ∂X) ⊕ L(∂X ×k X)

��
L(X ×k X)
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with the differentials being induced by the inclusions. In particular, one sees that the complex L′∗
concentrated in degrees −1 and 0, that is

L(X ×k X) ⊕ L(X ×k ∂X) ⊕ L(∂X ×k X)

��
L(X ×k X) ⊕ L(X ×k X),

is a quotient of L∗. By the Mayer–Vietoris property for the functor Mgm [VSF00, Proposition V.4.1.1],
C∗(L′∗) is canonically quasi-isomorphic to the complex C∗(L′′∗), where L′′∗ is the complex concen-
trated in degrees −1 and 0:

L(X ×k X − ∂X ×k ∂X − X ×k X)

��
L(X ×k X − ∂X ×k ∂X).

This shows that there is a canonical morphism from ∂Mgm(X) ⊗ ∂Mgm(X)[1] to

Mgm((X ×k X − ∂X ×k ∂X)/(X ×k X − ∂X ×k ∂X − X ×k X)).

Applying principle (A), we see that the diagonal

∆ ∈ Cycn(X ×k X − ∂X ×k ∂X)X×kX−∂X×k∂X−X×kX

induces a morphism

ε∆ : ∂Mgm(X) −→ ∂Mgm(X)∗(n)[2n − 1].

We define this to be the morphism ηX . Principle (B) shows that ηX is auto-dual. In order to see
that ηX fits into a morphism of exact triangles

∂Mgm(X)
ηX ��

α

��

∂Mgm(X)∗(n)[2n − 1]

γ∗(n)[2n]
��

Mgm(X)
νX ��

β
��

M c
gm(X)∗(n)[2n]

β∗(n)[2n]

��
M c

gm(X) µX ��

γ

��

Mgm(X)∗(n)[2n]

α∗(n)[2n]

��
∂Mgm(X)[1]

ηX [1] �� ∂Mgm(X)∗(n)[2n]

apply principle (C). By [VSF00, Theorem V.4.3.7 3], µX and νX are isomorphisms, and hence so
is ηX . In order to check that ηX does not depend on the choice of the smooth compactification X ,
use Remark 6.15 together with the fact that the system of such compactifications is filtering.

Fix a compactification X of X (which may be non-smooth) and set ∂X := X −X. Denote by
j the open immersion of X and by i∂X for the closed immersion of ∂X into X

m. We are thus in
the situation considered in § 3, with Y = Y ′ = ∂X and W = X . By Proposition 2.4, we have a
canonical isomorphism

Mgm(∂X, i!
∂X

j! Z) ∼−−→ ∂Mgm(X)[1].

By duality, this gives

αX : ∂Mgm(X)∗[−1] ∼−−→ Mgm(∂X, i!
∂X

j! Z)∗.
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Preceding αX(n)[2n] with the auto-duality ηX from Theorem 6.1, we obtain the following.

Corollary 6.16. There is a canonical isomorphism

∂Mgm(X) ∼−−→ Mgm(∂X, i!
∂X

j! Z)∗(n)[2n].

7. Localization

Throughout this section, we assume that k admits resolution of singularities. Fix closed immersions
Y ↪→ Y ′ ↪→ W in Sch/k. Denote by j the open immersion of W −Y ′ and by iY the closed immersion
of Y into W .

Definition 7.1. Assume that W − Y ′ ∈ Sm/k.

(a) If W − Y ′ is of pure dimension n, we put

M c
gm(Y, i∗Y j∗Z) := Mgm(Y, i!Y j! Z)∗(n)[2n].

(b) If W − Y ′ =
∐

α Wα is the decomposition of W − Y ′ into connected components, then the
motive with compact support of Y and with coefficients in i∗Y j∗Z is defined as

M c
gm(Y, i∗Y j∗Z) :=

⊕
α

M c
gm(Y, i∗Y jα∗Z).

Here, the jα denote the open immersions of the Wα into W .

Using [VSF00, Corollary V.4.3.6] and the definition of Mgm(Y, i!Y j! Z) (Definition 3.1), one sees
that M c

gm(Y, i∗Y j∗Z) belongs to DM eff
gm(k).

Remark 7.2. The object on the right-hand side in Definition 7.1 is defined without the hypothesis of
smoothness on W − Y ′. In general, the object Mgm(Y, i!Y j! Z) is dual to what should be considered
as the motive with compact support of Y and with coefficients in i∗Y j∗D(Z), where D(Z) is the
coefficient system on W − Y ′ which is Verdier-dual to Z.

