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Abstract
The computer aided internal optimisation (CAIO) method produces an optimised fibre
layout for parts made from fibre-reinforced plastics (FRP), starting from an initial shell
geometry and a given load case. Its main principle is iterative reduction of shear stresses by
aligning fibre main axes with principal normal stress trajectories. Previous contributions,
ranging from CAIO’s introduction over testing to extensions towards multi-layer FRP
laminates, highlighted its lightweight design potential. For its application to laminate
design approaches, alterations have been proposed; however, questions remain open. These
questions include which convergence criteria to use, how to handle ambiguous principle
normal stress trajectories, influence of using multi-layer CAIO optimisation instead of the
initial single-layer CAIO and how dire consequences of slightly deviating fibre orientations
from the optimised trajectories are. These challenges are discussed in depth and guidelines
are given. This paper is an enhanced version of a distinguished contribution at the first
symposium ‘Lightweight Design in Product Development’, Zurich (June 14–15, 2018).

Key words: lightweight design, fibre trajectory optimisation, CAIO, fibre-reinforced
plastics

1. Lightweight structures with fibre-reinforced
plastics: Chances and challenges of structural
design

Fibre-reinforced plastics (FRP) increasingly turn out to have a powerful impact
for resource efficient products in the future due to their function integration
capabilities. To reduceweight in future electric cars, for example, FRP are currently
developed further for use in so-called structural batteries (Asp 2013), bearing
mechanical load and serving as an electric energy storage at the same time. This
kind of function integration could allow for a considerable weight reduction by
eliminating the ‘structurally parasitic’ (Asp 2013), separate batteries. Furthermore,
especially when used in safety-critical applications like aerospace, the material’s
suitability for function integration allows for sophisticated security features,
like the integration of structural health monitoring capabilities via so-called
smart layers (Capezzuto et al. 2010). These layers exhibit different properties
when subjected to different kinds of impact loads, for example, luminescence or
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alteredmagnetic behaviour. Last, additivemanufacturing technologies (Kussmaul
et al. 2016) allow for integrated positioning and fixation elements and precise
adaptation of structural optimisation results, among others.

In any case, today as in the future, FRP structures still have to fulfil stiffness
and strength requirements equally to their function integration targets. However,
structural design for composites remains a challenge, considering manufacturing
and cost requirements (Schürmann 2007) while at the same time keeping
the complex engineering design in mind (Michaeli, Huybrechts & Wegener
1995) with a typically large number of mutually dependent parameters (Klein,
Malezki & Wartzack 2015). Thus, sophisticated computer aided engineering
tools and approaches (Vajna et al. 2018) have been developed, among them
Altair OptiStruct and mfk Composite Designer (mfkCODE), a comparison
of which was presented in Völkl, Franz & Wartzack (2018a). A decisive
factor for effective lightweight designs is fibre orientation according to load
path trajectories (Schürmann 2007), as a faulty orientation can significantly
decrease both stiffness (Klein, Witzgall & Wartzack 2014) and strength
results (Reuschel & Mattheck 1999). Various methods exist for fibre orientation
optimisation, reaching from continuous fibre angle optimisation (Bruyneel &
Fleury 2002) to genetic algorithms (Bardy, Legrand & Crosky 2012) and load path
computation (Kelly, Reidsema & Lee 2011).Within a new approach for structured
laminate design (Klein et al. 2015) developed at Friedrich-Alexander University
Erlangen-Nuremberg, the computer aided internal optimisation (CAIO) method
byMattheck (Mattheck 1997; Reuschel &Mattheck 1999;Mattheck&Tesari 2000)
is used. This method showed up as very effective reaching lightweight goals,
especially concerning stiffness optimisation (Reuschel & Mattheck 1999; Völkl
et al. 2018a). Its main principle – aligning fibre orientations with principal normal
stress trajectories – is also in accordance with certain optimality derivations (Luo
&Gea 1998). However, for use in advanced laminate design, questions still remain
open (Völkl, Franz & Wartzack 2018b). In the following section, the method is
introduced in detail and both strengths and open questions are discussed.

2. The CAIO method: State of the art and questions
raised

2.1. Overview and working principle
Being inspired by tree and bone growth, the CAIO method simulates internal
optimisation of trees (Reuschel & Mattheck 1999). By aligning fibre orientations
with principal normal stress trajectories, its intention is to reduce failure-critical
shear stresses as far as possible.

After setting up a finite element analysis (Figure 1), a first calculation is
conducted with an initial material orientation, which can be unidirectional
(Mattheck & Tesari 2000), arbitrary (Reuschel & Mattheck 1999) or, as proposed
by the authors (Völkl et al. 2018), isotropic material. The emerging principal
normal stress trajectories are then used for orientation of the main orthotropic
axis in each element. For this purpose, the principal normal stress eigenvector
with the largest absolute eigenvalue should be used (Spickenheuer 2014). From
this new fibre orientation state, a new stress state emerges, which is used as input
for the next CAIO iteration until shear stresses are ‘sufficiently’ reduced. The
method depends on an appropriately fine mesh to allow proper local adaptation
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Figure 1. Overview of the CAIOmethod adapted from Reuschel &Mattheck (1999).

Figure 2. Multiaxial stress states leading to ambiguous fibre trajectories. (a) Region with unique largest
principal normal stresses and (b) problematic region. Adapted from Völkl et al. (2018b).

of orientation. The aim of the method is to obtain high-stiffness, high-strength
lightweight structures (Reuschel & Mattheck 1999). For certain shear weak types
of orthotropic materials, mathematical studies indicate that alignment of fibre
orientations with principal normal stress trajectories indeed provides the stiffest
structure (Gea & Luo 2004).

However, aligning fibre orientations with principal normal stress trajectories
is not always unambiguous, as stress states that do not provide a single but two
(for plane stress state) largest principal normal stresses can occur. This shows up
in regions of heavily multiaxial stresses, as demonstrated in Figure 2.

From experience, it is known that such multiaxial stress states typically appear
in real-world examples with complicated geometries and load cases. While it
seems obvious to use several layers in the finished part, within the CAIOmethod,
it is not clear how to deal with such stress states. Solutions have been proposed –
simply keeping the method as above (with maximum absolute principal normal
stress eigenvalues, called ‘maximum absolute’ in the following) or searching for
finite elements within proximity, which exhibit unambiguous fibre directions
and adapting their orientation (Klein 2017) (called ‘proximity search’ from here
on). In Klein et al. (2015), the CAIO method is further modified for multi-layer
capabilities (ML-CAIO), which is discussed at the end of the main part of this
contribution.

2.2. Questions raised
For practical, early phase applications, a fast convergence of an optimisation
method is desirable in order to test and evaluate different prototypes (Vajna
et al. 2018). Most computational effort during structural optimisation methods
is needed for solving finite element analysis and calculating gradients (if
used). Reducing the amount of required finite element solutions saves, besides
computational effort, time. It makes the method more applicable in early phases
through the possibility of performing more optimisation runs or optimising
more parts. Because the CAIO method is a heuristics-based algorithm which
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needs no further information like gradients, the amount of needed finite element
solutions is equal to the number of iterations. To evaluate the applicability, in this
contribution, the convergence behaviour of the CAIOmethod will be scrutinised
and evaluated for various demonstrators, ranging from simple geometry and load
case to more sophisticated parts.

Moreover, theCAIO break criterion is still not properly defined in clear terms.
To quantify the idea of ‘sufficiently reduced’ shear stresses, this break criterion is
thoroughly formulated – and alternatives will be presented and compared.

Third, this contribution deals with non-unique principal normal stress
trajectories (ambiguous fibre orientations), which occur in finite elements
showing highly multiaxial stress states as discussed above. The significance of the
problem and the different methods to tackle it are discussed in terms of stiffness
and convergence behaviour which builds on a distinguished contribution at the
first symposium Lightweight Design in Product Development, Zurich (Völkl et al.
2018b).

The CAIO method as originally defined can only handle one single layer,
thereby obviously omitting the great lightweight capabilities when using laminates
with several different layers. Therefore, in the last part, an overview is given
when multi-layer CAIO as introduced by Klein et al. (2015) is applied. In
this contribution, new examinations of the multi-layer CAIO are conducted: Is
stiffness behaviour improved, and to what amount? What about the influence
of deviations from nominal, optimised fibre angles as calculated by the CAIO
method?

3. Discussing the application of the CAIO method
3.1. Convergence and break criteria scrutiny
To get insights into convergence behaviour of the CAIO method in various
situations, three representative demonstrators were chosen and optimised by the
CAIO method.

The first demonstrator is a notched plate under plane loading with strongly
multiaxial stress states around the notch. The second demonstrator, a mounting
bracket, exceeds the plate by a more complicated geometry and torsion as its load
case. In composite structure experts’ knowledge, sure enough, this demonstrator
is not a favourable part to be manufactured from FRP. However, it is chosen
to demonstrate the method’s behaviour under adverse conditions. Finally, the
third demonstrator, a b-pillar, is a complicatedly shaped sheet part under oblique
bending load similar to Völkl et al. (2018), which stands for close to real-world
conditions. Figure 3 presents the three demonstrators.

3.1.1. Resulting fibre orientations of the CAIO method
Figure 4 shows the results of the optimisation procedure applied to the notched
plate (first and tenth iterations). Fibre orientations are shown as black lines within
the elements, and the fibre angle to the given coordinate system is indicated by
colour. For all demonstrators, a carbon-fibre-reinforced plastic material model
was used (in the iterations with anisotropic material).

The fibre orientations align properly with the load path, bearing the bending
load case resulting from the vertical force (Figure 3) and the tension force on
the right border of the part. The angle difference along the neutral fibre from
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Figure 3. Introduction of demonstrators: (a) notched plate, (b) mounting bracket and (c) b-pillar.

Figure 4. Optimised fibre orientations for the notched plate.

Figure 5. Optimised fibre orientations for the mounting bracket.

bending is quite high, which runs approximately horizontally along the middle
of the demonstrator. Here, the transition from tension to compression appears.
Overall fibre paths run smoothly.

Figure 5 shows the resulting fibre orientations of the method for the mounting
bracket under torsion load (one layer). While in the first iteration distinct
segments are recognisable, after 10 iterations, the result converges (see the
following section) to a quite chaotic steady state – which is unsatisfactory and
thus discussed further in the later part of this contribution.

The resulting fibre layout of the b-pillar in Figure 6 exhibits several similarly
aligned regions corresponding to tension and compression regions because of the
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Figure 6. Optimised fibre orientations for the b-pillar.

bending load case applied. There are some regions of fibre orientation direction
change; however, overall fibre trajectories run smoothly, as for the notched plate.