Now assume a given filtration

∅ = F−1Y ⊂ F0Y ⊂ · · · ⊂ FdY = Y

of Y by closed sub-schemes. It induces a stratification of Y by locally closed sub-schemes Ym :=
FmY − Fm−1Y , for m = 0, . . . , d. Define W m as the complement of Fm−1Y in W . Write iYm for the
closed immersion of Ym into W m. By abuse of notation, we use the letter j to also denote the open
immersions of W − Y ′ into W m.

Theorem 7.3 (Localization). Assume that W − Y ′ ∈ Sm/k. Then there is a canonical chain of
morphisms

M0 = M c
gm(Y, i∗Y j∗Z)

γ0−→ M1
γ1−→ M2

γ2−→ · · · γd−1−−−→ Md
γd−→ Md+1 = 0

in DMgm(k). For each m ∈ {0, . . . , d}, there is a canonical exact triangle

M c
gm(Ym, i∗Ym

j∗Z) −→ Mm
γm−−→ Mm+1 −→ M c

gm(Ym, i∗Ym
j∗Z)[1]

in DMgm(k). In particular, all the Mm are in DM eff
gm(k).

Proof. Dualize co-localization (Theorem 3.4).

Corollary 7.4. In the above situation, assume that Y = ∂X := X −X, with X ∈ Sm/k, and X a
compactification of X (which may be non-smooth). Write (∂X)m := Ym. Then there is a canonical
chain of morphisms

M0 = ∂Mgm(X)
γ0−→ M1

γ1−→ M2
γ2−→ · · · γd−1−−−→ Md

γd−→ Md+1 = 0
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in DMgm(k). For each m ∈ {0, . . . , d}, there is a canonical exact triangle

M c
gm((∂X)m, i∗

(∂X)m
j∗Z) −→ Mm

γm−−→ Mm+1 −→ M c
gm((∂X)m, i∗

(∂X)m
j∗Z)[1]

in DMgm(k). In particular, all the Mm are in DM eff
gm(k).

Proof. This follows from Corollary 6.16 and Theorem 7.3.

Remark 7.5. Given our definition, it is easy to deduce from duality and Theorems 4.1 and 5.1 that
M c

gm(Y, i∗Y j∗Z) is invariant under abstract blow-up and under analytical isomorphism. In concrete
situations, this observation helps to control the ‘graded pieces’ M c

gm((∂X)m, i∗
(∂X)m

j∗Z) of ∂Mgm(X).

8. The case of normal crossings

Throughout this section, we consider the following situation: X lies in Sm/k and is irreducible and
X ∈ Sm/k is a smooth compactification of X, such that ∂X := X −X is a normal crossing divisor
with smooth irreducible components. We stratify ∂X by defining (∂X)m as the geometric locus
of points lying on exactly m irreducible components, m = 1, . . . ,dim X. Note that the (∂X)m are
all smooth. Denote by j the open immersion of X, and by im the immersion of (∂X)m into X .
We re-state co-localization and localization (Corollaries 3.5 and 7.4) as follows.

Corollary 8.1. Denote by n the dimension of X, and assume that k admits resolution of singu-
larities.

(a) There is a canonical chain of morphisms

Mn = 0
γn−1

−−−→ Mn−1 γn−2

−−−→ Mn−2 γn−3

−−−→ · · · γ0

−→ M0 = ∂Mgm(X)[1]

in DM eff
gm(k). For each m ∈ {1, . . . , n}, there is a canonical exact triangle

Mgm((∂X)m, i!mj! Z)[−1] −→ Mn−m+1 γn−m

−−−→ Mn−m −→ Mgm((∂X)m, i!mj! Z)

in DM eff
gm(k).

(b) There is a canonical chain of morphisms

M0 = ∂Mgm(X)
γ0−→ M1

γ1−→ M2
γ2−→ · · · γn−2−−−→ Mn−1

γn−1−−−→ Mn = 0

in DM eff
gm(k). For each m ∈ {1, . . . , n}, there is a canonical exact triangle

M c
gm((∂X)m, i∗mj∗Z) −→ Mn−m

γn−m−−−→ Mn−m+1 −→ M c
gm((∂X)m, i∗mj∗Z)[1]

in DM eff
gm(k).

The aim of this section is to give a description of the motives with coefficients Mgm((∂X)m,
i!mj! Z) and M c

gm((∂X)m, i∗mj∗Z) occurring in the above statement. Denote by Nm the normal bundle
of (∂X)m in X . For any component D of the divisor ∂X , consider the normal bundle of (∂X)m ∩D
in D. Using all possible D, this gives m sub-bundles of Nm of codimension one. Their intersection is
the zero bundle over (∂X)m. Define N∗

m as the complement in Nm of the union of these sub-bundles.
Fix an order ≺ of the index set of components of ∂X, i.e. write

∂X =
r⋃

i=1

Di,

where D1, . . . ,Dr are the r distinct components of ∂X . Note that N∗
m is a torsor under a torus of

dimension m, and that the choice of ≺ gives an identification of this torus with G
m
m.
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Theorem 8.2.