3.1.2. Convergence measures and break criteria
After presenting the visual results of the CAIO method in the previous section,
quantitative quality criteria have to be found to evaluate both improvement
through optimisation and convergence behaviour. Three criteria were studied:
(1) shear stress reduction, emerging from Reuschel & Mattheck (1999) claiming
reduction of shear stresses; (2) overall strain energy reduction, which in
turn stands for increased stiffness, as a typical stiffness measure in topology
optimisation; (3) a lack of change in local fibre angles (Spickenheuer 2014), which
is only suitable for convergence behaviour, not for quality estimation. These are
specified as follows:

(1) For shear stress reduction within this optimisation, no clear mathematical
description of a global convergence criterion is given in literature. While in
Reuschel & Mattheck (1999) and Mattheck & Tesari (2000) the convergence
criterion is defined as reduction of shear stresses which has to be evaluated
manually, in Reuschel (1999) and Spickenheuer (2014), the convergence
criterion is defined more clearly as reduction of the maximum shear stress.
How to consider multiple integration points within state-of-the-art shell
elements, or even multiple layers, is not described. Klein (2017) introduces a
convergence criterion based on themean shear stresses of all elements. Based
on this, the authors propose a simplified criterion, a sum of element shear
stresses, using the following measure: After any iteration with anisotropic
material, calculate stress tensors for all finite elements; transform each of
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Figure 7. Convergence histories for all demonstrators and convergence criteria.

these to the respective fibre coordinate system (x-axis is fibre direction, z
is element normal and y is perpendicular); use the absolute value of shear
stresses in the XY plane (hypothesis: approximately plane stress state) of each
element and sum these up over the whole part (all finite elements). Like this,
themeasure is suitable to quantify an overall amount of shear stresses –which
are to be reduced during the course of iterations.

(2) For strain energy, the sum of individual strain energy of all elements is used.
(3) For change in local fibre angles, the median of all fibre angle differences

between two iterations is used. Thus, it is possible to specify the change
in angles with 50% of angle differences happening above and below,
respectively, preventing strong outliers from having too much impact.
However, to be comprehensive, the maximum change in angles for each
iteration is always given in the following studies as well.

Sufficiently, specified ‘small’ change during iterations of these convergence criteria
will be used as break criterion to stop the optimisation, if possible. The following
convergence scrutiny shall reveal whether the respective convergence criteria are
suitable for this purpose.

3.1.3. Convergence histories of the demonstrators
Figure 7(a)–(d) presents the convergence histories for each convergence criterion
on all demonstrator parts.

The median angle differences between iterations in Figure 7(a) show a very
smooth and steadily declining behaviour for all demonstrators. The optimisation
of the mounting bracket (blue) exhibits higher median changes overall, which
seems reasonable when the highly multiaxial stress states are taken into account.
Convergence for all demonstrators can be observed at about 10 iterations (median
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Figure 8. Mounting bracket: Fibre orientations through iterations.

lower than 0.5◦) – even if the overall geometrical intricacy of the demonstrators
differs greatly, from a simple notched plate to a b-pillar.

Regarding themaximumangle differences of all elements (Figure 7b), it must
be stated that for the more complicated demonstrators, mounting bracket and
b-pillar, there always remain some elements in which the fibre direction flips
90◦ back and forth. However, for the b-pillar, this affects only 19 out of 18,639
elements (0.1%), for the mounting bracket 32 out of 3461 (∼1%) and none for the
notched plate. This behaviour, thus, does not have much effect on stiffness overall
(Figure 7d), yet makes this criterion completely unsuitable for CAIO convergence
scrutiny.

The measure which is inspired by the original aim of CAIO’s inventors, shear
stress reduction, provides a smooth, steadily declining behaviour for the notched
plate and the b-pillar (Figure 7c). The scaling of this diagram setsmaximum strain
energy for each demonstrator part to 100%. For the notched plate, shear stresses
are almost completely reduced; for the b-pillar, the reduction ends at about 50%.
However, for themounting bracket under torsion loading, there is even an increase
in shear stresses in the second iteration. As this is not in line with a continuous
shear stress reduction, a detailed scrutiny is provided.

Figure 8 shows the fibre orientation angles in iterations 1–4 to observe the
optimisation progress during the shear stress increase and in iteration 10 to have
an idea about a later iteration’s behaviour. The heavily multiaxial stress states
lead to many ±45◦-orientations in the beginning (iteration 1); fibres are aligned
with these and then provoke more or less chaotic behaviour and huge unsteady
changes in orientations (2–3) until a sort of ‘chaos equilibrium’ is found (3–10),
which is reflected in the overall iteration course above. This implies that a single-
layer-based CAIO method is expectedly rather unsuitable for this overall heavy
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multiaxiality of stress states induced by loads, boundary conditions and geometry,
which was also noted in Klein et al. (2014).

Returning to criteria suitability for convergence behaviour scrutiny of the
CAIO method, this could, with due care, imply the assumption that a stable
convergence behaviour also indicates a suitability of the part for use of composite
materials; however, in this empirical study, it allows the conclusion that this
implementation of shear stress measurement can be a reasonable mean to check
for convergence. For the given demonstrators, shear stress reduction convergence
is reached at slightly more varying iteration numbers compared to the median
angle difference (shear stress reduction: notched plate, 16 iterations; mounting
bracket, around 17 iterations; b-pillar, 7 iterations – when less than 10% change
between iterations is considered as convergence).

Strain energy sum (Figure 7(d)) behaves similarly to shear stress reduction.
The scaling is the same as that for shear stresses (normed to maximum = 1). It
becomes obvious that stiffness increase (strain energy reduction) is the largest
for the mounting bracket during iterations (even though for this demonstrator
the initial value is 90% as in the second iteration, strain energy goes up from the
initially better design) and stiffness increase is dependent on the demonstrator.
The overall calculated stiffness gain is around 10%–20%. From a convergence
scrutiny point of view, in the beginning, a fast and huge reduction takes place,
even though shear stresses might not have been reduced that much (less than 1%
change in strain energy after 3 iterations for the notched plate, after 10 iterations
for the mounting bracket and after 4 iterations for the b-pillar).

3.1.4. Subconclusion for convergence behaviour
The findings from the examples before imply that, first, median angle difference,
shear stress reduction and strain energy sum all provide a reasonable measure
for checking if the algorithm converged in principle. Just the maximum angle
difference is unsuitable due to local ‘flipping’ effects. Strain energy seems to
be the least conservative measure as it indicates convergence very early when
shear stresses are not as much reduced as possible. This poses a disadvantage
as shear stress reduction is crucial for good strength behaviour of composite
structures (Schürmann 2007; Knops 2008). Median angle difference as a
convergence criterion delivers a very uniform convergence duration behaviour (11
iterations for these very different demonstrators). However, shear stress reduction
seems to take occasionally longer as just discussed. Thus, shear stress reduction
seems to be a good criterion for measuring convergence behaviour as it is both
reasonable from a physics point of view and shows smooth behaviour for suitable
parts and boundaries/loads and, thus, maybe even serving as a counter-indicator
(when a part is not suitable, convergence behaviour also seems to be bad). The
number of needed iterations until convergence is dependent on the demonstrator
and load case as well as of the convergence criterion. Nonetheless, the CAIO
method is a very fast optimisation method, converging within few iterations. In
some cases, the optimisation even converges in less than five iterations. The fast
convergence coincides with the observations made in Spickenheuer (2014).
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3.2. Ambiguous optimum trajectories – a stability issue?
From Figure 8, it became obvious that multiaxial stress states can lead to
chaotic resulting designs. While from a numerical standpoint the results are
understandable, the fibre layouts are not intuitive and manufacturable anymore.
This section investigates the handling of such multiaxial stress states by using the
‘maximum absolute’ and ‘proximity search’ methods.

The ‘maximum absolute’ method always chooses the orientation of the
biggest, absolute stress eigenvalue, i.e. the corresponding eigenvector, for orienting
the fibres. Mathematically, this should lead to an optimal solution, but as
demonstrated with the mounting bracket demonstrator or a pipe under torsional
load (Klein 2017), the stress states of many elements contain two nearly identical
stress eigenvalues and, thus, ambiguous fibre trajectories to follow by the CAIO
method.

In order to overcome the problems of the ‘maximum absolute’ method,
the ‘proximity search’ method was developed by Klein (2017), which will be
scrutinised deeper in the following section. For better understanding, the principle
implementation of the ‘proximity search’ method is repeated here shortly: A
pseudocode for its implementation is given in Algorithm 1. First, every element is
checked for such an ambiguous stress state, i.e. for (nearly) equal principal normal
stresses, which is also called an isotropic stress state in the following. An isotropy
criterion has been introduced byKlein (2017) to detect this state, equation (1). The
variable isotrTol defines the range of the quotient of two principal normal stresses
in which an element’s stress state is considered isotropic.

IisoCrit =
|σI |

|σI I |
∈ ] 1− isotrTol, 1+ isotrTol [. (1)

If the isotropy criterion is true for an element’s stress state, the neighbour elements
are checked for their stress states, pictured in Figure 9. If there is an element in the
direct neighbourhoodwith a non-isotropic stress state, the fibre orientation of this
element gets adopted. If all neighbour elements exhibit an isotropic stress state as
well, the neighbours of the neighbours are checked consecutively until an element
with unambiguous stress state is found. If there are no elementswith unambiguous
stress state, the CAIOmethod is cancelled and the initial stress state (first iteration
with isotropic material) is chosen.

The aim of this method is to avoid chaotic, alternating fibre directions in areas
with isotropic stress states. Moreover, the method should lead to more uniform
layouts (Figure 9) which facilitate the transition to a patch design by resulting in
bigger and more regular patches.

While the ‘maximum absolute’ method represents the optimal solution
according to the original CAIO method (reduce shear stresses as far as possible),
the ‘proximity search’ method intentionally deviates from the optimal solution
with the focus of improving the subsequent steps in transforming the results into a
practical laminate design. In the following section, the changes regarding stiffness,
strength and convergence behaviour occurring from the use of the ‘proximity
search’ method are presented for the three demonstrators.
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Algorithm 1: Pseudocode of the ‘proximity search’ method

Input: Principal stress states ∀ elements (projected to the element plane);
isotropic tolerance isotrTol ;
for ∀ elements do

calculate isotropy criterion IisoCrit ;
if IisoCrit > 1− isotrTol && IisoCrit < 1+ isotrTol then

find neighbour elements;
for ∀ neighbour elements do

calculate isotropy criterion IisoCrit of current neighbour
element;
if IisoCrit < 1− isotrTol || IisoCrit > 1+ isotrTol then

get fibre orientation of neighbour element;
set fibre orientation of current element to neighbour
elements fibre orientation;
Break;

end
end
if no non-isotropic neighbour found then

sort elements by distance to current element;
for nearest elements do

calculate isotropy criterion IisoCrit of current nearest
neighbour element;
if IisoCrit < 1− isotrTol || IisoCrit > 1+ isotrTol then

get fibre orientation of neighbour element;
set fibre orientation of current element to neighbour
elements fibre orientation;
Break;

end
end
if no non-isotropic element found then

keep orientation of first iteration (isotropic material);
Break;

end
end

else
choose direction of maximum absolute principal stress as fibre
orientation;

end
end

3.2.1. Influence of the isotropy criterion on convergence behaviour
The isotropy tolerance is set to values between 0 and 0.9, where isotrTol = 0
means that there is no tolerance and therefore the maximum absolute principal
stress is chosen as fibre direction. Accordingly, for a value of 0.9, many elements
are detected as being isotropic. Figure 10 shows this relation for the three
demonstrators.

The mesh of the notched plate contains 4814 elements, of which even for the
highest isotropic tolerance value (and in the first iteration), under 20% are affected
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Figure 9. Avoidance of alternating fibre directions using the ‘‘proximity search’’
method. Adapted from Völkl et al. (2018b).