(a) The order ≺ induces an isomorphism

Mgm((∂X)m, i!mj! Z) ∼−−→ Mgm(N∗
m)[m]

in DM eff
gm(k).

(a) Assume that k admits resolution of singularities. Then the order ≺ induces an isomorphism

M c
gm((∂X)m, i∗mj∗Z) ∼−−→ M c

gm(N∗
m)[−m]

in DM eff
gm(k).

Our main computational tool in the proof of Theorem 8.2 will be the following.

Lemma 8.3. Let S ∈ Sch/k and let V be a vector bundle of rank m over S. Assume given sub-
bundles Vi, i = 1, . . . , � of codimension one of V , with 1 � � � m. Assume also that Zariski-locally
over S, there exist trivializations V ∼= A

m
S identifying Vi with the hyperplane given by the vanishing

of the ith coordinate, i = 1, . . . , �. Define V ∗ as the complement in V of the union of the Vi.
Then for any proper subset I of {1, . . . , �}, the immersion V − V ∗ − ∪i∈IVi ↪→ V − ∪i∈IVi induces
an isomorphism

Mgm(V − V ∗ − ∪i∈IVi) ∼−−→ Mgm(V − ∪i∈IVi)

in DM eff
gm(k).

Proof. The Mayer–Vietoris property [VSF00, Proposition V.3.1.3] for the functor L shows that
we may assume that a trivialization as in the hypotheses exists globally. Then the immersion
V ∗ ↪→ V − ⋃

i∈I Vi is isomorphic to

G


m,S ×S A

m−

S ↪−→ G

p
m,S ×S A

m−p
S ,

for some p < �. Hence V −V ∗−∪i∈IVi ↪→ V −∪i∈IVi is a homotopy equivalence (in fact, both sides
are homotopic to G

p
m,S).

Proof of Theorem 8.2. (a) Recall that Mgm((∂X)m, i!mj! Z) is defined as the motive Mgm(Y), where
Y is the diagram

∂X
′ −(∂X)m ��

��

X
′−(∂X)m

��

∂X
′ �� X

′

and X
′ and ∂X

′ denote the complements of the strata (∂X)p, for p > m. Now because of our
assumptions on X and ∂X , this diagram is analytically isomorphic to the following diagram N, in
the sense that the assumptions of Theorem 5.1 are satisfied.

Nm − N∗
m − 0(∂X)m ��

��

Nm − 0(∂X)m

��
Nm − N∗

m
�� Nm

Here, 0(∂X)m denotes the zero section of the bundle Nm over (∂X)m. Analytical invariance thus
allows us to compute Mgm(N) instead of Mgm(Y). In order to do so, consider the upper line

Nm − N∗
m − 0(∂X)m −→ Nm − 0(∂X)m
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of N, and the finite covering

Nm − 0(∂X)m =
m⋃

i=1

Nm − Vi.

Here, the Vi are the sub-bundles of codimension one constructed from the components of ∂X . For
1 � i1 < · · · < ip � m, we have

p⋂
q=1

Nm − Viq = Nm −
p⋃

q=1

Viq .

Define the double complex L(N′) of Nisnevich sheaves as follows. First consider the Čech complex
associated to the above covering, and to the induced covering of Nm −N∗

m − 0(∂X)m, then add the
lower line of L(N) as follows.

0 = L(∅) ��

��

L(N∗
m)

��
...

��

...

��∏
i1<i2

L(Nm − N∗
m − (Vi1 ∪ Vi2)) ��

��

∏
i1<i2

L(Nm − (Vi1 ∪ Vi2))

��∏
i L(Nm − N∗

m − Vi) ��

��

∏
i L(Nm − Vi)

��
L(Nm − N∗

m) �� L(Nm)

Here, we have total degree zero for L(Nm), hence degree −m for L(N∗
m). We thus get a canonical

morphism of complexes of Nisnevich sheaves

L(N′) −→ L(N).

The Mayer–Vietoris property [VSF00, Proposition V.3.1.3] shows that it induces an isomorphism
in DM eff

− (k). By Lemma 8.3, the projection from L(N′) to its upper line

L(N′) −→ L(N∗
m)[m]

also induces an isomorphism in DM eff
− (k)

(b) results from (a) by dualizing.

As the proof of Theorem 8.2 shows, the dependence of the isomorphism on the order ≺ can
be made explicit. A canonical isomorphism between Mgm((∂X)m, i!mj! Z) and a twisted form of
Mgm(N∗

m)[m] can be constructed by proceeding as in [Del71, (3.1.4)]. We leave the details to the
reader.
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