Figure 10. Influence of isotropy criterion on number of isotropic elements over 20
iterations.

by the proximity search method; similarly, this applies to the b-pillar. However,
for the mounting bracket, at least about half of all 3461 elements are affected even
when using low isotropic tolerance values.

Accordingly, Figure 11 depicts a rather small influence of the proximity search
method on the convergence behaviour for the notched plate and the b-pillar and a
large influence, however, on the convergence behaviour of the mounting bracket.
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Figure 11. Influence of isotropy criterion on convergence behaviour of different convergence criteria over 20
iterations.

For the notched plate, all three criteria – shear stresses, strain energy and
medium angle difference – remain largely unaffected as only some elements’
orientation is altered. As far as themounting bracket is concerned, the following
can be stated:

(i) Remaining shear stresses are higher for higher isotropy criterion values;
(ii) Strain energy is affected by the proximity search method during iterations

but converges to a similar value (around 60% of initial strain energy) for all
isotropy criterion values;
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(iii) Median angle differences are larger at the beginning for higher isotropy
criterion values but decrease quickly.

(iv) Overall, isotropy tolerance has a high influence on the first iteration.
However, influence is much smaller in the next iterations when the number
of isotropic elements decreases due to the CAIO optimisation.

For the b-pillar, the overall influence of the isotropy criterion on convergence
behaviour is very small.

3.2.2. Subconclusion: Stress state dependent influence of the isotropy
criterion on convergence behaviour

For heavily multiaxial stress states, a single-layer fibre orientation is ‘equally bad’
in any direction; thus, there is no significant stiffness difference; the shear stress
reduction, however, is affected and the use of the proximity search method to
improve (later stages) laminate patch regularity is, thus, not advisable. Under these
circumstances, also the convergence behaviour is less controllable when using the
proximity search method. In any case, for such stress states, the use of multiple
layers is recommended, which is presented and discussed in the following section.

If regions of multiaxial stress states are limited, on the contrary, the isotropic
tolerance has little influence on the criteria and their convergence behaviour. It
thus can be used comfortably to simplify later-stage laminate layouts without
losing too much stiffness.

3.3. Towards multi-layer optimisation
The original CAIO method is useful in giving an idea of force flow within a given
geometry, thus providing trajectories along which fibres should ideally be placed.
However, there are certain shortcomings when many regions of the geometry
exhibit multiaxial stress states under the given load – and, therefore, most FRP
optimisation approaches these days offer an elaborated multi-layer capability, e.g.
Altair OptiStruct, ESAComp or approaches by Klein et al. (2014) and Kussmaul,
Zogg & Ermanni (2018). The approach by Klein et al. uses an altered CAIO
method for multi-layer optimisation which is discussed in Klein (2017) and
shortly described here: First, the (shell) geometry is split into multiple layers, each
layerwith equal thickness and adding up to a given overall thickness. The layers are
modelledwithin finite element shell elements. Then, to optimise the fibre angles in
each layer of every element, the stress tensor is calculated for every element layer
via finite element analysis. The CAIO algorithm aligns the fibre trajectory with the
direction of the maximum absolute principal stress in each layer. By iterating like
in the original CAIOmethod for single-layer optimisation (first iteration isotropic
material, then anisotropic), the optimised solution is found.

Convergence stability of this multi-layer CAIO method has not yet been
studied intensively but is crucial for a successful application of a multi-layer
optimisation routine. Therefore, in the following, two of the former demonstrator
parts are investigated again with varying number of layers. The mounting bracket
and b-pillar with their respective load cases introduced in Figure 3 are used for this
scrutiny due to curved geometries and more complicated load cases. The notched
plate is omitted as both geometry and forces are in-plane; thus, all layers of each
element would simply take on the same orientation and, as such, no effect on
convergence stability (or stiffness) can be expectedwhich goes beyond single-layer
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scrutiny. The proximity search method is switched off (isotrTol = 0) to avoid its
additional influence. The overall thickness of the demonstrators is set to 1 mm for
the mounting bracket and 4 mm for the b-pillar. Each layer height is defined by
overall thickness divided by layer number. The number of layers is raised fromone
to five and the convergence behaviour in terms of shear stresses, strain energy and
median angle difference is studied. The results regarding stiffness and convergence
for the multi-layer optimisation are presented in Figure 12.

3.3.1. Stiffness scrutiny
First, the stiffness is investigated by analysing the strain energy (mid row of
Figure 12). The mounting bracket shows decreasing strain energy with increasing
number of layers, which in turn indicates an increase in stiffness. The difference
between the worst result (one layer) and the best result after the last iteration (four
layers) is 14%. An especially steep increase in stiffness can be seen when shifting
from one to two layers. Increasing the layer number further from two to three
only provokes a small stiffness gain; after that, hardly any stiffness gain can be
observed. The results of the optimisations of the b-pillar show a small increase of
the stiffness between the optimisations with one and two layers. A steep stiffness
increase cannot be observed until using three layers; after that, hardly any stiffness
gain occurs, which is the same as that for the mounting bracket.

The overall resulting difference of the strain energy between the optimisation
with one layer and with five layers is considerable (29%), taking into account that
the overall thickness does not change.

3.3.2. Subconclusion: Stiffness behaviour of multi-layer optimisations
More layers for optimisation (with constant overall laminate thickness) increase
stiffness. The additional layers cover further loads reflected in principal stress
directions apart from the maximum principal stress. For example, the mounting
bracket demonstrator’s stiffness increases with the addition of a second layer
as the multiaxial stresses in +45◦ and −45◦ direction can be covered. Another
benefit of using multiple layers is the coverage of stresses varying with and being
dependent on laminate thickness – multiple layers can cover different principal
stress directions on the upper, middle and lower sides of the part. Exceeding a
certain number of layers and thus thickness discretisation does not bring further
benefit, indicating that occurring stresses have been covered appropriately.

3.3.3. Convergence scrutiny
Using Figure 12, the convergence behaviour is analysed like before, observing the
sum of shear stresses, the sum of strain energy and median angle difference.

Regarding the summarised shear stresses of the mounting bracket, only small
differences between one andmultiple layers can be observed.While shear stresses
in the first iterations increase with higher number of layers, the later convergence
behaviour of the simulations is very similar. The final values differ by around 5%.
The curves of the b-pillar behave similarly, except for the two-layer optimisation,
which results in higher shear stresses. While the shear stresses of the b-pillar
with one layer only show changes lower than 3% after 10 iterations, the one-layer
optimisation of themounting bracketmaintains slight changes until themaximum
number of iterations (due to ongoing variations in fibre orientations). Multi-layer
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Figure 12. Influence of multiple layers on convergence behaviour.

optimisation results of the mounting bracket vary merely about 1% after the 10th
iteration, thus providing a very good convergence behaviour.

The convergence behaviour of the strain energy shows a fast convergence
behaviour for both the mounting bracket and the b-pillar. The only optimisation
run taking more than 10 iterations for satisfactory convergence is the unsuitable
one-layer optimisation of the mounting bracket.

The median angle differences of the mounting bracket optimisation runs
with multiple layers show significantly lower start values compared to the one-
layer optimisation; i.e. overall, angle changes in the beginning are much smaller.
All optimisations converge after a maximum of 10 iterations. The last iteration’s
median angle differences differ below 1% for all optimisations (one to five layers).
In absolute numbers, the resulting value for the median of the angle differences in
the last iteration is below 0.1◦. The graph for the b-pillar exhibits similar results.
The start value of the median angle difference for the one-layer optimisation is
higher than that for multiple layers. But the convergence behaviour and the trend
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of the curves is very similar for all numbers of layers. Compared to the mounting
bracket, more iterations are needed until convergence. The resulting values differ
very little.

3.3.4. Subconclusion: Convergence behaviour of multi-layer optimisations
Overall, the multi-layer CAIO method provides a stable convergence behaviour.
When multiaxial stress states occur, multiple layers are favourable, which is
reflected directly in convergence behaviour, which usually becomes more stable
when increasing the number of layers (mounting bracket example). For the
question which convergence criterion to choose, the response is actually that
all three criteria seem suitable, as for the single-layer CAIO method. For one
single layer, a clear pattern was identified that strain energy seems to be the least
conservative measure of convergence as it converged first. Comparing multi-layer
convergence behaviour now, that does not always hold true (e.g. b-pillar, strain
energy and three layers). Yet, regarding all results, strain energy does not qualify
as a cautious criterion guaranteeing full convergence. Angle differences could be
used equally to the shear stresses because both seem a good choice: Convergence
is indicated at similar iteration numbers independently of the layer number and
of the criterion. However, shear stresses provide a physical meaning and, thus, are
recommended.

3.3.5. Multi-layer results: Each layer in detail
Observing the decisive differences in convergence behaviour between one, two,
three and occasionally four layers for the demonstrators, in the following, a
detailed scrutiny of first iterations’ fibre layouts is conducted to further explain
these differences.

Figure 13 shows themounting bracket’s fibre layouts of two- (above) and three-
layer optimisation (below): First, the result design with two layers is evaluated.
The first layer results in curved fibre trajectories from the fixed supports to the
holes where load is applied. The fibre angles are set at about 45◦ to the tangential
direction of the mounting bracket. The mounting bracket’s fibre layout is divided
into tension and compression sections. The fibre angles flip about 90◦ at the
section borders, as indicated by abrupt colour changes. At the inner part of the
sections, there also is an area where the fibre direction flips about 90◦. In the
inner ring close to the holes, the fibre directions mostly point to the loaded holes,
indicating force flow.

In the outer areas close to the fixed supports, the second layer exhibits the
same fibre orientations as the first layer. On the contrary, the load carrying regions
between the holes and the supports show a change of the fibre angles. To analyse
this inconsistency of angles between the two layers, Figure 14(a) is consulted. It
indicates the fibre angle difference between the two layers. The comparison of the
fibre angles of the different layers shows the influences of multiple layers on the
optimisation more properly.

Figure 14(a) shows that the most elements in the load carrying area have a
fibre angle difference∆α of around 90◦. Combined with the layer fibre angles of
the first layer, a±45◦ layup evolves, which is known as a proper laminate layup for
shear stresses (Schürmann 2007). At the tension-section and compression-section
borders, elements with no difference in the fibre angles occur.
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Figure 13. Optimisation results with multiple layers for the mounting bracket.

Figure 14. Fibre angle difference of the first and the second layers (a) of the optimised
mounting bracket with two layers and (b) of the optimised b-pillar with four layers.

Observing the multi-layer optimisation of the mounting bracket with three
layers in Figure 13, a behaviour similar to the two-layer optimisation is detected.
The first layers of the three- and two-layer optimisation are almost the same,
except for some artefacts (A). The third layer generally shows the same behaviour
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Figure 15. Optimisation results with multiple layers for the b-pillar.

as that of the second layer of the two-layer optimisation. Yet, it contains more
artefacts at the section borders and in the outer areas (B) where less stress occurs.
The second layer resembles a combination of the two outer layers (layers 1 and
3). The general layout is similar to layer 1, but it contains extra areas where fibre
angles are rotated by 90◦ in the highly loaded areas.

As a second demonstrator for multi-layer CAIO optimisation, the b-pillar is
used. The b-pillar providesmore complicated loadswith several areas ofmultiaxial
stress states and a more complicated geometry. The results for the thickness
discretisation with three and four layers are presented in Figure 15.

Both optimisation runs show different fibre angles depending on the observed
layer. While the fibre angles of the outer layers mainly cover the asymmetric
bending by orienting the fibres in the load direction (light green to yellow areas),
the middle layer of the three-layer optimisation run furthermore develops a
greater area of mainly vertically oriented fibre directions (red and purple). The
outer layers of the four-layer optimisation show very similar fibre orientations
to the three-layer optimisation covering the bending load, while the inner layers
(layers 2 and 3) are different from the second layer of the three-layer optimisation.
Layer 2 of 4 mainly consists of vertical fibre angles intermitted by an area of 0◦

fibre angles at the necking of the b-pillar in the upper half of the part (light blue).
Additionally, on the right half of the b-pillar, the fibre angles are rotated to the first
layer by about 90◦, also shown in Figure 14(b), which indicates multiaxial stress
states. Furthermore, there is a vertical border consisting of varying fibre angles.
Layer 3 of 4 resembles the fourth layer, differing through extended areas of vertical
fibre angles.
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3.3.6. Subconclusion: Layers in depth
Differences in convergence behaviour between optimisations with increasing
numbers of layers occurred, which lead to this in-depth layer scrutiny. An
increasing number of layers depicts varying stress states through the thickness
of the given shell design space more precisely. Especially when increasing from
one or two to three or four layers, a considerable stiffness gain can be observed
(Figure 12). The heuristicmulti-layer CAIO algorithm locally provides reasonable
fibre layouts according to usual composite structure design guidelines, such as the
outer layers of the b-pillar under bending load or the±45◦ layup of the mounting
bracket under torsion load. Additionally, for the b-pillar, already with four layers,
two of these are quite similar, indicating that a further increase of layer number
might not bring much benefit.

4. Investigating variations in multi-layer optimisation
In terms of applicability, the multi-layer CAIO method was tested on real-world
applications and indeed does deliver its expected results - however, not necessarily
directly manufacturable results. For transferring the nominal, optimised results
into real-world applications, deviations from the optimised fibre layout are
inevitable. In his optimisation approach, (Klein et al. 2015) conducts several
postprocessing steps following the multi-layer CAIO method to achieve this
aim. From such postprocessing, whether through reduction or clustering of
fibre orientations, deviations of some degrees between the optimised result
and the final fibre layout occur. Adding further insight to the results of the
introduced approach, in the following, the – presumably negative – influence
of such deviations will be quantified in terms of stiffness. Thus, guidelines for
modification can be recommended.

4.1. Quantifying the influence of fibre angle deviations on
stiffness

Quantification of such influence can be done using methods from tolerancing:
variation and sensitivity analyses, as used by Schleich & Wartzack (2013) to
scrutinise the influence of geometric deviations on the structural behaviour. As
a basis for performing the variation and sensitivity analyses, the four-layer design
of the b-pillar presented in Figure 15 with a layer height of 1 mm is used. The
fibre orientations of each layer are varied in a range of ±5◦ to their initial state
calculated with the CAIO method. Thus, four angle parameters are required, one
for each layer. All element fibre angles within each layer are rotated by the same
amount to their reference direction. Due to differently assumed distributions in
literature, the analysis is performed with both uniform (Walker &Hamilton 2006)
and normal (Endruweit et al. 2006; Mesogitis, Skordos & Long 2014) distribution
of the independent angle parameters. The normally distributed values of the
fibre angle variation lie within the ±5◦ range which is defined as ±3σ interval.
For each distribution, a sample size of 400 samples is generated using Latin
hypercube sampling and solved by finite element analysis. For each design point,
the maximum nodal deformation was chosen as the output parameter.

Figure 16 shows the mean values of the output parameter for both
distributions. The mean value for the normal distribution is 197.00 mm with a
standard deviation of 1.10. The values for the uniform distribution are slightly
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Figure 16. Mean deformation and standard deviation for uniform and normal
distributions.

higher. The mean value for the uniform distribution is 198.85 mm and the
standard deviation is 2.16, which is nearly doubled by choosing a different
distribution. Additionally, the maximum (red square) and minimum (green
square) total deformation for the both distributions and, as a reference, the
deformation of the optimised design (black cross) are plotted.

(i) Theminimumdeformation data points are almost even with values of 195.79
(uniform) and 195.72 mm (normal). These, interestingly, are slightly lower
than the optimised results, which has a total deformation of 196.12 mm.

(ii) The maximum deformation of the normal distribution (202.80 mm) is lower
than the uniform distribution’s maximum deformation (206.80 mm).

(iii) The difference between minimum and maximum deformation is larger for
the uniform distribution, like the values of the standard deviation.

While deviations of the parameters coming from the manufacturing process
are mainly normally distributed (Mesogitis et al. 2014), there is no information
about the distributions of the occurring deviations resulting from clustering and
further postprocessing. Therefore, the uniform distribution is used as a more
conservative estimation of these deviations. Looking at the results with reference
to the optimised result, deviations of the layer angles mainly result in worse
deformations. Depending on the assumed distribution, the negative effect is
increased (uniform distribution).

Figure 17(a) and 17(b) depicts the histograms of the deformation results
for all design points. The red line shows the CAIO-optimised design. For both
distributions, the optimised design is one of the best designs, which underlines the
effectiveness of the multi-layer CAIO algorithm. Being a heuristic algorithm, the

21/26

https://doi.org/10.1017/dsj.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.1


Figure 17. Histogram of (a) normal distribution and (b) uniform distribution; red
line: initial, optimised design.

global minimum cannot be necessarily expected. Proceeding from the optimised
design in the histogram to the right, the quantities of the bars descend for both
distributions. The histograms on the one hand confirm the good results from the
CAIO algorithm and, on the other hand, the negative effect of deviating input
parameters, depending on the assumed deviation distribution: better for normally
distributed parameters and worse for uniformly distributed parameters.

In the last step, the sensitivities of the individual layer angle deviation on the
maximum total deformation are calculated. The aim of scrutinising the sensitivity
measures is to know the most influential layers on the maximum deformation
in order to handle them more carefully, for example, by tolerancing the fibre
orientations later. Therefore, three different sensitivity measures are calculated
to compare the results and get a statement on the important and less important
layers. The three sensitivity measures are the adjusted coefficient of importance
(COI) presented in Bucher (2007) and Most & Will (2008), which is based on a
polynomial regression.

The easi algorithm introduced by Plischke (2010) estimates first-order
sensitivity indices from given data using fast Fourier transformation. The deltafast
algorithm assumed from Plischke, Borgonovo & Smith (2013) calculates global
sensitivity measures by a density-based method. The results are depicted for
normal distribution in Figure 18(a) and for uniform distribution in 18(b).

Observing Figure 18(a) all sensitivity measures allow the same qualitative
statements. The outer layers 1 and 4 show higher sensitivity values than the inner
layers 2 and 3. Comparing layers 1 and 4, layer 4 has higher values and, therefore,
a higher influence on the observed deformation.

The higher sensitivity values for the outer layers result from the bending
load case. Bearing of the bending load is influenced more heavily by the layers
with a high distance to the neutral fibre, which, in turn, results in a higher
second moment of area. Differences in the absolute values stem from the
different approaches to calculate the sensitivities: The sensitivity measures for the
uniformly distributed layer angles look similar to the normally distributed angles.
The outer layers are of higher importance compared to the inner ones. For the
deltafast algorithm, layer 1 now has a slightly higher value than layer 4 but on the
same level overall. This change is not considered as relevant because in different
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Figure 18. Sensitivities of normal distribution (left) and uniform distribution (right)
calculated with different sensitivity measures.

samplings, the sensitivity values can vary. The same observation holds true for the
inner layers.

4.2. Conclusion: Influence of fibre angle deviations on stiffness
Concluding the variation and sensitivity analysis, the need for handling deviations
to the optimised design was shown by the evaluation of the variation analysis.
The variation analysis proved that deviating fibre angle parameters have a distinct
negative influence on the structural behaviour of an optimised design. To reduce
this negative influence, it is necessary to detect the layers with the highest
importance on the structural behaviour, which was done by sensitivity analysis
indicating the most influential layers on deformation. The information about this
importance can help the design engineer to treat these layers in a more sensitive
way, for example, by setting (tighter) tolerances to the fibre orientations of these
layers during manufacturing or giving due care during postprocessing of the
optimised result.

Though the performed analysis shows the need for considering deviations, it
still is a very simplified example as it starts from the nominal, optimised results.
In a practical tolerancing use, the optimised design has to be postprocessed
to turn it into a laminate design consisting of patches. Then, differing fibre
orientations in real layer geometries can be handled. The variation of all fibre
angles of one big global layer at once does not reflect this in a proper way. In
a laminate layup with many patches, the amount of deviating parameters rises
against this simplified scrutiny, which in turn leads to a higher computational
effort performing sensitivity analysis. Future work has to be done in making
sensitivity analysis more efficient to provide information about important patches
to the design engineer.

5. Discussion
TheCAIOmethodwas introduced and discussed, and its extension formulti-layer
optimisation (Klein et al. 2015) was scrutinised deeply. The CAIOmethod in both
its single- andmulti-layer forms, though working well, left open several questions:

23/26

https://doi.org/10.1017/dsj.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.1


(1) Which convergence criteria are suitable to indicate halt of iterations?
(2) What is the effect of ambiguous principal normal stress trajectories

on convergence and stiffness? Can a fibre angle regularisation method
(proximity search) be applied safely?

(3) Does the modified multi-layer CAIO method affect proper convergence
behaviour, including convergence speed?

(4) To what amount do small deviations from the optimised fibre orientations
affect overall stiffness behaviour?

(1) Concerning convergence criteria, it can be stated that global strain energy
is a rather unconservative measure, indicating convergence very early when fibre
angles are still changing. Overall, shear stresses are both more conservative than
strain energy and more physically meaningful than fibre angle changes.

(2) The effect of ambiguous principal normal stress trajectories on
convergence behaviour and stiffness is low for the single-layer CAIO method as
a single orthotropic axis orientation in an element underlying multiaxial stress
states is ‘equally bad’ independently of its angle. Thus, the proximity search
method, producing more regular, homogeneous fibre layouts, can be used safely.
For multi-layer optimisation, these multiaxial stress states are covered bymultiple
layers.

(3) For this reason, the multi-layer CAIO method was presented and
scrutinised, leading to the conclusion that for both selected demonstrators,
it converges smoothly. Apart from some minor differences in strain energy
convergence behaviour, the same recommendation as on the first question is
given. Fibre orientations of the resulting layers are in good accordance with basic
laminate layup guidelines for bending and torsion load cases. Furthermore, the
fast convergence behaviour of theCAIOmethod facilitates the use during the early
phases of product development. Especially the small influence of multiple layers
and thereby increased number of design variables on the number of iterations
for obtaining convergence is a very positive and remarkable effect of the CAIO
method.

(4) Even small deviations indeed have a predominantly negative impact on
the overall stiffness behaviour. Some optimisation layers are, due to the load
case, more critical than others. Therefore, during postprocessing steps leading
to a manufacturable laminate layup, due care should be given to these layers; in
later steps, the same deviation analysis method can be applied to indicate critical
patches, which should be laid especially precisely during manufacturing.
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